[N,k,chi] = [18,22,Mod(1,18)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(18, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("18.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(-1\)
\(3\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} + 26444550 \)
T5 + 26444550
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(18))\).
$p$
$F_p(T)$
$2$
\( T - 1024 \)
T - 1024
$3$
\( T \)
T
$5$
\( T + 26444550 \)
T + 26444550
$7$
\( T - 166115864 \)
T - 166115864
$11$
\( T - 104878761780 \)
T - 104878761780
$13$
\( T - 335591325758 \)
T - 335591325758
$17$
\( T + 14596144763634 \)
T + 14596144763634
$19$
\( T - 3569529974996 \)
T - 3569529974996
$23$
\( T + 222369240588600 \)
T + 222369240588600
$29$
\( T + 2194109701319454 \)
T + 2194109701319454
$31$
\( T + 8723627187590032 \)
T + 8723627187590032
$37$
\( T - 37\!\cdots\!58 \)
T - 37470891663324758
$41$
\( T + 86\!\cdots\!34 \)
T + 86616741616565034
$43$
\( T - 13\!\cdots\!44 \)
T - 131416928813078444
$47$
\( T + 33\!\cdots\!40 \)
T + 339041180377015440
$53$
\( T - 15\!\cdots\!34 \)
T - 1571494796445297834
$59$
\( T + 52\!\cdots\!20 \)
T + 5232984701774509020
$61$
\( T + 47\!\cdots\!50 \)
T + 4788384962739867250
$67$
\( T + 15\!\cdots\!16 \)
T + 15480328743911983516
$71$
\( T - 12\!\cdots\!40 \)
T - 12930906477499746840
$73$
\( T + 44\!\cdots\!02 \)
T + 44257184658687636502
$79$
\( T + 14\!\cdots\!52 \)
T + 14888578935758942752
$83$
\( T + 37\!\cdots\!88 \)
T + 37085068910999181588
$89$
\( T - 10\!\cdots\!42 \)
T - 105572017962561697542
$97$
\( T - 13\!\cdots\!98 \)
T - 1381092294370554379298
show more
show less