Properties

Label 18.26.a.e.1.2
Level $18$
Weight $26$
Character 18.1
Self dual yes
Analytic conductor $71.279$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,26,Mod(1,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 26, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.1");
 
S:= CuspForms(chi, 26);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 26 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(71.2794203914\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{106705}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 26676 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{7}\cdot 3^{5}\cdot 5^{2} \)
Twist minimal: no (minimal twist has level 2)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-162.829\) of defining polynomial
Character \(\chi\) \(=\) 18.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4096.00 q^{2} +1.67772e7 q^{4} +1.37041e8 q^{5} -3.04153e10 q^{7} -6.87195e10 q^{8} -5.61320e11 q^{10} -2.58704e12 q^{11} -9.57327e13 q^{13} +1.24581e14 q^{14} +2.81475e14 q^{16} +1.64685e15 q^{17} +4.95030e15 q^{19} +2.29916e15 q^{20} +1.05965e16 q^{22} +1.07650e16 q^{23} -2.79243e17 q^{25} +3.92121e17 q^{26} -5.10284e17 q^{28} +1.36741e18 q^{29} -4.42000e18 q^{31} -1.15292e18 q^{32} -6.74549e18 q^{34} -4.16814e18 q^{35} +1.01944e19 q^{37} -2.02764e19 q^{38} -9.41738e18 q^{40} -1.58687e20 q^{41} +1.83575e20 q^{43} -4.34034e19 q^{44} -4.40934e19 q^{46} -1.40203e21 q^{47} -4.15978e20 q^{49} +1.14378e21 q^{50} -1.60613e21 q^{52} +1.99903e21 q^{53} -3.54531e20 q^{55} +2.09012e21 q^{56} -5.60091e21 q^{58} +4.16691e21 q^{59} +3.42128e22 q^{61} +1.81043e22 q^{62} +4.72237e21 q^{64} -1.31193e22 q^{65} +8.67051e22 q^{67} +2.76295e22 q^{68} +1.70727e22 q^{70} +5.13159e22 q^{71} +3.49147e22 q^{73} -4.17563e22 q^{74} +8.30522e22 q^{76} +7.86857e22 q^{77} +2.91588e23 q^{79} +3.85736e22 q^{80} +6.49981e23 q^{82} +1.64916e24 q^{83} +2.25686e23 q^{85} -7.51925e23 q^{86} +1.77780e23 q^{88} -8.74435e23 q^{89} +2.91174e24 q^{91} +1.80607e23 q^{92} +5.74273e24 q^{94} +6.78393e23 q^{95} +1.00608e25 q^{97} +1.70384e24 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8192 q^{2} + 33554432 q^{4} - 741953100 q^{5} - 376536944 q^{7} - 137438953472 q^{8} + 3039039897600 q^{10} - 8323034610264 q^{11} - 106467053152292 q^{13} + 1542295322624 q^{14} + 562949953421312 q^{16}+ \cdots + 35\!\cdots\!16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4096.00 −0.707107
\(3\) 0 0
\(4\) 1.67772e7 0.500000
\(5\) 1.37041e8 0.251030 0.125515 0.992092i \(-0.459942\pi\)
0.125515 + 0.992092i \(0.459942\pi\)
\(6\) 0 0
\(7\) −3.04153e10 −0.830552 −0.415276 0.909696i \(-0.636315\pi\)
−0.415276 + 0.909696i \(0.636315\pi\)
\(8\) −6.87195e10 −0.353553
\(9\) 0 0
\(10\) −5.61320e11 −0.177505
\(11\) −2.58704e12 −0.248539 −0.124270 0.992248i \(-0.539659\pi\)
−0.124270 + 0.992248i \(0.539659\pi\)
\(12\) 0 0
\(13\) −9.57327e13 −1.13964 −0.569821 0.821769i \(-0.692988\pi\)
−0.569821 + 0.821769i \(0.692988\pi\)
\(14\) 1.24581e14 0.587289
\(15\) 0 0
\(16\) 2.81475e14 0.250000
\(17\) 1.64685e15 0.685555 0.342777 0.939417i \(-0.388632\pi\)
0.342777 + 0.939417i \(0.388632\pi\)
\(18\) 0 0
\(19\) 4.95030e15 0.513111 0.256555 0.966530i \(-0.417412\pi\)
0.256555 + 0.966530i \(0.417412\pi\)
\(20\) 2.29916e15 0.125515
\(21\) 0 0
\(22\) 1.05965e16 0.175744
\(23\) 1.07650e16 0.102427 0.0512136 0.998688i \(-0.483691\pi\)
0.0512136 + 0.998688i \(0.483691\pi\)
\(24\) 0 0
\(25\) −2.79243e17 −0.936984
\(26\) 3.92121e17 0.805849
\(27\) 0 0
\(28\) −5.10284e17 −0.415276
\(29\) 1.36741e18 0.717668 0.358834 0.933401i \(-0.383174\pi\)
0.358834 + 0.933401i \(0.383174\pi\)
\(30\) 0 0
\(31\) −4.42000e18 −1.00786 −0.503931 0.863744i \(-0.668113\pi\)
−0.503931 + 0.863744i \(0.668113\pi\)
\(32\) −1.15292e18 −0.176777
\(33\) 0 0
\(34\) −6.74549e18 −0.484760
\(35\) −4.16814e18 −0.208493
\(36\) 0 0
\(37\) 1.01944e19 0.254590 0.127295 0.991865i \(-0.459371\pi\)
0.127295 + 0.991865i \(0.459371\pi\)
\(38\) −2.02764e19 −0.362824
\(39\) 0 0
\(40\) −9.41738e18 −0.0887524
\(41\) −1.58687e20 −1.09835 −0.549177 0.835706i \(-0.685059\pi\)
−0.549177 + 0.835706i \(0.685059\pi\)
\(42\) 0 0
\(43\) 1.83575e20 0.700582 0.350291 0.936641i \(-0.386083\pi\)
0.350291 + 0.936641i \(0.386083\pi\)
\(44\) −4.34034e19 −0.124270
\(45\) 0 0
\(46\) −4.40934e19 −0.0724270
\(47\) −1.40203e21 −1.76009 −0.880045 0.474890i \(-0.842488\pi\)
−0.880045 + 0.474890i \(0.842488\pi\)
\(48\) 0 0
\(49\) −4.15978e20 −0.310184
\(50\) 1.14378e21 0.662548
\(51\) 0 0
\(52\) −1.60613e21 −0.569821
\(53\) 1.99903e21 0.558946 0.279473 0.960154i \(-0.409840\pi\)
0.279473 + 0.960154i \(0.409840\pi\)
\(54\) 0 0
\(55\) −3.54531e20 −0.0623908
\(56\) 2.09012e21 0.293644
\(57\) 0 0
\(58\) −5.60091e21 −0.507468
\(59\) 4.16691e21 0.304905 0.152452 0.988311i \(-0.451283\pi\)
0.152452 + 0.988311i \(0.451283\pi\)
\(60\) 0 0
\(61\) 3.42128e22 1.65031 0.825156 0.564904i \(-0.191087\pi\)
0.825156 + 0.564904i \(0.191087\pi\)
\(62\) 1.81043e22 0.712666
\(63\) 0 0
\(64\) 4.72237e21 0.125000
\(65\) −1.31193e22 −0.286084
\(66\) 0 0
\(67\) 8.67051e22 1.29452 0.647261 0.762268i \(-0.275914\pi\)
0.647261 + 0.762268i \(0.275914\pi\)
\(68\) 2.76295e22 0.342777
\(69\) 0 0
\(70\) 1.70727e22 0.147427
\(71\) 5.13159e22 0.371127 0.185564 0.982632i \(-0.440589\pi\)
0.185564 + 0.982632i \(0.440589\pi\)
\(72\) 0 0
\(73\) 3.49147e22 0.178432 0.0892159 0.996012i \(-0.471564\pi\)
0.0892159 + 0.996012i \(0.471564\pi\)
\(74\) −4.17563e22 −0.180022
\(75\) 0 0
\(76\) 8.30522e22 0.256555
\(77\) 7.86857e22 0.206425
\(78\) 0 0
\(79\) 2.91588e23 0.555176 0.277588 0.960700i \(-0.410465\pi\)
0.277588 + 0.960700i \(0.410465\pi\)
\(80\) 3.85736e22 0.0627574
\(81\) 0 0
\(82\) 6.49981e23 0.776654
\(83\) 1.64916e24 1.69351 0.846753 0.531986i \(-0.178554\pi\)
0.846753 + 0.531986i \(0.178554\pi\)
\(84\) 0 0
\(85\) 2.25686e23 0.172095
\(86\) −7.51925e23 −0.495386
\(87\) 0 0
\(88\) 1.77780e23 0.0878720
\(89\) −8.74435e23 −0.375277 −0.187639 0.982238i \(-0.560083\pi\)
−0.187639 + 0.982238i \(0.560083\pi\)
\(90\) 0 0
\(91\) 2.91174e24 0.946532
\(92\) 1.80607e23 0.0512136
\(93\) 0 0
\(94\) 5.74273e24 1.24457
\(95\) 6.78393e23 0.128806
\(96\) 0 0
\(97\) 1.00608e25 1.47227 0.736134 0.676835i \(-0.236649\pi\)
0.736134 + 0.676835i \(0.236649\pi\)
\(98\) 1.70384e24 0.219333
\(99\) 0 0
\(100\) −4.68492e24 −0.468492
\(101\) 1.42151e25 1.25526 0.627628 0.778513i \(-0.284026\pi\)
0.627628 + 0.778513i \(0.284026\pi\)
\(102\) 0 0
\(103\) 1.03211e25 0.713283 0.356642 0.934241i \(-0.383922\pi\)
0.356642 + 0.934241i \(0.383922\pi\)
\(104\) 6.57870e24 0.402924
\(105\) 0 0
\(106\) −8.18801e24 −0.395235
\(107\) 1.74396e25 0.748582 0.374291 0.927311i \(-0.377886\pi\)
0.374291 + 0.927311i \(0.377886\pi\)
\(108\) 0 0
\(109\) −1.65117e25 −0.562292 −0.281146 0.959665i \(-0.590714\pi\)
−0.281146 + 0.959665i \(0.590714\pi\)
\(110\) 1.45216e24 0.0441169
\(111\) 0 0
\(112\) −8.56115e24 −0.207638
\(113\) −6.96039e25 −1.51061 −0.755306 0.655372i \(-0.772512\pi\)
−0.755306 + 0.655372i \(0.772512\pi\)
\(114\) 0 0
\(115\) 1.47524e24 0.0257123
\(116\) 2.29413e25 0.358834
\(117\) 0 0
\(118\) −1.70677e25 −0.215600
\(119\) −5.00894e25 −0.569389
\(120\) 0 0
\(121\) −1.01654e26 −0.938228
\(122\) −1.40136e26 −1.16695
\(123\) 0 0
\(124\) −7.41552e25 −0.503931
\(125\) −7.91091e25 −0.486241
\(126\) 0 0
\(127\) −6.18922e25 −0.311953 −0.155977 0.987761i \(-0.549852\pi\)
−0.155977 + 0.987761i \(0.549852\pi\)
\(128\) −1.93428e25 −0.0883883
\(129\) 0 0
\(130\) 5.37367e25 0.202292
\(131\) 1.39682e26 0.477805 0.238902 0.971044i \(-0.423212\pi\)
0.238902 + 0.971044i \(0.423212\pi\)
\(132\) 0 0
\(133\) −1.50565e26 −0.426165
\(134\) −3.55144e26 −0.915366
\(135\) 0 0
\(136\) −1.13171e26 −0.242380
\(137\) 6.92418e26 1.35320 0.676599 0.736352i \(-0.263453\pi\)
0.676599 + 0.736352i \(0.263453\pi\)
\(138\) 0 0
\(139\) −8.06682e26 −1.31528 −0.657639 0.753333i \(-0.728445\pi\)
−0.657639 + 0.753333i \(0.728445\pi\)
\(140\) −6.99298e25 −0.104247
\(141\) 0 0
\(142\) −2.10190e26 −0.262427
\(143\) 2.47665e26 0.283246
\(144\) 0 0
\(145\) 1.87391e26 0.180156
\(146\) −1.43010e26 −0.126170
\(147\) 0 0
\(148\) 1.71034e26 0.127295
\(149\) 4.24039e26 0.290120 0.145060 0.989423i \(-0.453663\pi\)
0.145060 + 0.989423i \(0.453663\pi\)
\(150\) 0 0
\(151\) 2.51382e27 1.45587 0.727934 0.685647i \(-0.240481\pi\)
0.727934 + 0.685647i \(0.240481\pi\)
\(152\) −3.40182e26 −0.181412
\(153\) 0 0
\(154\) −3.22297e26 −0.145964
\(155\) −6.05720e26 −0.253003
\(156\) 0 0
\(157\) 4.75882e27 1.69338 0.846689 0.532088i \(-0.178593\pi\)
0.846689 + 0.532088i \(0.178593\pi\)
\(158\) −1.19434e27 −0.392569
\(159\) 0 0
\(160\) −1.57997e26 −0.0443762
\(161\) −3.27420e26 −0.0850712
\(162\) 0 0
\(163\) 7.59899e26 0.169204 0.0846020 0.996415i \(-0.473038\pi\)
0.0846020 + 0.996415i \(0.473038\pi\)
\(164\) −2.66232e27 −0.549177
\(165\) 0 0
\(166\) −6.75496e27 −1.19749
\(167\) 1.00207e28 1.64794 0.823970 0.566634i \(-0.191755\pi\)
0.823970 + 0.566634i \(0.191755\pi\)
\(168\) 0 0
\(169\) 2.10835e27 0.298785
\(170\) −9.24408e26 −0.121689
\(171\) 0 0
\(172\) 3.07989e27 0.350291
\(173\) 7.89989e27 0.835689 0.417845 0.908518i \(-0.362786\pi\)
0.417845 + 0.908518i \(0.362786\pi\)
\(174\) 0 0
\(175\) 8.49326e27 0.778214
\(176\) −7.28188e26 −0.0621349
\(177\) 0 0
\(178\) 3.58168e27 0.265361
\(179\) 8.08087e27 0.558207 0.279103 0.960261i \(-0.409963\pi\)
0.279103 + 0.960261i \(0.409963\pi\)
\(180\) 0 0
\(181\) 1.80674e27 0.108621 0.0543104 0.998524i \(-0.482704\pi\)
0.0543104 + 0.998524i \(0.482704\pi\)
\(182\) −1.19265e28 −0.669299
\(183\) 0 0
\(184\) −7.39765e26 −0.0362135
\(185\) 1.39705e27 0.0639096
\(186\) 0 0
\(187\) −4.26047e27 −0.170387
\(188\) −2.35222e28 −0.880045
\(189\) 0 0
\(190\) −2.77870e27 −0.0910796
\(191\) 4.93091e28 1.51360 0.756798 0.653649i \(-0.226763\pi\)
0.756798 + 0.653649i \(0.226763\pi\)
\(192\) 0 0
\(193\) 1.42443e28 0.383861 0.191931 0.981408i \(-0.438525\pi\)
0.191931 + 0.981408i \(0.438525\pi\)
\(194\) −4.12092e28 −1.04105
\(195\) 0 0
\(196\) −6.97895e27 −0.155092
\(197\) −3.59073e28 −0.748781 −0.374390 0.927271i \(-0.622148\pi\)
−0.374390 + 0.927271i \(0.622148\pi\)
\(198\) 0 0
\(199\) −8.11996e28 −1.49242 −0.746209 0.665712i \(-0.768128\pi\)
−0.746209 + 0.665712i \(0.768128\pi\)
\(200\) 1.91894e28 0.331274
\(201\) 0 0
\(202\) −5.82250e28 −0.887601
\(203\) −4.15902e28 −0.596060
\(204\) 0 0
\(205\) −2.17466e28 −0.275720
\(206\) −4.22753e28 −0.504367
\(207\) 0 0
\(208\) −2.69464e28 −0.284911
\(209\) −1.28066e28 −0.127528
\(210\) 0 0
\(211\) −1.03285e29 −0.913075 −0.456537 0.889704i \(-0.650911\pi\)
−0.456537 + 0.889704i \(0.650911\pi\)
\(212\) 3.35381e28 0.279473
\(213\) 0 0
\(214\) −7.14326e28 −0.529327
\(215\) 2.51573e28 0.175867
\(216\) 0 0
\(217\) 1.34436e29 0.837081
\(218\) 6.76321e28 0.397600
\(219\) 0 0
\(220\) −5.94804e27 −0.0311954
\(221\) −1.57657e29 −0.781287
\(222\) 0 0
\(223\) 1.15542e29 0.511597 0.255799 0.966730i \(-0.417662\pi\)
0.255799 + 0.966730i \(0.417662\pi\)
\(224\) 3.50665e28 0.146822
\(225\) 0 0
\(226\) 2.85098e29 1.06816
\(227\) 9.01151e28 0.319502 0.159751 0.987157i \(-0.448931\pi\)
0.159751 + 0.987157i \(0.448931\pi\)
\(228\) 0 0
\(229\) 3.69415e29 1.17374 0.586869 0.809682i \(-0.300360\pi\)
0.586869 + 0.809682i \(0.300360\pi\)
\(230\) −6.04260e27 −0.0181813
\(231\) 0 0
\(232\) −9.39676e28 −0.253734
\(233\) −4.10753e28 −0.105107 −0.0525536 0.998618i \(-0.516736\pi\)
−0.0525536 + 0.998618i \(0.516736\pi\)
\(234\) 0 0
\(235\) −1.92136e29 −0.441835
\(236\) 6.99092e28 0.152452
\(237\) 0 0
\(238\) 2.05166e29 0.402618
\(239\) 6.49097e29 1.20875 0.604374 0.796701i \(-0.293423\pi\)
0.604374 + 0.796701i \(0.293423\pi\)
\(240\) 0 0
\(241\) 1.68781e29 0.283212 0.141606 0.989923i \(-0.454773\pi\)
0.141606 + 0.989923i \(0.454773\pi\)
\(242\) 4.16376e29 0.663427
\(243\) 0 0
\(244\) 5.73996e29 0.825156
\(245\) −5.70060e28 −0.0778653
\(246\) 0 0
\(247\) −4.73905e29 −0.584763
\(248\) 3.03740e29 0.356333
\(249\) 0 0
\(250\) 3.24031e29 0.343824
\(251\) −2.65029e29 −0.267530 −0.133765 0.991013i \(-0.542707\pi\)
−0.133765 + 0.991013i \(0.542707\pi\)
\(252\) 0 0
\(253\) −2.78495e28 −0.0254572
\(254\) 2.53510e29 0.220584
\(255\) 0 0
\(256\) 7.92282e28 0.0625000
\(257\) −1.11592e30 −0.838433 −0.419217 0.907886i \(-0.637695\pi\)
−0.419217 + 0.907886i \(0.637695\pi\)
\(258\) 0 0
\(259\) −3.10066e29 −0.211450
\(260\) −2.20105e29 −0.143042
\(261\) 0 0
\(262\) −5.72139e29 −0.337859
\(263\) −1.53721e30 −0.865541 −0.432770 0.901504i \(-0.642464\pi\)
−0.432770 + 0.901504i \(0.642464\pi\)
\(264\) 0 0
\(265\) 2.73948e29 0.140312
\(266\) 6.16713e29 0.301344
\(267\) 0 0
\(268\) 1.45467e30 0.647261
\(269\) −2.34612e30 −0.996431 −0.498216 0.867053i \(-0.666011\pi\)
−0.498216 + 0.867053i \(0.666011\pi\)
\(270\) 0 0
\(271\) −1.54578e30 −0.598454 −0.299227 0.954182i \(-0.596729\pi\)
−0.299227 + 0.954182i \(0.596729\pi\)
\(272\) 4.63547e29 0.171389
\(273\) 0 0
\(274\) −2.83614e30 −0.956855
\(275\) 7.22414e29 0.232877
\(276\) 0 0
\(277\) −1.21614e30 −0.358085 −0.179042 0.983841i \(-0.557300\pi\)
−0.179042 + 0.983841i \(0.557300\pi\)
\(278\) 3.30417e30 0.930042
\(279\) 0 0
\(280\) 2.86432e29 0.0737135
\(281\) −5.09885e30 −1.25500 −0.627499 0.778617i \(-0.715921\pi\)
−0.627499 + 0.778617i \(0.715921\pi\)
\(282\) 0 0
\(283\) −1.56288e30 −0.352042 −0.176021 0.984386i \(-0.556323\pi\)
−0.176021 + 0.984386i \(0.556323\pi\)
\(284\) 8.60939e29 0.185564
\(285\) 0 0
\(286\) −1.01444e30 −0.200285
\(287\) 4.82651e30 0.912240
\(288\) 0 0
\(289\) −3.05852e30 −0.530015
\(290\) −7.67553e29 −0.127389
\(291\) 0 0
\(292\) 5.85771e29 0.0892159
\(293\) 4.17112e30 0.608706 0.304353 0.952559i \(-0.401560\pi\)
0.304353 + 0.952559i \(0.401560\pi\)
\(294\) 0 0
\(295\) 5.71038e29 0.0765402
\(296\) −7.00555e29 −0.0900110
\(297\) 0 0
\(298\) −1.73686e30 −0.205146
\(299\) −1.03056e30 −0.116730
\(300\) 0 0
\(301\) −5.58350e30 −0.581870
\(302\) −1.02966e31 −1.02945
\(303\) 0 0
\(304\) 1.39338e30 0.128278
\(305\) 4.68856e30 0.414278
\(306\) 0 0
\(307\) 7.69994e30 0.626986 0.313493 0.949591i \(-0.398501\pi\)
0.313493 + 0.949591i \(0.398501\pi\)
\(308\) 1.32013e30 0.103212
\(309\) 0 0
\(310\) 2.48103e30 0.178900
\(311\) −1.54260e31 −1.06843 −0.534217 0.845347i \(-0.679394\pi\)
−0.534217 + 0.845347i \(0.679394\pi\)
\(312\) 0 0
\(313\) 1.62517e31 1.03895 0.519476 0.854485i \(-0.326127\pi\)
0.519476 + 0.854485i \(0.326127\pi\)
\(314\) −1.94921e31 −1.19740
\(315\) 0 0
\(316\) 4.89203e30 0.277588
\(317\) 2.29098e31 1.24963 0.624814 0.780773i \(-0.285175\pi\)
0.624814 + 0.780773i \(0.285175\pi\)
\(318\) 0 0
\(319\) −3.53755e30 −0.178369
\(320\) 6.47157e29 0.0313787
\(321\) 0 0
\(322\) 1.34111e30 0.0601544
\(323\) 8.15239e30 0.351765
\(324\) 0 0
\(325\) 2.67327e31 1.06783
\(326\) −3.11255e30 −0.119645
\(327\) 0 0
\(328\) 1.09049e31 0.388327
\(329\) 4.26433e31 1.46185
\(330\) 0 0
\(331\) 3.45199e31 1.09703 0.548517 0.836140i \(-0.315193\pi\)
0.548517 + 0.836140i \(0.315193\pi\)
\(332\) 2.76683e31 0.846753
\(333\) 0 0
\(334\) −4.10447e31 −1.16527
\(335\) 1.18821e31 0.324964
\(336\) 0 0
\(337\) −5.27735e31 −1.33981 −0.669904 0.742448i \(-0.733665\pi\)
−0.669904 + 0.742448i \(0.733665\pi\)
\(338\) −8.63579e30 −0.211273
\(339\) 0 0
\(340\) 3.78638e30 0.0860473
\(341\) 1.14347e31 0.250493
\(342\) 0 0
\(343\) 5.34411e31 1.08818
\(344\) −1.26152e31 −0.247693
\(345\) 0 0
\(346\) −3.23580e31 −0.590922
\(347\) −4.40093e30 −0.0775222 −0.0387611 0.999249i \(-0.512341\pi\)
−0.0387611 + 0.999249i \(0.512341\pi\)
\(348\) 0 0
\(349\) 2.98069e31 0.488651 0.244326 0.969693i \(-0.421433\pi\)
0.244326 + 0.969693i \(0.421433\pi\)
\(350\) −3.47884e31 −0.550280
\(351\) 0 0
\(352\) 2.98266e30 0.0439360
\(353\) −4.46084e31 −0.634209 −0.317105 0.948391i \(-0.602711\pi\)
−0.317105 + 0.948391i \(0.602711\pi\)
\(354\) 0 0
\(355\) 7.03238e30 0.0931640
\(356\) −1.46706e31 −0.187639
\(357\) 0 0
\(358\) −3.30992e31 −0.394712
\(359\) −4.38054e31 −0.504483 −0.252242 0.967664i \(-0.581168\pi\)
−0.252242 + 0.967664i \(0.581168\pi\)
\(360\) 0 0
\(361\) −6.85711e31 −0.736717
\(362\) −7.40039e30 −0.0768065
\(363\) 0 0
\(364\) 4.88509e31 0.473266
\(365\) 4.78474e30 0.0447917
\(366\) 0 0
\(367\) −7.76735e31 −0.679121 −0.339560 0.940584i \(-0.610278\pi\)
−0.339560 + 0.940584i \(0.610278\pi\)
\(368\) 3.03008e30 0.0256068
\(369\) 0 0
\(370\) −5.72232e30 −0.0451909
\(371\) −6.08010e31 −0.464234
\(372\) 0 0
\(373\) −2.37205e32 −1.69342 −0.846708 0.532058i \(-0.821419\pi\)
−0.846708 + 0.532058i \(0.821419\pi\)
\(374\) 1.74509e31 0.120482
\(375\) 0 0
\(376\) 9.63470e31 0.622286
\(377\) −1.30906e32 −0.817884
\(378\) 0 0
\(379\) −1.38944e32 −0.812551 −0.406276 0.913751i \(-0.633173\pi\)
−0.406276 + 0.913751i \(0.633173\pi\)
\(380\) 1.13815e31 0.0644030
\(381\) 0 0
\(382\) −2.01970e32 −1.07027
\(383\) 3.79085e31 0.194425 0.0972125 0.995264i \(-0.469007\pi\)
0.0972125 + 0.995264i \(0.469007\pi\)
\(384\) 0 0
\(385\) 1.07832e31 0.0518188
\(386\) −5.83446e31 −0.271431
\(387\) 0 0
\(388\) 1.68793e32 0.736134
\(389\) 2.20209e32 0.929963 0.464982 0.885320i \(-0.346061\pi\)
0.464982 + 0.885320i \(0.346061\pi\)
\(390\) 0 0
\(391\) 1.77283e31 0.0702195
\(392\) 2.85858e31 0.109667
\(393\) 0 0
\(394\) 1.47076e32 0.529468
\(395\) 3.99595e31 0.139366
\(396\) 0 0
\(397\) 2.18941e32 0.716877 0.358439 0.933553i \(-0.383309\pi\)
0.358439 + 0.933553i \(0.383309\pi\)
\(398\) 3.32594e32 1.05530
\(399\) 0 0
\(400\) −7.85999e31 −0.234246
\(401\) −2.99036e32 −0.863810 −0.431905 0.901919i \(-0.642158\pi\)
−0.431905 + 0.901919i \(0.642158\pi\)
\(402\) 0 0
\(403\) 4.23138e32 1.14860
\(404\) 2.38490e32 0.627628
\(405\) 0 0
\(406\) 1.70353e32 0.421478
\(407\) −2.63734e31 −0.0632755
\(408\) 0 0
\(409\) 7.12330e31 0.160746 0.0803730 0.996765i \(-0.474389\pi\)
0.0803730 + 0.996765i \(0.474389\pi\)
\(410\) 8.90740e31 0.194963
\(411\) 0 0
\(412\) 1.73160e32 0.356642
\(413\) −1.26738e32 −0.253239
\(414\) 0 0
\(415\) 2.26003e32 0.425121
\(416\) 1.10372e32 0.201462
\(417\) 0 0
\(418\) 5.24560e31 0.0901761
\(419\) −2.94461e32 −0.491307 −0.245654 0.969358i \(-0.579003\pi\)
−0.245654 + 0.969358i \(0.579003\pi\)
\(420\) 0 0
\(421\) 1.01892e33 1.60182 0.800908 0.598787i \(-0.204350\pi\)
0.800908 + 0.598787i \(0.204350\pi\)
\(422\) 4.23055e32 0.645641
\(423\) 0 0
\(424\) −1.37372e32 −0.197617
\(425\) −4.59871e32 −0.642354
\(426\) 0 0
\(427\) −1.04059e33 −1.37067
\(428\) 2.92588e32 0.374291
\(429\) 0 0
\(430\) −1.03044e32 −0.124357
\(431\) 6.79497e32 0.796565 0.398283 0.917263i \(-0.369606\pi\)
0.398283 + 0.917263i \(0.369606\pi\)
\(432\) 0 0
\(433\) −7.24164e32 −0.801195 −0.400597 0.916254i \(-0.631197\pi\)
−0.400597 + 0.916254i \(0.631197\pi\)
\(434\) −5.50648e32 −0.591906
\(435\) 0 0
\(436\) −2.77021e32 −0.281146
\(437\) 5.32899e31 0.0525566
\(438\) 0 0
\(439\) −9.13459e32 −0.850908 −0.425454 0.904980i \(-0.639886\pi\)
−0.425454 + 0.904980i \(0.639886\pi\)
\(440\) 2.43632e31 0.0220585
\(441\) 0 0
\(442\) 6.45764e32 0.552453
\(443\) 3.52555e32 0.293211 0.146605 0.989195i \(-0.453165\pi\)
0.146605 + 0.989195i \(0.453165\pi\)
\(444\) 0 0
\(445\) −1.19833e32 −0.0942058
\(446\) −4.73259e32 −0.361754
\(447\) 0 0
\(448\) −1.43632e32 −0.103819
\(449\) −3.70918e32 −0.260735 −0.130367 0.991466i \(-0.541616\pi\)
−0.130367 + 0.991466i \(0.541616\pi\)
\(450\) 0 0
\(451\) 4.10530e32 0.272984
\(452\) −1.16776e33 −0.755306
\(453\) 0 0
\(454\) −3.69111e32 −0.225922
\(455\) 3.99028e32 0.237608
\(456\) 0 0
\(457\) 1.76958e33 0.997512 0.498756 0.866742i \(-0.333790\pi\)
0.498756 + 0.866742i \(0.333790\pi\)
\(458\) −1.51313e33 −0.829959
\(459\) 0 0
\(460\) 2.47505e31 0.0128561
\(461\) −7.01018e32 −0.354379 −0.177189 0.984177i \(-0.556701\pi\)
−0.177189 + 0.984177i \(0.556701\pi\)
\(462\) 0 0
\(463\) −9.20521e32 −0.440830 −0.220415 0.975406i \(-0.570741\pi\)
−0.220415 + 0.975406i \(0.570741\pi\)
\(464\) 3.84891e32 0.179417
\(465\) 0 0
\(466\) 1.68245e32 0.0743219
\(467\) 1.84600e33 0.793908 0.396954 0.917838i \(-0.370067\pi\)
0.396954 + 0.917838i \(0.370067\pi\)
\(468\) 0 0
\(469\) −2.63716e33 −1.07517
\(470\) 7.86988e32 0.312425
\(471\) 0 0
\(472\) −2.86348e32 −0.107800
\(473\) −4.74918e32 −0.174122
\(474\) 0 0
\(475\) −1.38234e33 −0.480777
\(476\) −8.40360e32 −0.284694
\(477\) 0 0
\(478\) −2.65870e33 −0.854714
\(479\) 3.88481e32 0.121668 0.0608339 0.998148i \(-0.480624\pi\)
0.0608339 + 0.998148i \(0.480624\pi\)
\(480\) 0 0
\(481\) −9.75939e32 −0.290141
\(482\) −6.91328e32 −0.200261
\(483\) 0 0
\(484\) −1.70548e33 −0.469114
\(485\) 1.37875e33 0.369583
\(486\) 0 0
\(487\) 4.26102e33 1.08493 0.542465 0.840078i \(-0.317491\pi\)
0.542465 + 0.840078i \(0.317491\pi\)
\(488\) −2.35109e33 −0.583474
\(489\) 0 0
\(490\) 2.33496e32 0.0550591
\(491\) 4.52548e33 1.04027 0.520134 0.854084i \(-0.325882\pi\)
0.520134 + 0.854084i \(0.325882\pi\)
\(492\) 0 0
\(493\) 2.25191e33 0.492000
\(494\) 1.94112e33 0.413490
\(495\) 0 0
\(496\) −1.24412e33 −0.251965
\(497\) −1.56079e33 −0.308241
\(498\) 0 0
\(499\) 4.45020e33 0.835840 0.417920 0.908484i \(-0.362759\pi\)
0.417920 + 0.908484i \(0.362759\pi\)
\(500\) −1.32723e33 −0.243120
\(501\) 0 0
\(502\) 1.08556e33 0.189172
\(503\) −2.29032e33 −0.389311 −0.194656 0.980872i \(-0.562359\pi\)
−0.194656 + 0.980872i \(0.562359\pi\)
\(504\) 0 0
\(505\) 1.94805e33 0.315107
\(506\) 1.14072e32 0.0180010
\(507\) 0 0
\(508\) −1.03838e33 −0.155977
\(509\) −5.35889e33 −0.785421 −0.392711 0.919662i \(-0.628463\pi\)
−0.392711 + 0.919662i \(0.628463\pi\)
\(510\) 0 0
\(511\) −1.06194e33 −0.148197
\(512\) −3.24519e32 −0.0441942
\(513\) 0 0
\(514\) 4.57080e33 0.592862
\(515\) 1.41442e33 0.179055
\(516\) 0 0
\(517\) 3.62712e33 0.437452
\(518\) 1.27003e33 0.149518
\(519\) 0 0
\(520\) 9.01552e32 0.101146
\(521\) 1.14090e34 1.24961 0.624807 0.780779i \(-0.285178\pi\)
0.624807 + 0.780779i \(0.285178\pi\)
\(522\) 0 0
\(523\) 1.37717e34 1.43786 0.718928 0.695085i \(-0.244633\pi\)
0.718928 + 0.695085i \(0.244633\pi\)
\(524\) 2.34348e33 0.238902
\(525\) 0 0
\(526\) 6.29643e33 0.612030
\(527\) −7.27906e33 −0.690944
\(528\) 0 0
\(529\) −1.09299e34 −0.989509
\(530\) −1.12209e33 −0.0992156
\(531\) 0 0
\(532\) −2.52606e33 −0.213083
\(533\) 1.51915e34 1.25173
\(534\) 0 0
\(535\) 2.38994e33 0.187916
\(536\) −5.95833e33 −0.457683
\(537\) 0 0
\(538\) 9.60972e33 0.704583
\(539\) 1.07615e33 0.0770929
\(540\) 0 0
\(541\) −1.58682e34 −1.08533 −0.542667 0.839948i \(-0.682585\pi\)
−0.542667 + 0.839948i \(0.682585\pi\)
\(542\) 6.33151e33 0.423171
\(543\) 0 0
\(544\) −1.89869e33 −0.121190
\(545\) −2.26278e33 −0.141152
\(546\) 0 0
\(547\) −8.29322e33 −0.494176 −0.247088 0.968993i \(-0.579474\pi\)
−0.247088 + 0.968993i \(0.579474\pi\)
\(548\) 1.16168e34 0.676599
\(549\) 0 0
\(550\) −2.95901e33 −0.164669
\(551\) 6.76908e33 0.368243
\(552\) 0 0
\(553\) −8.86874e33 −0.461103
\(554\) 4.98130e33 0.253204
\(555\) 0 0
\(556\) −1.35339e34 −0.657639
\(557\) −3.56496e34 −1.69381 −0.846905 0.531744i \(-0.821537\pi\)
−0.846905 + 0.531744i \(0.821537\pi\)
\(558\) 0 0
\(559\) −1.75742e34 −0.798413
\(560\) −1.17323e33 −0.0521233
\(561\) 0 0
\(562\) 2.08849e34 0.887417
\(563\) −1.62059e34 −0.673471 −0.336735 0.941599i \(-0.609323\pi\)
−0.336735 + 0.941599i \(0.609323\pi\)
\(564\) 0 0
\(565\) −9.53858e33 −0.379209
\(566\) 6.40155e33 0.248931
\(567\) 0 0
\(568\) −3.52641e33 −0.131213
\(569\) −4.19926e34 −1.52851 −0.764257 0.644912i \(-0.776894\pi\)
−0.764257 + 0.644912i \(0.776894\pi\)
\(570\) 0 0
\(571\) 2.27922e34 0.794026 0.397013 0.917813i \(-0.370047\pi\)
0.397013 + 0.917813i \(0.370047\pi\)
\(572\) 4.15513e33 0.141623
\(573\) 0 0
\(574\) −1.97694e34 −0.645051
\(575\) −3.00605e33 −0.0959727
\(576\) 0 0
\(577\) −1.30064e34 −0.397613 −0.198807 0.980039i \(-0.563707\pi\)
−0.198807 + 0.980039i \(0.563707\pi\)
\(578\) 1.25277e34 0.374777
\(579\) 0 0
\(580\) 3.14390e33 0.0900780
\(581\) −5.01597e34 −1.40655
\(582\) 0 0
\(583\) −5.17157e33 −0.138920
\(584\) −2.39932e33 −0.0630851
\(585\) 0 0
\(586\) −1.70849e34 −0.430420
\(587\) −3.13619e34 −0.773440 −0.386720 0.922197i \(-0.626392\pi\)
−0.386720 + 0.922197i \(0.626392\pi\)
\(588\) 0 0
\(589\) −2.18803e34 −0.517145
\(590\) −2.33897e33 −0.0541221
\(591\) 0 0
\(592\) 2.86947e33 0.0636474
\(593\) 6.43753e34 1.39809 0.699046 0.715077i \(-0.253608\pi\)
0.699046 + 0.715077i \(0.253608\pi\)
\(594\) 0 0
\(595\) −6.86429e33 −0.142933
\(596\) 7.11419e33 0.145060
\(597\) 0 0
\(598\) 4.22118e33 0.0825409
\(599\) 9.82124e34 1.88075 0.940375 0.340140i \(-0.110474\pi\)
0.940375 + 0.340140i \(0.110474\pi\)
\(600\) 0 0
\(601\) 1.10144e34 0.202316 0.101158 0.994870i \(-0.467745\pi\)
0.101158 + 0.994870i \(0.467745\pi\)
\(602\) 2.28700e34 0.411444
\(603\) 0 0
\(604\) 4.21749e34 0.727934
\(605\) −1.39308e34 −0.235523
\(606\) 0 0
\(607\) 9.06735e34 1.47103 0.735516 0.677508i \(-0.236940\pi\)
0.735516 + 0.677508i \(0.236940\pi\)
\(608\) −5.70730e33 −0.0907060
\(609\) 0 0
\(610\) −1.92043e34 −0.292938
\(611\) 1.34220e35 2.00587
\(612\) 0 0
\(613\) 2.62922e34 0.377199 0.188599 0.982054i \(-0.439605\pi\)
0.188599 + 0.982054i \(0.439605\pi\)
\(614\) −3.15390e34 −0.443346
\(615\) 0 0
\(616\) −5.40724e33 −0.0729822
\(617\) −6.11422e34 −0.808679 −0.404340 0.914609i \(-0.632499\pi\)
−0.404340 + 0.914609i \(0.632499\pi\)
\(618\) 0 0
\(619\) −4.66687e34 −0.592779 −0.296389 0.955067i \(-0.595783\pi\)
−0.296389 + 0.955067i \(0.595783\pi\)
\(620\) −1.01623e34 −0.126502
\(621\) 0 0
\(622\) 6.31848e34 0.755497
\(623\) 2.65962e34 0.311687
\(624\) 0 0
\(625\) 7.23797e34 0.814923
\(626\) −6.65672e34 −0.734651
\(627\) 0 0
\(628\) 7.98398e34 0.846689
\(629\) 1.67886e34 0.174535
\(630\) 0 0
\(631\) −7.88083e33 −0.0787417 −0.0393709 0.999225i \(-0.512535\pi\)
−0.0393709 + 0.999225i \(0.512535\pi\)
\(632\) −2.00378e34 −0.196284
\(633\) 0 0
\(634\) −9.38386e34 −0.883621
\(635\) −8.48176e33 −0.0783095
\(636\) 0 0
\(637\) 3.98227e34 0.353499
\(638\) 1.44898e34 0.126126
\(639\) 0 0
\(640\) −2.65076e33 −0.0221881
\(641\) −3.14908e34 −0.258499 −0.129250 0.991612i \(-0.541257\pi\)
−0.129250 + 0.991612i \(0.541257\pi\)
\(642\) 0 0
\(643\) 8.32480e34 0.657259 0.328630 0.944459i \(-0.393413\pi\)
0.328630 + 0.944459i \(0.393413\pi\)
\(644\) −5.49320e33 −0.0425356
\(645\) 0 0
\(646\) −3.33922e34 −0.248736
\(647\) 1.33124e35 0.972641 0.486321 0.873780i \(-0.338339\pi\)
0.486321 + 0.873780i \(0.338339\pi\)
\(648\) 0 0
\(649\) −1.07800e34 −0.0757809
\(650\) −1.09497e35 −0.755068
\(651\) 0 0
\(652\) 1.27490e34 0.0846020
\(653\) −2.06756e35 −1.34599 −0.672997 0.739645i \(-0.734993\pi\)
−0.672997 + 0.739645i \(0.734993\pi\)
\(654\) 0 0
\(655\) 1.91422e34 0.119943
\(656\) −4.46664e34 −0.274589
\(657\) 0 0
\(658\) −1.74667e35 −1.03368
\(659\) 2.57849e35 1.49726 0.748632 0.662986i \(-0.230711\pi\)
0.748632 + 0.662986i \(0.230711\pi\)
\(660\) 0 0
\(661\) −3.31671e34 −0.185434 −0.0927170 0.995692i \(-0.529555\pi\)
−0.0927170 + 0.995692i \(0.529555\pi\)
\(662\) −1.41394e35 −0.775720
\(663\) 0 0
\(664\) −1.13329e35 −0.598745
\(665\) −2.06335e34 −0.106980
\(666\) 0 0
\(667\) 1.47201e34 0.0735087
\(668\) 1.68119e35 0.823970
\(669\) 0 0
\(670\) −4.86693e34 −0.229784
\(671\) −8.85101e34 −0.410168
\(672\) 0 0
\(673\) −2.87165e35 −1.28216 −0.641082 0.767472i \(-0.721514\pi\)
−0.641082 + 0.767472i \(0.721514\pi\)
\(674\) 2.16160e35 0.947387
\(675\) 0 0
\(676\) 3.53722e34 0.149392
\(677\) −3.20244e35 −1.32777 −0.663885 0.747835i \(-0.731093\pi\)
−0.663885 + 0.747835i \(0.731093\pi\)
\(678\) 0 0
\(679\) −3.06003e35 −1.22280
\(680\) −1.55090e34 −0.0608446
\(681\) 0 0
\(682\) −4.68366e34 −0.177125
\(683\) 4.34050e35 1.61169 0.805843 0.592129i \(-0.201712\pi\)
0.805843 + 0.592129i \(0.201712\pi\)
\(684\) 0 0
\(685\) 9.48896e34 0.339693
\(686\) −2.18895e35 −0.769456
\(687\) 0 0
\(688\) 5.16719e34 0.175145
\(689\) −1.91372e35 −0.636999
\(690\) 0 0
\(691\) 3.59659e35 1.15456 0.577279 0.816547i \(-0.304114\pi\)
0.577279 + 0.816547i \(0.304114\pi\)
\(692\) 1.32538e35 0.417845
\(693\) 0 0
\(694\) 1.80262e34 0.0548165
\(695\) −1.10548e35 −0.330174
\(696\) 0 0
\(697\) −2.61333e35 −0.752982
\(698\) −1.22089e35 −0.345529
\(699\) 0 0
\(700\) 1.42493e35 0.389107
\(701\) 4.01671e34 0.107745 0.0538723 0.998548i \(-0.482844\pi\)
0.0538723 + 0.998548i \(0.482844\pi\)
\(702\) 0 0
\(703\) 5.04654e34 0.130633
\(704\) −1.22170e34 −0.0310674
\(705\) 0 0
\(706\) 1.82716e35 0.448454
\(707\) −4.32357e35 −1.04256
\(708\) 0 0
\(709\) −2.37128e34 −0.0551957 −0.0275979 0.999619i \(-0.508786\pi\)
−0.0275979 + 0.999619i \(0.508786\pi\)
\(710\) −2.88046e34 −0.0658769
\(711\) 0 0
\(712\) 6.00907e34 0.132681
\(713\) −4.75812e34 −0.103232
\(714\) 0 0
\(715\) 3.39402e34 0.0711032
\(716\) 1.35574e35 0.279103
\(717\) 0 0
\(718\) 1.79427e35 0.356724
\(719\) 8.41947e35 1.64503 0.822514 0.568744i \(-0.192571\pi\)
0.822514 + 0.568744i \(0.192571\pi\)
\(720\) 0 0
\(721\) −3.13920e35 −0.592419
\(722\) 2.80867e35 0.520938
\(723\) 0 0
\(724\) 3.03120e34 0.0543104
\(725\) −3.81839e35 −0.672443
\(726\) 0 0
\(727\) 8.07486e35 1.37390 0.686950 0.726705i \(-0.258949\pi\)
0.686950 + 0.726705i \(0.258949\pi\)
\(728\) −2.00093e35 −0.334650
\(729\) 0 0
\(730\) −1.95983e34 −0.0316725
\(731\) 3.02321e35 0.480287
\(732\) 0 0
\(733\) −9.32041e35 −1.43099 −0.715493 0.698620i \(-0.753798\pi\)
−0.715493 + 0.698620i \(0.753798\pi\)
\(734\) 3.18151e35 0.480211
\(735\) 0 0
\(736\) −1.24112e34 −0.0181068
\(737\) −2.24310e35 −0.321740
\(738\) 0 0
\(739\) −9.24490e34 −0.128188 −0.0640939 0.997944i \(-0.520416\pi\)
−0.0640939 + 0.997944i \(0.520416\pi\)
\(740\) 2.34386e34 0.0319548
\(741\) 0 0
\(742\) 2.49041e35 0.328263
\(743\) −3.86129e35 −0.500463 −0.250232 0.968186i \(-0.580507\pi\)
−0.250232 + 0.968186i \(0.580507\pi\)
\(744\) 0 0
\(745\) 5.81106e34 0.0728287
\(746\) 9.71592e35 1.19743
\(747\) 0 0
\(748\) −7.14788e34 −0.0851937
\(749\) −5.30431e35 −0.621736
\(750\) 0 0
\(751\) 5.31819e35 0.602927 0.301463 0.953478i \(-0.402525\pi\)
0.301463 + 0.953478i \(0.402525\pi\)
\(752\) −3.94637e35 −0.440023
\(753\) 0 0
\(754\) 5.36190e35 0.578332
\(755\) 3.44496e35 0.365466
\(756\) 0 0
\(757\) 1.46803e36 1.50674 0.753368 0.657599i \(-0.228428\pi\)
0.753368 + 0.657599i \(0.228428\pi\)
\(758\) 5.69116e35 0.574560
\(759\) 0 0
\(760\) −4.66188e34 −0.0455398
\(761\) −1.26153e36 −1.21225 −0.606123 0.795371i \(-0.707276\pi\)
−0.606123 + 0.795371i \(0.707276\pi\)
\(762\) 0 0
\(763\) 5.02210e35 0.467012
\(764\) 8.27269e35 0.756798
\(765\) 0 0
\(766\) −1.55273e35 −0.137479
\(767\) −3.98910e35 −0.347482
\(768\) 0 0
\(769\) −9.78483e35 −0.825039 −0.412519 0.910949i \(-0.635351\pi\)
−0.412519 + 0.910949i \(0.635351\pi\)
\(770\) −4.41678e34 −0.0366414
\(771\) 0 0
\(772\) 2.38980e35 0.191931
\(773\) 1.97217e36 1.55848 0.779238 0.626728i \(-0.215606\pi\)
0.779238 + 0.626728i \(0.215606\pi\)
\(774\) 0 0
\(775\) 1.23425e36 0.944350
\(776\) −6.91375e35 −0.520526
\(777\) 0 0
\(778\) −9.01978e35 −0.657583
\(779\) −7.85547e35 −0.563578
\(780\) 0 0
\(781\) −1.32757e35 −0.0922398
\(782\) −7.26151e34 −0.0496527
\(783\) 0 0
\(784\) −1.17087e35 −0.0775459
\(785\) 6.52153e35 0.425088
\(786\) 0 0
\(787\) −2.25189e35 −0.142188 −0.0710940 0.997470i \(-0.522649\pi\)
−0.0710940 + 0.997470i \(0.522649\pi\)
\(788\) −6.02424e35 −0.374390
\(789\) 0 0
\(790\) −1.63674e35 −0.0985465
\(791\) 2.11702e36 1.25464
\(792\) 0 0
\(793\) −3.27529e36 −1.88077
\(794\) −8.96781e35 −0.506909
\(795\) 0 0
\(796\) −1.36230e36 −0.746209
\(797\) −3.69113e36 −1.99035 −0.995177 0.0980978i \(-0.968724\pi\)
−0.995177 + 0.0980978i \(0.968724\pi\)
\(798\) 0 0
\(799\) −2.30893e36 −1.20664
\(800\) 3.21945e35 0.165637
\(801\) 0 0
\(802\) 1.22485e36 0.610806
\(803\) −9.03258e34 −0.0443473
\(804\) 0 0
\(805\) −4.48700e34 −0.0213554
\(806\) −1.73317e36 −0.812184
\(807\) 0 0
\(808\) −9.76854e35 −0.443800
\(809\) 2.93815e36 1.31437 0.657185 0.753730i \(-0.271747\pi\)
0.657185 + 0.753730i \(0.271747\pi\)
\(810\) 0 0
\(811\) −2.44583e36 −1.06088 −0.530439 0.847723i \(-0.677973\pi\)
−0.530439 + 0.847723i \(0.677973\pi\)
\(812\) −6.97767e35 −0.298030
\(813\) 0 0
\(814\) 1.08025e35 0.0447426
\(815\) 1.04137e35 0.0424752
\(816\) 0 0
\(817\) 9.08753e35 0.359476
\(818\) −2.91771e35 −0.113665
\(819\) 0 0
\(820\) −3.64847e35 −0.137860
\(821\) −3.33815e36 −1.24227 −0.621136 0.783703i \(-0.713328\pi\)
−0.621136 + 0.783703i \(0.713328\pi\)
\(822\) 0 0
\(823\) 2.54036e36 0.917058 0.458529 0.888679i \(-0.348377\pi\)
0.458529 + 0.888679i \(0.348377\pi\)
\(824\) −7.09263e35 −0.252184
\(825\) 0 0
\(826\) 5.19119e35 0.179067
\(827\) 3.63276e36 1.23429 0.617146 0.786849i \(-0.288289\pi\)
0.617146 + 0.786849i \(0.288289\pi\)
\(828\) 0 0
\(829\) 1.07727e36 0.355135 0.177567 0.984109i \(-0.443177\pi\)
0.177567 + 0.984109i \(0.443177\pi\)
\(830\) −9.25706e35 −0.300606
\(831\) 0 0
\(832\) −4.52085e35 −0.142455
\(833\) −6.85052e35 −0.212648
\(834\) 0 0
\(835\) 1.37324e36 0.413682
\(836\) −2.14860e35 −0.0637641
\(837\) 0 0
\(838\) 1.20611e36 0.347407
\(839\) 2.96808e36 0.842269 0.421134 0.906998i \(-0.361632\pi\)
0.421134 + 0.906998i \(0.361632\pi\)
\(840\) 0 0
\(841\) −1.76056e36 −0.484953
\(842\) −4.17349e36 −1.13266
\(843\) 0 0
\(844\) −1.73283e36 −0.456537
\(845\) 2.88930e35 0.0750039
\(846\) 0 0
\(847\) 3.09185e36 0.779247
\(848\) 5.62676e35 0.139737
\(849\) 0 0
\(850\) 1.88363e36 0.454213
\(851\) 1.09743e35 0.0260769
\(852\) 0 0
\(853\) 6.13786e36 1.41630 0.708148 0.706064i \(-0.249531\pi\)
0.708148 + 0.706064i \(0.249531\pi\)
\(854\) 4.26227e36 0.969210
\(855\) 0 0
\(856\) −1.19844e36 −0.264664
\(857\) −3.16481e36 −0.688791 −0.344395 0.938825i \(-0.611916\pi\)
−0.344395 + 0.938825i \(0.611916\pi\)
\(858\) 0 0
\(859\) 5.65370e36 1.19514 0.597569 0.801818i \(-0.296134\pi\)
0.597569 + 0.801818i \(0.296134\pi\)
\(860\) 4.22070e35 0.0879334
\(861\) 0 0
\(862\) −2.78322e36 −0.563257
\(863\) 8.00828e36 1.59736 0.798682 0.601753i \(-0.205531\pi\)
0.798682 + 0.601753i \(0.205531\pi\)
\(864\) 0 0
\(865\) 1.08261e36 0.209783
\(866\) 2.96617e36 0.566530
\(867\) 0 0
\(868\) 2.25545e36 0.418540
\(869\) −7.54351e35 −0.137983
\(870\) 0 0
\(871\) −8.30052e36 −1.47529
\(872\) 1.13468e36 0.198800
\(873\) 0 0
\(874\) −2.18275e35 −0.0371631
\(875\) 2.40613e36 0.403848
\(876\) 0 0
\(877\) 3.29560e36 0.537575 0.268788 0.963199i \(-0.413377\pi\)
0.268788 + 0.963199i \(0.413377\pi\)
\(878\) 3.74153e36 0.601683
\(879\) 0 0
\(880\) −9.97916e34 −0.0155977
\(881\) 8.05386e36 1.24109 0.620547 0.784169i \(-0.286910\pi\)
0.620547 + 0.784169i \(0.286910\pi\)
\(882\) 0 0
\(883\) −4.91849e35 −0.0736754 −0.0368377 0.999321i \(-0.511728\pi\)
−0.0368377 + 0.999321i \(0.511728\pi\)
\(884\) −2.64505e36 −0.390644
\(885\) 0 0
\(886\) −1.44406e36 −0.207331
\(887\) −7.79484e36 −1.10347 −0.551737 0.834018i \(-0.686035\pi\)
−0.551737 + 0.834018i \(0.686035\pi\)
\(888\) 0 0
\(889\) 1.88247e36 0.259093
\(890\) 4.90837e35 0.0666135
\(891\) 0 0
\(892\) 1.93847e36 0.255799
\(893\) −6.94048e36 −0.903121
\(894\) 0 0
\(895\) 1.10741e36 0.140127
\(896\) 5.88318e35 0.0734111
\(897\) 0 0
\(898\) 1.51928e36 0.184367
\(899\) −6.04394e36 −0.723309
\(900\) 0 0
\(901\) 3.29209e36 0.383188
\(902\) −1.68153e36 −0.193029
\(903\) 0 0
\(904\) 4.78314e36 0.534082
\(905\) 2.47597e35 0.0272670
\(906\) 0 0
\(907\) −1.31417e37 −1.40786 −0.703932 0.710268i \(-0.748574\pi\)
−0.703932 + 0.710268i \(0.748574\pi\)
\(908\) 1.51188e36 0.159751
\(909\) 0 0
\(910\) −1.63442e36 −0.168014
\(911\) −1.44767e37 −1.46788 −0.733940 0.679214i \(-0.762321\pi\)
−0.733940 + 0.679214i \(0.762321\pi\)
\(912\) 0 0
\(913\) −4.26645e36 −0.420903
\(914\) −7.24821e36 −0.705347
\(915\) 0 0
\(916\) 6.19776e36 0.586869
\(917\) −4.24848e36 −0.396842
\(918\) 0 0
\(919\) −1.03191e37 −0.937990 −0.468995 0.883201i \(-0.655384\pi\)
−0.468995 + 0.883201i \(0.655384\pi\)
\(920\) −1.01378e35 −0.00909067
\(921\) 0 0
\(922\) 2.87137e36 0.250584
\(923\) −4.91262e36 −0.422953
\(924\) 0 0
\(925\) −2.84672e36 −0.238546
\(926\) 3.77045e36 0.311714
\(927\) 0 0
\(928\) −1.57651e36 −0.126867
\(929\) 2.17912e37 1.73015 0.865075 0.501642i \(-0.167271\pi\)
0.865075 + 0.501642i \(0.167271\pi\)
\(930\) 0 0
\(931\) −2.05921e36 −0.159159
\(932\) −6.89130e35 −0.0525536
\(933\) 0 0
\(934\) −7.56121e36 −0.561378
\(935\) −5.83858e35 −0.0427723
\(936\) 0 0
\(937\) −2.08020e37 −1.48375 −0.741873 0.670540i \(-0.766062\pi\)
−0.741873 + 0.670540i \(0.766062\pi\)
\(938\) 1.08018e37 0.760258
\(939\) 0 0
\(940\) −3.22350e36 −0.220917
\(941\) −2.39454e37 −1.61939 −0.809695 0.586851i \(-0.800368\pi\)
−0.809695 + 0.586851i \(0.800368\pi\)
\(942\) 0 0
\(943\) −1.70826e36 −0.112501
\(944\) 1.17288e36 0.0762262
\(945\) 0 0
\(946\) 1.94526e36 0.123123
\(947\) 8.06134e36 0.503539 0.251769 0.967787i \(-0.418988\pi\)
0.251769 + 0.967787i \(0.418988\pi\)
\(948\) 0 0
\(949\) −3.34248e36 −0.203348
\(950\) 5.66205e36 0.339960
\(951\) 0 0
\(952\) 3.44212e36 0.201309
\(953\) 1.92589e37 1.11166 0.555829 0.831297i \(-0.312401\pi\)
0.555829 + 0.831297i \(0.312401\pi\)
\(954\) 0 0
\(955\) 6.75736e36 0.379957
\(956\) 1.08900e37 0.604374
\(957\) 0 0
\(958\) −1.59122e36 −0.0860321
\(959\) −2.10601e37 −1.12390
\(960\) 0 0
\(961\) 3.03575e35 0.0157842
\(962\) 3.99745e36 0.205161
\(963\) 0 0
\(964\) 2.83168e36 0.141606
\(965\) 1.95205e36 0.0963606
\(966\) 0 0
\(967\) 2.29324e37 1.10311 0.551554 0.834139i \(-0.314035\pi\)
0.551554 + 0.834139i \(0.314035\pi\)
\(968\) 6.98563e36 0.331714
\(969\) 0 0
\(970\) −5.64734e36 −0.261335
\(971\) −2.10199e37 −0.960265 −0.480132 0.877196i \(-0.659411\pi\)
−0.480132 + 0.877196i \(0.659411\pi\)
\(972\) 0 0
\(973\) 2.45355e37 1.09241
\(974\) −1.74531e37 −0.767161
\(975\) 0 0
\(976\) 9.63006e36 0.412578
\(977\) 3.52592e37 1.49139 0.745694 0.666289i \(-0.232118\pi\)
0.745694 + 0.666289i \(0.232118\pi\)
\(978\) 0 0
\(979\) 2.26220e36 0.0932712
\(980\) −9.56401e35 −0.0389327
\(981\) 0 0
\(982\) −1.85363e37 −0.735581
\(983\) −7.31962e36 −0.286794 −0.143397 0.989665i \(-0.545803\pi\)
−0.143397 + 0.989665i \(0.545803\pi\)
\(984\) 0 0
\(985\) −4.92076e36 −0.187966
\(986\) −9.22384e36 −0.347897
\(987\) 0 0
\(988\) −7.95081e36 −0.292381
\(989\) 1.97619e36 0.0717587
\(990\) 0 0
\(991\) 1.16985e37 0.414200 0.207100 0.978320i \(-0.433597\pi\)
0.207100 + 0.978320i \(0.433597\pi\)
\(992\) 5.09591e36 0.178166
\(993\) 0 0
\(994\) 6.39300e36 0.217959
\(995\) −1.11277e37 −0.374641
\(996\) 0 0
\(997\) 2.33411e37 0.766358 0.383179 0.923674i \(-0.374829\pi\)
0.383179 + 0.923674i \(0.374829\pi\)
\(998\) −1.82280e37 −0.591028
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 18.26.a.e.1.2 2
3.2 odd 2 2.26.a.b.1.2 2
12.11 even 2 16.26.a.c.1.1 2
15.2 even 4 50.26.b.e.49.3 4
15.8 even 4 50.26.b.e.49.2 4
15.14 odd 2 50.26.a.c.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.26.a.b.1.2 2 3.2 odd 2
16.26.a.c.1.1 2 12.11 even 2
18.26.a.e.1.2 2 1.1 even 1 trivial
50.26.a.c.1.1 2 15.14 odd 2
50.26.b.e.49.2 4 15.8 even 4
50.26.b.e.49.3 4 15.2 even 4