Properties

Label 18.22.a.a
Level $18$
Weight $22$
Character orbit 18.a
Self dual yes
Analytic conductor $50.306$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,22,Mod(1,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 22, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.1");
 
S:= CuspForms(chi, 22);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(50.3059219717\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 1024 q^{2} + 1048576 q^{4} - 12954174 q^{5} - 479513104 q^{7} - 1073741824 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q - 1024 q^{2} + 1048576 q^{4} - 12954174 q^{5} - 479513104 q^{7} - 1073741824 q^{8} + 13265074176 q^{10} - 115657781700 q^{11} + 295658246702 q^{13} + 491021418496 q^{14} + 1099511627776 q^{16} - 6626983431906 q^{17} + 28576184164796 q^{19} - 13583435956224 q^{20} + 118433568460800 q^{22} - 335385196791000 q^{23} - 309026534180849 q^{25} - 302754044622848 q^{26} - 502805932539904 q^{28} + 699224214482106 q^{29} - 34\!\cdots\!92 q^{31}+ \cdots + 33\!\cdots\!84 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−1024.00 0 1.04858e6 −1.29542e7 0 −4.79513e8 −1.07374e9 0 1.32651e10
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.22.a.a 1
3.b odd 2 1 6.22.a.b 1
12.b even 2 1 48.22.a.f 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.22.a.b 1 3.b odd 2 1
18.22.a.a 1 1.a even 1 1 trivial
48.22.a.f 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 12954174 \) acting on \(S_{22}^{\mathrm{new}}(\Gamma_0(18))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1024 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 12954174 \) Copy content Toggle raw display
$7$ \( T + 479513104 \) Copy content Toggle raw display
$11$ \( T + 115657781700 \) Copy content Toggle raw display
$13$ \( T - 295658246702 \) Copy content Toggle raw display
$17$ \( T + 6626983431906 \) Copy content Toggle raw display
$19$ \( T - 28576184164796 \) Copy content Toggle raw display
$23$ \( T + 335385196791000 \) Copy content Toggle raw display
$29$ \( T - 699224214482106 \) Copy content Toggle raw display
$31$ \( T + 3484957262657992 \) Copy content Toggle raw display
$37$ \( T + 35\!\cdots\!98 \) Copy content Toggle raw display
$41$ \( T + 6132056240639994 \) Copy content Toggle raw display
$43$ \( T - 23\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T - 58\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T - 13\!\cdots\!06 \) Copy content Toggle raw display
$59$ \( T + 23\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T - 99\!\cdots\!90 \) Copy content Toggle raw display
$67$ \( T - 26\!\cdots\!96 \) Copy content Toggle raw display
$71$ \( T - 13\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T - 90\!\cdots\!02 \) Copy content Toggle raw display
$79$ \( T + 77\!\cdots\!92 \) Copy content Toggle raw display
$83$ \( T - 15\!\cdots\!88 \) Copy content Toggle raw display
$89$ \( T + 25\!\cdots\!18 \) Copy content Toggle raw display
$97$ \( T + 10\!\cdots\!98 \) Copy content Toggle raw display
show more
show less