Properties

Label 18.3.d.a.11.2
Level $18$
Weight $3$
Character 18.11
Analytic conductor $0.490$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,3,Mod(5,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.5");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 18.d (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.490464475849\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.2
Root \(1.22474 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 18.11
Dual form 18.3.d.a.5.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 0.707107i) q^{2} +(-2.44949 - 1.73205i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-4.50000 + 2.59808i) q^{5} +(-1.77526 - 3.85337i) q^{6} +(4.17423 - 7.22999i) q^{7} +2.82843i q^{8} +(3.00000 + 8.48528i) q^{9} -7.34847 q^{10} +(0.825765 + 0.476756i) q^{11} +(0.550510 - 5.97469i) q^{12} +(4.84847 + 8.39780i) q^{13} +(10.2247 - 5.90326i) q^{14} +(15.5227 + 1.43027i) q^{15} +(-2.00000 + 3.46410i) q^{16} -18.8776i q^{17} +(-2.32577 + 12.5136i) q^{18} -24.6969 q^{19} +(-9.00000 - 5.19615i) q^{20} +(-22.7474 + 10.4798i) q^{21} +(0.674235 + 1.16781i) q^{22} +(0.825765 - 0.476756i) q^{23} +(4.89898 - 6.92820i) q^{24} +(1.00000 - 1.73205i) q^{25} +13.7135i q^{26} +(7.34847 - 25.9808i) q^{27} +16.6969 q^{28} +(11.8485 + 6.84072i) q^{29} +(18.0000 + 12.7279i) q^{30} +(-1.52270 - 2.63740i) q^{31} +(-4.89898 + 2.82843i) q^{32} +(-1.19694 - 2.59808i) q^{33} +(13.3485 - 23.1202i) q^{34} +43.3799i q^{35} +(-11.6969 + 13.6814i) q^{36} +46.6969 q^{37} +(-30.2474 - 17.4634i) q^{38} +(2.66913 - 28.9681i) q^{39} +(-7.34847 - 12.7279i) q^{40} +(-9.45459 + 5.45861i) q^{41} +(-35.2702 - 3.24980i) q^{42} +(-22.5227 + 39.0105i) q^{43} +1.90702i q^{44} +(-35.5454 - 30.3895i) q^{45} +1.34847 q^{46} +(39.2196 + 22.6435i) q^{47} +(10.8990 - 5.02118i) q^{48} +(-10.3485 - 17.9241i) q^{49} +(2.44949 - 1.41421i) q^{50} +(-32.6969 + 46.2405i) q^{51} +(-9.69694 + 16.7956i) q^{52} -94.3879i q^{53} +(27.3712 - 26.6237i) q^{54} -4.95459 q^{55} +(20.4495 + 11.8065i) q^{56} +(60.4949 + 42.7764i) q^{57} +(9.67423 + 16.7563i) q^{58} +(-16.2650 + 9.39063i) q^{59} +(13.0454 + 28.3164i) q^{60} +(-6.54541 + 11.3370i) q^{61} -4.30686i q^{62} +(73.8712 + 13.7296i) q^{63} -8.00000 q^{64} +(-43.6362 - 25.1934i) q^{65} +(0.371173 - 4.02834i) q^{66} +(-37.5227 - 64.9912i) q^{67} +(32.6969 - 18.8776i) q^{68} +(-2.84847 - 0.262459i) q^{69} +(-30.6742 + 53.1293i) q^{70} +18.0204i q^{71} +(-24.0000 + 8.48528i) q^{72} -7.90918 q^{73} +(57.1918 + 33.0197i) q^{74} +(-5.44949 + 2.51059i) q^{75} +(-24.6969 - 42.7764i) q^{76} +(6.89388 - 3.98018i) q^{77} +(23.7526 - 33.5912i) q^{78} +(21.8712 - 37.8820i) q^{79} -20.7846i q^{80} +(-63.0000 + 50.9117i) q^{81} -15.4393 q^{82} +(-112.871 - 65.1662i) q^{83} +(-40.8990 - 28.9199i) q^{84} +(49.0454 + 84.9491i) q^{85} +(-55.1691 + 31.8519i) q^{86} +(-17.1742 - 37.2784i) q^{87} +(-1.34847 + 2.33562i) q^{88} +145.300i q^{89} +(-22.0454 - 62.3538i) q^{90} +80.9546 q^{91} +(1.65153 + 0.953512i) q^{92} +(-0.838264 + 9.09769i) q^{93} +(32.0227 + 55.4650i) q^{94} +(111.136 - 64.1645i) q^{95} +(16.8990 + 1.55708i) q^{96} +(54.9393 - 95.1576i) q^{97} -29.2699i q^{98} +(-1.56811 + 8.43712i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 18 q^{5} - 12 q^{6} + 2 q^{7} + 12 q^{9} + 18 q^{11} + 12 q^{12} - 10 q^{13} + 36 q^{14} + 18 q^{15} - 8 q^{16} - 24 q^{18} - 40 q^{19} - 36 q^{20} - 42 q^{21} - 12 q^{22} + 18 q^{23} + 4 q^{25}+ \cdots + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 0.707107i 0.612372 + 0.353553i
\(3\) −2.44949 1.73205i −0.816497 0.577350i
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) −4.50000 + 2.59808i −0.900000 + 0.519615i −0.877200 0.480125i \(-0.840591\pi\)
−0.0227998 + 0.999740i \(0.507258\pi\)
\(6\) −1.77526 3.85337i −0.295876 0.642229i
\(7\) 4.17423 7.22999i 0.596319 1.03286i −0.397040 0.917801i \(-0.629963\pi\)
0.993359 0.115054i \(-0.0367041\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 3.00000 + 8.48528i 0.333333 + 0.942809i
\(10\) −7.34847 −0.734847
\(11\) 0.825765 + 0.476756i 0.0750696 + 0.0433414i 0.537065 0.843541i \(-0.319533\pi\)
−0.461995 + 0.886882i \(0.652866\pi\)
\(12\) 0.550510 5.97469i 0.0458759 0.497891i
\(13\) 4.84847 + 8.39780i 0.372959 + 0.645984i 0.990019 0.140932i \(-0.0450098\pi\)
−0.617060 + 0.786916i \(0.711676\pi\)
\(14\) 10.2247 5.90326i 0.730339 0.421661i
\(15\) 15.5227 + 1.43027i 1.03485 + 0.0953512i
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 18.8776i 1.11045i −0.831701 0.555223i \(-0.812633\pi\)
0.831701 0.555223i \(-0.187367\pi\)
\(18\) −2.32577 + 12.5136i −0.129209 + 0.695201i
\(19\) −24.6969 −1.29984 −0.649919 0.760003i \(-0.725197\pi\)
−0.649919 + 0.760003i \(0.725197\pi\)
\(20\) −9.00000 5.19615i −0.450000 0.259808i
\(21\) −22.7474 + 10.4798i −1.08321 + 0.499038i
\(22\) 0.674235 + 1.16781i 0.0306470 + 0.0530822i
\(23\) 0.825765 0.476756i 0.0359028 0.0207285i −0.481941 0.876204i \(-0.660068\pi\)
0.517844 + 0.855475i \(0.326735\pi\)
\(24\) 4.89898 6.92820i 0.204124 0.288675i
\(25\) 1.00000 1.73205i 0.0400000 0.0692820i
\(26\) 13.7135i 0.527444i
\(27\) 7.34847 25.9808i 0.272166 0.962250i
\(28\) 16.6969 0.596319
\(29\) 11.8485 + 6.84072i 0.408568 + 0.235887i 0.690174 0.723643i \(-0.257534\pi\)
−0.281606 + 0.959530i \(0.590867\pi\)
\(30\) 18.0000 + 12.7279i 0.600000 + 0.424264i
\(31\) −1.52270 2.63740i −0.0491195 0.0850774i 0.840420 0.541935i \(-0.182308\pi\)
−0.889540 + 0.456858i \(0.848975\pi\)
\(32\) −4.89898 + 2.82843i −0.153093 + 0.0883883i
\(33\) −1.19694 2.59808i −0.0362709 0.0787296i
\(34\) 13.3485 23.1202i 0.392602 0.680007i
\(35\) 43.3799i 1.23943i
\(36\) −11.6969 + 13.6814i −0.324915 + 0.380040i
\(37\) 46.6969 1.26208 0.631040 0.775751i \(-0.282628\pi\)
0.631040 + 0.775751i \(0.282628\pi\)
\(38\) −30.2474 17.4634i −0.795985 0.459562i
\(39\) 2.66913 28.9681i 0.0684393 0.742772i
\(40\) −7.34847 12.7279i −0.183712 0.318198i
\(41\) −9.45459 + 5.45861i −0.230600 + 0.133137i −0.610849 0.791747i \(-0.709172\pi\)
0.380249 + 0.924884i \(0.375838\pi\)
\(42\) −35.2702 3.24980i −0.839766 0.0773763i
\(43\) −22.5227 + 39.0105i −0.523784 + 0.907220i 0.475833 + 0.879536i \(0.342147\pi\)
−0.999617 + 0.0276845i \(0.991187\pi\)
\(44\) 1.90702i 0.0433414i
\(45\) −35.5454 30.3895i −0.789898 0.675323i
\(46\) 1.34847 0.0293145
\(47\) 39.2196 + 22.6435i 0.834460 + 0.481776i 0.855377 0.518005i \(-0.173325\pi\)
−0.0209170 + 0.999781i \(0.506659\pi\)
\(48\) 10.8990 5.02118i 0.227062 0.104608i
\(49\) −10.3485 17.9241i −0.211193 0.365797i
\(50\) 2.44949 1.41421i 0.0489898 0.0282843i
\(51\) −32.6969 + 46.2405i −0.641116 + 0.906676i
\(52\) −9.69694 + 16.7956i −0.186480 + 0.322992i
\(53\) 94.3879i 1.78090i −0.455077 0.890452i \(-0.650388\pi\)
0.455077 0.890452i \(-0.349612\pi\)
\(54\) 27.3712 26.6237i 0.506874 0.493031i
\(55\) −4.95459 −0.0900835
\(56\) 20.4495 + 11.8065i 0.365169 + 0.210831i
\(57\) 60.4949 + 42.7764i 1.06131 + 0.750462i
\(58\) 9.67423 + 16.7563i 0.166797 + 0.288901i
\(59\) −16.2650 + 9.39063i −0.275679 + 0.159163i −0.631466 0.775404i \(-0.717546\pi\)
0.355787 + 0.934567i \(0.384213\pi\)
\(60\) 13.0454 + 28.3164i 0.217423 + 0.471940i
\(61\) −6.54541 + 11.3370i −0.107302 + 0.185852i −0.914676 0.404187i \(-0.867554\pi\)
0.807375 + 0.590039i \(0.200888\pi\)
\(62\) 4.30686i 0.0694654i
\(63\) 73.8712 + 13.7296i 1.17256 + 0.217930i
\(64\) −8.00000 −0.125000
\(65\) −43.6362 25.1934i −0.671327 0.387591i
\(66\) 0.371173 4.02834i 0.00562383 0.0610355i
\(67\) −37.5227 64.9912i −0.560040 0.970018i −0.997492 0.0707765i \(-0.977452\pi\)
0.437452 0.899242i \(-0.355881\pi\)
\(68\) 32.6969 18.8776i 0.480837 0.277612i
\(69\) −2.84847 0.262459i −0.0412822 0.00380375i
\(70\) −30.6742 + 53.1293i −0.438203 + 0.758990i
\(71\) 18.0204i 0.253808i 0.991915 + 0.126904i \(0.0405041\pi\)
−0.991915 + 0.126904i \(0.959496\pi\)
\(72\) −24.0000 + 8.48528i −0.333333 + 0.117851i
\(73\) −7.90918 −0.108345 −0.0541725 0.998532i \(-0.517252\pi\)
−0.0541725 + 0.998532i \(0.517252\pi\)
\(74\) 57.1918 + 33.0197i 0.772863 + 0.446212i
\(75\) −5.44949 + 2.51059i −0.0726599 + 0.0334745i
\(76\) −24.6969 42.7764i −0.324960 0.562847i
\(77\) 6.89388 3.98018i 0.0895309 0.0516907i
\(78\) 23.7526 33.5912i 0.304520 0.430656i
\(79\) 21.8712 37.8820i 0.276850 0.479519i −0.693750 0.720216i \(-0.744043\pi\)
0.970600 + 0.240697i \(0.0773761\pi\)
\(80\) 20.7846i 0.259808i
\(81\) −63.0000 + 50.9117i −0.777778 + 0.628539i
\(82\) −15.4393 −0.188284
\(83\) −112.871 65.1662i −1.35989 0.785135i −0.370284 0.928918i \(-0.620740\pi\)
−0.989609 + 0.143783i \(0.954073\pi\)
\(84\) −40.8990 28.9199i −0.486893 0.344285i
\(85\) 49.0454 + 84.9491i 0.577005 + 0.999402i
\(86\) −55.1691 + 31.8519i −0.641502 + 0.370371i
\(87\) −17.1742 37.2784i −0.197405 0.428488i
\(88\) −1.34847 + 2.33562i −0.0153235 + 0.0265411i
\(89\) 145.300i 1.63258i 0.577642 + 0.816290i \(0.303973\pi\)
−0.577642 + 0.816290i \(0.696027\pi\)
\(90\) −22.0454 62.3538i −0.244949 0.692820i
\(91\) 80.9546 0.889611
\(92\) 1.65153 + 0.953512i 0.0179514 + 0.0103643i
\(93\) −0.838264 + 9.09769i −0.00901359 + 0.0978246i
\(94\) 32.0227 + 55.4650i 0.340667 + 0.590053i
\(95\) 111.136 64.1645i 1.16985 0.675416i
\(96\) 16.8990 + 1.55708i 0.176031 + 0.0162196i
\(97\) 54.9393 95.1576i 0.566384 0.981007i −0.430535 0.902574i \(-0.641675\pi\)
0.996919 0.0784327i \(-0.0249916\pi\)
\(98\) 29.2699i 0.298672i
\(99\) −1.56811 + 8.43712i −0.0158395 + 0.0852234i
\(100\) 4.00000 0.0400000
\(101\) 127.772 + 73.7695i 1.26507 + 0.730391i 0.974052 0.226326i \(-0.0726714\pi\)
0.291022 + 0.956716i \(0.406005\pi\)
\(102\) −72.7423 + 33.5125i −0.713160 + 0.328554i
\(103\) 51.5681 + 89.3186i 0.500661 + 0.867171i 1.00000 0.000763745i \(0.000243108\pi\)
−0.499338 + 0.866407i \(0.666424\pi\)
\(104\) −23.7526 + 13.7135i −0.228390 + 0.131861i
\(105\) 75.1362 106.259i 0.715583 1.01199i
\(106\) 66.7423 115.601i 0.629645 1.09058i
\(107\) 36.0408i 0.336830i 0.985716 + 0.168415i \(0.0538649\pi\)
−0.985716 + 0.168415i \(0.946135\pi\)
\(108\) 52.3485 13.2528i 0.484708 0.122711i
\(109\) −148.272 −1.36030 −0.680149 0.733074i \(-0.738085\pi\)
−0.680149 + 0.733074i \(0.738085\pi\)
\(110\) −6.06811 3.50343i −0.0551647 0.0318493i
\(111\) −114.384 80.8815i −1.03048 0.728662i
\(112\) 16.6969 + 28.9199i 0.149080 + 0.258214i
\(113\) −148.166 + 85.5439i −1.31121 + 0.757025i −0.982296 0.187336i \(-0.940015\pi\)
−0.328910 + 0.944361i \(0.606681\pi\)
\(114\) 43.8434 + 95.1665i 0.384591 + 0.834794i
\(115\) −2.47730 + 4.29080i −0.0215417 + 0.0373113i
\(116\) 27.3629i 0.235887i
\(117\) −56.7122 + 66.3340i −0.484720 + 0.566957i
\(118\) −26.5607 −0.225091
\(119\) −136.485 78.7995i −1.14693 0.662180i
\(120\) −4.04541 + 43.9048i −0.0337117 + 0.365874i
\(121\) −60.0454 104.002i −0.496243 0.859518i
\(122\) −16.0329 + 9.25660i −0.131417 + 0.0758738i
\(123\) 32.6135 + 3.00502i 0.265151 + 0.0244311i
\(124\) 3.04541 5.27480i 0.0245597 0.0425387i
\(125\) 119.512i 0.956092i
\(126\) 80.7650 + 69.0501i 0.640992 + 0.548016i
\(127\) −78.0908 −0.614888 −0.307444 0.951566i \(-0.599474\pi\)
−0.307444 + 0.951566i \(0.599474\pi\)
\(128\) −9.79796 5.65685i −0.0765466 0.0441942i
\(129\) 122.737 56.5453i 0.951452 0.438335i
\(130\) −35.6288 61.7109i −0.274068 0.474700i
\(131\) 202.704 117.031i 1.54736 0.893369i 0.549019 0.835810i \(-0.315001\pi\)
0.998342 0.0575598i \(-0.0183320\pi\)
\(132\) 3.30306 4.67123i 0.0250232 0.0353881i
\(133\) −103.091 + 178.559i −0.775119 + 1.34255i
\(134\) 106.130i 0.792017i
\(135\) 34.4319 + 136.005i 0.255051 + 1.00745i
\(136\) 53.3939 0.392602
\(137\) 129.758 + 74.9156i 0.947136 + 0.546829i 0.892190 0.451660i \(-0.149168\pi\)
0.0549460 + 0.998489i \(0.482501\pi\)
\(138\) −3.30306 2.33562i −0.0239352 0.0169248i
\(139\) 42.2650 + 73.2052i 0.304065 + 0.526656i 0.977053 0.212998i \(-0.0683226\pi\)
−0.672988 + 0.739654i \(0.734989\pi\)
\(140\) −75.1362 + 43.3799i −0.536687 + 0.309857i
\(141\) −56.8485 123.395i −0.403181 0.875144i
\(142\) −12.7423 + 22.0704i −0.0897348 + 0.155425i
\(143\) 9.24614i 0.0646584i
\(144\) −35.3939 6.57826i −0.245791 0.0456823i
\(145\) −71.0908 −0.490281
\(146\) −9.68673 5.59264i −0.0663475 0.0383057i
\(147\) −5.69694 + 61.8289i −0.0387547 + 0.420605i
\(148\) 46.6969 + 80.8815i 0.315520 + 0.546496i
\(149\) 100.030 57.7524i 0.671343 0.387600i −0.125242 0.992126i \(-0.539971\pi\)
0.796585 + 0.604526i \(0.206638\pi\)
\(150\) −8.44949 0.778539i −0.0563299 0.00519026i
\(151\) 32.3865 56.0950i 0.214480 0.371490i −0.738632 0.674109i \(-0.764528\pi\)
0.953112 + 0.302619i \(0.0978610\pi\)
\(152\) 69.8535i 0.459562i
\(153\) 160.182 56.6328i 1.04694 0.370149i
\(154\) 11.2577 0.0731016
\(155\) 13.7043 + 7.91220i 0.0884151 + 0.0510465i
\(156\) 52.8434 24.3450i 0.338740 0.156058i
\(157\) 10.4092 + 18.0292i 0.0663005 + 0.114836i 0.897270 0.441482i \(-0.145547\pi\)
−0.830970 + 0.556318i \(0.812214\pi\)
\(158\) 53.5732 30.9305i 0.339071 0.195763i
\(159\) −163.485 + 231.202i −1.02821 + 1.45410i
\(160\) 14.6969 25.4558i 0.0918559 0.159099i
\(161\) 7.96036i 0.0494433i
\(162\) −113.159 + 17.8061i −0.698512 + 0.109914i
\(163\) 133.060 0.816320 0.408160 0.912910i \(-0.366171\pi\)
0.408160 + 0.912910i \(0.366171\pi\)
\(164\) −18.9092 10.9172i −0.115300 0.0665684i
\(165\) 12.1362 + 8.58161i 0.0735529 + 0.0520097i
\(166\) −92.1589 159.624i −0.555174 0.961590i
\(167\) −255.053 + 147.255i −1.52726 + 0.881765i −0.527787 + 0.849377i \(0.676978\pi\)
−0.999475 + 0.0323885i \(0.989689\pi\)
\(168\) −29.6413 64.3395i −0.176436 0.382973i
\(169\) 37.4847 64.9254i 0.221803 0.384174i
\(170\) 138.721i 0.816008i
\(171\) −74.0908 209.560i −0.433280 1.22550i
\(172\) −90.0908 −0.523784
\(173\) −59.9847 34.6322i −0.346732 0.200186i 0.316513 0.948588i \(-0.397488\pi\)
−0.663245 + 0.748402i \(0.730821\pi\)
\(174\) 5.32577 57.8006i 0.0306078 0.332187i
\(175\) −8.34847 14.4600i −0.0477055 0.0826284i
\(176\) −3.30306 + 1.90702i −0.0187674 + 0.0108354i
\(177\) 56.1061 + 5.16964i 0.316984 + 0.0292070i
\(178\) −102.742 + 177.955i −0.577204 + 0.999747i
\(179\) 47.4829i 0.265268i 0.991165 + 0.132634i \(0.0423435\pi\)
−0.991165 + 0.132634i \(0.957657\pi\)
\(180\) 17.0908 91.9560i 0.0949490 0.510867i
\(181\) 242.879 1.34187 0.670935 0.741516i \(-0.265893\pi\)
0.670935 + 0.741516i \(0.265893\pi\)
\(182\) 99.1487 + 57.2435i 0.544773 + 0.314525i
\(183\) 35.6691 16.4328i 0.194913 0.0897969i
\(184\) 1.34847 + 2.33562i 0.00732864 + 0.0126936i
\(185\) −210.136 + 121.322i −1.13587 + 0.655796i
\(186\) −7.45969 + 10.5496i −0.0401059 + 0.0567183i
\(187\) 9.00000 15.5885i 0.0481283 0.0833607i
\(188\) 90.5739i 0.481776i
\(189\) −157.166 161.579i −0.831568 0.854916i
\(190\) 181.485 0.955183
\(191\) 6.52270 + 3.76588i 0.0341503 + 0.0197167i 0.516978 0.855999i \(-0.327057\pi\)
−0.482828 + 0.875715i \(0.660390\pi\)
\(192\) 19.5959 + 13.8564i 0.102062 + 0.0721688i
\(193\) −172.727 299.172i −0.894959 1.55011i −0.833856 0.551983i \(-0.813871\pi\)
−0.0611031 0.998131i \(-0.519462\pi\)
\(194\) 134.573 77.6959i 0.693676 0.400494i
\(195\) 63.2503 + 137.291i 0.324360 + 0.704057i
\(196\) 20.6969 35.8481i 0.105597 0.182899i
\(197\) 77.2247i 0.392004i 0.980604 + 0.196002i \(0.0627959\pi\)
−0.980604 + 0.196002i \(0.937204\pi\)
\(198\) −7.88648 + 9.22450i −0.0398307 + 0.0465884i
\(199\) 153.485 0.771280 0.385640 0.922649i \(-0.373981\pi\)
0.385640 + 0.922649i \(0.373981\pi\)
\(200\) 4.89898 + 2.82843i 0.0244949 + 0.0141421i
\(201\) −20.6566 + 224.187i −0.102769 + 1.11536i
\(202\) 104.326 + 180.698i 0.516464 + 0.894542i
\(203\) 98.9166 57.1095i 0.487274 0.281328i
\(204\) −112.788 10.3923i −0.552881 0.0509427i
\(205\) 28.3638 49.1275i 0.138360 0.239646i
\(206\) 145.857i 0.708042i
\(207\) 6.52270 + 5.57658i 0.0315106 + 0.0269400i
\(208\) −38.7878 −0.186480
\(209\) −20.3939 11.7744i −0.0975784 0.0563369i
\(210\) 167.159 77.0104i 0.795995 0.366716i
\(211\) 25.7804 + 44.6529i 0.122182 + 0.211625i 0.920628 0.390441i \(-0.127678\pi\)
−0.798446 + 0.602066i \(0.794344\pi\)
\(212\) 163.485 94.3879i 0.771154 0.445226i
\(213\) 31.2122 44.1408i 0.146536 0.207234i
\(214\) −25.4847 + 44.1408i −0.119087 + 0.206265i
\(215\) 234.063i 1.08866i
\(216\) 73.4847 + 20.7846i 0.340207 + 0.0962250i
\(217\) −25.4245 −0.117164
\(218\) −181.596 104.844i −0.833009 0.480938i
\(219\) 19.3735 + 13.6991i 0.0884633 + 0.0625530i
\(220\) −4.95459 8.58161i −0.0225209 0.0390073i
\(221\) 158.530 91.5274i 0.717331 0.414151i
\(222\) −82.8990 179.941i −0.373419 0.810543i
\(223\) −156.614 + 271.263i −0.702303 + 1.21642i 0.265353 + 0.964151i \(0.414511\pi\)
−0.967656 + 0.252273i \(0.918822\pi\)
\(224\) 47.2261i 0.210831i
\(225\) 17.6969 + 3.28913i 0.0786531 + 0.0146184i
\(226\) −241.955 −1.07060
\(227\) −66.0528 38.1356i −0.290982 0.167998i 0.347403 0.937716i \(-0.387064\pi\)
−0.638384 + 0.769718i \(0.720397\pi\)
\(228\) −13.5959 + 147.557i −0.0596312 + 0.647178i
\(229\) 60.7724 + 105.261i 0.265382 + 0.459655i 0.967664 0.252244i \(-0.0811686\pi\)
−0.702282 + 0.711899i \(0.747835\pi\)
\(230\) −6.06811 + 3.50343i −0.0263831 + 0.0152323i
\(231\) −23.7804 2.19113i −0.102945 0.00948541i
\(232\) −19.3485 + 33.5125i −0.0833986 + 0.144451i
\(233\) 151.021i 0.648157i −0.946030 0.324079i \(-0.894946\pi\)
0.946030 0.324079i \(-0.105054\pi\)
\(234\) −116.363 + 41.1406i −0.497279 + 0.175815i
\(235\) −235.318 −1.00135
\(236\) −32.5301 18.7813i −0.137839 0.0795816i
\(237\) −119.187 + 54.9095i −0.502898 + 0.231686i
\(238\) −111.439 193.019i −0.468232 0.811002i
\(239\) −75.9620 + 43.8567i −0.317833 + 0.183501i −0.650426 0.759570i \(-0.725410\pi\)
0.332593 + 0.943070i \(0.392076\pi\)
\(240\) −36.0000 + 50.9117i −0.150000 + 0.212132i
\(241\) −100.894 + 174.753i −0.418647 + 0.725118i −0.995804 0.0915158i \(-0.970829\pi\)
0.577157 + 0.816633i \(0.304162\pi\)
\(242\) 169.834i 0.701794i
\(243\) 242.499 15.5885i 0.997940 0.0641500i
\(244\) −26.1816 −0.107302
\(245\) 93.1362 + 53.7722i 0.380148 + 0.219478i
\(246\) 37.8184 + 26.7416i 0.153733 + 0.108706i
\(247\) −119.742 207.400i −0.484787 0.839675i
\(248\) 7.45969 4.30686i 0.0300794 0.0173664i
\(249\) 163.606 + 355.123i 0.657051 + 1.42619i
\(250\) 84.5074 146.371i 0.338030 0.585484i
\(251\) 52.6261i 0.209666i 0.994490 + 0.104833i \(0.0334307\pi\)
−0.994490 + 0.104833i \(0.966569\pi\)
\(252\) 50.0908 + 141.678i 0.198773 + 0.562215i
\(253\) 0.909185 0.00359362
\(254\) −95.6413 55.2185i −0.376541 0.217396i
\(255\) 27.0000 293.031i 0.105882 1.14914i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −69.8939 + 40.3532i −0.271961 + 0.157017i −0.629778 0.776775i \(-0.716854\pi\)
0.357818 + 0.933791i \(0.383521\pi\)
\(258\) 190.305 + 17.5348i 0.737618 + 0.0679644i
\(259\) 194.924 337.618i 0.752602 1.30355i
\(260\) 100.774i 0.387591i
\(261\) −22.5000 + 121.060i −0.0862069 + 0.463830i
\(262\) 331.015 1.26342
\(263\) 401.614 + 231.872i 1.52705 + 0.881641i 0.999484 + 0.0321259i \(0.0102278\pi\)
0.527564 + 0.849515i \(0.323106\pi\)
\(264\) 7.34847 3.38545i 0.0278351 0.0128237i
\(265\) 245.227 + 424.746i 0.925385 + 1.60281i
\(266\) −252.520 + 145.792i −0.949323 + 0.548092i
\(267\) 251.666 355.910i 0.942570 1.33300i
\(268\) 75.0454 129.982i 0.280020 0.485009i
\(269\) 43.4762i 0.161622i −0.996729 0.0808109i \(-0.974249\pi\)
0.996729 0.0808109i \(-0.0257510\pi\)
\(270\) −54.0000 + 190.919i −0.200000 + 0.707107i
\(271\) −342.636 −1.26434 −0.632169 0.774830i \(-0.717835\pi\)
−0.632169 + 0.774830i \(0.717835\pi\)
\(272\) 65.3939 + 37.7552i 0.240419 + 0.138806i
\(273\) −198.297 140.217i −0.726364 0.513617i
\(274\) 105.947 + 183.505i 0.386667 + 0.669726i
\(275\) 1.65153 0.953512i 0.00600557 0.00346732i
\(276\) −2.39388 5.19615i −0.00867347 0.0188266i
\(277\) 24.5000 42.4352i 0.0884477 0.153196i −0.818407 0.574638i \(-0.805143\pi\)
0.906855 + 0.421442i \(0.138476\pi\)
\(278\) 119.544i 0.430013i
\(279\) 17.8110 20.8328i 0.0638386 0.0746694i
\(280\) −122.697 −0.438203
\(281\) −17.8791 10.3225i −0.0636266 0.0367349i 0.467849 0.883808i \(-0.345029\pi\)
−0.531476 + 0.847073i \(0.678362\pi\)
\(282\) 17.6288 191.326i 0.0625136 0.678460i
\(283\) −26.7043 46.2533i −0.0943616 0.163439i 0.814980 0.579489i \(-0.196748\pi\)
−0.909342 + 0.416049i \(0.863414\pi\)
\(284\) −31.2122 + 18.0204i −0.109902 + 0.0634521i
\(285\) −383.363 35.3232i −1.34513 0.123941i
\(286\) −6.53801 + 11.3242i −0.0228602 + 0.0395950i
\(287\) 91.1421i 0.317568i
\(288\) −38.6969 33.0839i −0.134364 0.114875i
\(289\) −67.3633 −0.233091
\(290\) −87.0681 50.2688i −0.300235 0.173341i
\(291\) −299.391 + 137.930i −1.02884 + 0.473986i
\(292\) −7.90918 13.6991i −0.0270862 0.0469148i
\(293\) −12.9245 + 7.46196i −0.0441109 + 0.0254674i −0.521893 0.853011i \(-0.674774\pi\)
0.477782 + 0.878478i \(0.341441\pi\)
\(294\) −50.6969 + 71.6963i −0.172439 + 0.243865i
\(295\) 48.7951 84.5157i 0.165407 0.286494i
\(296\) 132.079i 0.446212i
\(297\) 18.4546 17.9506i 0.0621367 0.0604397i
\(298\) 163.348 0.548149
\(299\) 8.00740 + 4.62307i 0.0267806 + 0.0154618i
\(300\) −9.79796 6.92820i −0.0326599 0.0230940i
\(301\) 188.030 + 325.678i 0.624685 + 1.08199i
\(302\) 79.3304 45.8014i 0.262683 0.151660i
\(303\) −185.205 402.006i −0.611237 1.32675i
\(304\) 49.3939 85.5527i 0.162480 0.281423i
\(305\) 68.0219i 0.223023i
\(306\) 236.227 + 43.9048i 0.771984 + 0.143480i
\(307\) 65.9092 0.214688 0.107344 0.994222i \(-0.465765\pi\)
0.107344 + 0.994222i \(0.465765\pi\)
\(308\) 13.7878 + 7.96036i 0.0447654 + 0.0258453i
\(309\) 28.3888 308.104i 0.0918731 0.997099i
\(310\) 11.1895 + 19.3809i 0.0360953 + 0.0625189i
\(311\) −216.659 + 125.088i −0.696652 + 0.402213i −0.806099 0.591780i \(-0.798425\pi\)
0.109447 + 0.993993i \(0.465092\pi\)
\(312\) 81.9342 + 7.54945i 0.262610 + 0.0241969i
\(313\) 213.197 369.268i 0.681140 1.17977i −0.293493 0.955961i \(-0.594818\pi\)
0.974633 0.223808i \(-0.0718490\pi\)
\(314\) 29.4416i 0.0937631i
\(315\) −368.091 + 130.140i −1.16854 + 0.413142i
\(316\) 87.4847 0.276850
\(317\) −401.818 231.990i −1.26756 0.731829i −0.293038 0.956101i \(-0.594666\pi\)
−0.974527 + 0.224272i \(0.927999\pi\)
\(318\) −363.712 + 167.563i −1.14375 + 0.526927i
\(319\) 6.52270 + 11.2977i 0.0204473 + 0.0354158i
\(320\) 36.0000 20.7846i 0.112500 0.0649519i
\(321\) 62.4245 88.2816i 0.194469 0.275020i
\(322\) 5.62883 9.74941i 0.0174808 0.0302777i
\(323\) 466.219i 1.44340i
\(324\) −151.182 58.2075i −0.466610 0.179653i
\(325\) 19.3939 0.0596735
\(326\) 162.965 + 94.0878i 0.499892 + 0.288613i
\(327\) 363.192 + 256.815i 1.11068 + 0.785368i
\(328\) −15.4393 26.7416i −0.0470710 0.0815293i
\(329\) 327.424 189.038i 0.995210 0.574585i
\(330\) 8.79567 + 19.0919i 0.0266535 + 0.0578542i
\(331\) −236.401 + 409.459i −0.714203 + 1.23704i 0.249063 + 0.968487i \(0.419877\pi\)
−0.963266 + 0.268549i \(0.913456\pi\)
\(332\) 260.665i 0.785135i
\(333\) 140.091 + 396.237i 0.420693 + 1.18990i
\(334\) −416.499 −1.24700
\(335\) 337.704 + 194.974i 1.00807 + 0.582011i
\(336\) 9.19184 99.7591i 0.0273567 0.296902i
\(337\) −152.803 264.663i −0.453422 0.785349i 0.545174 0.838323i \(-0.316463\pi\)
−0.998596 + 0.0529735i \(0.983130\pi\)
\(338\) 91.8184 53.0114i 0.271652 0.156838i
\(339\) 511.098 + 47.0928i 1.50766 + 0.138917i
\(340\) −98.0908 + 169.898i −0.288502 + 0.499701i
\(341\) 2.90383i 0.00851564i
\(342\) 57.4393 309.048i 0.167951 0.903650i
\(343\) 236.287 0.688884
\(344\) −110.338 63.7038i −0.320751 0.185186i
\(345\) 13.5000 6.21947i 0.0391304 0.0180275i
\(346\) −48.9773 84.8312i −0.141553 0.245177i
\(347\) 115.766 66.8373i 0.333618 0.192615i −0.323828 0.946116i \(-0.604970\pi\)
0.657446 + 0.753501i \(0.271637\pi\)
\(348\) 47.3939 67.0251i 0.136189 0.192601i
\(349\) 49.3786 85.5262i 0.141486 0.245061i −0.786570 0.617500i \(-0.788145\pi\)
0.928056 + 0.372440i \(0.121479\pi\)
\(350\) 23.6130i 0.0674658i
\(351\) 253.810 64.2560i 0.723105 0.183065i
\(352\) −5.39388 −0.0153235
\(353\) −282.424 163.058i −0.800068 0.461919i 0.0434270 0.999057i \(-0.486172\pi\)
−0.843495 + 0.537137i \(0.819506\pi\)
\(354\) 65.0602 + 46.0045i 0.183786 + 0.129956i
\(355\) −46.8184 81.0918i −0.131883 0.228428i
\(356\) −251.666 + 145.300i −0.706928 + 0.408145i
\(357\) 197.833 + 429.417i 0.554155 + 1.20285i
\(358\) −33.5755 + 58.1545i −0.0937863 + 0.162443i
\(359\) 418.736i 1.16639i −0.812331 0.583197i \(-0.801801\pi\)
0.812331 0.583197i \(-0.198199\pi\)
\(360\) 85.9546 100.538i 0.238763 0.279271i
\(361\) 248.939 0.689581
\(362\) 297.464 + 171.741i 0.821725 + 0.474423i
\(363\) −33.0556 + 358.753i −0.0910623 + 0.988300i
\(364\) 80.9546 + 140.217i 0.222403 + 0.385213i
\(365\) 35.5913 20.5487i 0.0975105 0.0562977i
\(366\) 55.3054 + 5.09586i 0.151108 + 0.0139231i
\(367\) −93.6135 + 162.143i −0.255078 + 0.441808i −0.964917 0.262557i \(-0.915434\pi\)
0.709839 + 0.704364i \(0.248768\pi\)
\(368\) 3.81405i 0.0103643i
\(369\) −74.6816 63.8490i −0.202389 0.173033i
\(370\) −343.151 −0.927435
\(371\) −682.423 393.997i −1.83942 1.06199i
\(372\) −16.5959 + 7.64577i −0.0446127 + 0.0205531i
\(373\) −225.515 390.603i −0.604597 1.04719i −0.992115 0.125331i \(-0.960001\pi\)
0.387518 0.921862i \(-0.373333\pi\)
\(374\) 22.0454 12.7279i 0.0589449 0.0340319i
\(375\) −207.000 + 292.742i −0.552000 + 0.780646i
\(376\) −64.0454 + 110.930i −0.170334 + 0.295026i
\(377\) 132.668i 0.351905i
\(378\) −78.2350 309.027i −0.206971 0.817531i
\(379\) −489.666 −1.29200 −0.645998 0.763339i \(-0.723558\pi\)
−0.645998 + 0.763339i \(0.723558\pi\)
\(380\) 222.272 + 128.329i 0.584927 + 0.337708i
\(381\) 191.283 + 135.257i 0.502054 + 0.355006i
\(382\) 5.32577 + 9.22450i 0.0139418 + 0.0241479i
\(383\) 89.2492 51.5281i 0.233027 0.134538i −0.378941 0.925421i \(-0.623712\pi\)
0.611968 + 0.790883i \(0.290378\pi\)
\(384\) 14.2020 + 30.8270i 0.0369845 + 0.0802786i
\(385\) −20.6816 + 35.8216i −0.0537185 + 0.0930432i
\(386\) 488.546i 1.26566i
\(387\) −398.583 74.0801i −1.02993 0.191421i
\(388\) 219.757 0.566384
\(389\) 29.6816 + 17.1367i 0.0763024 + 0.0440532i 0.537666 0.843158i \(-0.319306\pi\)
−0.461363 + 0.887211i \(0.652640\pi\)
\(390\) −19.6140 + 212.871i −0.0502924 + 0.545824i
\(391\) −9.00000 15.5885i −0.0230179 0.0398682i
\(392\) 50.6969 29.2699i 0.129329 0.0746681i
\(393\) −699.227 64.4270i −1.77920 0.163936i
\(394\) −54.6061 + 94.5806i −0.138594 + 0.240052i
\(395\) 227.292i 0.575423i
\(396\) −16.1816 + 5.72107i −0.0408627 + 0.0144471i
\(397\) 8.27245 0.0208374 0.0104187 0.999946i \(-0.496684\pi\)
0.0104187 + 0.999946i \(0.496684\pi\)
\(398\) 187.980 + 108.530i 0.472311 + 0.272689i
\(399\) 561.792 258.819i 1.40800 0.648669i
\(400\) 4.00000 + 6.92820i 0.0100000 + 0.0173205i
\(401\) 358.636 207.059i 0.894355 0.516356i 0.0189903 0.999820i \(-0.493955\pi\)
0.875364 + 0.483464i \(0.160622\pi\)
\(402\) −183.823 + 259.965i −0.457271 + 0.646679i
\(403\) 14.7656 25.5747i 0.0366391 0.0634608i
\(404\) 295.078i 0.730391i
\(405\) 151.228 392.781i 0.373401 0.969831i
\(406\) 161.530 0.397857
\(407\) 38.5607 + 22.2630i 0.0947438 + 0.0547003i
\(408\) −130.788 92.4809i −0.320558 0.226669i
\(409\) 163.106 + 282.508i 0.398792 + 0.690729i 0.993577 0.113156i \(-0.0360960\pi\)
−0.594785 + 0.803885i \(0.702763\pi\)
\(410\) 69.4768 40.1124i 0.169456 0.0978352i
\(411\) −188.082 408.252i −0.457621 0.993314i
\(412\) −103.136 + 178.637i −0.250331 + 0.433585i
\(413\) 156.795i 0.379648i
\(414\) 4.04541 + 11.4421i 0.00977152 + 0.0276380i
\(415\) 677.227 1.63187
\(416\) −47.5051 27.4271i −0.114195 0.0659305i
\(417\) 23.2673 252.521i 0.0557970 0.605565i
\(418\) −16.6515 28.8413i −0.0398362 0.0689983i
\(419\) −468.325 + 270.388i −1.11772 + 0.645317i −0.940818 0.338912i \(-0.889941\pi\)
−0.176903 + 0.984228i \(0.556608\pi\)
\(420\) 259.182 + 23.8811i 0.617099 + 0.0568597i
\(421\) −141.848 + 245.689i −0.336932 + 0.583584i −0.983854 0.178973i \(-0.942723\pi\)
0.646922 + 0.762556i \(0.276056\pi\)
\(422\) 72.9179i 0.172791i
\(423\) −74.4773 + 400.720i −0.176069 + 0.947329i
\(424\) 266.969 0.629645
\(425\) −32.6969 18.8776i −0.0769340 0.0444178i
\(426\) 69.4393 31.9908i 0.163003 0.0750958i
\(427\) 54.6441 + 94.6464i 0.127972 + 0.221654i
\(428\) −62.4245 + 36.0408i −0.145852 + 0.0842075i
\(429\) 16.0148 22.6483i 0.0373305 0.0527933i
\(430\) 165.507 286.667i 0.384901 0.666668i
\(431\) 257.429i 0.597282i −0.954365 0.298641i \(-0.903467\pi\)
0.954365 0.298641i \(-0.0965334\pi\)
\(432\) 75.3031 + 77.4174i 0.174313 + 0.179207i
\(433\) 476.272 1.09994 0.549968 0.835186i \(-0.314640\pi\)
0.549968 + 0.835186i \(0.314640\pi\)
\(434\) −31.1385 17.9778i −0.0717477 0.0414236i
\(435\) 174.136 + 123.133i 0.400313 + 0.283064i
\(436\) −148.272 256.815i −0.340074 0.589026i
\(437\) −20.3939 + 11.7744i −0.0466679 + 0.0269437i
\(438\) 14.0408 + 30.4770i 0.0320567 + 0.0695822i
\(439\) 278.931 483.123i 0.635379 1.10051i −0.351056 0.936355i \(-0.614177\pi\)
0.986435 0.164154i \(-0.0524894\pi\)
\(440\) 14.0137i 0.0318493i
\(441\) 121.045 141.582i 0.274479 0.321047i
\(442\) 258.879 0.585698
\(443\) 720.400 + 415.923i 1.62619 + 0.938879i 0.985217 + 0.171312i \(0.0548005\pi\)
0.640969 + 0.767567i \(0.278533\pi\)
\(444\) 25.7071 279.000i 0.0578990 0.628378i
\(445\) −377.499 653.848i −0.848313 1.46932i
\(446\) −383.623 + 221.485i −0.860142 + 0.496603i
\(447\) −345.053 31.7933i −0.771930 0.0711259i
\(448\) −33.3939 + 57.8399i −0.0745399 + 0.129107i
\(449\) 729.927i 1.62567i 0.582492 + 0.812836i \(0.302078\pi\)
−0.582492 + 0.812836i \(0.697922\pi\)
\(450\) 19.3485 + 16.5420i 0.0429966 + 0.0367599i
\(451\) −10.4097 −0.0230814
\(452\) −296.333 171.088i −0.655603 0.378513i
\(453\) −176.490 + 81.3092i −0.389602 + 0.179490i
\(454\) −53.9319 93.4128i −0.118793 0.205755i
\(455\) −364.296 + 210.326i −0.800650 + 0.462255i
\(456\) −120.990 + 171.105i −0.265328 + 0.375231i
\(457\) −354.818 + 614.563i −0.776407 + 1.34478i 0.157594 + 0.987504i \(0.449626\pi\)
−0.934000 + 0.357272i \(0.883707\pi\)
\(458\) 171.890i 0.375307i
\(459\) −490.454 138.721i −1.06853 0.302225i
\(460\) −9.90918 −0.0215417
\(461\) −7.96990 4.60142i −0.0172883 0.00998140i 0.491331 0.870973i \(-0.336511\pi\)
−0.508619 + 0.860992i \(0.669844\pi\)
\(462\) −27.5755 19.4988i −0.0596872 0.0422053i
\(463\) 27.5987 + 47.8024i 0.0596085 + 0.103245i 0.894290 0.447488i \(-0.147681\pi\)
−0.834681 + 0.550733i \(0.814348\pi\)
\(464\) −47.3939 + 27.3629i −0.102142 + 0.0589717i
\(465\) −19.8643 43.1175i −0.0427189 0.0927257i
\(466\) 106.788 184.962i 0.229158 0.396914i
\(467\) 625.811i 1.34007i −0.742331 0.670033i \(-0.766280\pi\)
0.742331 0.670033i \(-0.233720\pi\)
\(468\) −171.606 31.8945i −0.366680 0.0681506i
\(469\) −626.514 −1.33585
\(470\) −288.204 166.395i −0.613201 0.354032i
\(471\) 5.73036 62.1917i 0.0121664 0.132042i
\(472\) −26.5607 46.0045i −0.0562727 0.0974672i
\(473\) −37.1969 + 21.4757i −0.0786405 + 0.0454031i
\(474\) −184.800 17.0276i −0.389874 0.0359231i
\(475\) −24.6969 + 42.7764i −0.0519936 + 0.0900555i
\(476\) 315.198i 0.662180i
\(477\) 800.908 283.164i 1.67905 0.593635i
\(478\) −124.045 −0.259509
\(479\) 267.856 + 154.647i 0.559199 + 0.322854i 0.752824 0.658222i \(-0.228691\pi\)
−0.193625 + 0.981076i \(0.562024\pi\)
\(480\) −80.0908 + 36.8980i −0.166856 + 0.0768708i
\(481\) 226.409 + 392.151i 0.470704 + 0.815283i
\(482\) −247.139 + 142.685i −0.512736 + 0.296028i
\(483\) −13.7878 + 19.4988i −0.0285461 + 0.0403702i
\(484\) 120.091 208.003i 0.248122 0.429759i
\(485\) 570.946i 1.17721i
\(486\) 308.023 + 152.381i 0.633792 + 0.313541i
\(487\) −28.3337 −0.0581800 −0.0290900 0.999577i \(-0.509261\pi\)
−0.0290900 + 0.999577i \(0.509261\pi\)
\(488\) −32.0658 18.5132i −0.0657086 0.0379369i
\(489\) −325.930 230.467i −0.666523 0.471303i
\(490\) 76.0454 + 131.715i 0.155195 + 0.268805i
\(491\) 822.461 474.848i 1.67507 0.967105i 0.710348 0.703851i \(-0.248538\pi\)
0.964727 0.263254i \(-0.0847956\pi\)
\(492\) 27.4087 + 59.4933i 0.0557087 + 0.120921i
\(493\) 129.136 223.670i 0.261940 0.453693i
\(494\) 338.682i 0.685592i
\(495\) −14.8638 42.0411i −0.0300278 0.0849315i
\(496\) 12.1816 0.0245597
\(497\) 130.287 + 75.2214i 0.262147 + 0.151351i
\(498\) −50.7344 + 550.621i −0.101876 + 1.10566i
\(499\) 280.113 + 485.170i 0.561349 + 0.972284i 0.997379 + 0.0723525i \(0.0230507\pi\)
−0.436030 + 0.899932i \(0.643616\pi\)
\(500\) 207.000 119.512i 0.414000 0.239023i
\(501\) 879.802 + 81.0653i 1.75609 + 0.161807i
\(502\) −37.2122 + 64.4535i −0.0741280 + 0.128393i
\(503\) 897.832i 1.78495i −0.451094 0.892477i \(-0.648966\pi\)
0.451094 0.892477i \(-0.351034\pi\)
\(504\) −38.8332 + 208.939i −0.0770499 + 0.414562i
\(505\) −766.635 −1.51809
\(506\) 1.11352 + 0.642891i 0.00220063 + 0.00127053i
\(507\) −204.272 + 94.1087i −0.402904 + 0.185619i
\(508\) −78.0908 135.257i −0.153722 0.266254i
\(509\) −170.454 + 98.4114i −0.334879 + 0.193343i −0.658005 0.753013i \(-0.728600\pi\)
0.323126 + 0.946356i \(0.395266\pi\)
\(510\) 240.272 339.797i 0.471122 0.666268i
\(511\) −33.0148 + 57.1833i −0.0646082 + 0.111905i
\(512\) 22.6274i 0.0441942i
\(513\) −181.485 + 641.645i −0.353771 + 1.25077i
\(514\) −114.136 −0.222055
\(515\) −464.113 267.956i −0.901190 0.520302i
\(516\) 220.677 + 156.042i 0.427668 + 0.302407i
\(517\) 21.5908 + 37.3964i 0.0417617 + 0.0723334i
\(518\) 477.464 275.664i 0.921746 0.532170i
\(519\) 86.9472 + 188.728i 0.167528 + 0.363637i
\(520\) 71.2577 123.422i 0.137034 0.237350i
\(521\) 375.837i 0.721377i −0.932686 0.360688i \(-0.882542\pi\)
0.932686 0.360688i \(-0.117458\pi\)
\(522\) −113.159 + 132.357i −0.216780 + 0.253558i
\(523\) 91.1827 0.174345 0.0871727 0.996193i \(-0.472217\pi\)
0.0871727 + 0.996193i \(0.472217\pi\)
\(524\) 405.409 + 234.063i 0.773681 + 0.446685i
\(525\) −4.59592 + 49.8795i −0.00875413 + 0.0950086i
\(526\) 327.916 + 567.967i 0.623415 + 1.07979i
\(527\) −49.7878 + 28.7450i −0.0944739 + 0.0545445i
\(528\) 11.3939 + 1.04984i 0.0215793 + 0.00198833i
\(529\) −264.045 + 457.340i −0.499141 + 0.864537i
\(530\) 693.607i 1.30869i
\(531\) −128.477 109.842i −0.241953 0.206858i
\(532\) −412.363 −0.775119
\(533\) −91.6806 52.9318i −0.172009 0.0993092i
\(534\) 559.893 257.944i 1.04849 0.483041i
\(535\) −93.6367 162.184i −0.175022 0.303147i
\(536\) 183.823 106.130i 0.342953 0.198004i
\(537\) 82.2429 116.309i 0.153152 0.216590i
\(538\) 30.7423 53.2473i 0.0571419 0.0989727i
\(539\) 19.7348i 0.0366137i
\(540\) −201.136 + 195.643i −0.372474 + 0.362302i
\(541\) −38.8490 −0.0718096 −0.0359048 0.999355i \(-0.511431\pi\)
−0.0359048 + 0.999355i \(0.511431\pi\)
\(542\) −419.641 242.280i −0.774246 0.447011i
\(543\) −594.929 420.678i −1.09563 0.774729i
\(544\) 53.3939 + 92.4809i 0.0981505 + 0.170002i
\(545\) 667.226 385.223i 1.22427 0.706831i
\(546\) −143.715 311.948i −0.263214 0.571333i
\(547\) 233.022 403.606i 0.426000 0.737854i −0.570513 0.821289i \(-0.693256\pi\)
0.996513 + 0.0834344i \(0.0265889\pi\)
\(548\) 299.662i 0.546829i
\(549\) −115.834 21.5287i −0.210990 0.0392144i
\(550\) 2.69694 0.00490352
\(551\) −292.621 168.945i −0.531072 0.306615i
\(552\) 0.742346 8.05669i 0.00134483 0.0145954i
\(553\) −182.591 316.257i −0.330182 0.571893i
\(554\) 60.0125 34.6482i 0.108326 0.0625419i
\(555\) 724.863 + 66.7891i 1.30606 + 0.120341i
\(556\) −84.5301 + 146.410i −0.152033 + 0.263328i
\(557\) 695.042i 1.24783i 0.781492 + 0.623916i \(0.214459\pi\)
−0.781492 + 0.623916i \(0.785541\pi\)
\(558\) 36.5449 12.9206i 0.0654926 0.0231551i
\(559\) −436.803 −0.781400
\(560\) −150.272 86.7598i −0.268344 0.154928i
\(561\) −49.0454 + 22.5953i −0.0874250 + 0.0402768i
\(562\) −14.5982 25.2848i −0.0259755 0.0449908i
\(563\) −473.780 + 273.537i −0.841528 + 0.485857i −0.857783 0.514011i \(-0.828159\pi\)
0.0162552 + 0.999868i \(0.494826\pi\)
\(564\) 156.879 221.860i 0.278153 0.393368i
\(565\) 444.499 769.895i 0.786724 1.36265i
\(566\) 75.5313i 0.133447i
\(567\) 105.114 + 668.006i 0.185386 + 1.17814i
\(568\) −50.9694 −0.0897348
\(569\) 215.954 + 124.681i 0.379533 + 0.219123i 0.677615 0.735417i \(-0.263014\pi\)
−0.298082 + 0.954540i \(0.596347\pi\)
\(570\) −444.545 314.341i −0.779903 0.551475i
\(571\) −36.9166 63.9414i −0.0646525 0.111981i 0.831887 0.554945i \(-0.187261\pi\)
−0.896540 + 0.442963i \(0.853927\pi\)
\(572\) −16.0148 + 9.24614i −0.0279979 + 0.0161646i
\(573\) −9.45459 20.5222i −0.0165002 0.0358153i
\(574\) −64.4472 + 111.626i −0.112277 + 0.194470i
\(575\) 1.90702i 0.00331656i
\(576\) −24.0000 67.8823i −0.0416667 0.117851i
\(577\) −43.9092 −0.0760991 −0.0380496 0.999276i \(-0.512114\pi\)
−0.0380496 + 0.999276i \(0.512114\pi\)
\(578\) −82.5028 47.6330i −0.142738 0.0824101i
\(579\) −95.0880 + 1031.99i −0.164228 + 1.78237i
\(580\) −71.0908 123.133i −0.122570 0.212298i
\(581\) −942.302 + 544.038i −1.62186 + 0.936382i
\(582\) −464.209 42.7724i −0.797610 0.0734921i
\(583\) 45.0000 77.9423i 0.0771870 0.133692i
\(584\) 22.3706i 0.0383057i
\(585\) 82.8643 445.846i 0.141648 0.762130i
\(586\) −21.1056 −0.0360164
\(587\) −381.386 220.194i −0.649721 0.375117i 0.138628 0.990345i \(-0.455731\pi\)
−0.788349 + 0.615228i \(0.789064\pi\)
\(588\) −112.788 + 51.9615i −0.191816 + 0.0883699i
\(589\) 37.6061 + 65.1357i 0.0638474 + 0.110587i
\(590\) 119.523 69.0068i 0.202582 0.116961i
\(591\) 133.757 189.161i 0.226323 0.320070i
\(592\) −93.3939 + 161.763i −0.157760 + 0.273248i
\(593\) 347.232i 0.585551i −0.956181 0.292776i \(-0.905421\pi\)
0.956181 0.292776i \(-0.0945789\pi\)
\(594\) 35.2951 8.93552i 0.0594194 0.0150430i
\(595\) 818.908 1.37632
\(596\) 200.060 + 115.505i 0.335671 + 0.193800i
\(597\) −375.959 265.843i −0.629747 0.445299i
\(598\) 6.53801 + 11.3242i 0.0109331 + 0.0189367i
\(599\) −684.083 + 394.956i −1.14204 + 0.659359i −0.946936 0.321423i \(-0.895839\pi\)
−0.195107 + 0.980782i \(0.562505\pi\)
\(600\) −7.10102 15.4135i −0.0118350 0.0256891i
\(601\) 353.455 612.201i 0.588111 1.01864i −0.406369 0.913709i \(-0.633205\pi\)
0.994480 0.104929i \(-0.0334614\pi\)
\(602\) 531.829i 0.883438i
\(603\) 438.901 513.364i 0.727862 0.851351i
\(604\) 129.546 0.214480
\(605\) 540.409 + 312.005i 0.893237 + 0.515711i
\(606\) 57.4324 623.314i 0.0947729 1.02857i
\(607\) 596.628 + 1033.39i 0.982913 + 1.70246i 0.650866 + 0.759193i \(0.274406\pi\)
0.332048 + 0.943263i \(0.392261\pi\)
\(608\) 120.990 69.8535i 0.198996 0.114891i
\(609\) −341.212 31.4394i −0.560282 0.0516246i
\(610\) 48.0987 83.3094i 0.0788504 0.136573i
\(611\) 439.145i 0.718731i
\(612\) 258.272 + 220.810i 0.422014 + 0.360801i
\(613\) 629.181 1.02640 0.513198 0.858270i \(-0.328461\pi\)
0.513198 + 0.858270i \(0.328461\pi\)
\(614\) 80.7219 + 46.6048i 0.131469 + 0.0759036i
\(615\) −154.568 + 71.2098i −0.251330 + 0.115788i
\(616\) 11.2577 + 19.4988i 0.0182754 + 0.0316539i
\(617\) 166.909 96.3648i 0.270516 0.156183i −0.358606 0.933489i \(-0.616748\pi\)
0.629122 + 0.777306i \(0.283414\pi\)
\(618\) 252.631 357.274i 0.408788 0.578114i
\(619\) 76.4773 132.463i 0.123550 0.213994i −0.797615 0.603166i \(-0.793905\pi\)
0.921165 + 0.389172i \(0.127239\pi\)
\(620\) 31.6488i 0.0510465i
\(621\) −6.31837 24.9574i −0.0101745 0.0401891i
\(622\) −353.803 −0.568814
\(623\) 1050.51 + 606.515i 1.68622 + 0.973539i
\(624\) 95.0102 + 67.1824i 0.152260 + 0.107664i
\(625\) 335.500 + 581.103i 0.536800 + 0.929765i
\(626\) 522.224 301.506i 0.834223 0.481639i
\(627\) 29.5607 + 64.1645i 0.0471463 + 0.102336i
\(628\) −20.8184 + 36.0585i −0.0331503 + 0.0574180i
\(629\) 881.525i 1.40147i
\(630\) −542.840 100.892i −0.861651 0.160145i
\(631\) 44.8786 0.0711229 0.0355615 0.999367i \(-0.488678\pi\)
0.0355615 + 0.999367i \(0.488678\pi\)
\(632\) 107.146 + 61.8610i 0.169535 + 0.0978814i
\(633\) 14.1924 154.030i 0.0224208 0.243333i
\(634\) −328.083 568.256i −0.517481 0.896303i
\(635\) 351.409 202.886i 0.553399 0.319505i
\(636\) −563.939 51.9615i −0.886696 0.0817005i
\(637\) 100.348 173.809i 0.157533 0.272855i
\(638\) 18.4490i 0.0289169i
\(639\) −152.908 + 54.0612i −0.239293 + 0.0846028i
\(640\) 58.7878 0.0918559
\(641\) −209.106 120.727i −0.326219 0.188342i 0.327942 0.944698i \(-0.393645\pi\)
−0.654161 + 0.756355i \(0.726978\pi\)
\(642\) 138.879 63.9816i 0.216322 0.0996598i
\(643\) −395.704 685.380i −0.615403 1.06591i −0.990314 0.138849i \(-0.955660\pi\)
0.374910 0.927061i \(-0.377674\pi\)
\(644\) 13.7878 7.96036i 0.0214096 0.0123608i
\(645\) −405.409 + 573.334i −0.628541 + 0.888891i
\(646\) −329.666 + 570.999i −0.510319 + 0.883899i
\(647\) 294.028i 0.454448i 0.973842 + 0.227224i \(0.0729650\pi\)
−0.973842 + 0.227224i \(0.927035\pi\)
\(648\) −144.000 178.191i −0.222222 0.274986i
\(649\) −17.9082 −0.0275935
\(650\) 23.7526 + 13.7135i 0.0365424 + 0.0210978i
\(651\) 62.2770 + 44.0365i 0.0956636 + 0.0676444i
\(652\) 133.060 + 230.467i 0.204080 + 0.353477i
\(653\) −665.379 + 384.156i −1.01896 + 0.588295i −0.913802 0.406161i \(-0.866867\pi\)
−0.105155 + 0.994456i \(0.533534\pi\)
\(654\) 263.221 + 571.349i 0.402479 + 0.873622i
\(655\) −608.113 + 1053.28i −0.928417 + 1.60807i
\(656\) 43.6689i 0.0665684i
\(657\) −23.7276 67.1117i −0.0361150 0.102149i
\(658\) 534.681 0.812585
\(659\) −373.204 215.469i −0.566318 0.326964i 0.189359 0.981908i \(-0.439359\pi\)
−0.755678 + 0.654944i \(0.772692\pi\)
\(660\) −2.72755 + 29.6022i −0.00413266 + 0.0448518i
\(661\) −506.136 876.653i −0.765712 1.32625i −0.939869 0.341534i \(-0.889053\pi\)
0.174157 0.984718i \(-0.444280\pi\)
\(662\) −579.062 + 334.322i −0.874717 + 0.505018i
\(663\) −546.848 50.3868i −0.824808 0.0759981i
\(664\) 184.318 319.248i 0.277587 0.480795i
\(665\) 1071.35i 1.61105i
\(666\) −108.606 + 584.348i −0.163072 + 0.877399i
\(667\) 13.0454 0.0195583
\(668\) −510.106 294.510i −0.763631 0.440883i
\(669\) 853.464 393.192i 1.27573 0.587731i
\(670\) 275.734 + 477.586i 0.411544 + 0.712815i
\(671\) −10.8099 + 6.24112i −0.0161102 + 0.00930123i
\(672\) 81.7980 115.680i 0.121723 0.172143i
\(673\) −281.606 + 487.755i −0.418433 + 0.724748i −0.995782 0.0917499i \(-0.970754\pi\)
0.577349 + 0.816498i \(0.304087\pi\)
\(674\) 432.192i 0.641235i
\(675\) −37.6515 38.7087i −0.0557800 0.0573462i
\(676\) 149.939 0.221803
\(677\) −303.227 175.068i −0.447897 0.258594i 0.259044 0.965865i \(-0.416592\pi\)
−0.706942 + 0.707272i \(0.749926\pi\)
\(678\) 592.665 + 419.078i 0.874138 + 0.618109i
\(679\) −458.659 794.421i −0.675492 1.16999i
\(680\) −240.272 + 138.721i −0.353342 + 0.204002i
\(681\) 95.7429 + 207.820i 0.140592 + 0.305168i
\(682\) 2.05332 3.55645i 0.00301073 0.00521474i
\(683\) 502.818i 0.736190i 0.929788 + 0.368095i \(0.119990\pi\)
−0.929788 + 0.368095i \(0.880010\pi\)
\(684\) 288.879 337.890i 0.422337 0.493991i
\(685\) −778.546 −1.13656
\(686\) 289.392 + 167.080i 0.421854 + 0.243557i
\(687\) 33.4559 363.097i 0.0486985 0.528525i
\(688\) −90.0908 156.042i −0.130946 0.226805i
\(689\) 792.650 457.637i 1.15044 0.664205i
\(690\) 20.9319 + 1.92867i 0.0303361 + 0.00279518i
\(691\) −188.159 + 325.902i −0.272300 + 0.471638i −0.969450 0.245287i \(-0.921118\pi\)
0.697150 + 0.716925i \(0.254451\pi\)
\(692\) 138.529i 0.200186i
\(693\) 54.4546 + 46.5559i 0.0785781 + 0.0671803i
\(694\) 189.044 0.272398
\(695\) −380.385 219.616i −0.547317 0.315994i
\(696\) 105.439 48.5761i 0.151493 0.0697932i
\(697\) 103.045 + 178.480i 0.147841 + 0.256069i
\(698\) 120.952 69.8318i 0.173284 0.100046i
\(699\) −261.576 + 369.924i −0.374214 + 0.529218i
\(700\) 16.6969 28.9199i 0.0238528 0.0413142i
\(701\) 489.681i 0.698546i 0.937021 + 0.349273i \(0.113571\pi\)
−0.937021 + 0.349273i \(0.886429\pi\)
\(702\) 356.288 + 100.774i 0.507533 + 0.143552i
\(703\) −1153.27 −1.64050
\(704\) −6.60612 3.81405i −0.00938370 0.00541768i
\(705\) 576.409 + 407.582i 0.817601 + 0.578131i
\(706\) −230.598 399.408i −0.326626 0.565733i
\(707\) 1066.70 615.862i 1.50878 0.871092i
\(708\) 47.1520 + 102.348i 0.0665989 + 0.144560i
\(709\) −237.014 + 410.521i −0.334294 + 0.579014i −0.983349 0.181728i \(-0.941831\pi\)
0.649055 + 0.760741i \(0.275164\pi\)
\(710\) 132.422i 0.186510i
\(711\) 387.053 + 71.9371i 0.544378 + 0.101177i
\(712\) −410.969 −0.577204
\(713\) −2.51479 1.45192i −0.00352706 0.00203635i
\(714\) −61.3485 + 665.815i −0.0859222 + 0.932514i
\(715\) −24.0222 41.6077i −0.0335975 0.0581925i
\(716\) −82.2429 + 47.4829i −0.114864 + 0.0663170i
\(717\) 262.030 + 24.1435i 0.365453 + 0.0336730i
\(718\) 296.091 512.844i 0.412383 0.714268i
\(719\) 108.122i 0.150379i −0.997169 0.0751894i \(-0.976044\pi\)
0.997169 0.0751894i \(-0.0239561\pi\)
\(720\) 176.363 62.3538i 0.244949 0.0866025i
\(721\) 861.030 1.19422
\(722\) 304.886 + 176.026i 0.422280 + 0.243804i
\(723\) 549.820 253.303i 0.760470 0.350350i
\(724\) 242.879 + 420.678i 0.335468 + 0.581047i
\(725\) 23.6969 13.6814i 0.0326854 0.0188709i
\(726\) −294.161 + 416.007i −0.405181 + 0.573012i
\(727\) 222.296 385.027i 0.305771 0.529611i −0.671662 0.740858i \(-0.734419\pi\)
0.977433 + 0.211247i \(0.0677524\pi\)
\(728\) 228.974i 0.314525i
\(729\) −621.000 381.838i −0.851852 0.523783i
\(730\) 58.1204 0.0796170
\(731\) 736.423 + 425.174i 1.00742 + 0.581634i
\(732\) 64.1316 + 45.3479i 0.0876115 + 0.0619507i
\(733\) 358.181 + 620.388i 0.488651 + 0.846368i 0.999915 0.0130556i \(-0.00415584\pi\)
−0.511264 + 0.859424i \(0.670823\pi\)
\(734\) −229.305 + 132.390i −0.312405 + 0.180367i
\(735\) −135.000 293.031i −0.183673 0.398682i
\(736\) −2.69694 + 4.67123i −0.00366432 + 0.00634679i
\(737\) 71.5567i 0.0970918i
\(738\) −46.3179 131.007i −0.0627613 0.177516i
\(739\) 933.362 1.26301 0.631504 0.775373i \(-0.282438\pi\)
0.631504 + 0.775373i \(0.282438\pi\)
\(740\) −420.272 242.644i −0.567936 0.327898i
\(741\) −65.9194 + 715.424i −0.0889600 + 0.965484i
\(742\) −557.196 965.093i −0.750939 1.30066i
\(743\) −13.7793 + 7.95550i −0.0185455 + 0.0107073i −0.509244 0.860622i \(-0.670075\pi\)
0.490699 + 0.871329i \(0.336742\pi\)
\(744\) −25.7321 2.37097i −0.0345862 0.00318679i
\(745\) −300.090 + 519.772i −0.402806 + 0.697680i
\(746\) 637.852i 0.855030i
\(747\) 214.340 1153.24i 0.286934 1.54383i
\(748\) 36.0000 0.0481283
\(749\) 260.574 + 150.443i 0.347896 + 0.200858i
\(750\) −460.522 + 212.163i −0.614030 + 0.282885i
\(751\) −404.916 701.334i −0.539169 0.933867i −0.998949 0.0458347i \(-0.985405\pi\)
0.459781 0.888033i \(-0.347928\pi\)
\(752\) −156.879 + 90.5739i −0.208615 + 0.120444i
\(753\) 91.1510 128.907i 0.121050 0.171191i
\(754\) −93.8105 + 162.484i −0.124417 + 0.215497i
\(755\) 336.570i 0.445788i
\(756\) 122.697 433.799i 0.162298 0.573808i
\(757\) 689.637 0.911013 0.455506 0.890232i \(-0.349458\pi\)
0.455506 + 0.890232i \(0.349458\pi\)
\(758\) −599.716 346.246i −0.791182 0.456789i
\(759\) −2.22704 1.57475i −0.00293417 0.00207477i
\(760\) 181.485 + 314.341i 0.238796 + 0.413606i
\(761\) −825.393 + 476.541i −1.08462 + 0.626204i −0.932138 0.362103i \(-0.882059\pi\)
−0.152479 + 0.988307i \(0.548726\pi\)
\(762\) 138.631 + 300.913i 0.181931 + 0.394899i
\(763\) −618.924 + 1072.01i −0.811172 + 1.40499i
\(764\) 15.0635i 0.0197167i
\(765\) −573.681 + 671.011i −0.749910 + 0.877139i
\(766\) 145.743 0.190266
\(767\) −157.721 91.0604i −0.205634 0.118723i
\(768\) −4.40408 + 47.7975i −0.00573448 + 0.0622364i
\(769\) 328.348 + 568.715i 0.426980 + 0.739552i 0.996603 0.0823545i \(-0.0262440\pi\)
−0.569623 + 0.821906i \(0.692911\pi\)
\(770\) −50.6594 + 29.2482i −0.0657915 + 0.0379847i
\(771\) 241.098 + 22.2149i 0.312708 + 0.0288131i
\(772\) 345.454 598.344i 0.447479 0.775057i
\(773\) 278.021i 0.359665i −0.983697 0.179832i \(-0.942445\pi\)
0.983697 0.179832i \(-0.0575555\pi\)
\(774\) −435.780 372.570i −0.563023 0.481356i
\(775\) −6.09082 −0.00785912
\(776\) 269.146 + 155.392i 0.346838 + 0.200247i
\(777\) −1062.24 + 489.374i −1.36710 + 0.629825i
\(778\) 24.2350 + 41.9762i 0.0311503 + 0.0539539i
\(779\) 233.499 134.811i 0.299743 0.173056i
\(780\) −174.545 + 246.844i −0.223776 + 0.316466i
\(781\) −8.59133 + 14.8806i −0.0110004 + 0.0190533i
\(782\) 25.4558i 0.0325522i
\(783\) 264.795 257.563i 0.338180 0.328944i
\(784\) 82.7878 0.105597
\(785\) −93.6827 54.0877i −0.119341 0.0689015i
\(786\) −810.817 573.334i −1.03157 0.729433i
\(787\) −410.977 711.833i −0.522207 0.904489i −0.999666 0.0258350i \(-0.991776\pi\)
0.477459 0.878654i \(-0.341558\pi\)
\(788\) −133.757 + 77.2247i −0.169743 + 0.0980009i
\(789\) −582.135 1263.58i −0.737813 1.60150i
\(790\) −160.720 + 278.375i −0.203443 + 0.352373i
\(791\) 1428.32i 1.80572i
\(792\) −23.8638 4.43529i −0.0301310 0.00560011i
\(793\) −126.941 −0.160077
\(794\) 10.1316 + 5.84950i 0.0127602 + 0.00736713i
\(795\) 135.000 1465.16i 0.169811 1.84296i
\(796\) 153.485 + 265.843i 0.192820 + 0.333974i
\(797\) 1145.33 661.257i 1.43705 0.829683i 0.439409 0.898287i \(-0.355188\pi\)
0.997644 + 0.0686043i \(0.0218546\pi\)
\(798\) 871.065 + 80.2602i 1.09156 + 0.100577i
\(799\) 427.454 740.372i 0.534986 0.926624i
\(800\) 11.3137i 0.0141421i
\(801\) −1232.91 + 435.899i −1.53921 + 0.544193i
\(802\) 585.650 0.730238
\(803\) −6.53113 3.77075i −0.00813341 0.00469583i
\(804\) −408.959 + 188.408i −0.508656 + 0.234339i
\(805\) 20.6816 + 35.8216i 0.0256915 + 0.0444989i
\(806\) 36.1681 20.8817i 0.0448736 0.0259078i
\(807\) −75.3031 + 106.495i −0.0933123 + 0.131964i
\(808\) −208.652 + 361.395i −0.258232 + 0.447271i
\(809\) 235.681i 0.291324i 0.989334 + 0.145662i \(0.0465311\pi\)
−0.989334 + 0.145662i \(0.953469\pi\)
\(810\) 462.954 374.123i 0.571548 0.461880i
\(811\) −587.362 −0.724244 −0.362122 0.932131i \(-0.617948\pi\)
−0.362122 + 0.932131i \(0.617948\pi\)
\(812\) 197.833 + 114.219i 0.243637 + 0.140664i
\(813\) 839.283 + 593.462i 1.03233 + 0.729966i
\(814\) 31.4847 + 54.5331i 0.0386790 + 0.0669940i
\(815\) −598.771 + 345.701i −0.734688 + 0.424172i
\(816\) −94.7878 205.746i −0.116161 0.252140i
\(817\) 556.242 963.439i 0.680835 1.17924i
\(818\) 461.334i 0.563978i
\(819\) 242.864 + 686.922i 0.296537 + 0.838733i
\(820\) 113.455 0.138360
\(821\) −817.453 471.956i −0.995679 0.574856i −0.0887121 0.996057i \(-0.528275\pi\)
−0.906967 + 0.421202i \(0.861608\pi\)
\(822\) 58.3247 632.999i 0.0709547 0.770071i
\(823\) 807.871 + 1399.27i 0.981617 + 1.70021i 0.656097 + 0.754676i \(0.272206\pi\)
0.325520 + 0.945535i \(0.394461\pi\)
\(824\) −252.631 + 145.857i −0.306591 + 0.177010i
\(825\) −5.69694 0.524918i −0.00690538 0.000636264i
\(826\) −110.871 + 192.034i −0.134226 + 0.232486i
\(827\) 582.354i 0.704177i 0.935967 + 0.352088i \(0.114528\pi\)
−0.935967 + 0.352088i \(0.885472\pi\)
\(828\) −3.13622 + 16.8742i −0.00378771 + 0.0203795i
\(829\) 877.121 1.05805 0.529024 0.848607i \(-0.322558\pi\)
0.529024 + 0.848607i \(0.322558\pi\)
\(830\) 829.430 + 478.872i 0.999314 + 0.576954i
\(831\) −133.512 + 61.5095i −0.160665 + 0.0740186i
\(832\) −38.7878 67.1824i −0.0466199 0.0807480i
\(833\) −338.363 + 195.354i −0.406198 + 0.234519i
\(834\) 207.056 292.821i 0.248268 0.351104i
\(835\) 765.158 1325.29i 0.916357 1.58718i
\(836\) 47.0976i 0.0563369i
\(837\) −79.7112 + 20.1802i −0.0952344 + 0.0241101i
\(838\) −764.772 −0.912616
\(839\) −984.778 568.562i −1.17375 0.677666i −0.219191 0.975682i \(-0.570342\pi\)
−0.954561 + 0.298016i \(0.903675\pi\)
\(840\) 300.545 + 212.517i 0.357792 + 0.252997i
\(841\) −326.909 566.223i −0.388715 0.673274i
\(842\) −347.456 + 200.604i −0.412656 + 0.238247i
\(843\) 25.9155 + 56.2523i 0.0307421 + 0.0667287i
\(844\) −51.5607 + 89.3058i −0.0610909 + 0.105813i
\(845\) 389.552i 0.461009i
\(846\) −374.568 + 438.117i −0.442751 + 0.517868i
\(847\) −1002.57 −1.18368
\(848\) 326.969 + 188.776i 0.385577 + 0.222613i
\(849\) −14.7010 + 159.550i −0.0173157 + 0.187927i
\(850\) −26.6969 46.2405i −0.0314082 0.0544005i
\(851\) 38.5607 22.2630i 0.0453122 0.0261610i
\(852\) 107.666 + 9.92041i 0.126369 + 0.0116437i
\(853\) 159.909 276.970i 0.187466 0.324701i −0.756939 0.653486i \(-0.773306\pi\)
0.944405 + 0.328785i \(0.106639\pi\)
\(854\) 154.557i 0.180980i
\(855\) 877.863 + 750.529i 1.02674 + 0.877811i
\(856\) −101.939 −0.119087
\(857\) 691.061 + 398.984i 0.806372 + 0.465559i 0.845694 0.533668i \(-0.179187\pi\)
−0.0393225 + 0.999227i \(0.512520\pi\)
\(858\) 35.6288 16.4143i 0.0415254 0.0191308i
\(859\) 233.901 + 405.128i 0.272294 + 0.471627i 0.969449 0.245293i \(-0.0788843\pi\)
−0.697155 + 0.716921i \(0.745551\pi\)
\(860\) 405.409 234.063i 0.471405 0.272166i
\(861\) 157.863 223.252i 0.183348 0.259293i
\(862\) 182.030 315.284i 0.211171 0.365759i
\(863\) 1304.85i 1.51199i −0.654578 0.755994i \(-0.727154\pi\)
0.654578 0.755994i \(-0.272846\pi\)
\(864\) 37.4847 + 148.064i 0.0433851 + 0.171370i
\(865\) 359.908 0.416079
\(866\) 583.312 + 336.775i 0.673571 + 0.388886i
\(867\) 165.006 + 116.677i 0.190318 + 0.134575i
\(868\) −25.4245 44.0365i −0.0292909 0.0507333i
\(869\) 36.1209 20.8544i 0.0415661 0.0239982i
\(870\) 126.204 + 273.939i 0.145062 + 0.314873i
\(871\) 363.855 630.216i 0.417744 0.723554i
\(872\) 419.378i 0.480938i
\(873\) 972.257 + 180.702i 1.11370 + 0.206990i
\(874\) −33.3031 −0.0381042
\(875\) −864.067 498.869i −0.987505 0.570136i
\(876\) −4.35409 + 47.2549i −0.00497042 + 0.0539440i
\(877\) 186.878 + 323.682i 0.213088 + 0.369079i 0.952679 0.303977i \(-0.0983146\pi\)
−0.739592 + 0.673056i \(0.764981\pi\)
\(878\) 683.240 394.469i 0.778177 0.449281i
\(879\) 44.5829 + 4.10789i 0.0507200 + 0.00467336i
\(880\) 9.90918 17.1632i 0.0112604 0.0195036i
\(881\) 229.979i 0.261043i 0.991445 + 0.130522i \(0.0416652\pi\)
−0.991445 + 0.130522i \(0.958335\pi\)
\(882\) 248.363 87.8097i 0.281591 0.0995575i
\(883\) −1381.79 −1.56488 −0.782439 0.622728i \(-0.786024\pi\)
−0.782439 + 0.622728i \(0.786024\pi\)
\(884\) 317.060 + 183.055i 0.358665 + 0.207076i
\(885\) −265.909 + 122.505i −0.300462 + 0.138423i
\(886\) 588.204 + 1018.80i 0.663888 + 1.14989i
\(887\) 758.794 438.090i 0.855461 0.493901i −0.00702852 0.999975i \(-0.502237\pi\)
0.862490 + 0.506075i \(0.168904\pi\)
\(888\) 228.767 323.526i 0.257621 0.364331i
\(889\) −325.969 + 564.596i −0.366670 + 0.635091i
\(890\) 1067.73i 1.19970i
\(891\) −76.2957 + 12.0055i −0.0856293 + 0.0134742i
\(892\) −626.454 −0.702303
\(893\) −968.605 559.224i −1.08466 0.626231i
\(894\) −400.120 282.928i −0.447562 0.316474i
\(895\) −123.364 213.673i −0.137837 0.238741i
\(896\) −81.7980 + 47.2261i −0.0912924 + 0.0527077i
\(897\) −11.6066 25.1934i −0.0129394 0.0280863i
\(898\) −516.136 + 893.974i −0.574762 + 0.995517i
\(899\) 41.6655i 0.0463465i
\(900\) 12.0000 + 33.9411i 0.0133333 + 0.0377124i
\(901\) −1781.82 −1.97760
\(902\) −12.7492 7.36077i −0.0141344 0.00816050i
\(903\) 103.512 1123.42i 0.114632 1.24410i
\(904\) −241.955 419.078i −0.267649 0.463581i
\(905\) −1092.95 + 631.017i −1.20768 + 0.697256i
\(906\) −273.649 25.2141i −0.302041 0.0278302i
\(907\) −590.037 + 1021.97i −0.650537 + 1.12676i 0.332456 + 0.943119i \(0.392123\pi\)
−0.982993 + 0.183644i \(0.941211\pi\)
\(908\) 152.542i 0.167998i
\(909\) −242.637 + 1305.49i −0.266928 + 1.43619i
\(910\) −594.892 −0.653728
\(911\) 1100.13 + 635.158i 1.20760 + 0.697210i 0.962235 0.272220i \(-0.0877578\pi\)
0.245368 + 0.969430i \(0.421091\pi\)
\(912\) −269.171 + 124.008i −0.295144 + 0.135973i
\(913\) −62.1367 107.624i −0.0680578 0.117880i
\(914\) −869.123 + 501.788i −0.950900 + 0.549002i
\(915\) −117.817 + 166.619i −0.128762 + 0.182097i
\(916\) −121.545 + 210.522i −0.132691 + 0.229827i
\(917\) 1954.07i 2.13093i
\(918\) −502.590 516.702i −0.547484 0.562856i
\(919\) 1316.63 1.43268 0.716340 0.697751i \(-0.245816\pi\)
0.716340 + 0.697751i \(0.245816\pi\)
\(920\) −12.1362 7.00685i −0.0131915 0.00761614i
\(921\) −161.444 114.158i −0.175292 0.123950i
\(922\) −6.50740 11.2711i −0.00705791 0.0122247i
\(923\) −151.332 + 87.3713i −0.163956 + 0.0946602i
\(924\) −19.9852 43.3799i −0.0216290 0.0469480i
\(925\) 46.6969 80.8815i 0.0504832 0.0874394i
\(926\) 78.0610i 0.0842991i
\(927\) −603.189 + 705.526i −0.650689 + 0.761085i
\(928\) −77.3939 −0.0833986
\(929\) 543.424 + 313.746i 0.584956 + 0.337724i 0.763100 0.646280i \(-0.223676\pi\)
−0.178145 + 0.984004i \(0.557009\pi\)
\(930\) 6.15996 66.8541i 0.00662361 0.0718861i
\(931\) 255.576 + 442.670i 0.274517 + 0.475478i
\(932\) 261.576 151.021i 0.280660 0.162039i
\(933\) 747.363 + 68.8623i 0.801032 + 0.0738074i
\(934\) 442.515 766.459i 0.473785 0.820620i
\(935\) 93.5307i 0.100033i
\(936\) −187.621 160.406i −0.200450 0.171374i
\(937\) 469.789 0.501375 0.250688 0.968068i \(-0.419343\pi\)
0.250688 + 0.968068i \(0.419343\pi\)
\(938\) −767.320 443.012i −0.818039 0.472295i
\(939\) −1161.81 + 535.250i −1.23729 + 0.570021i
\(940\) −235.318 407.582i −0.250338 0.433598i
\(941\) 805.984 465.335i 0.856518 0.494511i −0.00632656 0.999980i \(-0.502014\pi\)
0.862845 + 0.505469i \(0.168680\pi\)
\(942\) 50.9944 72.1169i 0.0541342 0.0765573i
\(943\) −5.20485 + 9.01506i −0.00551946 + 0.00955998i
\(944\) 75.1250i 0.0795816i
\(945\) 1127.04 + 318.776i 1.19264 + 0.337329i
\(946\) −60.7423 −0.0642097
\(947\) −3.14465 1.81556i −0.00332064 0.00191717i 0.498339 0.866982i \(-0.333944\pi\)
−0.501659 + 0.865065i \(0.667277\pi\)
\(948\) −214.293 151.528i −0.226047 0.159840i
\(949\) −38.3474 66.4197i −0.0404083 0.0699892i
\(950\) −60.4949 + 34.9267i −0.0636788 + 0.0367650i
\(951\) 582.431 + 1264.23i 0.612440 + 1.32936i
\(952\) 222.879 386.037i 0.234116 0.405501i
\(953\) 719.641i 0.755132i −0.925983 0.377566i \(-0.876761\pi\)
0.925983 0.377566i \(-0.123239\pi\)
\(954\) 1181.14 + 219.524i 1.23809 + 0.230109i
\(955\) −39.1362 −0.0409803
\(956\) −151.924 87.7133i −0.158916 0.0917504i
\(957\) 3.59082 38.9711i 0.00375216 0.0407222i
\(958\) 218.704 + 378.806i 0.228292 + 0.395413i
\(959\) 1083.28 625.431i 1.12959 0.652170i
\(960\) −124.182 11.4421i −0.129356 0.0119189i
\(961\) 475.863 824.218i 0.495175 0.857667i
\(962\) 640.380i 0.665676i
\(963\) −305.816 + 108.122i −0.317566 + 0.112277i
\(964\) −403.576 −0.418647
\(965\) 1554.54 + 897.516i 1.61093 + 0.930068i
\(966\) −30.6742 + 14.1317i −0.0317539 + 0.0146291i
\(967\) −16.8870 29.2491i −0.0174633 0.0302473i 0.857162 0.515047i \(-0.172226\pi\)
−0.874625 + 0.484800i \(0.838892\pi\)
\(968\) 294.161 169.834i 0.303886 0.175448i
\(969\) 807.514 1142.00i 0.833348 1.17853i
\(970\) −403.720 + 699.263i −0.416206 + 0.720890i
\(971\) 970.472i 0.999456i 0.866182 + 0.499728i \(0.166567\pi\)
−0.866182 + 0.499728i \(0.833433\pi\)
\(972\) 269.499 + 404.433i 0.277263 + 0.416083i
\(973\) 705.697 0.725279
\(974\) −34.7015 20.0349i −0.0356278 0.0205697i
\(975\) −47.5051 33.5912i −0.0487232 0.0344525i
\(976\) −26.1816 45.3479i −0.0268254 0.0464630i
\(977\) −1359.92 + 785.151i −1.39194 + 0.803635i −0.993529 0.113574i \(-0.963770\pi\)
−0.398406 + 0.917209i \(0.630437\pi\)
\(978\) −236.216 512.730i −0.241529 0.524264i
\(979\) −69.2724 + 119.983i −0.0707584 + 0.122557i
\(980\) 215.089i 0.219478i
\(981\) −444.817 1258.13i −0.453433 1.28250i
\(982\) 1343.07 1.36769
\(983\) −671.930 387.939i −0.683551 0.394648i 0.117641 0.993056i \(-0.462467\pi\)
−0.801192 + 0.598408i \(0.795800\pi\)
\(984\) −8.49948 + 92.2450i −0.00863769 + 0.0937449i
\(985\) −200.636 347.511i −0.203691 0.352803i
\(986\) 316.318 182.626i 0.320809 0.185219i
\(987\) −1129.45 104.068i −1.14432 0.105438i
\(988\) 239.485 414.800i 0.242393 0.419838i
\(989\) 42.9513i 0.0434290i
\(990\) 11.5232 61.9999i 0.0116396 0.0626262i
\(991\) 870.454 0.878359 0.439180 0.898399i \(-0.355269\pi\)
0.439180 + 0.898399i \(0.355269\pi\)
\(992\) 14.9194 + 8.61371i 0.0150397 + 0.00868318i
\(993\) 1288.27 593.507i 1.29735 0.597690i
\(994\) 106.379 + 184.254i 0.107021 + 0.185366i
\(995\) −690.681 + 398.765i −0.694152 + 0.400769i
\(996\) −451.485 + 638.496i −0.453298 + 0.641060i
\(997\) −622.499 + 1078.20i −0.624372 + 1.08144i 0.364290 + 0.931286i \(0.381312\pi\)
−0.988662 + 0.150159i \(0.952022\pi\)
\(998\) 792.279i 0.793867i
\(999\) 343.151 1213.22i 0.343495 1.21444i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 18.3.d.a.11.2 yes 4
3.2 odd 2 54.3.d.a.35.1 4
4.3 odd 2 144.3.q.c.65.2 4
5.2 odd 4 450.3.k.a.299.1 8
5.3 odd 4 450.3.k.a.299.4 8
5.4 even 2 450.3.i.b.101.1 4
8.3 odd 2 576.3.q.e.65.1 4
8.5 even 2 576.3.q.f.65.2 4
9.2 odd 6 162.3.b.a.161.4 4
9.4 even 3 54.3.d.a.17.1 4
9.5 odd 6 inner 18.3.d.a.5.2 4
9.7 even 3 162.3.b.a.161.1 4
12.11 even 2 432.3.q.d.305.1 4
15.2 even 4 1350.3.k.a.899.4 8
15.8 even 4 1350.3.k.a.899.1 8
15.14 odd 2 1350.3.i.b.251.2 4
24.5 odd 2 1728.3.q.d.1601.2 4
24.11 even 2 1728.3.q.c.1601.1 4
36.7 odd 6 1296.3.e.g.161.2 4
36.11 even 6 1296.3.e.g.161.4 4
36.23 even 6 144.3.q.c.113.2 4
36.31 odd 6 432.3.q.d.17.1 4
45.4 even 6 1350.3.i.b.1151.2 4
45.13 odd 12 1350.3.k.a.449.4 8
45.14 odd 6 450.3.i.b.401.1 4
45.22 odd 12 1350.3.k.a.449.1 8
45.23 even 12 450.3.k.a.149.1 8
45.32 even 12 450.3.k.a.149.4 8
72.5 odd 6 576.3.q.f.257.2 4
72.13 even 6 1728.3.q.d.449.2 4
72.59 even 6 576.3.q.e.257.1 4
72.67 odd 6 1728.3.q.c.449.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.3.d.a.5.2 4 9.5 odd 6 inner
18.3.d.a.11.2 yes 4 1.1 even 1 trivial
54.3.d.a.17.1 4 9.4 even 3
54.3.d.a.35.1 4 3.2 odd 2
144.3.q.c.65.2 4 4.3 odd 2
144.3.q.c.113.2 4 36.23 even 6
162.3.b.a.161.1 4 9.7 even 3
162.3.b.a.161.4 4 9.2 odd 6
432.3.q.d.17.1 4 36.31 odd 6
432.3.q.d.305.1 4 12.11 even 2
450.3.i.b.101.1 4 5.4 even 2
450.3.i.b.401.1 4 45.14 odd 6
450.3.k.a.149.1 8 45.23 even 12
450.3.k.a.149.4 8 45.32 even 12
450.3.k.a.299.1 8 5.2 odd 4
450.3.k.a.299.4 8 5.3 odd 4
576.3.q.e.65.1 4 8.3 odd 2
576.3.q.e.257.1 4 72.59 even 6
576.3.q.f.65.2 4 8.5 even 2
576.3.q.f.257.2 4 72.5 odd 6
1296.3.e.g.161.2 4 36.7 odd 6
1296.3.e.g.161.4 4 36.11 even 6
1350.3.i.b.251.2 4 15.14 odd 2
1350.3.i.b.1151.2 4 45.4 even 6
1350.3.k.a.449.1 8 45.22 odd 12
1350.3.k.a.449.4 8 45.13 odd 12
1350.3.k.a.899.1 8 15.8 even 4
1350.3.k.a.899.4 8 15.2 even 4
1728.3.q.c.449.1 4 72.67 odd 6
1728.3.q.c.1601.1 4 24.11 even 2
1728.3.q.d.449.2 4 72.13 even 6
1728.3.q.d.1601.2 4 24.5 odd 2