Properties

Label 1792.2.m.h.449.1
Level $1792$
Weight $2$
Character 1792.449
Analytic conductor $14.309$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1792 = 2^{8} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1792.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.3091920422\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 4 x^{15} + 12 x^{14} - 48 x^{13} + 67 x^{12} - 24 x^{11} + 118 x^{10} - 176 x^{9} + 351 x^{8} - 180 x^{7} + 358 x^{6} - 336 x^{5} + 390 x^{4} - 344 x^{3} + 164 x^{2} - 40 x + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{14} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 449.1
Root \(0.339278 + 0.0446668i\) of defining polynomial
Character \(\chi\) \(=\) 1792.449
Dual form 1792.2.m.h.1345.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.48474 + 1.48474i) q^{3} +(-1.83598 - 1.83598i) q^{5} +1.00000i q^{7} -1.40890i q^{9} +O(q^{10})\) \(q+(-1.48474 + 1.48474i) q^{3} +(-1.83598 - 1.83598i) q^{5} +1.00000i q^{7} -1.40890i q^{9} +(-0.321444 - 0.321444i) q^{11} +(-4.61789 + 4.61789i) q^{13} +5.45192 q^{15} -1.84172 q^{17} +(3.88948 - 3.88948i) q^{19} +(-1.48474 - 1.48474i) q^{21} +5.88497i q^{23} +1.74168i q^{25} +(-2.36237 - 2.36237i) q^{27} +(-6.14570 + 6.14570i) q^{29} +5.69821 q^{31} +0.954522 q^{33} +(1.83598 - 1.83598i) q^{35} +(-1.66877 - 1.66877i) q^{37} -13.7127i q^{39} -10.7333i q^{41} +(0.533105 + 0.533105i) q^{43} +(-2.58672 + 2.58672i) q^{45} -0.465401 q^{47} -1.00000 q^{49} +(2.73447 - 2.73447i) q^{51} +(0.623234 + 0.623234i) q^{53} +1.18033i q^{55} +11.5497i q^{57} +(-7.32184 - 7.32184i) q^{59} +(7.57257 - 7.57257i) q^{61} +1.40890 q^{63} +16.9567 q^{65} +(6.16327 - 6.16327i) q^{67} +(-8.73764 - 8.73764i) q^{69} -0.162532i q^{71} +3.49118i q^{73} +(-2.58594 - 2.58594i) q^{75} +(0.321444 - 0.321444i) q^{77} +8.28703 q^{79} +11.2417 q^{81} +(2.51275 - 2.51275i) q^{83} +(3.38136 + 3.38136i) q^{85} -18.2495i q^{87} +1.60040i q^{89} +(-4.61789 - 4.61789i) q^{91} +(-8.46035 + 8.46035i) q^{93} -14.2821 q^{95} -8.88621 q^{97} +(-0.452882 + 0.452882i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q + 4q^{3} + 4q^{5} + O(q^{10}) \) \( 16q + 4q^{3} + 4q^{5} - 8q^{11} - 12q^{13} - 8q^{17} + 4q^{19} + 4q^{21} - 56q^{27} - 8q^{31} + 16q^{33} - 4q^{35} + 8q^{37} - 24q^{43} + 36q^{45} - 40q^{47} - 16q^{49} + 24q^{51} + 32q^{53} - 4q^{59} + 20q^{61} + 24q^{63} + 72q^{65} + 32q^{67} - 56q^{69} - 28q^{75} + 8q^{77} - 40q^{81} + 36q^{83} - 12q^{91} - 8q^{93} - 80q^{95} - 72q^{97} - 8q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1792\mathbb{Z}\right)^\times\).

\(n\) \(1023\) \(1025\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.48474 + 1.48474i −0.857214 + 0.857214i −0.991009 0.133795i \(-0.957284\pi\)
0.133795 + 0.991009i \(0.457284\pi\)
\(4\) 0 0
\(5\) −1.83598 1.83598i −0.821077 0.821077i 0.165185 0.986263i \(-0.447178\pi\)
−0.986263 + 0.165185i \(0.947178\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 1.40890i 0.469633i
\(10\) 0 0
\(11\) −0.321444 0.321444i −0.0969191 0.0969191i 0.656985 0.753904i \(-0.271832\pi\)
−0.753904 + 0.656985i \(0.771832\pi\)
\(12\) 0 0
\(13\) −4.61789 + 4.61789i −1.28077 + 1.28077i −0.340541 + 0.940230i \(0.610610\pi\)
−0.940230 + 0.340541i \(0.889390\pi\)
\(14\) 0 0
\(15\) 5.45192 1.40768
\(16\) 0 0
\(17\) −1.84172 −0.446682 −0.223341 0.974740i \(-0.571696\pi\)
−0.223341 + 0.974740i \(0.571696\pi\)
\(18\) 0 0
\(19\) 3.88948 3.88948i 0.892308 0.892308i −0.102432 0.994740i \(-0.532662\pi\)
0.994740 + 0.102432i \(0.0326624\pi\)
\(20\) 0 0
\(21\) −1.48474 1.48474i −0.323997 0.323997i
\(22\) 0 0
\(23\) 5.88497i 1.22710i 0.789656 + 0.613550i \(0.210259\pi\)
−0.789656 + 0.613550i \(0.789741\pi\)
\(24\) 0 0
\(25\) 1.74168i 0.348336i
\(26\) 0 0
\(27\) −2.36237 2.36237i −0.454639 0.454639i
\(28\) 0 0
\(29\) −6.14570 + 6.14570i −1.14123 + 1.14123i −0.153002 + 0.988226i \(0.548894\pi\)
−0.988226 + 0.153002i \(0.951106\pi\)
\(30\) 0 0
\(31\) 5.69821 1.02343 0.511714 0.859156i \(-0.329011\pi\)
0.511714 + 0.859156i \(0.329011\pi\)
\(32\) 0 0
\(33\) 0.954522 0.166161
\(34\) 0 0
\(35\) 1.83598 1.83598i 0.310338 0.310338i
\(36\) 0 0
\(37\) −1.66877 1.66877i −0.274344 0.274344i 0.556502 0.830846i \(-0.312143\pi\)
−0.830846 + 0.556502i \(0.812143\pi\)
\(38\) 0 0
\(39\) 13.7127i 2.19579i
\(40\) 0 0
\(41\) 10.7333i 1.67626i −0.545468 0.838132i \(-0.683648\pi\)
0.545468 0.838132i \(-0.316352\pi\)
\(42\) 0 0
\(43\) 0.533105 + 0.533105i 0.0812978 + 0.0812978i 0.746586 0.665289i \(-0.231691\pi\)
−0.665289 + 0.746586i \(0.731691\pi\)
\(44\) 0 0
\(45\) −2.58672 + 2.58672i −0.385605 + 0.385605i
\(46\) 0 0
\(47\) −0.465401 −0.0678856 −0.0339428 0.999424i \(-0.510806\pi\)
−0.0339428 + 0.999424i \(0.510806\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) 2.73447 2.73447i 0.382902 0.382902i
\(52\) 0 0
\(53\) 0.623234 + 0.623234i 0.0856078 + 0.0856078i 0.748614 0.663006i \(-0.230720\pi\)
−0.663006 + 0.748614i \(0.730720\pi\)
\(54\) 0 0
\(55\) 1.18033i 0.159156i
\(56\) 0 0
\(57\) 11.5497i 1.52980i
\(58\) 0 0
\(59\) −7.32184 7.32184i −0.953223 0.953223i 0.0457310 0.998954i \(-0.485438\pi\)
−0.998954 + 0.0457310i \(0.985438\pi\)
\(60\) 0 0
\(61\) 7.57257 7.57257i 0.969569 0.969569i −0.0299816 0.999550i \(-0.509545\pi\)
0.999550 + 0.0299816i \(0.00954488\pi\)
\(62\) 0 0
\(63\) 1.40890 0.177504
\(64\) 0 0
\(65\) 16.9567 2.10322
\(66\) 0 0
\(67\) 6.16327 6.16327i 0.752964 0.752964i −0.222068 0.975031i \(-0.571281\pi\)
0.975031 + 0.222068i \(0.0712806\pi\)
\(68\) 0 0
\(69\) −8.73764 8.73764i −1.05189 1.05189i
\(70\) 0 0
\(71\) 0.162532i 0.0192890i −0.999953 0.00964452i \(-0.996930\pi\)
0.999953 0.00964452i \(-0.00306999\pi\)
\(72\) 0 0
\(73\) 3.49118i 0.408612i 0.978907 + 0.204306i \(0.0654938\pi\)
−0.978907 + 0.204306i \(0.934506\pi\)
\(74\) 0 0
\(75\) −2.58594 2.58594i −0.298599 0.298599i
\(76\) 0 0
\(77\) 0.321444 0.321444i 0.0366320 0.0366320i
\(78\) 0 0
\(79\) 8.28703 0.932363 0.466182 0.884689i \(-0.345629\pi\)
0.466182 + 0.884689i \(0.345629\pi\)
\(80\) 0 0
\(81\) 11.2417 1.24908
\(82\) 0 0
\(83\) 2.51275 2.51275i 0.275810 0.275810i −0.555624 0.831434i \(-0.687521\pi\)
0.831434 + 0.555624i \(0.187521\pi\)
\(84\) 0 0
\(85\) 3.38136 + 3.38136i 0.366760 + 0.366760i
\(86\) 0 0
\(87\) 18.2495i 1.95655i
\(88\) 0 0
\(89\) 1.60040i 0.169642i 0.996396 + 0.0848209i \(0.0270318\pi\)
−0.996396 + 0.0848209i \(0.972968\pi\)
\(90\) 0 0
\(91\) −4.61789 4.61789i −0.484086 0.484086i
\(92\) 0 0
\(93\) −8.46035 + 8.46035i −0.877297 + 0.877297i
\(94\) 0 0
\(95\) −14.2821 −1.46531
\(96\) 0 0
\(97\) −8.88621 −0.902258 −0.451129 0.892459i \(-0.648979\pi\)
−0.451129 + 0.892459i \(0.648979\pi\)
\(98\) 0 0
\(99\) −0.452882 + 0.452882i −0.0455164 + 0.0455164i
\(100\) 0 0
\(101\) −9.80533 9.80533i −0.975667 0.975667i 0.0240439 0.999711i \(-0.492346\pi\)
−0.999711 + 0.0240439i \(0.992346\pi\)
\(102\) 0 0
\(103\) 14.3236i 1.41135i −0.708537 0.705674i \(-0.750644\pi\)
0.708537 0.705674i \(-0.249356\pi\)
\(104\) 0 0
\(105\) 5.45192i 0.532052i
\(106\) 0 0
\(107\) 10.6995 + 10.6995i 1.03436 + 1.03436i 0.999388 + 0.0349695i \(0.0111334\pi\)
0.0349695 + 0.999388i \(0.488867\pi\)
\(108\) 0 0
\(109\) 7.38679 7.38679i 0.707526 0.707526i −0.258488 0.966014i \(-0.583224\pi\)
0.966014 + 0.258488i \(0.0832244\pi\)
\(110\) 0 0
\(111\) 4.95537 0.470343
\(112\) 0 0
\(113\) 8.05995 0.758217 0.379108 0.925352i \(-0.376231\pi\)
0.379108 + 0.925352i \(0.376231\pi\)
\(114\) 0 0
\(115\) 10.8047 10.8047i 1.00754 1.00754i
\(116\) 0 0
\(117\) 6.50613 + 6.50613i 0.601492 + 0.601492i
\(118\) 0 0
\(119\) 1.84172i 0.168830i
\(120\) 0 0
\(121\) 10.7933i 0.981213i
\(122\) 0 0
\(123\) 15.9362 + 15.9362i 1.43692 + 1.43692i
\(124\) 0 0
\(125\) −5.98222 + 5.98222i −0.535066 + 0.535066i
\(126\) 0 0
\(127\) 0.367471 0.0326078 0.0163039 0.999867i \(-0.494810\pi\)
0.0163039 + 0.999867i \(0.494810\pi\)
\(128\) 0 0
\(129\) −1.58304 −0.139379
\(130\) 0 0
\(131\) 9.30850 9.30850i 0.813288 0.813288i −0.171838 0.985125i \(-0.554970\pi\)
0.985125 + 0.171838i \(0.0549704\pi\)
\(132\) 0 0
\(133\) 3.88948 + 3.88948i 0.337261 + 0.337261i
\(134\) 0 0
\(135\) 8.67456i 0.746587i
\(136\) 0 0
\(137\) 6.85872i 0.585980i −0.956115 0.292990i \(-0.905350\pi\)
0.956115 0.292990i \(-0.0946503\pi\)
\(138\) 0 0
\(139\) 16.1730 + 16.1730i 1.37177 + 1.37177i 0.857814 + 0.513961i \(0.171822\pi\)
0.513961 + 0.857814i \(0.328178\pi\)
\(140\) 0 0
\(141\) 0.690998 0.690998i 0.0581925 0.0581925i
\(142\) 0 0
\(143\) 2.96879 0.248262
\(144\) 0 0
\(145\) 22.5668 1.87407
\(146\) 0 0
\(147\) 1.48474 1.48474i 0.122459 0.122459i
\(148\) 0 0
\(149\) 15.2009 + 15.2009i 1.24530 + 1.24530i 0.957771 + 0.287532i \(0.0928347\pi\)
0.287532 + 0.957771i \(0.407165\pi\)
\(150\) 0 0
\(151\) 4.76306i 0.387612i −0.981040 0.193806i \(-0.937917\pi\)
0.981040 0.193806i \(-0.0620832\pi\)
\(152\) 0 0
\(153\) 2.59479i 0.209776i
\(154\) 0 0
\(155\) −10.4618 10.4618i −0.840314 0.840314i
\(156\) 0 0
\(157\) 11.7887 11.7887i 0.940844 0.940844i −0.0575014 0.998345i \(-0.518313\pi\)
0.998345 + 0.0575014i \(0.0183134\pi\)
\(158\) 0 0
\(159\) −1.85068 −0.146768
\(160\) 0 0
\(161\) −5.88497 −0.463800
\(162\) 0 0
\(163\) −9.68083 + 9.68083i −0.758261 + 0.758261i −0.976006 0.217745i \(-0.930130\pi\)
0.217745 + 0.976006i \(0.430130\pi\)
\(164\) 0 0
\(165\) −1.75249 1.75249i −0.136431 0.136431i
\(166\) 0 0
\(167\) 13.1916i 1.02079i −0.859939 0.510397i \(-0.829499\pi\)
0.859939 0.510397i \(-0.170501\pi\)
\(168\) 0 0
\(169\) 29.6497i 2.28075i
\(170\) 0 0
\(171\) −5.47988 5.47988i −0.419057 0.419057i
\(172\) 0 0
\(173\) −6.40858 + 6.40858i −0.487235 + 0.487235i −0.907433 0.420198i \(-0.861961\pi\)
0.420198 + 0.907433i \(0.361961\pi\)
\(174\) 0 0
\(175\) −1.74168 −0.131659
\(176\) 0 0
\(177\) 21.7420 1.63423
\(178\) 0 0
\(179\) −9.05982 + 9.05982i −0.677163 + 0.677163i −0.959357 0.282194i \(-0.908938\pi\)
0.282194 + 0.959357i \(0.408938\pi\)
\(180\) 0 0
\(181\) −13.7164 13.7164i −1.01953 1.01953i −0.999805 0.0197290i \(-0.993720\pi\)
−0.0197290 0.999805i \(-0.506280\pi\)
\(182\) 0 0
\(183\) 22.4866i 1.66226i
\(184\) 0 0
\(185\) 6.12766i 0.450515i
\(186\) 0 0
\(187\) 0.592009 + 0.592009i 0.0432920 + 0.0432920i
\(188\) 0 0
\(189\) 2.36237 2.36237i 0.171837 0.171837i
\(190\) 0 0
\(191\) −19.2622 −1.39376 −0.696882 0.717186i \(-0.745430\pi\)
−0.696882 + 0.717186i \(0.745430\pi\)
\(192\) 0 0
\(193\) −2.38323 −0.171549 −0.0857744 0.996315i \(-0.527336\pi\)
−0.0857744 + 0.996315i \(0.527336\pi\)
\(194\) 0 0
\(195\) −25.1763 + 25.1763i −1.80291 + 1.80291i
\(196\) 0 0
\(197\) −6.16266 6.16266i −0.439072 0.439072i 0.452628 0.891699i \(-0.350487\pi\)
−0.891699 + 0.452628i \(0.850487\pi\)
\(198\) 0 0
\(199\) 9.33136i 0.661483i 0.943721 + 0.330741i \(0.107299\pi\)
−0.943721 + 0.330741i \(0.892701\pi\)
\(200\) 0 0
\(201\) 18.3017i 1.29090i
\(202\) 0 0
\(203\) −6.14570 6.14570i −0.431344 0.431344i
\(204\) 0 0
\(205\) −19.7062 + 19.7062i −1.37634 + 1.37634i
\(206\) 0 0
\(207\) 8.29132 0.576286
\(208\) 0 0
\(209\) −2.50050 −0.172963
\(210\) 0 0
\(211\) 19.3372 19.3372i 1.33123 1.33123i 0.426957 0.904272i \(-0.359586\pi\)
0.904272 0.426957i \(-0.140414\pi\)
\(212\) 0 0
\(213\) 0.241318 + 0.241318i 0.0165348 + 0.0165348i
\(214\) 0 0
\(215\) 1.95755i 0.133504i
\(216\) 0 0
\(217\) 5.69821i 0.386819i
\(218\) 0 0
\(219\) −5.18350 5.18350i −0.350268 0.350268i
\(220\) 0 0
\(221\) 8.50483 8.50483i 0.572097 0.572097i
\(222\) 0 0
\(223\) 19.2604 1.28977 0.644886 0.764279i \(-0.276905\pi\)
0.644886 + 0.764279i \(0.276905\pi\)
\(224\) 0 0
\(225\) 2.45385 0.163590
\(226\) 0 0
\(227\) 0.375264 0.375264i 0.0249071 0.0249071i −0.694544 0.719451i \(-0.744394\pi\)
0.719451 + 0.694544i \(0.244394\pi\)
\(228\) 0 0
\(229\) 9.34559 + 9.34559i 0.617574 + 0.617574i 0.944909 0.327334i \(-0.106150\pi\)
−0.327334 + 0.944909i \(0.606150\pi\)
\(230\) 0 0
\(231\) 0.954522i 0.0628029i
\(232\) 0 0
\(233\) 13.8761i 0.909055i −0.890733 0.454527i \(-0.849808\pi\)
0.890733 0.454527i \(-0.150192\pi\)
\(234\) 0 0
\(235\) 0.854468 + 0.854468i 0.0557394 + 0.0557394i
\(236\) 0 0
\(237\) −12.3041 + 12.3041i −0.799235 + 0.799235i
\(238\) 0 0
\(239\) −15.2148 −0.984165 −0.492082 0.870549i \(-0.663764\pi\)
−0.492082 + 0.870549i \(0.663764\pi\)
\(240\) 0 0
\(241\) −28.2964 −1.82273 −0.911364 0.411601i \(-0.864970\pi\)
−0.911364 + 0.411601i \(0.864970\pi\)
\(242\) 0 0
\(243\) −9.60387 + 9.60387i −0.616089 + 0.616089i
\(244\) 0 0
\(245\) 1.83598 + 1.83598i 0.117297 + 0.117297i
\(246\) 0 0
\(247\) 35.9223i 2.28568i
\(248\) 0 0
\(249\) 7.46154i 0.472856i
\(250\) 0 0
\(251\) 8.92064 + 8.92064i 0.563066 + 0.563066i 0.930177 0.367111i \(-0.119653\pi\)
−0.367111 + 0.930177i \(0.619653\pi\)
\(252\) 0 0
\(253\) 1.89169 1.89169i 0.118929 0.118929i
\(254\) 0 0
\(255\) −10.0409 −0.628784
\(256\) 0 0
\(257\) −27.4810 −1.71422 −0.857110 0.515133i \(-0.827742\pi\)
−0.857110 + 0.515133i \(0.827742\pi\)
\(258\) 0 0
\(259\) 1.66877 1.66877i 0.103692 0.103692i
\(260\) 0 0
\(261\) 8.65867 + 8.65867i 0.535958 + 0.535958i
\(262\) 0 0
\(263\) 14.9308i 0.920674i −0.887744 0.460337i \(-0.847729\pi\)
0.887744 0.460337i \(-0.152271\pi\)
\(264\) 0 0
\(265\) 2.28850i 0.140581i
\(266\) 0 0
\(267\) −2.37617 2.37617i −0.145419 0.145419i
\(268\) 0 0
\(269\) 0.00456307 0.00456307i 0.000278216 0.000278216i −0.706968 0.707246i \(-0.749937\pi\)
0.707246 + 0.706968i \(0.249937\pi\)
\(270\) 0 0
\(271\) −5.74567 −0.349025 −0.174512 0.984655i \(-0.555835\pi\)
−0.174512 + 0.984655i \(0.555835\pi\)
\(272\) 0 0
\(273\) 13.7127 0.829931
\(274\) 0 0
\(275\) 0.559854 0.559854i 0.0337604 0.0337604i
\(276\) 0 0
\(277\) −11.2885 11.2885i −0.678259 0.678259i 0.281347 0.959606i \(-0.409219\pi\)
−0.959606 + 0.281347i \(0.909219\pi\)
\(278\) 0 0
\(279\) 8.02819i 0.480635i
\(280\) 0 0
\(281\) 9.71094i 0.579306i 0.957132 + 0.289653i \(0.0935399\pi\)
−0.957132 + 0.289653i \(0.906460\pi\)
\(282\) 0 0
\(283\) 12.6539 + 12.6539i 0.752197 + 0.752197i 0.974889 0.222692i \(-0.0714843\pi\)
−0.222692 + 0.974889i \(0.571484\pi\)
\(284\) 0 0
\(285\) 21.2051 21.2051i 1.25608 1.25608i
\(286\) 0 0
\(287\) 10.7333 0.633568
\(288\) 0 0
\(289\) −13.6081 −0.800475
\(290\) 0 0
\(291\) 13.1937 13.1937i 0.773428 0.773428i
\(292\) 0 0
\(293\) −0.906335 0.906335i −0.0529486 0.0529486i 0.680137 0.733085i \(-0.261920\pi\)
−0.733085 + 0.680137i \(0.761920\pi\)
\(294\) 0 0
\(295\) 26.8856i 1.56534i
\(296\) 0 0
\(297\) 1.51874i 0.0881263i
\(298\) 0 0
\(299\) −27.1761 27.1761i −1.57163 1.57163i
\(300\) 0 0
\(301\) −0.533105 + 0.533105i −0.0307277 + 0.0307277i
\(302\) 0 0
\(303\) 29.1167 1.67271
\(304\) 0 0
\(305\) −27.8063 −1.59218
\(306\) 0 0
\(307\) −14.7928 + 14.7928i −0.844268 + 0.844268i −0.989411 0.145143i \(-0.953636\pi\)
0.145143 + 0.989411i \(0.453636\pi\)
\(308\) 0 0
\(309\) 21.2668 + 21.2668i 1.20983 + 1.20983i
\(310\) 0 0
\(311\) 11.6043i 0.658022i −0.944326 0.329011i \(-0.893285\pi\)
0.944326 0.329011i \(-0.106715\pi\)
\(312\) 0 0
\(313\) 18.5621i 1.04919i 0.851351 + 0.524596i \(0.175784\pi\)
−0.851351 + 0.524596i \(0.824216\pi\)
\(314\) 0 0
\(315\) −2.58672 2.58672i −0.145745 0.145745i
\(316\) 0 0
\(317\) 15.8863 15.8863i 0.892261 0.892261i −0.102474 0.994736i \(-0.532676\pi\)
0.994736 + 0.102474i \(0.0326760\pi\)
\(318\) 0 0
\(319\) 3.95100 0.221214
\(320\) 0 0
\(321\) −31.7719 −1.77333
\(322\) 0 0
\(323\) −7.16332 + 7.16332i −0.398578 + 0.398578i
\(324\) 0 0
\(325\) −8.04288 8.04288i −0.446139 0.446139i
\(326\) 0 0
\(327\) 21.9349i 1.21300i
\(328\) 0 0
\(329\) 0.465401i 0.0256584i
\(330\) 0 0
\(331\) −5.49646 5.49646i −0.302113 0.302113i 0.539727 0.841840i \(-0.318527\pi\)
−0.841840 + 0.539727i \(0.818527\pi\)
\(332\) 0 0
\(333\) −2.35112 + 2.35112i −0.128841 + 0.128841i
\(334\) 0 0
\(335\) −22.6314 −1.23648
\(336\) 0 0
\(337\) −2.73515 −0.148993 −0.0744966 0.997221i \(-0.523735\pi\)
−0.0744966 + 0.997221i \(0.523735\pi\)
\(338\) 0 0
\(339\) −11.9669 + 11.9669i −0.649954 + 0.649954i
\(340\) 0 0
\(341\) −1.83166 1.83166i −0.0991897 0.0991897i
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) 0 0
\(345\) 32.0843i 1.72736i
\(346\) 0 0
\(347\) −25.0209 25.0209i −1.34319 1.34319i −0.892864 0.450326i \(-0.851308\pi\)
−0.450326 0.892864i \(-0.648692\pi\)
\(348\) 0 0
\(349\) 8.72637 8.72637i 0.467112 0.467112i −0.433866 0.900978i \(-0.642851\pi\)
0.900978 + 0.433866i \(0.142851\pi\)
\(350\) 0 0
\(351\) 21.8183 1.16458
\(352\) 0 0
\(353\) −22.2643 −1.18501 −0.592504 0.805567i \(-0.701861\pi\)
−0.592504 + 0.805567i \(0.701861\pi\)
\(354\) 0 0
\(355\) −0.298407 + 0.298407i −0.0158378 + 0.0158378i
\(356\) 0 0
\(357\) 2.73447 + 2.73447i 0.144723 + 0.144723i
\(358\) 0 0
\(359\) 18.3142i 0.966588i 0.875458 + 0.483294i \(0.160560\pi\)
−0.875458 + 0.483294i \(0.839440\pi\)
\(360\) 0 0
\(361\) 11.2561i 0.592427i
\(362\) 0 0
\(363\) 16.0253 + 16.0253i 0.841110 + 0.841110i
\(364\) 0 0
\(365\) 6.40976 6.40976i 0.335502 0.335502i
\(366\) 0 0
\(367\) −19.3398 −1.00953 −0.504764 0.863257i \(-0.668420\pi\)
−0.504764 + 0.863257i \(0.668420\pi\)
\(368\) 0 0
\(369\) −15.1222 −0.787228
\(370\) 0 0
\(371\) −0.623234 + 0.623234i −0.0323567 + 0.0323567i
\(372\) 0 0
\(373\) 5.63668 + 5.63668i 0.291856 + 0.291856i 0.837813 0.545957i \(-0.183834\pi\)
−0.545957 + 0.837813i \(0.683834\pi\)
\(374\) 0 0
\(375\) 17.7641i 0.917333i
\(376\) 0 0
\(377\) 56.7603i 2.92330i
\(378\) 0 0
\(379\) −3.24191 3.24191i −0.166526 0.166526i 0.618925 0.785450i \(-0.287569\pi\)
−0.785450 + 0.618925i \(0.787569\pi\)
\(380\) 0 0
\(381\) −0.545598 + 0.545598i −0.0279518 + 0.0279518i
\(382\) 0 0
\(383\) 5.39804 0.275827 0.137913 0.990444i \(-0.455960\pi\)
0.137913 + 0.990444i \(0.455960\pi\)
\(384\) 0 0
\(385\) −1.18033 −0.0601554
\(386\) 0 0
\(387\) 0.751091 0.751091i 0.0381801 0.0381801i
\(388\) 0 0
\(389\) −15.6572 15.6572i −0.793854 0.793854i 0.188264 0.982118i \(-0.439714\pi\)
−0.982118 + 0.188264i \(0.939714\pi\)
\(390\) 0 0
\(391\) 10.8384i 0.548123i
\(392\) 0 0
\(393\) 27.6414i 1.39432i
\(394\) 0 0
\(395\) −15.2149 15.2149i −0.765542 0.765542i
\(396\) 0 0
\(397\) −2.24563 + 2.24563i −0.112705 + 0.112705i −0.761210 0.648505i \(-0.775394\pi\)
0.648505 + 0.761210i \(0.275394\pi\)
\(398\) 0 0
\(399\) −11.5497 −0.578209
\(400\) 0 0
\(401\) 19.3307 0.965331 0.482665 0.875805i \(-0.339669\pi\)
0.482665 + 0.875805i \(0.339669\pi\)
\(402\) 0 0
\(403\) −26.3137 + 26.3137i −1.31078 + 1.31078i
\(404\) 0 0
\(405\) −20.6396 20.6396i −1.02559 1.02559i
\(406\) 0 0
\(407\) 1.07283i 0.0531783i
\(408\) 0 0
\(409\) 0.497591i 0.0246043i 0.999924 + 0.0123021i \(0.00391599\pi\)
−0.999924 + 0.0123021i \(0.996084\pi\)
\(410\) 0 0
\(411\) 10.1834 + 10.1834i 0.502311 + 0.502311i
\(412\) 0 0
\(413\) 7.32184 7.32184i 0.360284 0.360284i
\(414\) 0 0
\(415\) −9.22673 −0.452922
\(416\) 0 0
\(417\) −48.0253 −2.35181
\(418\) 0 0
\(419\) 3.51076 3.51076i 0.171512 0.171512i −0.616131 0.787643i \(-0.711301\pi\)
0.787643 + 0.616131i \(0.211301\pi\)
\(420\) 0 0
\(421\) −1.35086 1.35086i −0.0658368 0.0658368i 0.673422 0.739259i \(-0.264824\pi\)
−0.739259 + 0.673422i \(0.764824\pi\)
\(422\) 0 0
\(423\) 0.655702i 0.0318813i
\(424\) 0 0
\(425\) 3.20768i 0.155595i
\(426\) 0 0
\(427\) 7.57257 + 7.57257i 0.366463 + 0.366463i
\(428\) 0 0
\(429\) −4.40787 + 4.40787i −0.212814 + 0.212814i
\(430\) 0 0
\(431\) −19.6166 −0.944896 −0.472448 0.881358i \(-0.656630\pi\)
−0.472448 + 0.881358i \(0.656630\pi\)
\(432\) 0 0
\(433\) −2.76217 −0.132741 −0.0663706 0.997795i \(-0.521142\pi\)
−0.0663706 + 0.997795i \(0.521142\pi\)
\(434\) 0 0
\(435\) −33.5058 + 33.5058i −1.60648 + 1.60648i
\(436\) 0 0
\(437\) 22.8895 + 22.8895i 1.09495 + 1.09495i
\(438\) 0 0
\(439\) 3.05296i 0.145710i 0.997343 + 0.0728550i \(0.0232110\pi\)
−0.997343 + 0.0728550i \(0.976789\pi\)
\(440\) 0 0
\(441\) 1.40890i 0.0670904i
\(442\) 0 0
\(443\) −1.37047 1.37047i −0.0651129 0.0651129i 0.673800 0.738913i \(-0.264661\pi\)
−0.738913 + 0.673800i \(0.764661\pi\)
\(444\) 0 0
\(445\) 2.93831 2.93831i 0.139289 0.139289i
\(446\) 0 0
\(447\) −45.1386 −2.13498
\(448\) 0 0
\(449\) 38.6173 1.82246 0.911232 0.411894i \(-0.135133\pi\)
0.911232 + 0.411894i \(0.135133\pi\)
\(450\) 0 0
\(451\) −3.45017 + 3.45017i −0.162462 + 0.162462i
\(452\) 0 0
\(453\) 7.07190 + 7.07190i 0.332267 + 0.332267i
\(454\) 0 0
\(455\) 16.9567i 0.794944i
\(456\) 0 0
\(457\) 36.0959i 1.68849i 0.535955 + 0.844247i \(0.319952\pi\)
−0.535955 + 0.844247i \(0.680048\pi\)
\(458\) 0 0
\(459\) 4.35082 + 4.35082i 0.203079 + 0.203079i
\(460\) 0 0
\(461\) 4.29295 4.29295i 0.199943 0.199943i −0.600033 0.799975i \(-0.704846\pi\)
0.799975 + 0.600033i \(0.204846\pi\)
\(462\) 0 0
\(463\) 3.38348 0.157243 0.0786217 0.996905i \(-0.474948\pi\)
0.0786217 + 0.996905i \(0.474948\pi\)
\(464\) 0 0
\(465\) 31.0661 1.44066
\(466\) 0 0
\(467\) 21.7747 21.7747i 1.00761 1.00761i 0.00764098 0.999971i \(-0.497568\pi\)
0.999971 0.00764098i \(-0.00243222\pi\)
\(468\) 0 0
\(469\) 6.16327 + 6.16327i 0.284594 + 0.284594i
\(470\) 0 0
\(471\) 35.0064i 1.61301i
\(472\) 0 0
\(473\) 0.342727i 0.0157586i
\(474\) 0 0
\(475\) 6.77424 + 6.77424i 0.310823 + 0.310823i
\(476\) 0 0
\(477\) 0.878073 0.878073i 0.0402042 0.0402042i
\(478\) 0 0
\(479\) −6.74054 −0.307983 −0.153992 0.988072i \(-0.549213\pi\)
−0.153992 + 0.988072i \(0.549213\pi\)
\(480\) 0 0
\(481\) 15.4123 0.702743
\(482\) 0 0
\(483\) 8.73764 8.73764i 0.397576 0.397576i
\(484\) 0 0
\(485\) 16.3149 + 16.3149i 0.740823 + 0.740823i
\(486\) 0 0
\(487\) 30.4472i 1.37970i 0.723954 + 0.689848i \(0.242323\pi\)
−0.723954 + 0.689848i \(0.757677\pi\)
\(488\) 0 0
\(489\) 28.7470i 1.29998i
\(490\) 0 0
\(491\) 11.1585 + 11.1585i 0.503578 + 0.503578i 0.912548 0.408970i \(-0.134112\pi\)
−0.408970 + 0.912548i \(0.634112\pi\)
\(492\) 0 0
\(493\) 11.3186 11.3186i 0.509766 0.509766i
\(494\) 0 0
\(495\) 1.66297 0.0747449
\(496\) 0 0
\(497\) 0.162532 0.00729057
\(498\) 0 0
\(499\) 17.4556 17.4556i 0.781420 0.781420i −0.198651 0.980070i \(-0.563656\pi\)
0.980070 + 0.198651i \(0.0636559\pi\)
\(500\) 0 0
\(501\) 19.5860 + 19.5860i 0.875039 + 0.875039i
\(502\) 0 0
\(503\) 26.7354i 1.19207i −0.802958 0.596035i \(-0.796742\pi\)
0.802958 0.596035i \(-0.203258\pi\)
\(504\) 0 0
\(505\) 36.0049i 1.60220i
\(506\) 0 0
\(507\) 44.0221 + 44.0221i 1.95509 + 1.95509i
\(508\) 0 0
\(509\) −13.7609 + 13.7609i −0.609942 + 0.609942i −0.942931 0.332989i \(-0.891943\pi\)
0.332989 + 0.942931i \(0.391943\pi\)
\(510\) 0 0
\(511\) −3.49118 −0.154441
\(512\) 0 0
\(513\) −18.3768 −0.811355
\(514\) 0 0
\(515\) −26.2979 + 26.2979i −1.15883 + 1.15883i
\(516\) 0 0
\(517\) 0.149600 + 0.149600i 0.00657942 + 0.00657942i
\(518\) 0 0
\(519\) 19.0301i 0.835330i
\(520\) 0 0
\(521\) 36.5859i 1.60286i −0.598091 0.801428i \(-0.704074\pi\)
0.598091 0.801428i \(-0.295926\pi\)
\(522\) 0 0
\(523\) −4.02294 4.02294i −0.175911 0.175911i 0.613660 0.789571i \(-0.289697\pi\)
−0.789571 + 0.613660i \(0.789697\pi\)
\(524\) 0 0
\(525\) 2.58594 2.58594i 0.112860 0.112860i
\(526\) 0 0
\(527\) −10.4945 −0.457147
\(528\) 0 0
\(529\) −11.6328 −0.505776
\(530\) 0 0
\(531\) −10.3157 + 10.3157i −0.447664 + 0.447664i
\(532\) 0 0
\(533\) 49.5652 + 49.5652i 2.14691 + 2.14691i
\(534\) 0 0
\(535\) 39.2882i 1.69858i
\(536\) 0 0
\(537\) 26.9029i 1.16095i
\(538\) 0 0
\(539\) 0.321444 + 0.321444i 0.0138456 + 0.0138456i
\(540\) 0 0
\(541\) 17.9463 17.9463i 0.771572 0.771572i −0.206809 0.978381i \(-0.566308\pi\)
0.978381 + 0.206809i \(0.0663078\pi\)
\(542\) 0 0
\(543\) 40.7306 1.74792
\(544\) 0 0
\(545\) −27.1241 −1.16187
\(546\) 0 0
\(547\) 18.9329 18.9329i 0.809512 0.809512i −0.175048 0.984560i \(-0.556008\pi\)
0.984560 + 0.175048i \(0.0560080\pi\)
\(548\) 0 0
\(549\) −10.6690 10.6690i −0.455341 0.455341i
\(550\) 0 0
\(551\) 47.8072i 2.03665i
\(552\) 0 0
\(553\) 8.28703i 0.352400i
\(554\) 0 0
\(555\) −9.09798 9.09798i −0.386188 0.386188i
\(556\) 0 0
\(557\) −30.3516 + 30.3516i −1.28604 + 1.28604i −0.348864 + 0.937173i \(0.613432\pi\)
−0.937173 + 0.348864i \(0.886568\pi\)
\(558\) 0 0
\(559\) −4.92364 −0.208248
\(560\) 0 0
\(561\) −1.75796 −0.0742210
\(562\) 0 0
\(563\) −18.2195 + 18.2195i −0.767858 + 0.767858i −0.977729 0.209871i \(-0.932696\pi\)
0.209871 + 0.977729i \(0.432696\pi\)
\(564\) 0 0
\(565\) −14.7980 14.7980i −0.622555 0.622555i
\(566\) 0 0
\(567\) 11.2417i 0.472107i
\(568\) 0 0
\(569\) 40.3261i 1.69056i −0.534325 0.845279i \(-0.679434\pi\)
0.534325 0.845279i \(-0.320566\pi\)
\(570\) 0 0
\(571\) 18.1528 + 18.1528i 0.759672 + 0.759672i 0.976262 0.216591i \(-0.0694937\pi\)
−0.216591 + 0.976262i \(0.569494\pi\)
\(572\) 0 0
\(573\) 28.5993 28.5993i 1.19475 1.19475i
\(574\) 0 0
\(575\) −10.2497 −0.427444
\(576\) 0 0
\(577\) 28.8535 1.20119 0.600594 0.799554i \(-0.294931\pi\)
0.600594 + 0.799554i \(0.294931\pi\)
\(578\) 0 0
\(579\) 3.53848 3.53848i 0.147054 0.147054i
\(580\) 0 0
\(581\) 2.51275 + 2.51275i 0.104246 + 0.104246i
\(582\) 0 0
\(583\) 0.400670i 0.0165941i
\(584\) 0 0
\(585\) 23.8903i 0.987743i
\(586\) 0 0
\(587\) 22.0073 + 22.0073i 0.908338 + 0.908338i 0.996138 0.0877997i \(-0.0279836\pi\)
−0.0877997 + 0.996138i \(0.527984\pi\)
\(588\) 0 0
\(589\) 22.1631 22.1631i 0.913213 0.913213i
\(590\) 0 0
\(591\) 18.2999 0.752757
\(592\) 0 0
\(593\) 24.6606 1.01269 0.506344 0.862331i \(-0.330996\pi\)
0.506344 + 0.862331i \(0.330996\pi\)
\(594\) 0 0
\(595\) −3.38136 + 3.38136i −0.138622 + 0.138622i
\(596\) 0 0
\(597\) −13.8546 13.8546i −0.567033 0.567033i
\(598\) 0 0
\(599\) 10.8236i 0.442239i 0.975247 + 0.221120i \(0.0709711\pi\)
−0.975247 + 0.221120i \(0.929029\pi\)
\(600\) 0 0
\(601\) 16.6417i 0.678828i 0.940637 + 0.339414i \(0.110229\pi\)
−0.940637 + 0.339414i \(0.889771\pi\)
\(602\) 0 0
\(603\) −8.68342 8.68342i −0.353616 0.353616i
\(604\) 0 0
\(605\) −19.8164 + 19.8164i −0.805652 + 0.805652i
\(606\) 0 0
\(607\) 22.3716 0.908037 0.454019 0.890992i \(-0.349990\pi\)
0.454019 + 0.890992i \(0.349990\pi\)
\(608\) 0 0
\(609\) 18.2495 0.739508
\(610\) 0 0
\(611\) 2.14917 2.14917i 0.0869460 0.0869460i
\(612\) 0 0
\(613\) −32.7313 32.7313i −1.32201 1.32201i −0.912150 0.409857i \(-0.865579\pi\)
−0.409857 0.912150i \(-0.634421\pi\)
\(614\) 0 0
\(615\) 58.5172i 2.35964i
\(616\) 0 0
\(617\) 3.37531i 0.135885i −0.997689 0.0679424i \(-0.978357\pi\)
0.997689 0.0679424i \(-0.0216434\pi\)
\(618\) 0 0
\(619\) 3.57465 + 3.57465i 0.143677 + 0.143677i 0.775287 0.631609i \(-0.217605\pi\)
−0.631609 + 0.775287i \(0.717605\pi\)
\(620\) 0 0
\(621\) 13.9025 13.9025i 0.557887 0.557887i
\(622\) 0 0
\(623\) −1.60040 −0.0641186
\(624\) 0 0
\(625\) 30.6750 1.22700
\(626\) 0 0
\(627\) 3.71259 3.71259i 0.148267 0.148267i
\(628\) 0 0
\(629\) 3.07340 + 3.07340i 0.122544 + 0.122544i
\(630\) 0 0
\(631\) 31.2089i 1.24241i 0.783649 + 0.621204i \(0.213356\pi\)
−0.783649 + 0.621204i \(0.786644\pi\)
\(632\) 0 0
\(633\) 57.4214i 2.28230i
\(634\) 0 0
\(635\) −0.674671 0.674671i −0.0267735 0.0267735i
\(636\) 0 0
\(637\) 4.61789 4.61789i 0.182967 0.182967i
\(638\) 0 0
\(639\) −0.228991 −0.00905876
\(640\) 0 0
\(641\) 25.7829 1.01836 0.509182 0.860659i \(-0.329948\pi\)
0.509182 + 0.860659i \(0.329948\pi\)
\(642\) 0 0
\(643\) −1.82352 + 1.82352i −0.0719127 + 0.0719127i −0.742148 0.670236i \(-0.766193\pi\)
0.670236 + 0.742148i \(0.266193\pi\)
\(644\) 0 0
\(645\) 2.90645 + 2.90645i 0.114441 + 0.114441i
\(646\) 0 0
\(647\) 10.0909i 0.396713i 0.980130 + 0.198356i \(0.0635603\pi\)
−0.980130 + 0.198356i \(0.936440\pi\)
\(648\) 0 0
\(649\) 4.70713i 0.184771i
\(650\) 0 0
\(651\) −8.46035 8.46035i −0.331587 0.331587i
\(652\) 0 0
\(653\) 13.8599 13.8599i 0.542380 0.542380i −0.381846 0.924226i \(-0.624712\pi\)
0.924226 + 0.381846i \(0.124712\pi\)
\(654\) 0 0
\(655\) −34.1805 −1.33554
\(656\) 0 0
\(657\) 4.91872 0.191898
\(658\) 0 0
\(659\) 13.9075 13.9075i 0.541758 0.541758i −0.382286 0.924044i \(-0.624863\pi\)
0.924044 + 0.382286i \(0.124863\pi\)
\(660\) 0 0
\(661\) 1.13544 + 1.13544i 0.0441633 + 0.0441633i 0.728844 0.684680i \(-0.240058\pi\)
−0.684680 + 0.728844i \(0.740058\pi\)
\(662\) 0 0
\(663\) 25.2549i 0.980820i
\(664\) 0 0
\(665\) 14.2821i 0.553834i
\(666\) 0 0
\(667\) −36.1673 36.1673i −1.40040 1.40040i
\(668\) 0 0
\(669\) −28.5967 + 28.5967i −1.10561 + 1.10561i
\(670\) 0 0
\(671\) −4.86832 −0.187939
\(672\) 0 0
\(673\) 9.91726 0.382282 0.191141 0.981563i \(-0.438781\pi\)
0.191141 + 0.981563i \(0.438781\pi\)
\(674\) 0 0
\(675\) 4.11450 4.11450i 0.158367 0.158367i
\(676\) 0 0
\(677\) 16.4673 + 16.4673i 0.632890 + 0.632890i 0.948792 0.315902i \(-0.102307\pi\)
−0.315902 + 0.948792i \(0.602307\pi\)
\(678\) 0 0
\(679\) 8.88621i 0.341021i
\(680\) 0 0
\(681\) 1.11434i 0.0427015i
\(682\) 0 0
\(683\) 5.51571 + 5.51571i 0.211053 + 0.211053i 0.804715 0.593662i \(-0.202318\pi\)
−0.593662 + 0.804715i \(0.702318\pi\)
\(684\) 0 0
\(685\) −12.5925 + 12.5925i −0.481135 + 0.481135i
\(686\) 0 0
\(687\) −27.7515 −1.05879
\(688\) 0 0
\(689\) −5.75605 −0.219288
\(690\) 0 0
\(691\) −31.1271 + 31.1271i −1.18413 + 1.18413i −0.205468 + 0.978664i \(0.565872\pi\)
−0.978664 + 0.205468i \(0.934128\pi\)
\(692\) 0 0
\(693\) −0.452882 0.452882i −0.0172036 0.0172036i
\(694\) 0 0
\(695\) 59.3867i 2.25267i
\(696\) 0 0
\(697\) 19.7677i 0.748756i
\(698\) 0 0
\(699\) 20.6024 + 20.6024i 0.779255 + 0.779255i
\(700\) 0 0
\(701\) −21.7631 + 21.7631i −0.821981 + 0.821981i −0.986392 0.164411i \(-0.947428\pi\)
0.164411 + 0.986392i \(0.447428\pi\)
\(702\) 0 0
\(703\) −12.9813 −0.489598
\(704\) 0 0
\(705\) −2.53732 −0.0955612
\(706\) 0 0
\(707\) 9.80533 9.80533i 0.368767 0.368767i
\(708\) 0 0
\(709\) 12.9756 + 12.9756i 0.487309 + 0.487309i 0.907456 0.420147i \(-0.138021\pi\)
−0.420147 + 0.907456i \(0.638021\pi\)
\(710\) 0 0
\(711\) 11.6756i 0.437868i
\(712\) 0 0
\(713\) 33.5338i 1.25585i
\(714\) 0 0
\(715\) −5.45065 5.45065i −0.203843 0.203843i
\(716\) 0 0
\(717\) 22.5900 22.5900i 0.843640 0.843640i
\(718\) 0 0
\(719\) −36.4527 −1.35946 −0.679728 0.733464i \(-0.737902\pi\)
−0.679728 + 0.733464i \(0.737902\pi\)
\(720\) 0 0
\(721\) 14.3236 0.533439
\(722\) 0 0
\(723\) 42.0127 42.0127i 1.56247 1.56247i
\(724\) 0 0
\(725\) −10.7039 10.7039i −0.397531 0.397531i
\(726\) 0 0
\(727\) 37.9281i 1.40668i −0.710855 0.703338i \(-0.751692\pi\)
0.710855 0.703338i \(-0.248308\pi\)
\(728\) 0 0
\(729\) 5.20661i 0.192838i
\(730\) 0 0
\(731\) −0.981829 0.981829i −0.0363143 0.0363143i
\(732\) 0 0
\(733\) −12.8899 + 12.8899i −0.476099 + 0.476099i −0.903882 0.427782i \(-0.859295\pi\)
0.427782 + 0.903882i \(0.359295\pi\)
\(734\) 0 0
\(735\) −5.45192 −0.201097
\(736\) 0 0
\(737\) −3.96230 −0.145953
\(738\) 0 0
\(739\) 7.97047 7.97047i 0.293199 0.293199i −0.545144 0.838342i \(-0.683525\pi\)
0.838342 + 0.545144i \(0.183525\pi\)
\(740\) 0 0
\(741\) −53.3353 53.3353i −1.95932 1.95932i
\(742\) 0 0
\(743\) 41.0385i 1.50556i −0.658273 0.752779i \(-0.728713\pi\)
0.658273 0.752779i \(-0.271287\pi\)
\(744\) 0 0
\(745\) 55.8171i 2.04498i
\(746\) 0 0
\(747\) −3.54020 3.54020i −0.129529 0.129529i
\(748\) 0 0
\(749\) −10.6995 + 10.6995i −0.390951 + 0.390951i
\(750\) 0 0
\(751\) 16.8700 0.615594 0.307797 0.951452i \(-0.400408\pi\)
0.307797 + 0.951452i \(0.400408\pi\)
\(752\) 0 0
\(753\) −26.4896 −0.965336
\(754\) 0 0
\(755\) −8.74490 + 8.74490i −0.318260 + 0.318260i
\(756\) 0 0
\(757\) −21.7021 21.7021i −0.788778 0.788778i 0.192516 0.981294i \(-0.438335\pi\)
−0.981294 + 0.192516i \(0.938335\pi\)
\(758\) 0 0
\(759\) 5.61733i 0.203896i
\(760\) 0 0
\(761\) 8.35285i 0.302791i −0.988473 0.151395i \(-0.951623\pi\)
0.988473 0.151395i \(-0.0483766\pi\)
\(762\) 0 0
\(763\) 7.38679 + 7.38679i 0.267420 + 0.267420i
\(764\) 0 0
\(765\) 4.76400 4.76400i 0.172243 0.172243i
\(766\) 0 0
\(767\) 67.6229 2.44172
\(768\) 0 0
\(769\) −21.8388 −0.787527 −0.393764 0.919212i \(-0.628827\pi\)
−0.393764 + 0.919212i \(0.628827\pi\)
\(770\) 0 0
\(771\) 40.8022 40.8022i 1.46945 1.46945i
\(772\) 0 0
\(773\) 6.55450 + 6.55450i 0.235749 + 0.235749i 0.815087 0.579338i \(-0.196689\pi\)
−0.579338 + 0.815087i \(0.696689\pi\)
\(774\) 0 0
\(775\) 9.92446i 0.356497i
\(776\) 0 0
\(777\) 4.95537i 0.177773i
\(778\) 0 0
\(779\) −41.7470 41.7470i −1.49574 1.49574i
\(780\) 0 0
\(781\) −0.0522451 + 0.0522451i −0.00186948 + 0.00186948i
\(782\) 0 0
\(783\) 29.0369 1.03769
\(784\) 0 0
\(785\) −43.2879 −1.54501
\(786\) 0 0
\(787\) 17.8764 17.8764i 0.637224 0.637224i −0.312646 0.949870i \(-0.601215\pi\)
0.949870 + 0.312646i \(0.101215\pi\)
\(788\) 0 0
\(789\) 22.1684 + 22.1684i 0.789215 + 0.789215i
\(790\) 0 0
\(791\) 8.05995i 0.286579i
\(792\) 0 0
\(793\) 69.9386i 2.48359i
\(794\) 0 0
\(795\) 3.39782 + 3.39782i 0.120508 + 0.120508i
\(796\) 0 0
\(797\) 15.9981 15.9981i 0.566683 0.566683i −0.364515 0.931198i \(-0.618765\pi\)
0.931198 + 0.364515i \(0.118765\pi\)
\(798\) 0 0
\(799\) 0.857136