Properties

Label 18.12.a.a
Level $18$
Weight $12$
Character orbit 18.a
Self dual yes
Analytic conductor $13.830$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [18,12,Mod(1,18)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(18, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("18.1");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 18 = 2 \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 18.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(13.8301772501\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 6)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 32 q^{2} + 1024 q^{4} - 3630 q^{5} + 32936 q^{7} - 32768 q^{8} + 116160 q^{10} + 758748 q^{11} - 2482858 q^{13} - 1053952 q^{14} + 1048576 q^{16} - 8290386 q^{17} - 10867300 q^{19} - 3717120 q^{20}+ \cdots + 28561492704 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−32.0000 0 1024.00 −3630.00 0 32936.0 −32768.0 0 116160.
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 18.12.a.a 1
3.b odd 2 1 6.12.a.c 1
4.b odd 2 1 144.12.a.e 1
9.c even 3 2 162.12.c.i 2
9.d odd 6 2 162.12.c.b 2
12.b even 2 1 48.12.a.d 1
15.d odd 2 1 150.12.a.a 1
15.e even 4 2 150.12.c.e 2
24.f even 2 1 192.12.a.m 1
24.h odd 2 1 192.12.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
6.12.a.c 1 3.b odd 2 1
18.12.a.a 1 1.a even 1 1 trivial
48.12.a.d 1 12.b even 2 1
144.12.a.e 1 4.b odd 2 1
150.12.a.a 1 15.d odd 2 1
150.12.c.e 2 15.e even 4 2
162.12.c.b 2 9.d odd 6 2
162.12.c.i 2 9.c even 3 2
192.12.a.c 1 24.h odd 2 1
192.12.a.m 1 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 3630 \) acting on \(S_{12}^{\mathrm{new}}(\Gamma_0(18))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 32 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 3630 \) Copy content Toggle raw display
$7$ \( T - 32936 \) Copy content Toggle raw display
$11$ \( T - 758748 \) Copy content Toggle raw display
$13$ \( T + 2482858 \) Copy content Toggle raw display
$17$ \( T + 8290386 \) Copy content Toggle raw display
$19$ \( T + 10867300 \) Copy content Toggle raw display
$23$ \( T + 20539272 \) Copy content Toggle raw display
$29$ \( T + 28814550 \) Copy content Toggle raw display
$31$ \( T - 150501392 \) Copy content Toggle raw display
$37$ \( T + 319891714 \) Copy content Toggle raw display
$41$ \( T - 368008998 \) Copy content Toggle raw display
$43$ \( T - 620469572 \) Copy content Toggle raw display
$47$ \( T + 2763110256 \) Copy content Toggle raw display
$53$ \( T - 268284258 \) Copy content Toggle raw display
$59$ \( T + 1672894740 \) Copy content Toggle raw display
$61$ \( T + 7787197498 \) Copy content Toggle raw display
$67$ \( T - 18706694156 \) Copy content Toggle raw display
$71$ \( T - 8346990888 \) Copy content Toggle raw display
$73$ \( T - 19641746522 \) Copy content Toggle raw display
$79$ \( T + 5873807200 \) Copy content Toggle raw display
$83$ \( T + 8492558172 \) Copy content Toggle raw display
$89$ \( T + 75527864010 \) Copy content Toggle raw display
$97$ \( T + 82356782494 \) Copy content Toggle raw display
show more
show less