Properties

Label 18.3.d.a.11.1
Level $18$
Weight $3$
Character 18.11
Analytic conductor $0.490$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 18.d (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.490464475849\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.1
Root \(-1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 18.11
Dual form 18.3.d.a.5.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.22474 - 0.707107i) q^{2} +(2.44949 - 1.73205i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-4.50000 + 2.59808i) q^{5} +(-4.22474 + 0.389270i) q^{6} +(-3.17423 + 5.49794i) q^{7} -2.82843i q^{8} +(3.00000 - 8.48528i) q^{9} +O(q^{10})\) \(q+(-1.22474 - 0.707107i) q^{2} +(2.44949 - 1.73205i) q^{3} +(1.00000 + 1.73205i) q^{4} +(-4.50000 + 2.59808i) q^{5} +(-4.22474 + 0.389270i) q^{6} +(-3.17423 + 5.49794i) q^{7} -2.82843i q^{8} +(3.00000 - 8.48528i) q^{9} +7.34847 q^{10} +(8.17423 + 4.71940i) q^{11} +(5.44949 + 2.51059i) q^{12} +(-9.84847 - 17.0580i) q^{13} +(7.77526 - 4.48905i) q^{14} +(-6.52270 + 14.1582i) q^{15} +(-2.00000 + 3.46410i) q^{16} -1.90702i q^{17} +(-9.67423 + 8.27098i) q^{18} +4.69694 q^{19} +(-9.00000 - 5.19615i) q^{20} +(1.74745 + 18.9651i) q^{21} +(-6.67423 - 11.5601i) q^{22} +(8.17423 - 4.71940i) q^{23} +(-4.89898 - 6.92820i) q^{24} +(1.00000 - 1.73205i) q^{25} +27.8557i q^{26} +(-7.34847 - 25.9808i) q^{27} -12.6969 q^{28} +(-2.84847 - 1.64456i) q^{29} +(18.0000 - 12.7279i) q^{30} +(20.5227 + 35.5464i) q^{31} +(4.89898 - 2.82843i) q^{32} +(28.1969 - 2.59808i) q^{33} +(-1.34847 + 2.33562i) q^{34} -32.9876i q^{35} +(17.6969 - 3.28913i) q^{36} +17.3031 q^{37} +(-5.75255 - 3.32124i) q^{38} +(-53.6691 - 24.7255i) q^{39} +(7.34847 + 12.7279i) q^{40} +(-53.5454 + 30.9145i) q^{41} +(11.2702 - 24.4630i) q^{42} +(-0.477296 + 0.826701i) q^{43} +18.8776i q^{44} +(8.54541 + 45.9780i) q^{45} -13.3485 q^{46} +(-12.2196 - 7.05501i) q^{47} +(1.10102 + 11.9494i) q^{48} +(4.34847 + 7.53177i) q^{49} +(-2.44949 + 1.41421i) q^{50} +(-3.30306 - 4.67123i) q^{51} +(19.6969 - 34.1161i) q^{52} -9.53512i q^{53} +(-9.37117 + 37.0160i) q^{54} -49.0454 q^{55} +(15.5505 + 8.97809i) q^{56} +(11.5051 - 8.13534i) q^{57} +(2.32577 + 4.02834i) q^{58} +(79.2650 - 45.7637i) q^{59} +(-31.0454 + 2.86054i) q^{60} +(37.5454 - 65.0306i) q^{61} -58.0470i q^{62} +(37.1288 + 43.4281i) q^{63} -8.00000 q^{64} +(88.6362 + 51.1741i) q^{65} +(-36.3712 - 16.7563i) q^{66} +(-15.4773 - 26.8075i) q^{67} +(3.30306 - 1.90702i) q^{68} +(11.8485 - 25.7183i) q^{69} +(-23.3258 + 40.4014i) q^{70} +85.9026i q^{71} +(-24.0000 - 8.48528i) q^{72} -96.0908 q^{73} +(-21.1918 - 12.2351i) q^{74} +(-0.550510 - 5.97469i) q^{75} +(4.69694 + 8.13534i) q^{76} +(-51.8939 + 29.9609i) q^{77} +(48.2474 + 68.2322i) q^{78} +(-14.8712 + 25.7576i) q^{79} -20.7846i q^{80} +(-63.0000 - 50.9117i) q^{81} +87.4393 q^{82} +(-76.1288 - 43.9530i) q^{83} +(-31.1010 + 21.9917i) q^{84} +(4.95459 + 8.58161i) q^{85} +(1.16913 - 0.674999i) q^{86} +(-9.82577 + 0.905350i) q^{87} +(13.3485 - 23.1202i) q^{88} -41.3766i q^{89} +(22.0454 - 62.3538i) q^{90} +125.045 q^{91} +(16.3485 + 9.43879i) q^{92} +(111.838 + 51.5241i) q^{93} +(9.97730 + 17.2812i) q^{94} +(-21.1362 + 12.2030i) q^{95} +(7.10102 - 15.4135i) q^{96} +(-47.9393 + 83.0333i) q^{97} -12.2993i q^{98} +(64.5681 - 55.2025i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 18 q^{5} - 12 q^{6} + 2 q^{7} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{4} - 18 q^{5} - 12 q^{6} + 2 q^{7} + 12 q^{9} + 18 q^{11} + 12 q^{12} - 10 q^{13} + 36 q^{14} + 18 q^{15} - 8 q^{16} - 24 q^{18} - 40 q^{19} - 36 q^{20} - 42 q^{21} - 12 q^{22} + 18 q^{23} + 4 q^{25} + 8 q^{28} + 18 q^{29} + 72 q^{30} + 38 q^{31} + 54 q^{33} + 24 q^{34} + 12 q^{36} + 128 q^{37} - 72 q^{38} - 102 q^{39} - 126 q^{41} - 48 q^{42} - 46 q^{43} - 54 q^{45} - 24 q^{46} + 54 q^{47} + 24 q^{48} - 12 q^{49} - 72 q^{51} + 20 q^{52} + 36 q^{54} - 108 q^{55} + 72 q^{56} + 144 q^{57} + 24 q^{58} + 126 q^{59} - 36 q^{60} + 62 q^{61} + 222 q^{63} - 32 q^{64} + 90 q^{65} - 72 q^{66} - 106 q^{67} + 72 q^{68} + 18 q^{69} - 108 q^{70} - 96 q^{72} - 208 q^{73} + 72 q^{74} - 12 q^{75} - 40 q^{76} - 90 q^{77} + 144 q^{78} + 14 q^{79} - 252 q^{81} + 144 q^{82} - 378 q^{83} - 144 q^{84} + 108 q^{85} - 108 q^{86} - 54 q^{87} + 24 q^{88} + 412 q^{91} + 36 q^{92} + 222 q^{93} + 84 q^{94} + 180 q^{95} + 48 q^{96} + 14 q^{97} + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/18\mathbb{Z}\right)^\times\).

\(n\) \(11\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 0.707107i −0.612372 0.353553i
\(3\) 2.44949 1.73205i 0.816497 0.577350i
\(4\) 1.00000 + 1.73205i 0.250000 + 0.433013i
\(5\) −4.50000 + 2.59808i −0.900000 + 0.519615i −0.877200 0.480125i \(-0.840591\pi\)
−0.0227998 + 0.999740i \(0.507258\pi\)
\(6\) −4.22474 + 0.389270i −0.704124 + 0.0648783i
\(7\) −3.17423 + 5.49794i −0.453462 + 0.785419i −0.998598 0.0529281i \(-0.983145\pi\)
0.545136 + 0.838347i \(0.316478\pi\)
\(8\) 2.82843i 0.353553i
\(9\) 3.00000 8.48528i 0.333333 0.942809i
\(10\) 7.34847 0.734847
\(11\) 8.17423 + 4.71940i 0.743112 + 0.429036i 0.823200 0.567752i \(-0.192187\pi\)
−0.0800876 + 0.996788i \(0.525520\pi\)
\(12\) 5.44949 + 2.51059i 0.454124 + 0.209216i
\(13\) −9.84847 17.0580i −0.757575 1.31216i −0.944084 0.329704i \(-0.893051\pi\)
0.186510 0.982453i \(-0.440282\pi\)
\(14\) 7.77526 4.48905i 0.555375 0.320646i
\(15\) −6.52270 + 14.1582i −0.434847 + 0.943879i
\(16\) −2.00000 + 3.46410i −0.125000 + 0.216506i
\(17\) 1.90702i 0.112178i −0.998426 0.0560889i \(-0.982137\pi\)
0.998426 0.0560889i \(-0.0178630\pi\)
\(18\) −9.67423 + 8.27098i −0.537457 + 0.459499i
\(19\) 4.69694 0.247207 0.123604 0.992332i \(-0.460555\pi\)
0.123604 + 0.992332i \(0.460555\pi\)
\(20\) −9.00000 5.19615i −0.450000 0.259808i
\(21\) 1.74745 + 18.9651i 0.0832118 + 0.903099i
\(22\) −6.67423 11.5601i −0.303374 0.525460i
\(23\) 8.17423 4.71940i 0.355402 0.205191i −0.311660 0.950194i \(-0.600885\pi\)
0.667062 + 0.745002i \(0.267552\pi\)
\(24\) −4.89898 6.92820i −0.204124 0.288675i
\(25\) 1.00000 1.73205i 0.0400000 0.0692820i
\(26\) 27.8557i 1.07137i
\(27\) −7.34847 25.9808i −0.272166 0.962250i
\(28\) −12.6969 −0.453462
\(29\) −2.84847 1.64456i −0.0982231 0.0567091i 0.450084 0.892986i \(-0.351394\pi\)
−0.548307 + 0.836277i \(0.684727\pi\)
\(30\) 18.0000 12.7279i 0.600000 0.424264i
\(31\) 20.5227 + 35.5464i 0.662023 + 1.14666i 0.980083 + 0.198587i \(0.0636351\pi\)
−0.318061 + 0.948070i \(0.603032\pi\)
\(32\) 4.89898 2.82843i 0.153093 0.0883883i
\(33\) 28.1969 2.59808i 0.854453 0.0787296i
\(34\) −1.34847 + 2.33562i −0.0396609 + 0.0686946i
\(35\) 32.9876i 0.942503i
\(36\) 17.6969 3.28913i 0.491582 0.0913647i
\(37\) 17.3031 0.467650 0.233825 0.972279i \(-0.424876\pi\)
0.233825 + 0.972279i \(0.424876\pi\)
\(38\) −5.75255 3.32124i −0.151383 0.0874010i
\(39\) −53.6691 24.7255i −1.37613 0.633986i
\(40\) 7.34847 + 12.7279i 0.183712 + 0.318198i
\(41\) −53.5454 + 30.9145i −1.30599 + 0.754011i −0.981424 0.191853i \(-0.938550\pi\)
−0.324562 + 0.945864i \(0.605217\pi\)
\(42\) 11.2702 24.4630i 0.268337 0.582453i
\(43\) −0.477296 + 0.826701i −0.0110999 + 0.0192256i −0.871522 0.490356i \(-0.836867\pi\)
0.860422 + 0.509582i \(0.170200\pi\)
\(44\) 18.8776i 0.429036i
\(45\) 8.54541 + 45.9780i 0.189898 + 1.02173i
\(46\) −13.3485 −0.290184
\(47\) −12.2196 7.05501i −0.259992 0.150107i 0.364339 0.931267i \(-0.381295\pi\)
−0.624331 + 0.781160i \(0.714628\pi\)
\(48\) 1.10102 + 11.9494i 0.0229379 + 0.248945i
\(49\) 4.34847 + 7.53177i 0.0887443 + 0.153710i
\(50\) −2.44949 + 1.41421i −0.0489898 + 0.0282843i
\(51\) −3.30306 4.67123i −0.0647659 0.0915928i
\(52\) 19.6969 34.1161i 0.378787 0.656079i
\(53\) 9.53512i 0.179908i −0.995946 0.0899539i \(-0.971328\pi\)
0.995946 0.0899539i \(-0.0286720\pi\)
\(54\) −9.37117 + 37.0160i −0.173540 + 0.685481i
\(55\) −49.0454 −0.891735
\(56\) 15.5505 + 8.97809i 0.277688 + 0.160323i
\(57\) 11.5051 8.13534i 0.201844 0.142725i
\(58\) 2.32577 + 4.02834i 0.0400994 + 0.0694542i
\(59\) 79.2650 45.7637i 1.34348 0.775656i 0.356160 0.934425i \(-0.384086\pi\)
0.987316 + 0.158769i \(0.0507526\pi\)
\(60\) −31.0454 + 2.86054i −0.517423 + 0.0476756i
\(61\) 37.5454 65.0306i 0.615498 1.06607i −0.374798 0.927106i \(-0.622288\pi\)
0.990297 0.138968i \(-0.0443786\pi\)
\(62\) 58.0470i 0.936241i
\(63\) 37.1288 + 43.4281i 0.589346 + 0.689335i
\(64\) −8.00000 −0.125000
\(65\) 88.6362 + 51.1741i 1.36363 + 0.787295i
\(66\) −36.3712 16.7563i −0.551078 0.253883i
\(67\) −15.4773 26.8075i −0.231004 0.400111i 0.727100 0.686532i \(-0.240868\pi\)
−0.958104 + 0.286421i \(0.907535\pi\)
\(68\) 3.30306 1.90702i 0.0485744 0.0280445i
\(69\) 11.8485 25.7183i 0.171717 0.372729i
\(70\) −23.3258 + 40.4014i −0.333225 + 0.577163i
\(71\) 85.9026i 1.20990i 0.796265 + 0.604948i \(0.206806\pi\)
−0.796265 + 0.604948i \(0.793194\pi\)
\(72\) −24.0000 8.48528i −0.333333 0.117851i
\(73\) −96.0908 −1.31631 −0.658156 0.752881i \(-0.728663\pi\)
−0.658156 + 0.752881i \(0.728663\pi\)
\(74\) −21.1918 12.2351i −0.286376 0.165339i
\(75\) −0.550510 5.97469i −0.00734014 0.0796626i
\(76\) 4.69694 + 8.13534i 0.0618018 + 0.107044i
\(77\) −51.8939 + 29.9609i −0.673946 + 0.389103i
\(78\) 48.2474 + 68.2322i 0.618557 + 0.874772i
\(79\) −14.8712 + 25.7576i −0.188243 + 0.326046i −0.944664 0.328038i \(-0.893612\pi\)
0.756422 + 0.654084i \(0.226946\pi\)
\(80\) 20.7846i 0.259808i
\(81\) −63.0000 50.9117i −0.777778 0.628539i
\(82\) 87.4393 1.06633
\(83\) −76.1288 43.9530i −0.917215 0.529554i −0.0344693 0.999406i \(-0.510974\pi\)
−0.882745 + 0.469852i \(0.844307\pi\)
\(84\) −31.1010 + 21.9917i −0.370250 + 0.261806i
\(85\) 4.95459 + 8.58161i 0.0582893 + 0.100960i
\(86\) 1.16913 0.674999i 0.0135946 0.00784882i
\(87\) −9.82577 + 0.905350i −0.112940 + 0.0104063i
\(88\) 13.3485 23.1202i 0.151687 0.262730i
\(89\) 41.3766i 0.464905i −0.972608 0.232453i \(-0.925325\pi\)
0.972608 0.232453i \(-0.0746751\pi\)
\(90\) 22.0454 62.3538i 0.244949 0.692820i
\(91\) 125.045 1.37413
\(92\) 16.3485 + 9.43879i 0.177701 + 0.102596i
\(93\) 111.838 + 51.5241i 1.20256 + 0.554023i
\(94\) 9.97730 + 17.2812i 0.106141 + 0.183842i
\(95\) −21.1362 + 12.2030i −0.222487 + 0.128453i
\(96\) 7.10102 15.4135i 0.0739690 0.160557i
\(97\) −47.9393 + 83.0333i −0.494219 + 0.856013i −0.999978 0.00666202i \(-0.997879\pi\)
0.505758 + 0.862675i \(0.331213\pi\)
\(98\) 12.2993i 0.125503i
\(99\) 64.5681 55.2025i 0.652203 0.557601i
\(100\) 4.00000 0.0400000
\(101\) −136.772 78.9656i −1.35418 0.781838i −0.365350 0.930870i \(-0.619051\pi\)
−0.988832 + 0.149032i \(0.952384\pi\)
\(102\) 0.742346 + 8.05669i 0.00727790 + 0.0789871i
\(103\) −14.5681 25.2327i −0.141438 0.244978i 0.786600 0.617462i \(-0.211839\pi\)
−0.928038 + 0.372485i \(0.878506\pi\)
\(104\) −48.2474 + 27.8557i −0.463918 + 0.267843i
\(105\) −57.1362 80.8028i −0.544155 0.769551i
\(106\) −6.74235 + 11.6781i −0.0636070 + 0.110171i
\(107\) 171.805i 1.60566i 0.596210 + 0.802829i \(0.296673\pi\)
−0.596210 + 0.802829i \(0.703327\pi\)
\(108\) 37.6515 38.7087i 0.348625 0.358414i
\(109\) 116.272 1.06672 0.533360 0.845888i \(-0.320929\pi\)
0.533360 + 0.845888i \(0.320929\pi\)
\(110\) 60.0681 + 34.6803i 0.546074 + 0.315276i
\(111\) 42.3837 29.9698i 0.381835 0.269998i
\(112\) −12.6969 21.9917i −0.113366 0.196355i
\(113\) 175.166 101.132i 1.55014 0.894976i 0.552015 0.833834i \(-0.313859\pi\)
0.998129 0.0611424i \(-0.0194744\pi\)
\(114\) −19.8434 + 1.82838i −0.174065 + 0.0160384i
\(115\) −24.5227 + 42.4746i −0.213241 + 0.369344i
\(116\) 6.57826i 0.0567091i
\(117\) −174.288 + 32.3929i −1.48964 + 0.276862i
\(118\) −129.439 −1.09694
\(119\) 10.4847 + 6.05334i 0.0881067 + 0.0508684i
\(120\) 40.0454 + 18.4490i 0.333712 + 0.153742i
\(121\) −15.9546 27.6342i −0.131856 0.228382i
\(122\) −91.9671 + 53.0972i −0.753829 + 0.435223i
\(123\) −77.6135 + 168.468i −0.631004 + 1.36966i
\(124\) −41.0454 + 71.0927i −0.331011 + 0.573328i
\(125\) 119.512i 0.956092i
\(126\) −14.7650 79.4424i −0.117183 0.630495i
\(127\) 10.0908 0.0794552 0.0397276 0.999211i \(-0.487351\pi\)
0.0397276 + 0.999211i \(0.487351\pi\)
\(128\) 9.79796 + 5.65685i 0.0765466 + 0.0441942i
\(129\) 0.262756 + 2.85170i 0.00203687 + 0.0221062i
\(130\) −72.3712 125.351i −0.556701 0.964235i
\(131\) 4.29567 2.48010i 0.0327913 0.0189321i −0.483515 0.875336i \(-0.660640\pi\)
0.516306 + 0.856404i \(0.327307\pi\)
\(132\) 32.6969 + 46.2405i 0.247704 + 0.350306i
\(133\) −14.9092 + 25.8235i −0.112099 + 0.194161i
\(134\) 43.7764i 0.326690i
\(135\) 100.568 + 97.8215i 0.744949 + 0.724604i
\(136\) −5.39388 −0.0396609
\(137\) 203.242 + 117.342i 1.48352 + 0.856511i 0.999825 0.0187249i \(-0.00596067\pi\)
0.483696 + 0.875236i \(0.339294\pi\)
\(138\) −32.6969 + 23.1202i −0.236934 + 0.167538i
\(139\) −53.2650 92.2578i −0.383202 0.663725i 0.608316 0.793695i \(-0.291845\pi\)
−0.991518 + 0.129970i \(0.958512\pi\)
\(140\) 57.1362 32.9876i 0.408116 0.235626i
\(141\) −42.1515 + 3.88386i −0.298947 + 0.0275451i
\(142\) 60.7423 105.209i 0.427763 0.740907i
\(143\) 185.915i 1.30011i
\(144\) 23.3939 + 27.3629i 0.162457 + 0.190020i
\(145\) 17.0908 0.117868
\(146\) 117.687 + 67.9465i 0.806074 + 0.465387i
\(147\) 23.6969 + 10.9172i 0.161204 + 0.0742668i
\(148\) 17.3031 + 29.9698i 0.116913 + 0.202499i
\(149\) −91.0301 + 52.5563i −0.610940 + 0.352727i −0.773333 0.634000i \(-0.781412\pi\)
0.162393 + 0.986726i \(0.448079\pi\)
\(150\) −3.55051 + 7.70674i −0.0236701 + 0.0513783i
\(151\) 142.614 247.014i 0.944460 1.63585i 0.187632 0.982239i \(-0.439919\pi\)
0.756828 0.653614i \(-0.226748\pi\)
\(152\) 13.2849i 0.0874010i
\(153\) −16.1816 5.72107i −0.105762 0.0373926i
\(154\) 84.7423 0.550275
\(155\) −184.704 106.639i −1.19164 0.687994i
\(156\) −10.8434 117.683i −0.0695088 0.754379i
\(157\) 98.5908 + 170.764i 0.627967 + 1.08767i 0.987959 + 0.154715i \(0.0494460\pi\)
−0.359992 + 0.932955i \(0.617221\pi\)
\(158\) 36.4268 21.0310i 0.230549 0.133108i
\(159\) −16.5153 23.3562i −0.103870 0.146894i
\(160\) −14.6969 + 25.4558i −0.0918559 + 0.159099i
\(161\) 59.9219i 0.372186i
\(162\) 41.1589 + 106.902i 0.254067 + 0.659886i
\(163\) −249.060 −1.52798 −0.763988 0.645230i \(-0.776762\pi\)
−0.763988 + 0.645230i \(0.776762\pi\)
\(164\) −107.091 61.8289i −0.652993 0.377006i
\(165\) −120.136 + 84.9491i −0.728098 + 0.514843i
\(166\) 62.1589 + 107.662i 0.374451 + 0.648569i
\(167\) −41.9472 + 24.2182i −0.251181 + 0.145019i −0.620305 0.784361i \(-0.712991\pi\)
0.369124 + 0.929380i \(0.379658\pi\)
\(168\) 53.6413 4.94253i 0.319294 0.0294198i
\(169\) −109.485 + 189.633i −0.647838 + 1.12209i
\(170\) 14.0137i 0.0824335i
\(171\) 14.0908 39.8548i 0.0824024 0.233069i
\(172\) −1.90918 −0.0110999
\(173\) 86.9847 + 50.2206i 0.502802 + 0.290293i 0.729870 0.683586i \(-0.239581\pi\)
−0.227068 + 0.973879i \(0.572914\pi\)
\(174\) 12.6742 + 5.83904i 0.0728404 + 0.0335577i
\(175\) 6.34847 + 10.9959i 0.0362770 + 0.0628336i
\(176\) −32.6969 + 18.8776i −0.185778 + 0.107259i
\(177\) 114.894 249.389i 0.649118 1.40898i
\(178\) −29.2577 + 50.6757i −0.164369 + 0.284695i
\(179\) 285.071i 1.59257i 0.604919 + 0.796287i \(0.293206\pi\)
−0.604919 + 0.796287i \(0.706794\pi\)
\(180\) −71.0908 + 60.7791i −0.394949 + 0.337662i
\(181\) 37.1214 0.205091 0.102545 0.994728i \(-0.467301\pi\)
0.102545 + 0.994728i \(0.467301\pi\)
\(182\) −153.149 88.4205i −0.841476 0.485827i
\(183\) −20.6691 224.322i −0.112946 1.22580i
\(184\) −13.3485 23.1202i −0.0725460 0.125653i
\(185\) −77.8638 + 44.9547i −0.420885 + 0.242998i
\(186\) −100.540 142.185i −0.540539 0.764438i
\(187\) 9.00000 15.5885i 0.0481283 0.0833607i
\(188\) 28.2201i 0.150107i
\(189\) 166.166 + 42.0676i 0.879187 + 0.222580i
\(190\) 34.5153 0.181660
\(191\) −15.5227 8.96204i −0.0812707 0.0469217i 0.458814 0.888532i \(-0.348274\pi\)
−0.540085 + 0.841611i \(0.681608\pi\)
\(192\) −19.5959 + 13.8564i −0.102062 + 0.0721688i
\(193\) 47.7270 + 82.6657i 0.247290 + 0.428319i 0.962773 0.270311i \(-0.0871265\pi\)
−0.715483 + 0.698630i \(0.753793\pi\)
\(194\) 117.427 67.7964i 0.605293 0.349466i
\(195\) 305.750 28.1719i 1.56795 0.144471i
\(196\) −8.69694 + 15.0635i −0.0443721 + 0.0768548i
\(197\) 160.363i 0.814026i −0.913422 0.407013i \(-0.866570\pi\)
0.913422 0.407013i \(-0.133430\pi\)
\(198\) −118.114 + 21.9524i −0.596533 + 0.110871i
\(199\) 6.51531 0.0327402 0.0163701 0.999866i \(-0.494789\pi\)
0.0163701 + 0.999866i \(0.494789\pi\)
\(200\) −4.89898 2.82843i −0.0244949 0.0141421i
\(201\) −84.3434 38.8571i −0.419619 0.193319i
\(202\) 111.674 + 193.425i 0.552843 + 0.957552i
\(203\) 18.0834 10.4405i 0.0890809 0.0514309i
\(204\) 4.78775 10.3923i 0.0234694 0.0509427i
\(205\) 160.636 278.230i 0.783591 1.35722i
\(206\) 41.2048i 0.200024i
\(207\) −15.5227 83.5189i −0.0749889 0.403473i
\(208\) 78.7878 0.378787
\(209\) 38.3939 + 22.1667i 0.183703 + 0.106061i
\(210\) 12.8411 + 139.364i 0.0611480 + 0.663639i
\(211\) 77.2196 + 133.748i 0.365970 + 0.633878i 0.988931 0.148374i \(-0.0474040\pi\)
−0.622961 + 0.782253i \(0.714071\pi\)
\(212\) 16.5153 9.53512i 0.0779024 0.0449770i
\(213\) 148.788 + 210.418i 0.698534 + 0.987876i
\(214\) 121.485 210.418i 0.567685 0.983260i
\(215\) 4.96021i 0.0230707i
\(216\) −73.4847 + 20.7846i −0.340207 + 0.0962250i
\(217\) −260.576 −1.20081
\(218\) −142.404 82.2170i −0.653230 0.377142i
\(219\) −235.373 + 166.434i −1.07476 + 0.759973i
\(220\) −49.0454 84.9491i −0.222934 0.386132i
\(221\) −32.5301 + 18.7813i −0.147195 + 0.0849831i
\(222\) −73.1010 + 6.73555i −0.329284 + 0.0303403i
\(223\) −46.3865 + 80.3437i −0.208011 + 0.360286i −0.951088 0.308920i \(-0.900032\pi\)
0.743077 + 0.669206i \(0.233366\pi\)
\(224\) 35.9124i 0.160323i
\(225\) −11.6969 13.6814i −0.0519864 0.0608064i
\(226\) −286.045 −1.26569
\(227\) 147.053 + 84.9010i 0.647810 + 0.374013i 0.787617 0.616166i \(-0.211315\pi\)
−0.139807 + 0.990179i \(0.544648\pi\)
\(228\) 25.5959 + 11.7921i 0.112263 + 0.0517197i
\(229\) −203.772 352.944i −0.889836 1.54124i −0.840068 0.542480i \(-0.817485\pi\)
−0.0497675 0.998761i \(-0.515848\pi\)
\(230\) 60.0681 34.6803i 0.261166 0.150784i
\(231\) −75.2196 + 163.272i −0.325626 + 0.706805i
\(232\) −4.65153 + 8.05669i −0.0200497 + 0.0347271i
\(233\) 15.2562i 0.0654772i −0.999464 0.0327386i \(-0.989577\pi\)
0.999464 0.0327386i \(-0.0104229\pi\)
\(234\) 236.363 + 83.5670i 1.01010 + 0.357124i
\(235\) 73.3179 0.311991
\(236\) 158.530 + 91.5274i 0.671738 + 0.387828i
\(237\) 8.18673 + 88.8507i 0.0345432 + 0.374897i
\(238\) −8.56072 14.8276i −0.0359694 0.0623008i
\(239\) 48.9620 28.2682i 0.204862 0.118277i −0.394059 0.919085i \(-0.628930\pi\)
0.598921 + 0.800808i \(0.295596\pi\)
\(240\) −36.0000 50.9117i −0.150000 0.212132i
\(241\) −42.1061 + 72.9299i −0.174714 + 0.302614i −0.940062 0.341003i \(-0.889233\pi\)
0.765348 + 0.643617i \(0.222567\pi\)
\(242\) 45.1264i 0.186473i
\(243\) −242.499 15.5885i −0.997940 0.0641500i
\(244\) 150.182 0.615498
\(245\) −39.1362 22.5953i −0.159740 0.0922258i
\(246\) 214.182 151.449i 0.870657 0.615647i
\(247\) −46.2577 80.1206i −0.187278 0.324375i
\(248\) 100.540 58.0470i 0.405404 0.234060i
\(249\) −262.606 + 24.1966i −1.05464 + 0.0971750i
\(250\) −84.5074 + 146.371i −0.338030 + 0.585484i
\(251\) 218.903i 0.872123i −0.899917 0.436062i \(-0.856373\pi\)
0.899917 0.436062i \(-0.143627\pi\)
\(252\) −38.0908 + 107.737i −0.151154 + 0.427528i
\(253\) 89.0908 0.352138
\(254\) −12.3587 7.13528i −0.0486562 0.0280917i
\(255\) 27.0000 + 12.4389i 0.105882 + 0.0487802i
\(256\) −8.00000 13.8564i −0.0312500 0.0541266i
\(257\) −11.1061 + 6.41212i −0.0432145 + 0.0249499i −0.521452 0.853281i \(-0.674609\pi\)
0.478237 + 0.878231i \(0.341276\pi\)
\(258\) 1.69464 3.67840i 0.00656839 0.0142574i
\(259\) −54.9240 + 95.1311i −0.212062 + 0.367302i
\(260\) 204.697i 0.787295i
\(261\) −22.5000 + 19.2364i −0.0862069 + 0.0737026i
\(262\) −7.01479 −0.0267740
\(263\) 291.386 + 168.232i 1.10793 + 0.639666i 0.938293 0.345840i \(-0.112406\pi\)
0.169640 + 0.985506i \(0.445739\pi\)
\(264\) −7.34847 79.7530i −0.0278351 0.302095i
\(265\) 24.7730 + 42.9080i 0.0934829 + 0.161917i
\(266\) 36.5199 21.0848i 0.137293 0.0792661i
\(267\) −71.6663 101.351i −0.268413 0.379594i
\(268\) 30.9546 53.6149i 0.115502 0.200056i
\(269\) 60.4468i 0.224709i −0.993668 0.112355i \(-0.964161\pi\)
0.993668 0.112355i \(-0.0358393\pi\)
\(270\) −54.0000 190.919i −0.200000 0.707107i
\(271\) 274.636 1.01342 0.506708 0.862118i \(-0.330862\pi\)
0.506708 + 0.862118i \(0.330862\pi\)
\(272\) 6.60612 + 3.81405i 0.0242872 + 0.0140222i
\(273\) 306.297 216.585i 1.12197 0.793352i
\(274\) −165.947 287.428i −0.605645 1.04901i
\(275\) 16.3485 9.43879i 0.0594490 0.0343229i
\(276\) 56.3939 5.19615i 0.204326 0.0188266i
\(277\) 24.5000 42.4352i 0.0884477 0.153196i −0.818407 0.574638i \(-0.805143\pi\)
0.906855 + 0.421442i \(0.138476\pi\)
\(278\) 150.656i 0.541929i
\(279\) 363.189 67.5018i 1.30175 0.241942i
\(280\) −93.3031 −0.333225
\(281\) −297.121 171.543i −1.05737 0.610473i −0.132666 0.991161i \(-0.542354\pi\)
−0.924704 + 0.380688i \(0.875687\pi\)
\(282\) 54.3712 + 25.0489i 0.192806 + 0.0888259i
\(283\) 171.704 + 297.401i 0.606729 + 1.05089i 0.991776 + 0.127988i \(0.0408521\pi\)
−0.385047 + 0.922897i \(0.625815\pi\)
\(284\) −148.788 + 85.9026i −0.523901 + 0.302474i
\(285\) −30.6367 + 66.5001i −0.107497 + 0.233334i
\(286\) −131.462 + 227.699i −0.459657 + 0.796150i
\(287\) 392.519i 1.36766i
\(288\) −9.30306 50.0545i −0.0323023 0.173800i
\(289\) 285.363 0.987416
\(290\) −20.9319 12.0850i −0.0721789 0.0416725i
\(291\) 26.3911 + 286.422i 0.0906910 + 0.984270i
\(292\) −96.0908 166.434i −0.329078 0.569980i
\(293\) −248.076 + 143.226i −0.846674 + 0.488828i −0.859527 0.511090i \(-0.829242\pi\)
0.0128532 + 0.999917i \(0.495909\pi\)
\(294\) −21.3031 30.1271i −0.0724594 0.102473i
\(295\) −237.795 + 411.873i −0.806085 + 1.39618i
\(296\) 48.9404i 0.165339i
\(297\) 62.5454 247.053i 0.210591 0.831829i
\(298\) 148.652 0.498831
\(299\) −161.007 92.9577i −0.538486 0.310895i
\(300\) 9.79796 6.92820i 0.0326599 0.0230940i
\(301\) −3.03010 5.24829i −0.0100668 0.0174362i
\(302\) −349.330 + 201.686i −1.15672 + 0.667834i
\(303\) −471.795 + 43.4714i −1.55708 + 0.143470i
\(304\) −9.39388 + 16.2707i −0.0309009 + 0.0535219i
\(305\) 390.183i 1.27929i
\(306\) 15.7730 + 18.4490i 0.0515456 + 0.0602908i
\(307\) 154.091 0.501924 0.250962 0.967997i \(-0.419253\pi\)
0.250962 + 0.967997i \(0.419253\pi\)
\(308\) −103.788 59.9219i −0.336973 0.194552i
\(309\) −79.3888 36.5746i −0.256922 0.118364i
\(310\) 150.810 + 261.211i 0.486485 + 0.842617i
\(311\) −62.3411 + 35.9926i −0.200454 + 0.115732i −0.596867 0.802340i \(-0.703588\pi\)
0.396413 + 0.918072i \(0.370255\pi\)
\(312\) −69.9342 + 151.799i −0.224148 + 0.486536i
\(313\) 183.803 318.356i 0.587230 1.01711i −0.407363 0.913266i \(-0.633552\pi\)
0.994593 0.103846i \(-0.0331150\pi\)
\(314\) 278.857i 0.888079i
\(315\) −279.909 98.9628i −0.888601 0.314168i
\(316\) −59.4847 −0.188243
\(317\) −93.1821 53.7987i −0.293950 0.169712i 0.345772 0.938319i \(-0.387617\pi\)
−0.639722 + 0.768607i \(0.720950\pi\)
\(318\) 3.71173 + 40.2834i 0.0116721 + 0.126677i
\(319\) −15.5227 26.8861i −0.0486605 0.0842825i
\(320\) 36.0000 20.7846i 0.112500 0.0649519i
\(321\) 297.576 + 420.835i 0.927027 + 1.31101i
\(322\) 42.3712 73.3890i 0.131587 0.227916i
\(323\) 8.95717i 0.0277312i
\(324\) 25.1816 160.031i 0.0777211 0.493922i
\(325\) −39.3939 −0.121212
\(326\) 305.035 + 176.112i 0.935691 + 0.540221i
\(327\) 284.808 201.390i 0.870973 0.615871i
\(328\) 87.4393 + 151.449i 0.266583 + 0.461736i
\(329\) 77.5760 44.7885i 0.235793 0.136135i
\(330\) 207.204 19.0919i 0.627892 0.0578542i
\(331\) −8.59873 + 14.8934i −0.0259780 + 0.0449953i −0.878722 0.477334i \(-0.841603\pi\)
0.852744 + 0.522329i \(0.174937\pi\)
\(332\) 175.812i 0.529554i
\(333\) 51.9092 146.821i 0.155883 0.440905i
\(334\) 68.4995 0.205088
\(335\) 139.296 + 80.4224i 0.415808 + 0.240067i
\(336\) −69.1918 31.8768i −0.205928 0.0948714i
\(337\) −182.197 315.574i −0.540644 0.936422i −0.998867 0.0475854i \(-0.984847\pi\)
0.458223 0.888837i \(-0.348486\pi\)
\(338\) 268.182 154.835i 0.793437 0.458091i
\(339\) 253.902 551.120i 0.748973 1.62572i
\(340\) −9.90918 + 17.1632i −0.0291447 + 0.0504800i
\(341\) 387.419i 1.13613i
\(342\) −45.4393 + 38.8483i −0.132863 + 0.113592i
\(343\) −366.287 −1.06789
\(344\) 2.33826 + 1.35000i 0.00679728 + 0.00392441i
\(345\) 13.5000 + 146.516i 0.0391304 + 0.424683i
\(346\) −71.0227 123.015i −0.205268 0.355534i
\(347\) 505.234 291.697i 1.45601 0.840626i 0.457196 0.889366i \(-0.348854\pi\)
0.998811 + 0.0487402i \(0.0155206\pi\)
\(348\) −11.3939 16.1134i −0.0327410 0.0463028i
\(349\) −156.379 + 270.856i −0.448076 + 0.776091i −0.998261 0.0589524i \(-0.981224\pi\)
0.550185 + 0.835043i \(0.314557\pi\)
\(350\) 17.9562i 0.0513034i
\(351\) −370.810 + 381.221i −1.05644 + 1.08610i
\(352\) 53.3939 0.151687
\(353\) −32.5760 18.8078i −0.0922834 0.0532798i 0.453148 0.891435i \(-0.350301\pi\)
−0.545431 + 0.838155i \(0.683634\pi\)
\(354\) −317.060 + 224.195i −0.895650 + 0.633320i
\(355\) −223.182 386.562i −0.628681 1.08891i
\(356\) 71.6663 41.3766i 0.201310 0.116226i
\(357\) 36.1668 3.33243i 0.101308 0.00933453i
\(358\) 201.576 349.139i 0.563060 0.975249i
\(359\) 294.028i 0.819019i 0.912306 + 0.409510i \(0.134300\pi\)
−0.912306 + 0.409510i \(0.865700\pi\)
\(360\) 130.045 24.1701i 0.361237 0.0671391i
\(361\) −338.939 −0.938889
\(362\) −45.4643 26.2488i −0.125592 0.0725105i
\(363\) −86.9444 40.0554i −0.239516 0.110346i
\(364\) 125.045 + 216.585i 0.343531 + 0.595014i
\(365\) 432.409 249.651i 1.18468 0.683976i
\(366\) −133.305 + 289.353i −0.364222 + 0.790581i
\(367\) 16.6135 28.7755i 0.0452684 0.0784072i −0.842503 0.538691i \(-0.818919\pi\)
0.887772 + 0.460284i \(0.152252\pi\)
\(368\) 37.7552i 0.102596i
\(369\) 101.682 + 547.091i 0.275560 + 1.48263i
\(370\) 127.151 0.343651
\(371\) 52.4235 + 30.2667i 0.141303 + 0.0815814i
\(372\) 22.5959 + 245.234i 0.0607417 + 0.659230i
\(373\) 112.515 + 194.881i 0.301648 + 0.522470i 0.976509 0.215475i \(-0.0691299\pi\)
−0.674861 + 0.737945i \(0.735797\pi\)
\(374\) −22.0454 + 12.7279i −0.0589449 + 0.0340319i
\(375\) −207.000 292.742i −0.552000 0.780646i
\(376\) −19.9546 + 34.5624i −0.0530707 + 0.0919212i
\(377\) 64.7858i 0.171846i
\(378\) −173.765 169.019i −0.459696 0.447141i
\(379\) −166.334 −0.438875 −0.219438 0.975627i \(-0.570422\pi\)
−0.219438 + 0.975627i \(0.570422\pi\)
\(380\) −42.2724 24.4060i −0.111243 0.0642263i
\(381\) 24.7173 17.4778i 0.0648749 0.0458735i
\(382\) 12.6742 + 21.9524i 0.0331786 + 0.0574671i
\(383\) −638.249 + 368.493i −1.66645 + 0.962124i −0.696917 + 0.717152i \(0.745445\pi\)
−0.969530 + 0.244972i \(0.921221\pi\)
\(384\) 33.7980 3.11416i 0.0880155 0.00810978i
\(385\) 155.682 269.648i 0.404368 0.700386i
\(386\) 134.992i 0.349721i
\(387\) 5.58290 + 6.53010i 0.0144261 + 0.0168736i
\(388\) −191.757 −0.494219
\(389\) −146.682 84.6867i −0.377074 0.217704i 0.299471 0.954106i \(-0.403190\pi\)
−0.676544 + 0.736402i \(0.736523\pi\)
\(390\) −394.386 181.694i −1.01125 0.465883i
\(391\) −9.00000 15.5885i −0.0230179 0.0398682i
\(392\) 21.3031 12.2993i 0.0543445 0.0313758i
\(393\) 6.22652 13.5153i 0.0158436 0.0343901i
\(394\) −113.394 + 196.404i −0.287802 + 0.498487i
\(395\) 154.546i 0.391255i
\(396\) 160.182 + 56.6328i 0.404499 + 0.143012i
\(397\) −256.272 −0.645523 −0.322761 0.946480i \(-0.604611\pi\)
−0.322761 + 0.946480i \(0.604611\pi\)
\(398\) −7.97959 4.60702i −0.0200492 0.0115754i
\(399\) 8.20766 + 89.0778i 0.0205706 + 0.223253i
\(400\) 4.00000 + 6.92820i 0.0100000 + 0.0173205i
\(401\) 226.364 130.691i 0.564498 0.325913i −0.190451 0.981697i \(-0.560995\pi\)
0.754949 + 0.655784i \(0.227662\pi\)
\(402\) 75.8230 + 107.230i 0.188614 + 0.266741i
\(403\) 404.234 700.155i 1.00306 1.73736i
\(404\) 315.862i 0.781838i
\(405\) 415.772 + 65.4238i 1.02660 + 0.161540i
\(406\) −29.5301 −0.0727342
\(407\) 141.439 + 81.6600i 0.347517 + 0.200639i
\(408\) −13.2122 + 9.34247i −0.0323830 + 0.0228982i
\(409\) 221.894 + 384.331i 0.542528 + 0.939686i 0.998758 + 0.0498240i \(0.0158660\pi\)
−0.456230 + 0.889862i \(0.650801\pi\)
\(410\) −393.477 + 227.174i −0.959699 + 0.554083i
\(411\) 701.082 64.5980i 1.70580 0.157173i
\(412\) 29.1362 50.4654i 0.0707190 0.122489i
\(413\) 581.059i 1.40692i
\(414\) −40.0454 + 113.266i −0.0967280 + 0.273588i
\(415\) 456.773 1.10066
\(416\) −96.4949 55.7114i −0.231959 0.133922i
\(417\) −290.267 133.727i −0.696085 0.320688i
\(418\) −31.3485 54.2971i −0.0749963 0.129897i
\(419\) 9.32525 5.38394i 0.0222560 0.0128495i −0.488831 0.872379i \(-0.662576\pi\)
0.511087 + 0.859529i \(0.329243\pi\)
\(420\) 82.8184 179.766i 0.197187 0.428013i
\(421\) −127.152 + 220.233i −0.302023 + 0.523119i −0.976594 0.215091i \(-0.930995\pi\)
0.674571 + 0.738210i \(0.264328\pi\)
\(422\) 218.410i 0.517560i
\(423\) −96.5227 + 82.5221i −0.228186 + 0.195088i
\(424\) −26.9694 −0.0636070
\(425\) −3.30306 1.90702i −0.00777191 0.00448711i
\(426\) −33.4393 362.917i −0.0784960 0.851917i
\(427\) 238.356 + 412.844i 0.558210 + 0.966849i
\(428\) −297.576 + 171.805i −0.695270 + 0.401414i
\(429\) −322.015 455.398i −0.750617 1.06153i
\(430\) −3.50740 + 6.07499i −0.00815674 + 0.0141279i
\(431\) 698.663i 1.62103i −0.585719 0.810514i \(-0.699188\pi\)
0.585719 0.810514i \(-0.300812\pi\)
\(432\) 104.697 + 26.5057i 0.242354 + 0.0613557i
\(433\) 211.728 0.488978 0.244489 0.969652i \(-0.421380\pi\)
0.244489 + 0.969652i \(0.421380\pi\)
\(434\) 319.139 + 184.255i 0.735342 + 0.424550i
\(435\) 41.8638 29.6022i 0.0962386 0.0680509i
\(436\) 116.272 + 201.390i 0.266680 + 0.461903i
\(437\) 38.3939 22.1667i 0.0878578 0.0507247i
\(438\) 405.959 37.4052i 0.926847 0.0854001i
\(439\) −139.931 + 242.368i −0.318750 + 0.552092i −0.980228 0.197874i \(-0.936596\pi\)
0.661477 + 0.749965i \(0.269930\pi\)
\(440\) 138.721i 0.315276i
\(441\) 76.9546 14.3027i 0.174500 0.0324324i
\(442\) 53.1214 0.120184
\(443\) −477.400 275.627i −1.07765 0.622183i −0.147391 0.989078i \(-0.547087\pi\)
−0.930262 + 0.366895i \(0.880421\pi\)
\(444\) 94.2929 + 43.4409i 0.212371 + 0.0978398i
\(445\) 107.499 + 186.195i 0.241572 + 0.418415i
\(446\) 113.623 65.6004i 0.254761 0.147086i
\(447\) −131.947 + 286.405i −0.295184 + 0.640727i
\(448\) 25.3939 43.9835i 0.0566828 0.0981774i
\(449\) 542.865i 1.20905i −0.796585 0.604527i \(-0.793362\pi\)
0.796585 0.604527i \(-0.206638\pi\)
\(450\) 4.65153 + 25.0273i 0.0103367 + 0.0556161i
\(451\) −583.590 −1.29399
\(452\) 350.333 + 202.265i 0.775072 + 0.447488i
\(453\) −78.5102 852.072i −0.173312 1.88095i
\(454\) −120.068 207.964i −0.264467 0.458071i
\(455\) −562.704 + 324.877i −1.23671 + 0.714016i
\(456\) −23.0102 32.5413i −0.0504610 0.0713626i
\(457\) −46.1821 + 79.9898i −0.101055 + 0.175032i −0.912120 0.409924i \(-0.865555\pi\)
0.811065 + 0.584957i \(0.198888\pi\)
\(458\) 576.356i 1.25842i
\(459\) −49.5459 + 14.0137i −0.107943 + 0.0305309i
\(460\) −98.0908 −0.213241
\(461\) −199.030 114.910i −0.431736 0.249263i 0.268350 0.963321i \(-0.413522\pi\)
−0.700086 + 0.714059i \(0.746855\pi\)
\(462\) 207.576 146.778i 0.449298 0.317701i
\(463\) 255.401 + 442.368i 0.551623 + 0.955438i 0.998158 + 0.0606723i \(0.0193245\pi\)
−0.446535 + 0.894766i \(0.647342\pi\)
\(464\) 11.3939 6.57826i 0.0245558 0.0141773i
\(465\) −637.136 + 58.7059i −1.37018 + 0.126249i
\(466\) −10.7878 + 18.6849i −0.0231497 + 0.0400964i
\(467\) 833.657i 1.78513i 0.450915 + 0.892567i \(0.351098\pi\)
−0.450915 + 0.892567i \(0.648902\pi\)
\(468\) −230.394 269.482i −0.492295 0.575817i
\(469\) 196.514 0.419007
\(470\) −89.7957 51.8436i −0.191055 0.110305i
\(471\) 537.270 + 247.521i 1.14070 + 0.525523i
\(472\) −129.439 224.195i −0.274236 0.474990i
\(473\) −7.80306 + 4.50510i −0.0164970 + 0.00952452i
\(474\) 52.8003 114.608i 0.111393 0.241790i
\(475\) 4.69694 8.13534i 0.00988829 0.0171270i
\(476\) 24.2134i 0.0508684i
\(477\) −80.9082 28.6054i −0.169619 0.0599693i
\(478\) −79.9546 −0.167269
\(479\) 569.144 + 328.595i 1.18819 + 0.686003i 0.957895 0.287118i \(-0.0926972\pi\)
0.230296 + 0.973121i \(0.426031\pi\)
\(480\) 8.09082 + 87.8097i 0.0168559 + 0.182937i
\(481\) −170.409 295.156i −0.354280 0.613631i
\(482\) 103.139 59.5471i 0.213980 0.123542i
\(483\) 103.788 + 146.778i 0.214881 + 0.303888i
\(484\) 31.9092 55.2683i 0.0659281 0.114191i
\(485\) 498.200i 1.02722i
\(486\) 285.977 + 190.565i 0.588431 + 0.392109i
\(487\) −351.666 −0.722107 −0.361054 0.932545i \(-0.617583\pi\)
−0.361054 + 0.932545i \(0.617583\pi\)
\(488\) −183.934 106.194i −0.376914 0.217612i
\(489\) −610.070 + 431.385i −1.24759 + 0.882178i
\(490\) 31.9546 + 55.3470i 0.0652135 + 0.112953i
\(491\) 212.539 122.709i 0.432869 0.249917i −0.267699 0.963503i \(-0.586263\pi\)
0.700568 + 0.713586i \(0.252930\pi\)
\(492\) −369.409 + 34.0374i −0.750831 + 0.0691818i
\(493\) −3.13622 + 5.43210i −0.00636151 + 0.0110185i
\(494\) 130.836i 0.264851i
\(495\) −147.136 + 416.164i −0.297245 + 0.840736i
\(496\) −164.182 −0.331011
\(497\) −472.287 272.675i −0.950276 0.548642i
\(498\) 338.734 + 156.056i 0.680190 + 0.313365i
\(499\) −315.113 545.792i −0.631489 1.09377i −0.987247 0.159193i \(-0.949111\pi\)
0.355758 0.934578i \(-0.384223\pi\)
\(500\) 207.000 119.512i 0.414000 0.239023i
\(501\) −60.8020 + 131.977i −0.121361 + 0.263427i
\(502\) −154.788 + 268.100i −0.308342 + 0.534064i
\(503\) 286.891i 0.570360i −0.958474 0.285180i \(-0.907947\pi\)
0.958474 0.285180i \(-0.0920534\pi\)
\(504\) 122.833 105.016i 0.243717 0.208365i
\(505\) 820.635 1.62502
\(506\) −109.114 62.9967i −0.215639 0.124499i
\(507\) 60.2724 + 654.137i 0.118881 + 1.29021i
\(508\) 10.0908 + 17.4778i 0.0198638 + 0.0344051i
\(509\) 755.454 436.161i 1.48419 0.856898i 0.484353 0.874873i \(-0.339055\pi\)
0.999838 + 0.0179741i \(0.00572163\pi\)
\(510\) −24.2724 34.3264i −0.0475930 0.0673067i
\(511\) 305.015 528.301i 0.596898 1.03386i
\(512\) 22.6274i 0.0441942i
\(513\) −34.5153 122.030i −0.0672813 0.237875i
\(514\) 18.1362 0.0352845
\(515\) 131.113 + 75.6981i 0.254588 + 0.146987i
\(516\) −4.67653 + 3.30680i −0.00906304 + 0.00640854i
\(517\) −66.5908 115.339i −0.128802 0.223092i
\(518\) 134.536 77.6742i 0.259721 0.149950i
\(519\) 300.053 27.6470i 0.578136 0.0532697i
\(520\) 144.742 250.701i 0.278351 0.482117i
\(521\) 206.132i 0.395646i −0.980238 0.197823i \(-0.936613\pi\)
0.980238 0.197823i \(-0.0633872\pi\)
\(522\) 41.1589 7.64974i 0.0788485 0.0146547i
\(523\) 884.817 1.69181 0.845906 0.533333i \(-0.179061\pi\)
0.845906 + 0.533333i \(0.179061\pi\)
\(524\) 8.59133 + 4.96021i 0.0163957 + 0.00946604i
\(525\) 34.5959 + 15.9384i 0.0658970 + 0.0303589i
\(526\) −237.916 412.083i −0.452312 0.783427i
\(527\) 67.7878 39.1373i 0.128630 0.0742643i
\(528\) −47.3939 + 102.873i −0.0897611 + 0.194836i
\(529\) −219.955 + 380.973i −0.415793 + 0.720175i
\(530\) 70.0685i 0.132205i
\(531\) −150.523 809.877i −0.283470 1.52519i
\(532\) −59.6367 −0.112099
\(533\) 1054.68 + 608.920i 1.97876 + 1.14244i
\(534\) 16.1066 + 174.805i 0.0301622 + 0.327351i
\(535\) −446.363 773.124i −0.834324 1.44509i
\(536\) −75.8230 + 43.7764i −0.141461 + 0.0816724i
\(537\) 493.757 + 698.278i 0.919473 + 1.30033i
\(538\) −42.7423 + 74.0319i −0.0794467 + 0.137606i
\(539\) 82.0886i 0.152298i
\(540\) −68.8638 + 272.011i −0.127526 + 0.503723i
\(541\) −509.151 −0.941129 −0.470565 0.882365i \(-0.655950\pi\)
−0.470565 + 0.882365i \(0.655950\pi\)
\(542\) −336.359 194.197i −0.620588 0.358297i
\(543\) 90.9286 64.2962i 0.167456 0.118409i
\(544\) −5.39388 9.34247i −0.00991521 0.0171737i
\(545\) −523.226 + 302.085i −0.960048 + 0.554284i
\(546\) −528.285 + 48.6764i −0.967555 + 0.0891509i
\(547\) −274.022 + 474.620i −0.500955 + 0.867679i 0.499045 + 0.866576i \(0.333684\pi\)
−0.999999 + 0.00110267i \(0.999649\pi\)
\(548\) 469.368i 0.856511i
\(549\) −439.166 513.675i −0.799939 0.935656i
\(550\) −26.6969 −0.0485399
\(551\) −13.3791 7.72442i −0.0242815 0.0140189i
\(552\) −72.7423 33.5125i −0.131780 0.0607111i
\(553\) −94.4092 163.522i −0.170722 0.295699i
\(554\) −60.0125 + 34.6482i −0.108326 + 0.0625419i
\(555\) −112.863 + 244.980i −0.203356 + 0.441405i
\(556\) 106.530 184.516i 0.191601 0.331862i
\(557\) 406.542i 0.729879i 0.931031 + 0.364939i \(0.118910\pi\)
−0.931031 + 0.364939i \(0.881090\pi\)
\(558\) −492.545 174.141i −0.882697 0.312080i
\(559\) 18.8025 0.0336360
\(560\) 114.272 + 65.9752i 0.204058 + 0.117813i
\(561\) −4.95459 53.7722i −0.00883172 0.0958507i
\(562\) 242.598 + 420.192i 0.431669 + 0.747673i
\(563\) −525.220 + 303.236i −0.932895 + 0.538607i −0.887726 0.460372i \(-0.847716\pi\)
−0.0451687 + 0.998979i \(0.514383\pi\)
\(564\) −48.8786 69.1247i −0.0866641 0.122562i
\(565\) −525.499 + 910.191i −0.930087 + 1.61096i
\(566\) 485.653i 0.858045i
\(567\) 479.886 184.764i 0.846360 0.325863i
\(568\) 242.969 0.427763
\(569\) −224.954 129.877i −0.395350 0.228255i 0.289126 0.957291i \(-0.406635\pi\)
−0.684476 + 0.729036i \(0.739969\pi\)
\(570\) 84.5449 59.7823i 0.148324 0.104881i
\(571\) 43.9166 + 76.0657i 0.0769117 + 0.133215i 0.901916 0.431911i \(-0.142161\pi\)
−0.825004 + 0.565126i \(0.808827\pi\)
\(572\) 322.015 185.915i 0.562963 0.325027i
\(573\) −53.5454 + 4.93369i −0.0934475 + 0.00861029i
\(574\) −277.553 + 480.736i −0.483541 + 0.837518i
\(575\) 18.8776i 0.0328306i
\(576\) −24.0000 + 67.8823i −0.0416667 + 0.117851i
\(577\) −132.091 −0.228927 −0.114463 0.993427i \(-0.536515\pi\)
−0.114463 + 0.993427i \(0.536515\pi\)
\(578\) −349.497 201.782i −0.604666 0.349104i
\(579\) 260.088 + 119.823i 0.449202 + 0.206948i
\(580\) 17.0908 + 29.6022i 0.0294669 + 0.0510382i
\(581\) 483.302 279.034i 0.831844 0.480266i
\(582\) 170.209 369.456i 0.292455 0.634804i
\(583\) 45.0000 77.9423i 0.0771870 0.133692i
\(584\) 271.786i 0.465387i
\(585\) 700.136 598.581i 1.19681 1.02322i
\(586\) 405.106 0.691306
\(587\) −491.614 283.833i −0.837502 0.483532i 0.0189125 0.999821i \(-0.493980\pi\)
−0.856414 + 0.516289i \(0.827313\pi\)
\(588\) 4.78775 + 51.9615i 0.00814244 + 0.0883699i
\(589\) 96.3939 + 166.959i 0.163657 + 0.283462i
\(590\) 582.477 336.293i 0.987249 0.569988i
\(591\) −277.757 392.808i −0.469978 0.664650i
\(592\) −34.6061 + 59.9396i −0.0584563 + 0.101249i
\(593\) 77.0321i 0.129902i 0.997888 + 0.0649512i \(0.0206892\pi\)
−0.997888 + 0.0649512i \(0.979311\pi\)
\(594\) −251.295 + 258.351i −0.423056 + 0.434934i
\(595\) −62.9082 −0.105728
\(596\) −182.060 105.113i −0.305470 0.176363i
\(597\) 15.9592 11.2848i 0.0267323 0.0189026i
\(598\) 131.462 + 227.699i 0.219836 + 0.380767i
\(599\) −764.917 + 441.625i −1.27699 + 0.737270i −0.976294 0.216450i \(-0.930552\pi\)
−0.300696 + 0.953720i \(0.597219\pi\)
\(600\) −16.8990 + 1.55708i −0.0281650 + 0.00259513i
\(601\) 397.545 688.569i 0.661473 1.14571i −0.318755 0.947837i \(-0.603265\pi\)
0.980229 0.197868i \(-0.0634018\pi\)
\(602\) 8.57042i 0.0142366i
\(603\) −273.901 + 50.9068i −0.454230 + 0.0844226i
\(604\) 570.454 0.944460
\(605\) 143.591 + 82.9025i 0.237341 + 0.137029i
\(606\) 608.568 + 280.368i 1.00424 + 0.462654i
\(607\) 148.372 + 256.987i 0.244434 + 0.423373i 0.961972 0.273147i \(-0.0880644\pi\)
−0.717538 + 0.696519i \(0.754731\pi\)
\(608\) 23.0102 13.2849i 0.0378457 0.0218502i
\(609\) 26.2117 56.8952i 0.0430406 0.0934240i
\(610\) 275.901 477.875i 0.452297 0.783402i
\(611\) 277.924i 0.454868i
\(612\) −6.27245 33.7485i −0.0102491 0.0551446i
\(613\) −517.181 −0.843688 −0.421844 0.906668i \(-0.638617\pi\)
−0.421844 + 0.906668i \(0.638617\pi\)
\(614\) −188.722 108.959i −0.307365 0.177457i
\(615\) −88.4319 959.752i −0.143792 1.56057i
\(616\) 84.7423 + 146.778i 0.137569 + 0.238276i
\(617\) −229.909 + 132.738i −0.372623 + 0.215134i −0.674604 0.738180i \(-0.735686\pi\)
0.301981 + 0.953314i \(0.402352\pi\)
\(618\) 71.3689 + 100.931i 0.115484 + 0.163319i
\(619\) 98.5227 170.646i 0.159164 0.275681i −0.775403 0.631466i \(-0.782453\pi\)
0.934568 + 0.355786i \(0.115787\pi\)
\(620\) 426.556i 0.687994i
\(621\) −182.682 177.693i −0.294173 0.286139i
\(622\) 101.803 0.163670
\(623\) 227.486 + 131.339i 0.365146 + 0.210817i
\(624\) 192.990 136.464i 0.309279 0.218693i
\(625\) 335.500 + 581.103i 0.536800 + 0.929765i
\(626\) −450.224 + 259.937i −0.719207 + 0.415234i
\(627\) 132.439 12.2030i 0.211227 0.0194625i
\(628\) −197.182 + 341.529i −0.313983 + 0.543835i
\(629\) 32.9973i 0.0524600i
\(630\) 272.840 + 319.130i 0.433079 + 0.506555i
\(631\) −160.879 −0.254958 −0.127479 0.991841i \(-0.540689\pi\)
−0.127479 + 0.991841i \(0.540689\pi\)
\(632\) 72.8536 + 42.0620i 0.115275 + 0.0665538i
\(633\) 420.808 + 193.867i 0.664783 + 0.306267i
\(634\) 76.0829 + 131.779i 0.120005 + 0.207854i
\(635\) −45.4087 + 26.2167i −0.0715097 + 0.0412862i
\(636\) 23.9388 51.9615i 0.0376396 0.0817005i
\(637\) 85.6515 148.353i 0.134461 0.232893i
\(638\) 43.9048i 0.0688164i
\(639\) 728.908 + 257.708i 1.14070 + 0.403299i
\(640\) −58.7878 −0.0918559
\(641\) −267.894 154.669i −0.417931 0.241293i 0.276261 0.961083i \(-0.410905\pi\)
−0.694192 + 0.719790i \(0.744238\pi\)
\(642\) −66.8786 725.834i −0.104172 1.13058i
\(643\) −197.296 341.726i −0.306836 0.531456i 0.670832 0.741609i \(-0.265937\pi\)
−0.977668 + 0.210153i \(0.932604\pi\)
\(644\) −103.788 + 59.9219i −0.161161 + 0.0930464i
\(645\) −8.59133 12.1500i −0.0133199 0.0188372i
\(646\) −6.33368 + 10.9703i −0.00980445 + 0.0169818i
\(647\) 418.736i 0.647196i −0.946195 0.323598i \(-0.895108\pi\)
0.946195 0.323598i \(-0.104892\pi\)
\(648\) −144.000 + 178.191i −0.222222 + 0.274986i
\(649\) 863.908 1.33114
\(650\) 48.2474 + 27.8557i 0.0742268 + 0.0428549i
\(651\) −638.277 + 451.330i −0.980456 + 0.693287i
\(652\) −249.060 431.385i −0.381994 0.661633i
\(653\) −459.621 + 265.363i −0.703861 + 0.406375i −0.808784 0.588106i \(-0.799874\pi\)
0.104923 + 0.994480i \(0.466540\pi\)
\(654\) −491.221 + 45.2613i −0.751103 + 0.0692069i
\(655\) −12.8870 + 22.3209i −0.0196748 + 0.0340778i
\(656\) 247.316i 0.377006i
\(657\) −288.272 + 815.358i −0.438771 + 1.24103i
\(658\) −126.681 −0.192524
\(659\) 310.204 + 179.096i 0.470719 + 0.271770i 0.716541 0.697545i \(-0.245724\pi\)
−0.245822 + 0.969315i \(0.579058\pi\)
\(660\) −267.272 123.133i −0.404958 0.186565i
\(661\) 111.136 + 192.493i 0.168133 + 0.291214i 0.937763 0.347275i \(-0.112893\pi\)
−0.769631 + 0.638489i \(0.779560\pi\)
\(662\) 21.0625 12.1604i 0.0318165 0.0183692i
\(663\) −47.1520 + 102.348i −0.0711192 + 0.154371i
\(664\) −124.318 + 215.325i −0.187226 + 0.324284i
\(665\) 154.941i 0.232994i
\(666\) −167.394 + 143.113i −0.251342 + 0.214885i
\(667\) −31.0454 −0.0465448
\(668\) −83.8944 48.4365i −0.125590 0.0725097i
\(669\) 25.5362 + 277.145i 0.0381708 + 0.414267i
\(670\) −113.734 196.994i −0.169753 0.294021i
\(671\) 613.810 354.383i 0.914769 0.528142i
\(672\) 62.2020 + 87.9670i 0.0925626 + 0.130903i
\(673\) 144.606 250.464i 0.214867 0.372161i −0.738364 0.674402i \(-0.764401\pi\)
0.953231 + 0.302241i \(0.0977348\pi\)
\(674\) 515.331i 0.764586i
\(675\) −52.3485 13.2528i −0.0775533 0.0196338i
\(676\) −437.939 −0.647838
\(677\) 402.227 + 232.226i 0.594131 + 0.343022i 0.766729 0.641971i \(-0.221883\pi\)
−0.172598 + 0.984992i \(0.555216\pi\)
\(678\) −700.665 + 495.445i −1.03343 + 0.730745i
\(679\) −304.341 527.134i −0.448220 0.776339i
\(680\) 24.2724 14.0137i 0.0356948 0.0206084i
\(681\) 507.257 46.7389i 0.744871 0.0686327i
\(682\) 273.947 474.490i 0.401681 0.695733i
\(683\) 1126.36i 1.64913i −0.565767 0.824565i \(-0.691420\pi\)
0.565767 0.824565i \(-0.308580\pi\)
\(684\) 83.1214 15.4488i 0.121523 0.0225860i
\(685\) −1219.45 −1.78022
\(686\) 448.608 + 259.004i 0.653948 + 0.377557i
\(687\) −1110.46 511.589i −1.61638 0.744671i
\(688\) −1.90918 3.30680i −0.00277498 0.00480640i
\(689\) −162.650 + 93.9063i −0.236067 + 0.136294i
\(690\) 87.0681 188.990i 0.126186 0.273899i
\(691\) −518.841 + 898.658i −0.750855 + 1.30052i 0.196554 + 0.980493i \(0.437025\pi\)
−0.947409 + 0.320025i \(0.896309\pi\)
\(692\) 200.883i 0.290293i
\(693\) 98.5454 + 530.217i 0.142201 + 0.765104i
\(694\) −825.044 −1.18882
\(695\) 479.385 + 276.773i 0.689763 + 0.398235i
\(696\) 2.56072 + 27.7915i 0.00367919 + 0.0399303i
\(697\) 58.9546 + 102.112i 0.0845833 + 0.146503i
\(698\) 383.048 221.153i 0.548779 0.316838i
\(699\) −26.4245 37.3699i −0.0378033 0.0534619i
\(700\) −12.6969 + 21.9917i −0.0181385 + 0.0314168i
\(701\) 778.180i 1.11010i 0.831817 + 0.555050i \(0.187301\pi\)
−0.831817 + 0.555050i \(0.812699\pi\)
\(702\) 723.712 204.697i 1.03093 0.291591i
\(703\) 81.2714 0.115607
\(704\) −65.3939 37.7552i −0.0928890 0.0536295i
\(705\) 179.591 126.990i 0.254739 0.180128i
\(706\) 26.5982 + 46.0695i 0.0376745 + 0.0652542i
\(707\) 868.296 501.311i 1.22814 0.709068i
\(708\) 546.848 50.3868i 0.772384 0.0711678i
\(709\) 586.014 1015.01i 0.826536 1.43160i −0.0742031 0.997243i \(-0.523641\pi\)
0.900739 0.434360i \(-0.143025\pi\)
\(710\) 631.253i 0.889089i
\(711\) 173.947 + 203.459i 0.244651 + 0.286159i
\(712\) −117.031 −0.164369
\(713\) 335.515 + 193.710i 0.470568 + 0.271682i
\(714\) −46.6515 21.4924i −0.0653383 0.0301015i
\(715\) 483.022 + 836.619i 0.675556 + 1.17010i
\(716\) −493.757 + 285.071i −0.689605 + 0.398144i
\(717\) 70.9699 154.047i 0.0989817 0.214850i
\(718\) 207.909 360.109i 0.289567 0.501545i
\(719\) 515.416i 0.716851i −0.933558 0.358426i \(-0.883314\pi\)
0.933558 0.358426i \(-0.116686\pi\)
\(720\) −176.363 62.3538i −0.244949 0.0866025i
\(721\) 184.970 0.256547
\(722\) 415.114 + 239.666i 0.574949 + 0.331947i
\(723\) 23.1799 + 251.571i 0.0320607 + 0.347954i
\(724\) 37.1214 + 64.2962i 0.0512727 + 0.0888069i
\(725\) −5.69694 + 3.28913i −0.00785785 + 0.00453673i
\(726\) 78.1612 + 110.537i 0.107660 + 0.152254i
\(727\) 420.704 728.681i 0.578685 1.00231i −0.416945 0.908932i \(-0.636899\pi\)
0.995630 0.0933809i \(-0.0297674\pi\)
\(728\) 353.682i 0.485827i
\(729\) −621.000 + 381.838i −0.851852 + 0.523783i
\(730\) −706.120 −0.967288
\(731\) 1.57654 + 0.910215i 0.00215669 + 0.00124516i
\(732\) 367.868 260.122i 0.502552 0.355358i
\(733\) −303.181 525.125i −0.413617 0.716405i 0.581665 0.813428i \(-0.302401\pi\)
−0.995282 + 0.0970229i \(0.969068\pi\)
\(734\) −40.6946 + 23.4951i −0.0554423 + 0.0320096i
\(735\) −135.000 + 12.4389i −0.183673 + 0.0169237i
\(736\) 26.6969 46.2405i 0.0362730 0.0628267i
\(737\) 292.174i 0.396437i
\(738\) 262.318 741.947i 0.355444 1.00535i
\(739\) −389.362 −0.526877 −0.263439 0.964676i \(-0.584857\pi\)
−0.263439 + 0.964676i \(0.584857\pi\)
\(740\) −155.728 89.9093i −0.210443 0.121499i
\(741\) −252.081 116.134i −0.340190 0.156726i
\(742\) −42.8036 74.1380i −0.0576868 0.0999164i
\(743\) 904.779 522.375i 1.21774 0.703061i 0.253304 0.967387i \(-0.418483\pi\)
0.964434 + 0.264325i \(0.0851492\pi\)
\(744\) 145.732 316.326i 0.195877 0.425170i
\(745\) 273.090 473.006i 0.366564 0.634908i
\(746\) 318.240i 0.426595i
\(747\) −601.340 + 514.116i −0.805007 + 0.688240i
\(748\) 36.0000 0.0481283
\(749\) −944.574 545.350i −1.26111 0.728105i
\(750\) 46.5222 + 504.906i 0.0620296 + 0.673207i
\(751\) 645.916 + 1118.76i 0.860074 + 1.48969i 0.871857 + 0.489761i \(0.162916\pi\)
−0.0117826 + 0.999931i \(0.503751\pi\)
\(752\) 48.8786 28.2201i 0.0649981 0.0375267i
\(753\) −379.151 536.201i −0.503521 0.712086i
\(754\) 45.8105 79.3460i 0.0607566 0.105233i
\(755\) 1482.08i 1.96302i
\(756\) 93.3031 + 329.876i 0.123417 + 0.436344i
\(757\) 1042.36 1.37697 0.688483 0.725252i \(-0.258277\pi\)
0.688483 + 0.725252i \(0.258277\pi\)
\(758\) 203.716 + 117.616i 0.268755 + 0.155166i
\(759\) 218.227 154.310i 0.287519 0.203307i
\(760\) 34.5153 + 59.7823i 0.0454149 + 0.0786609i
\(761\) −281.607 + 162.586i −0.370048 + 0.213647i −0.673479 0.739206i \(-0.735201\pi\)
0.303431 + 0.952853i \(0.401868\pi\)
\(762\) −42.6311 + 3.92805i −0.0559464 + 0.00515492i
\(763\) −369.076 + 639.258i −0.483717 + 0.837822i
\(764\) 35.8481i 0.0469217i
\(765\) 87.6811 16.2963i 0.114616 0.0213023i
\(766\) 1042.26 1.36065
\(767\) −1561.28 901.405i −2.03557 1.17523i
\(768\) −43.5959 20.0847i −0.0567655 0.0261520i
\(769\) −171.348 296.783i &min