[N,k,chi] = [18,22,Mod(1,18)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(18, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 22, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("18.1");
S:= CuspForms(chi, 22);
N := Newforms(S);
Newform invariants
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Refresh table
\( p \)
Sign
\(2\)
\(1\)
\(3\)
\(-1\)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} + 12954174 \)
T5 + 12954174
acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(18))\).
$p$
$F_p(T)$
$2$
\( T + 1024 \)
T + 1024
$3$
\( T \)
T
$5$
\( T + 12954174 \)
T + 12954174
$7$
\( T + 479513104 \)
T + 479513104
$11$
\( T + 115657781700 \)
T + 115657781700
$13$
\( T - 295658246702 \)
T - 295658246702
$17$
\( T + 6626983431906 \)
T + 6626983431906
$19$
\( T - 28576184164796 \)
T - 28576184164796
$23$
\( T + 335385196791000 \)
T + 335385196791000
$29$
\( T - 699224214482106 \)
T - 699224214482106
$31$
\( T + 3484957262657992 \)
T + 3484957262657992
$37$
\( T + 35\!\cdots\!98 \)
T + 35181531093012298
$41$
\( T + 6132056240639994 \)
T + 6132056240639994
$43$
\( T - 23\!\cdots\!96 \)
T - 233260850096910596
$47$
\( T - 58\!\cdots\!00 \)
T - 580205712121346400
$53$
\( T - 13\!\cdots\!06 \)
T - 1394471665941750306
$59$
\( T + 23\!\cdots\!00 \)
T + 2352476807159705700
$61$
\( T - 99\!\cdots\!90 \)
T - 9920628300330384590
$67$
\( T - 26\!\cdots\!96 \)
T - 26068981808996843996
$71$
\( T - 13\!\cdots\!00 \)
T - 13336955952504341400
$73$
\( T - 90\!\cdots\!02 \)
T - 9037529597968684202
$79$
\( T + 77\!\cdots\!92 \)
T + 77283864571811027992
$83$
\( T - 15\!\cdots\!88 \)
T - 155698418876868248388
$89$
\( T + 25\!\cdots\!18 \)
T + 253837312813381912218
$97$
\( T + 10\!\cdots\!98 \)
T + 1030722092535365121598
show more
show less