Properties

Label 1792.2.b.l
Level $1792$
Weight $2$
Character orbit 1792.b
Analytic conductor $14.309$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1792,2,Mod(897,1792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1792.897"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1792 = 2^{8} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1792.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,-4,0,-4,0,0,0,0,0,-8,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.3091920422\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 896)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} - \beta_1 q^{5} - q^{7} + (\beta_{3} - 1) q^{9} + 2 \beta_{2} q^{11} + \beta_1 q^{13} - 2 q^{15} + (\beta_{3} + 4) q^{17} + (\beta_{2} + 2 \beta_1) q^{19} + \beta_{2} q^{21} + (2 \beta_{3} + 2) q^{23}+ \cdots + ( - 10 \beta_{2} + 4 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} - 4 q^{9} - 8 q^{15} + 16 q^{17} + 8 q^{23} + 4 q^{25} - 24 q^{31} + 32 q^{33} + 8 q^{39} - 8 q^{47} + 4 q^{49} + 16 q^{55} + 32 q^{57} + 4 q^{63} + 16 q^{65} - 8 q^{73} - 32 q^{79} + 4 q^{81}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{3} + 2\zeta_{12}^{2} - 1 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12}^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\zeta_{12}^{3} + 4\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} - \beta_{2} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + \beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( ( -\beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1792\mathbb{Z}\right)^\times\).

\(n\) \(1023\) \(1025\) \(1541\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
897.1
−0.866025 0.500000i
0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
0 2.73205i 0 0.732051i 0 −1.00000 0 −4.46410 0
897.2 0 0.732051i 0 2.73205i 0 −1.00000 0 2.46410 0
897.3 0 0.732051i 0 2.73205i 0 −1.00000 0 2.46410 0
897.4 0 2.73205i 0 0.732051i 0 −1.00000 0 −4.46410 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1792.2.b.l 4
4.b odd 2 1 1792.2.b.n 4
8.b even 2 1 inner 1792.2.b.l 4
8.d odd 2 1 1792.2.b.n 4
16.e even 4 1 896.2.a.e 2
16.e even 4 1 896.2.a.h yes 2
16.f odd 4 1 896.2.a.f yes 2
16.f odd 4 1 896.2.a.g yes 2
48.i odd 4 1 8064.2.a.bf 2
48.i odd 4 1 8064.2.a.br 2
48.k even 4 1 8064.2.a.be 2
48.k even 4 1 8064.2.a.bm 2
112.j even 4 1 6272.2.a.j 2
112.j even 4 1 6272.2.a.s 2
112.l odd 4 1 6272.2.a.i 2
112.l odd 4 1 6272.2.a.t 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
896.2.a.e 2 16.e even 4 1
896.2.a.f yes 2 16.f odd 4 1
896.2.a.g yes 2 16.f odd 4 1
896.2.a.h yes 2 16.e even 4 1
1792.2.b.l 4 1.a even 1 1 trivial
1792.2.b.l 4 8.b even 2 1 inner
1792.2.b.n 4 4.b odd 2 1
1792.2.b.n 4 8.d odd 2 1
6272.2.a.i 2 112.l odd 4 1
6272.2.a.j 2 112.j even 4 1
6272.2.a.s 2 112.j even 4 1
6272.2.a.t 2 112.l odd 4 1
8064.2.a.be 2 48.k even 4 1
8064.2.a.bf 2 48.i odd 4 1
8064.2.a.bm 2 48.k even 4 1
8064.2.a.br 2 48.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1792, [\chi])\):

\( T_{3}^{4} + 8T_{3}^{2} + 4 \) Copy content Toggle raw display
\( T_{5}^{4} + 8T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{4} + 32T_{11}^{2} + 64 \) Copy content Toggle raw display
\( T_{23}^{2} - 4T_{23} - 44 \) Copy content Toggle raw display
\( T_{31}^{2} + 12T_{31} + 24 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 8T^{2} + 4 \) Copy content Toggle raw display
$5$ \( T^{4} + 8T^{2} + 4 \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 32T^{2} + 64 \) Copy content Toggle raw display
$13$ \( T^{4} + 8T^{2} + 4 \) Copy content Toggle raw display
$17$ \( (T^{2} - 8 T + 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 56T^{2} + 676 \) Copy content Toggle raw display
$23$ \( (T^{2} - 4 T - 44)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 12 T + 24)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 152T^{2} + 2704 \) Copy content Toggle raw display
$41$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 96T^{2} + 576 \) Copy content Toggle raw display
$47$ \( (T^{2} + 4 T - 8)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 56T^{2} + 676 \) Copy content Toggle raw display
$61$ \( T^{4} + 296 T^{2} + 21316 \) Copy content Toggle raw display
$67$ \( T^{4} + 224T^{2} + 256 \) Copy content Toggle raw display
$71$ \( (T^{2} - 192)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4 T - 44)^{2} \) Copy content Toggle raw display
$79$ \( (T + 8)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 168T^{2} + 6084 \) Copy content Toggle raw display
$89$ \( (T^{2} - 4 T - 44)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 8 T + 4)^{2} \) Copy content Toggle raw display
show more
show less