Properties

Label 18.3
Level 18
Weight 3
Dimension 6
Nonzero newspaces 2
Newform subspaces 2
Sturm bound 54
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 2 \)
Newform subspaces: \( 2 \)
Sturm bound: \(54\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(18))\).

Total New Old
Modular forms 26 6 20
Cusp forms 10 6 4
Eisenstein series 16 0 16

Trace form

\( 6 q - 18 q^{5} - 12 q^{6} - 6 q^{7} + 12 q^{9} + 12 q^{10} + 18 q^{11} + 12 q^{12} + 6 q^{13} + 36 q^{14} + 18 q^{15} - 24 q^{18} - 72 q^{19} - 36 q^{20} - 42 q^{21} - 60 q^{22} + 18 q^{23} + 18 q^{25}+ \cdots + 126 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(18))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
18.3.b \(\chi_{18}(17, \cdot)\) 18.3.b.a 2 1
18.3.d \(\chi_{18}(5, \cdot)\) 18.3.d.a 4 2

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(18))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(18)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 2}\)