# Properties

 Label 1792.2.b.i.897.2 Level $1792$ Weight $2$ Character 1792.897 Analytic conductor $14.309$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1792,2,Mod(897,1792)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1792, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1792.897");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1792 = 2^{8} \cdot 7$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1792.b (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$14.3091920422$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(i)$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$2$$ Twist minimal: no (minimal twist has level 56) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## Embedding invariants

 Embedding label 897.2 Root $$-1.00000i$$ of defining polynomial Character $$\chi$$ $$=$$ 1792.897 Dual form 1792.2.b.i.897.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q+2.00000i q^{5} +1.00000 q^{7} +3.00000 q^{9} +O(q^{10})$$ $$q+2.00000i q^{5} +1.00000 q^{7} +3.00000 q^{9} -4.00000i q^{11} -2.00000i q^{13} -6.00000 q^{17} -8.00000i q^{19} +1.00000 q^{25} -6.00000i q^{29} +8.00000 q^{31} +2.00000i q^{35} -2.00000i q^{37} -2.00000 q^{41} -4.00000i q^{43} +6.00000i q^{45} -8.00000 q^{47} +1.00000 q^{49} +6.00000i q^{53} +8.00000 q^{55} +6.00000i q^{61} +3.00000 q^{63} +4.00000 q^{65} +4.00000i q^{67} +8.00000 q^{71} -10.0000 q^{73} -4.00000i q^{77} +16.0000 q^{79} +9.00000 q^{81} -8.00000i q^{83} -12.0000i q^{85} +6.00000 q^{89} -2.00000i q^{91} +16.0000 q^{95} -6.00000 q^{97} -12.0000i q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 2 q^{7} + 6 q^{9}+O(q^{10})$$ 2 * q + 2 * q^7 + 6 * q^9 $$2 q + 2 q^{7} + 6 q^{9} - 12 q^{17} + 2 q^{25} + 16 q^{31} - 4 q^{41} - 16 q^{47} + 2 q^{49} + 16 q^{55} + 6 q^{63} + 8 q^{65} + 16 q^{71} - 20 q^{73} + 32 q^{79} + 18 q^{81} + 12 q^{89} + 32 q^{95} - 12 q^{97}+O(q^{100})$$ 2 * q + 2 * q^7 + 6 * q^9 - 12 * q^17 + 2 * q^25 + 16 * q^31 - 4 * q^41 - 16 * q^47 + 2 * q^49 + 16 * q^55 + 6 * q^63 + 8 * q^65 + 16 * q^71 - 20 * q^73 + 32 * q^79 + 18 * q^81 + 12 * q^89 + 32 * q^95 - 12 * q^97

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1792\mathbb{Z}\right)^\times$$.

 $$n$$ $$1023$$ $$1025$$ $$1541$$ $$\chi(n)$$ $$1$$ $$1$$ $$-1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$4$$ 0 0
$$5$$ 2.00000i 0.894427i 0.894427 + 0.447214i $$0.147584\pi$$
−0.894427 + 0.447214i $$0.852416\pi$$
$$6$$ 0 0
$$7$$ 1.00000 0.377964
$$8$$ 0 0
$$9$$ 3.00000 1.00000
$$10$$ 0 0
$$11$$ − 4.00000i − 1.20605i −0.797724 0.603023i $$-0.793963\pi$$
0.797724 0.603023i $$-0.206037\pi$$
$$12$$ 0 0
$$13$$ − 2.00000i − 0.554700i −0.960769 0.277350i $$-0.910544\pi$$
0.960769 0.277350i $$-0.0894562\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −6.00000 −1.45521 −0.727607 0.685994i $$-0.759367\pi$$
−0.727607 + 0.685994i $$0.759367\pi$$
$$18$$ 0 0
$$19$$ − 8.00000i − 1.83533i −0.397360 0.917663i $$-0.630073\pi$$
0.397360 0.917663i $$-0.369927\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ − 6.00000i − 1.11417i −0.830455 0.557086i $$-0.811919\pi$$
0.830455 0.557086i $$-0.188081\pi$$
$$30$$ 0 0
$$31$$ 8.00000 1.43684 0.718421 0.695608i $$-0.244865\pi$$
0.718421 + 0.695608i $$0.244865\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 2.00000i 0.338062i
$$36$$ 0 0
$$37$$ − 2.00000i − 0.328798i −0.986394 0.164399i $$-0.947432\pi$$
0.986394 0.164399i $$-0.0525685\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −2.00000 −0.312348 −0.156174 0.987730i $$-0.549916\pi$$
−0.156174 + 0.987730i $$0.549916\pi$$
$$42$$ 0 0
$$43$$ − 4.00000i − 0.609994i −0.952353 0.304997i $$-0.901344\pi$$
0.952353 0.304997i $$-0.0986555\pi$$
$$44$$ 0 0
$$45$$ 6.00000i 0.894427i
$$46$$ 0 0
$$47$$ −8.00000 −1.16692 −0.583460 0.812142i $$-0.698301\pi$$
−0.583460 + 0.812142i $$0.698301\pi$$
$$48$$ 0 0
$$49$$ 1.00000 0.142857
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 6.00000i 0.824163i 0.911147 + 0.412082i $$0.135198\pi$$
−0.911147 + 0.412082i $$0.864802\pi$$
$$54$$ 0 0
$$55$$ 8.00000 1.07872
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$60$$ 0 0
$$61$$ 6.00000i 0.768221i 0.923287 + 0.384111i $$0.125492\pi$$
−0.923287 + 0.384111i $$0.874508\pi$$
$$62$$ 0 0
$$63$$ 3.00000 0.377964
$$64$$ 0 0
$$65$$ 4.00000 0.496139
$$66$$ 0 0
$$67$$ 4.00000i 0.488678i 0.969690 + 0.244339i $$0.0785709\pi$$
−0.969690 + 0.244339i $$0.921429\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ 8.00000 0.949425 0.474713 0.880141i $$-0.342552\pi$$
0.474713 + 0.880141i $$0.342552\pi$$
$$72$$ 0 0
$$73$$ −10.0000 −1.17041 −0.585206 0.810885i $$-0.698986\pi$$
−0.585206 + 0.810885i $$0.698986\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ − 4.00000i − 0.455842i
$$78$$ 0 0
$$79$$ 16.0000 1.80014 0.900070 0.435745i $$-0.143515\pi$$
0.900070 + 0.435745i $$0.143515\pi$$
$$80$$ 0 0
$$81$$ 9.00000 1.00000
$$82$$ 0 0
$$83$$ − 8.00000i − 0.878114i −0.898459 0.439057i $$-0.855313\pi$$
0.898459 0.439057i $$-0.144687\pi$$
$$84$$ 0 0
$$85$$ − 12.0000i − 1.30158i
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ 6.00000 0.635999 0.317999 0.948091i $$-0.396989\pi$$
0.317999 + 0.948091i $$0.396989\pi$$
$$90$$ 0 0
$$91$$ − 2.00000i − 0.209657i
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 16.0000 1.64157
$$96$$ 0 0
$$97$$ −6.00000 −0.609208 −0.304604 0.952479i $$-0.598524\pi$$
−0.304604 + 0.952479i $$0.598524\pi$$
$$98$$ 0 0
$$99$$ − 12.0000i − 1.20605i
$$100$$ 0 0
$$101$$ 2.00000i 0.199007i 0.995037 + 0.0995037i $$0.0317255\pi$$
−0.995037 + 0.0995037i $$0.968274\pi$$
$$102$$ 0 0
$$103$$ 16.0000 1.57653 0.788263 0.615338i $$-0.210980\pi$$
0.788263 + 0.615338i $$0.210980\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ − 12.0000i − 1.16008i −0.814587 0.580042i $$-0.803036\pi$$
0.814587 0.580042i $$-0.196964\pi$$
$$108$$ 0 0
$$109$$ 10.0000i 0.957826i 0.877862 + 0.478913i $$0.158969\pi$$
−0.877862 + 0.478913i $$0.841031\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ 2.00000 0.188144 0.0940721 0.995565i $$-0.470012\pi$$
0.0940721 + 0.995565i $$0.470012\pi$$
$$114$$ 0 0
$$115$$ 0 0
$$116$$ 0 0
$$117$$ − 6.00000i − 0.554700i
$$118$$ 0 0
$$119$$ −6.00000 −0.550019
$$120$$ 0 0
$$121$$ −5.00000 −0.454545
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ 12.0000i 1.07331i
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ − 8.00000i − 0.698963i −0.936943 0.349482i $$-0.886358\pi$$
0.936943 0.349482i $$-0.113642\pi$$
$$132$$ 0 0
$$133$$ − 8.00000i − 0.693688i
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ 6.00000 0.512615 0.256307 0.966595i $$-0.417494\pi$$
0.256307 + 0.966595i $$0.417494\pi$$
$$138$$ 0 0
$$139$$ − 8.00000i − 0.678551i −0.940687 0.339276i $$-0.889818\pi$$
0.940687 0.339276i $$-0.110182\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −8.00000 −0.668994
$$144$$ 0 0
$$145$$ 12.0000 0.996546
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 6.00000i 0.491539i 0.969328 + 0.245770i $$0.0790407\pi$$
−0.969328 + 0.245770i $$0.920959\pi$$
$$150$$ 0 0
$$151$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$152$$ 0 0
$$153$$ −18.0000 −1.45521
$$154$$ 0 0
$$155$$ 16.0000i 1.28515i
$$156$$ 0 0
$$157$$ − 18.0000i − 1.43656i −0.695756 0.718278i $$-0.744931\pi$$
0.695756 0.718278i $$-0.255069\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 12.0000i 0.939913i 0.882690 + 0.469956i $$0.155730\pi$$
−0.882690 + 0.469956i $$0.844270\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −16.0000 −1.23812 −0.619059 0.785345i $$-0.712486\pi$$
−0.619059 + 0.785345i $$0.712486\pi$$
$$168$$ 0 0
$$169$$ 9.00000 0.692308
$$170$$ 0 0
$$171$$ − 24.0000i − 1.83533i
$$172$$ 0 0
$$173$$ − 18.0000i − 1.36851i −0.729241 0.684257i $$-0.760127\pi$$
0.729241 0.684257i $$-0.239873\pi$$
$$174$$ 0 0
$$175$$ 1.00000 0.0755929
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 4.00000i 0.298974i 0.988764 + 0.149487i $$0.0477622\pi$$
−0.988764 + 0.149487i $$0.952238\pi$$
$$180$$ 0 0
$$181$$ 10.0000i 0.743294i 0.928374 + 0.371647i $$0.121207\pi$$
−0.928374 + 0.371647i $$0.878793\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ 4.00000 0.294086
$$186$$ 0 0
$$187$$ 24.0000i 1.75505i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ −16.0000 −1.15772 −0.578860 0.815427i $$-0.696502\pi$$
−0.578860 + 0.815427i $$0.696502\pi$$
$$192$$ 0 0
$$193$$ −14.0000 −1.00774 −0.503871 0.863779i $$-0.668091\pi$$
−0.503871 + 0.863779i $$0.668091\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 6.00000i 0.427482i 0.976890 + 0.213741i $$0.0685649\pi$$
−0.976890 + 0.213741i $$0.931435\pi$$
$$198$$ 0 0
$$199$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ − 6.00000i − 0.421117i
$$204$$ 0 0
$$205$$ − 4.00000i − 0.279372i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −32.0000 −2.21349
$$210$$ 0 0
$$211$$ − 12.0000i − 0.826114i −0.910705 0.413057i $$-0.864461\pi$$
0.910705 0.413057i $$-0.135539\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ 8.00000 0.545595
$$216$$ 0 0
$$217$$ 8.00000 0.543075
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ 12.0000i 0.807207i
$$222$$ 0 0
$$223$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$224$$ 0 0
$$225$$ 3.00000 0.200000
$$226$$ 0 0
$$227$$ 8.00000i 0.530979i 0.964114 + 0.265489i $$0.0855335\pi$$
−0.964114 + 0.265489i $$0.914466\pi$$
$$228$$ 0 0
$$229$$ 10.0000i 0.660819i 0.943838 + 0.330409i $$0.107187\pi$$
−0.943838 + 0.330409i $$0.892813\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 22.0000 1.44127 0.720634 0.693316i $$-0.243851\pi$$
0.720634 + 0.693316i $$0.243851\pi$$
$$234$$ 0 0
$$235$$ − 16.0000i − 1.04372i
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 8.00000 0.517477 0.258738 0.965947i $$-0.416693\pi$$
0.258738 + 0.965947i $$0.416693\pi$$
$$240$$ 0 0
$$241$$ 10.0000 0.644157 0.322078 0.946713i $$-0.395619\pi$$
0.322078 + 0.946713i $$0.395619\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 2.00000i 0.127775i
$$246$$ 0 0
$$247$$ −16.0000 −1.01806
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ 24.0000i 1.51487i 0.652913 + 0.757433i $$0.273547\pi$$
−0.652913 + 0.757433i $$0.726453\pi$$
$$252$$ 0 0
$$253$$ 0 0
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 2.00000 0.124757 0.0623783 0.998053i $$-0.480131\pi$$
0.0623783 + 0.998053i $$0.480131\pi$$
$$258$$ 0 0
$$259$$ − 2.00000i − 0.124274i
$$260$$ 0 0
$$261$$ − 18.0000i − 1.11417i
$$262$$ 0 0
$$263$$ −24.0000 −1.47990 −0.739952 0.672660i $$-0.765152\pi$$
−0.739952 + 0.672660i $$0.765152\pi$$
$$264$$ 0 0
$$265$$ −12.0000 −0.737154
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ 14.0000i 0.853595i 0.904347 + 0.426798i $$0.140358\pi$$
−0.904347 + 0.426798i $$0.859642\pi$$
$$270$$ 0 0
$$271$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ − 4.00000i − 0.241209i
$$276$$ 0 0
$$277$$ 22.0000i 1.32185i 0.750451 + 0.660926i $$0.229836\pi$$
−0.750451 + 0.660926i $$0.770164\pi$$
$$278$$ 0 0
$$279$$ 24.0000 1.43684
$$280$$ 0 0
$$281$$ 6.00000 0.357930 0.178965 0.983855i $$-0.442725\pi$$
0.178965 + 0.983855i $$0.442725\pi$$
$$282$$ 0 0
$$283$$ 16.0000i 0.951101i 0.879688 + 0.475551i $$0.157751\pi$$
−0.879688 + 0.475551i $$0.842249\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −2.00000 −0.118056
$$288$$ 0 0
$$289$$ 19.0000 1.11765
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 18.0000i 1.05157i 0.850617 + 0.525786i $$0.176229\pi$$
−0.850617 + 0.525786i $$0.823771\pi$$
$$294$$ 0 0
$$295$$ 0 0
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 0 0
$$300$$ 0 0
$$301$$ − 4.00000i − 0.230556i
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −12.0000 −0.687118
$$306$$ 0 0
$$307$$ 8.00000i 0.456584i 0.973593 + 0.228292i $$0.0733141\pi$$
−0.973593 + 0.228292i $$0.926686\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −8.00000 −0.453638 −0.226819 0.973937i $$-0.572833\pi$$
−0.226819 + 0.973937i $$0.572833\pi$$
$$312$$ 0 0
$$313$$ 14.0000 0.791327 0.395663 0.918396i $$-0.370515\pi$$
0.395663 + 0.918396i $$0.370515\pi$$
$$314$$ 0 0
$$315$$ 6.00000i 0.338062i
$$316$$ 0 0
$$317$$ − 30.0000i − 1.68497i −0.538721 0.842484i $$-0.681092\pi$$
0.538721 0.842484i $$-0.318908\pi$$
$$318$$ 0 0
$$319$$ −24.0000 −1.34374
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 48.0000i 2.67079i
$$324$$ 0 0
$$325$$ − 2.00000i − 0.110940i
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ −8.00000 −0.441054
$$330$$ 0 0
$$331$$ − 4.00000i − 0.219860i −0.993939 0.109930i $$-0.964937\pi$$
0.993939 0.109930i $$-0.0350627\pi$$
$$332$$ 0 0
$$333$$ − 6.00000i − 0.328798i
$$334$$ 0 0
$$335$$ −8.00000 −0.437087
$$336$$ 0 0
$$337$$ 2.00000 0.108947 0.0544735 0.998515i $$-0.482652\pi$$
0.0544735 + 0.998515i $$0.482652\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ − 32.0000i − 1.73290i
$$342$$ 0 0
$$343$$ 1.00000 0.0539949
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 12.0000i 0.644194i 0.946707 + 0.322097i $$0.104388\pi$$
−0.946707 + 0.322097i $$0.895612\pi$$
$$348$$ 0 0
$$349$$ 30.0000i 1.60586i 0.596071 + 0.802932i $$0.296728\pi$$
−0.596071 + 0.802932i $$0.703272\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ −14.0000 −0.745145 −0.372572 0.928003i $$-0.621524\pi$$
−0.372572 + 0.928003i $$0.621524\pi$$
$$354$$ 0 0
$$355$$ 16.0000i 0.849192i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$360$$ 0 0
$$361$$ −45.0000 −2.36842
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ − 20.0000i − 1.04685i
$$366$$ 0 0
$$367$$ 16.0000 0.835193 0.417597 0.908633i $$-0.362873\pi$$
0.417597 + 0.908633i $$0.362873\pi$$
$$368$$ 0 0
$$369$$ −6.00000 −0.312348
$$370$$ 0 0
$$371$$ 6.00000i 0.311504i
$$372$$ 0 0
$$373$$ − 26.0000i − 1.34623i −0.739538 0.673114i $$-0.764956\pi$$
0.739538 0.673114i $$-0.235044\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ −12.0000 −0.618031
$$378$$ 0 0
$$379$$ − 4.00000i − 0.205466i −0.994709 0.102733i $$-0.967241\pi$$
0.994709 0.102733i $$-0.0327588\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ −24.0000 −1.22634 −0.613171 0.789950i $$-0.710106\pi$$
−0.613171 + 0.789950i $$0.710106\pi$$
$$384$$ 0 0
$$385$$ 8.00000 0.407718
$$386$$ 0 0
$$387$$ − 12.0000i − 0.609994i
$$388$$ 0 0
$$389$$ − 2.00000i − 0.101404i −0.998714 0.0507020i $$-0.983854\pi$$
0.998714 0.0507020i $$-0.0161459\pi$$
$$390$$ 0 0
$$391$$ 0 0
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 32.0000i 1.61009i
$$396$$ 0 0
$$397$$ 14.0000i 0.702640i 0.936255 + 0.351320i $$0.114267\pi$$
−0.936255 + 0.351320i $$0.885733\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 18.0000 0.898877 0.449439 0.893311i $$-0.351624\pi$$
0.449439 + 0.893311i $$0.351624\pi$$
$$402$$ 0 0
$$403$$ − 16.0000i − 0.797017i
$$404$$ 0 0
$$405$$ 18.0000i 0.894427i
$$406$$ 0 0
$$407$$ −8.00000 −0.396545
$$408$$ 0 0
$$409$$ 14.0000 0.692255 0.346128 0.938187i $$-0.387496\pi$$
0.346128 + 0.938187i $$0.387496\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 16.0000 0.785409
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 16.0000i 0.781651i 0.920465 + 0.390826i $$0.127810\pi$$
−0.920465 + 0.390826i $$0.872190\pi$$
$$420$$ 0 0
$$421$$ − 26.0000i − 1.26716i −0.773676 0.633581i $$-0.781584\pi$$
0.773676 0.633581i $$-0.218416\pi$$
$$422$$ 0 0
$$423$$ −24.0000 −1.16692
$$424$$ 0 0
$$425$$ −6.00000 −0.291043
$$426$$ 0 0
$$427$$ 6.00000i 0.290360i
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −8.00000 −0.385346 −0.192673 0.981263i $$-0.561716\pi$$
−0.192673 + 0.981263i $$0.561716\pi$$
$$432$$ 0 0
$$433$$ 10.0000 0.480569 0.240285 0.970702i $$-0.422759\pi$$
0.240285 + 0.970702i $$0.422759\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 0 0
$$438$$ 0 0
$$439$$ −24.0000 −1.14546 −0.572729 0.819745i $$-0.694115\pi$$
−0.572729 + 0.819745i $$0.694115\pi$$
$$440$$ 0 0
$$441$$ 3.00000 0.142857
$$442$$ 0 0
$$443$$ 36.0000i 1.71041i 0.518289 + 0.855206i $$0.326569\pi$$
−0.518289 + 0.855206i $$0.673431\pi$$
$$444$$ 0 0
$$445$$ 12.0000i 0.568855i
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 34.0000 1.60456 0.802280 0.596948i $$-0.203620\pi$$
0.802280 + 0.596948i $$0.203620\pi$$
$$450$$ 0 0
$$451$$ 8.00000i 0.376705i
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 4.00000 0.187523
$$456$$ 0 0
$$457$$ 38.0000 1.77757 0.888783 0.458329i $$-0.151552\pi$$
0.888783 + 0.458329i $$0.151552\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 30.0000i 1.39724i 0.715493 + 0.698620i $$0.246202\pi$$
−0.715493 + 0.698620i $$0.753798\pi$$
$$462$$ 0 0
$$463$$ −16.0000 −0.743583 −0.371792 0.928316i $$-0.621256\pi$$
−0.371792 + 0.928316i $$0.621256\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 8.00000i 0.370196i 0.982720 + 0.185098i $$0.0592602\pi$$
−0.982720 + 0.185098i $$0.940740\pi$$
$$468$$ 0 0
$$469$$ 4.00000i 0.184703i
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ −16.0000 −0.735681
$$474$$ 0 0
$$475$$ − 8.00000i − 0.367065i
$$476$$ 0 0
$$477$$ 18.0000i 0.824163i
$$478$$ 0 0
$$479$$ −24.0000 −1.09659 −0.548294 0.836286i $$-0.684723\pi$$
−0.548294 + 0.836286i $$0.684723\pi$$
$$480$$ 0 0
$$481$$ −4.00000 −0.182384
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ − 12.0000i − 0.544892i
$$486$$ 0 0
$$487$$ 16.0000 0.725029 0.362515 0.931978i $$-0.381918\pi$$
0.362515 + 0.931978i $$0.381918\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ − 12.0000i − 0.541552i −0.962642 0.270776i $$-0.912720\pi$$
0.962642 0.270776i $$-0.0872803\pi$$
$$492$$ 0 0
$$493$$ 36.0000i 1.62136i
$$494$$ 0 0
$$495$$ 24.0000 1.07872
$$496$$ 0 0
$$497$$ 8.00000 0.358849
$$498$$ 0 0
$$499$$ 4.00000i 0.179065i 0.995984 + 0.0895323i $$0.0285372\pi$$
−0.995984 + 0.0895323i $$0.971463\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −40.0000 −1.78351 −0.891756 0.452517i $$-0.850526\pi$$
−0.891756 + 0.452517i $$0.850526\pi$$
$$504$$ 0 0
$$505$$ −4.00000 −0.177998
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ − 34.0000i − 1.50702i −0.657434 0.753512i $$-0.728358\pi$$
0.657434 0.753512i $$-0.271642\pi$$
$$510$$ 0 0
$$511$$ −10.0000 −0.442374
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ 32.0000i 1.41009i
$$516$$ 0 0
$$517$$ 32.0000i 1.40736i
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −18.0000 −0.788594 −0.394297 0.918983i $$-0.629012\pi$$
−0.394297 + 0.918983i $$0.629012\pi$$
$$522$$ 0 0
$$523$$ − 32.0000i − 1.39926i −0.714504 0.699631i $$-0.753348\pi$$
0.714504 0.699631i $$-0.246652\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −48.0000 −2.09091
$$528$$ 0 0
$$529$$ −23.0000 −1.00000
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ 4.00000i 0.173259i
$$534$$ 0 0
$$535$$ 24.0000 1.03761
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ − 4.00000i − 0.172292i
$$540$$ 0 0
$$541$$ − 14.0000i − 0.601907i −0.953639 0.300954i $$-0.902695\pi$$
0.953639 0.300954i $$-0.0973049\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ −20.0000 −0.856706
$$546$$ 0 0
$$547$$ − 36.0000i − 1.53925i −0.638497 0.769624i $$-0.720443\pi$$
0.638497 0.769624i $$-0.279557\pi$$
$$548$$ 0 0
$$549$$ 18.0000i 0.768221i
$$550$$ 0 0
$$551$$ −48.0000 −2.04487
$$552$$ 0 0
$$553$$ 16.0000 0.680389
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ − 14.0000i − 0.593199i −0.955002 0.296600i $$-0.904147\pi$$
0.955002 0.296600i $$-0.0958526\pi$$
$$558$$ 0 0
$$559$$ −8.00000 −0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ − 32.0000i − 1.34864i −0.738440 0.674320i $$-0.764437\pi$$
0.738440 0.674320i $$-0.235563\pi$$
$$564$$ 0 0
$$565$$ 4.00000i 0.168281i
$$566$$ 0 0
$$567$$ 9.00000 0.377964
$$568$$ 0 0
$$569$$ −26.0000 −1.08998 −0.544988 0.838444i $$-0.683466\pi$$
−0.544988 + 0.838444i $$0.683466\pi$$
$$570$$ 0 0
$$571$$ 28.0000i 1.17176i 0.810397 + 0.585882i $$0.199252\pi$$
−0.810397 + 0.585882i $$0.800748\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 0 0
$$576$$ 0 0
$$577$$ −14.0000 −0.582828 −0.291414 0.956597i $$-0.594126\pi$$
−0.291414 + 0.956597i $$0.594126\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ − 8.00000i − 0.331896i
$$582$$ 0 0
$$583$$ 24.0000 0.993978
$$584$$ 0 0
$$585$$ 12.0000 0.496139
$$586$$ 0 0
$$587$$ − 24.0000i − 0.990586i −0.868726 0.495293i $$-0.835061\pi$$
0.868726 0.495293i $$-0.164939\pi$$
$$588$$ 0 0
$$589$$ − 64.0000i − 2.63707i
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ 34.0000 1.39621 0.698106 0.715994i $$-0.254026\pi$$
0.698106 + 0.715994i $$0.254026\pi$$
$$594$$ 0 0
$$595$$ − 12.0000i − 0.491952i
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 24.0000 0.980613 0.490307 0.871550i $$-0.336885\pi$$
0.490307 + 0.871550i $$0.336885\pi$$
$$600$$ 0 0
$$601$$ −26.0000 −1.06056 −0.530281 0.847822i $$-0.677914\pi$$
−0.530281 + 0.847822i $$0.677914\pi$$
$$602$$ 0 0
$$603$$ 12.0000i 0.488678i
$$604$$ 0 0
$$605$$ − 10.0000i − 0.406558i
$$606$$ 0 0
$$607$$ 32.0000 1.29884 0.649420 0.760430i $$-0.275012\pi$$
0.649420 + 0.760430i $$0.275012\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 16.0000i 0.647291i
$$612$$ 0 0
$$613$$ − 18.0000i − 0.727013i −0.931592 0.363507i $$-0.881579\pi$$
0.931592 0.363507i $$-0.118421\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ 38.0000 1.52982 0.764911 0.644136i $$-0.222783\pi$$
0.764911 + 0.644136i $$0.222783\pi$$
$$618$$ 0 0
$$619$$ − 32.0000i − 1.28619i −0.765787 0.643094i $$-0.777650\pi$$
0.765787 0.643094i $$-0.222350\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 6.00000 0.240385
$$624$$ 0 0
$$625$$ −19.0000 −0.760000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ 12.0000i 0.478471i
$$630$$ 0 0
$$631$$ −24.0000 −0.955425 −0.477712 0.878516i $$-0.658534\pi$$
−0.477712 + 0.878516i $$0.658534\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ − 16.0000i − 0.634941i
$$636$$ 0 0
$$637$$ − 2.00000i − 0.0792429i
$$638$$ 0 0
$$639$$ 24.0000 0.949425
$$640$$ 0 0
$$641$$ −30.0000 −1.18493 −0.592464 0.805597i $$-0.701845\pi$$
−0.592464 + 0.805597i $$0.701845\pi$$
$$642$$ 0 0
$$643$$ − 16.0000i − 0.630978i −0.948929 0.315489i $$-0.897831\pi$$
0.948929 0.315489i $$-0.102169\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 32.0000 1.25805 0.629025 0.777385i $$-0.283454\pi$$
0.629025 + 0.777385i $$0.283454\pi$$
$$648$$ 0 0
$$649$$ 0 0
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 26.0000i 1.01746i 0.860927 + 0.508729i $$0.169885\pi$$
−0.860927 + 0.508729i $$0.830115\pi$$
$$654$$ 0 0
$$655$$ 16.0000 0.625172
$$656$$ 0 0
$$657$$ −30.0000 −1.17041
$$658$$ 0 0
$$659$$ 12.0000i 0.467454i 0.972302 + 0.233727i $$0.0750921\pi$$
−0.972302 + 0.233727i $$0.924908\pi$$
$$660$$ 0 0
$$661$$ 2.00000i 0.0777910i 0.999243 + 0.0388955i $$0.0123839\pi$$
−0.999243 + 0.0388955i $$0.987616\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 16.0000 0.620453
$$666$$ 0 0
$$667$$ 0 0
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 24.0000 0.926510
$$672$$ 0 0
$$673$$ −14.0000 −0.539660 −0.269830 0.962908i $$-0.586968\pi$$
−0.269830 + 0.962908i $$0.586968\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ − 6.00000i − 0.230599i −0.993331 0.115299i $$-0.963217\pi$$
0.993331 0.115299i $$-0.0367827\pi$$
$$678$$ 0 0
$$679$$ −6.00000 −0.230259
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 36.0000i 1.37750i 0.724998 + 0.688751i $$0.241841\pi$$
−0.724998 + 0.688751i $$0.758159\pi$$
$$684$$ 0 0
$$685$$ 12.0000i 0.458496i
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 12.0000 0.457164
$$690$$ 0 0
$$691$$ 8.00000i 0.304334i 0.988355 + 0.152167i $$0.0486252\pi$$
−0.988355 + 0.152167i $$0.951375\pi$$
$$692$$ 0 0
$$693$$ − 12.0000i − 0.455842i
$$694$$ 0 0
$$695$$ 16.0000 0.606915
$$696$$ 0 0
$$697$$ 12.0000 0.454532
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 42.0000i 1.58632i 0.609015 + 0.793159i $$0.291565\pi$$
−0.609015 + 0.793159i $$0.708435\pi$$
$$702$$ 0 0
$$703$$ −16.0000 −0.603451
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 2.00000i 0.0752177i
$$708$$ 0 0
$$709$$ 30.0000i 1.12667i 0.826227 + 0.563337i $$0.190483\pi$$
−0.826227 + 0.563337i $$0.809517\pi$$
$$710$$ 0 0
$$711$$ 48.0000 1.80014
$$712$$ 0 0
$$713$$ 0 0
$$714$$ 0 0
$$715$$ − 16.0000i − 0.598366i
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 8.00000 0.298350 0.149175 0.988811i $$-0.452338\pi$$
0.149175 + 0.988811i $$0.452338\pi$$
$$720$$ 0 0
$$721$$ 16.0000 0.595871
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ − 6.00000i − 0.222834i
$$726$$ 0 0
$$727$$ −16.0000 −0.593407 −0.296704 0.954970i $$-0.595887\pi$$
−0.296704 + 0.954970i $$0.595887\pi$$
$$728$$ 0 0
$$729$$ 27.0000 1.00000
$$730$$ 0 0
$$731$$ 24.0000i 0.887672i
$$732$$ 0 0
$$733$$ − 26.0000i − 0.960332i −0.877178 0.480166i $$-0.840576\pi$$
0.877178 0.480166i $$-0.159424\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 16.0000 0.589368
$$738$$ 0 0
$$739$$ − 52.0000i − 1.91285i −0.291977 0.956425i $$-0.594313\pi$$
0.291977 0.956425i $$-0.405687\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −32.0000 −1.17397 −0.586983 0.809599i $$-0.699684\pi$$
−0.586983 + 0.809599i $$0.699684\pi$$
$$744$$ 0 0
$$745$$ −12.0000 −0.439646
$$746$$ 0 0
$$747$$ − 24.0000i − 0.878114i
$$748$$ 0 0
$$749$$ − 12.0000i − 0.438470i
$$750$$ 0 0
$$751$$ −8.00000 −0.291924 −0.145962 0.989290i $$-0.546628\pi$$
−0.145962 + 0.989290i $$0.546628\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 0 0
$$756$$ 0 0
$$757$$ − 2.00000i − 0.0726912i −0.999339 0.0363456i $$-0.988428\pi$$
0.999339 0.0363456i $$-0.0115717\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 30.0000 1.08750 0.543750 0.839248i $$-0.317004\pi$$
0.543750 + 0.839248i $$0.317004\pi$$
$$762$$ 0 0
$$763$$ 10.0000i 0.362024i
$$764$$ 0 0
$$765$$ − 36.0000i − 1.30158i
$$766$$ 0 0
$$767$$ 0 0
$$768$$ 0 0
$$769$$ −22.0000 −0.793340 −0.396670 0.917961i $$-0.629834\pi$$
−0.396670 + 0.917961i $$0.629834\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 50.0000i 1.79838i 0.437564 + 0.899188i $$0.355842\pi$$
−0.437564 + 0.899188i $$0.644158\pi$$
$$774$$ 0 0
$$775$$ 8.00000 0.287368
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 16.0000i 0.573259i
$$780$$ 0 0
$$781$$ − 32.0000i − 1.14505i
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ 36.0000 1.28490
$$786$$ 0 0
$$787$$ 40.0000i 1.42585i 0.701242 + 0.712923i $$0.252629\pi$$
−0.701242 + 0.712923i $$0.747371\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 2.00000 0.0711118
$$792$$ 0 0
$$793$$ 12.0000 0.426132
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 30.0000i 1.06265i 0.847167 + 0.531327i $$0.178307\pi$$
−0.847167 + 0.531327i $$0.821693\pi$$
$$798$$ 0 0
$$799$$ 48.0000 1.69812
$$800$$ 0 0
$$801$$ 18.0000 0.635999
$$802$$ 0 0
$$803$$ 40.0000i 1.41157i
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −26.0000 −0.914111 −0.457056 0.889438i $$-0.651096\pi$$
−0.457056 + 0.889438i $$0.651096\pi$$
$$810$$ 0 0
$$811$$ 16.0000i 0.561836i 0.959732 + 0.280918i $$0.0906389\pi$$
−0.959732 + 0.280918i $$0.909361\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −24.0000 −0.840683
$$816$$ 0 0
$$817$$ −32.0000 −1.11954
$$818$$ 0 0
$$819$$ − 6.00000i − 0.209657i
$$820$$ 0 0
$$821$$ − 10.0000i − 0.349002i −0.984657 0.174501i $$-0.944169\pi$$
0.984657 0.174501i $$-0.0558313\pi$$
$$822$$ 0 0
$$823$$ −24.0000 −0.836587 −0.418294 0.908312i $$-0.637372\pi$$
−0.418294 + 0.908312i $$0.637372\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ − 28.0000i − 0.973655i −0.873498 0.486828i $$-0.838154\pi$$
0.873498 0.486828i $$-0.161846\pi$$
$$828$$ 0 0
$$829$$ − 26.0000i − 0.903017i −0.892267 0.451509i $$-0.850886\pi$$
0.892267 0.451509i $$-0.149114\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ −6.00000 −0.207888
$$834$$ 0 0
$$835$$ − 32.0000i − 1.10741i
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 48.0000 1.65714 0.828572 0.559883i $$-0.189154\pi$$
0.828572 + 0.559883i $$0.189154\pi$$
$$840$$ 0 0
$$841$$ −7.00000 −0.241379
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ 18.0000i 0.619219i
$$846$$ 0 0
$$847$$ −5.00000 −0.171802
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 0 0
$$852$$ 0 0
$$853$$ 26.0000i 0.890223i 0.895475 + 0.445112i $$0.146836\pi$$
−0.895475 + 0.445112i $$0.853164\pi$$
$$854$$ 0 0
$$855$$ 48.0000 1.64157
$$856$$ 0 0
$$857$$ −18.0000 −0.614868 −0.307434 0.951569i $$-0.599470\pi$$
−0.307434 + 0.951569i $$0.599470\pi$$
$$858$$ 0 0
$$859$$ − 40.0000i − 1.36478i −0.730987 0.682391i $$-0.760940\pi$$
0.730987 0.682391i $$-0.239060\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 16.0000 0.544646 0.272323 0.962206i $$-0.412208\pi$$
0.272323 + 0.962206i $$0.412208\pi$$
$$864$$ 0 0
$$865$$ 36.0000 1.22404
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ − 64.0000i − 2.17105i
$$870$$ 0 0
$$871$$ 8.00000 0.271070
$$872$$ 0 0
$$873$$ −18.0000 −0.609208
$$874$$ 0 0
$$875$$ 12.0000i 0.405674i
$$876$$ 0 0
$$877$$ − 6.00000i − 0.202606i −0.994856 0.101303i $$-0.967699\pi$$
0.994856 0.101303i $$-0.0323011\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ 18.0000 0.606435 0.303218 0.952921i $$-0.401939\pi$$
0.303218 + 0.952921i $$0.401939\pi$$
$$882$$ 0 0
$$883$$ 20.0000i 0.673054i 0.941674 + 0.336527i $$0.109252\pi$$
−0.941674 + 0.336527i $$0.890748\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ 16.0000 0.537227 0.268614 0.963248i $$-0.413434\pi$$
0.268614 + 0.963248i $$0.413434\pi$$
$$888$$ 0 0
$$889$$ −8.00000 −0.268311
$$890$$ 0 0
$$891$$ − 36.0000i − 1.20605i
$$892$$ 0 0
$$893$$ 64.0000i 2.14168i
$$894$$ 0 0
$$895$$ −8.00000 −0.267411
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ − 48.0000i − 1.60089i
$$900$$ 0 0
$$901$$ − 36.0000i − 1.19933i
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ −20.0000 −0.664822
$$906$$ 0 0
$$907$$ − 28.0000i − 0.929725i −0.885383 0.464862i $$-0.846104\pi$$
0.885383 0.464862i $$-0.153896\pi$$
$$908$$ 0 0
$$909$$ 6.00000i 0.199007i
$$910$$ 0 0
$$911$$ 24.0000 0.795155 0.397578 0.917568i $$-0.369851\pi$$
0.397578 + 0.917568i $$0.369851\pi$$
$$912$$ 0 0
$$913$$ −32.0000 −1.05905
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ − 8.00000i − 0.264183i
$$918$$ 0 0
$$919$$ 40.0000 1.31948 0.659739 0.751495i $$-0.270667\pi$$
0.659739 + 0.751495i $$0.270667\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ − 16.0000i − 0.526646i
$$924$$ 0 0
$$925$$ − 2.00000i − 0.0657596i
$$926$$ 0 0
$$927$$ 48.0000 1.57653
$$928$$ 0 0
$$929$$ 10.0000 0.328089 0.164045 0.986453i $$-0.447546\pi$$
0.164045 + 0.986453i $$0.447546\pi$$
$$930$$ 0 0
$$931$$ − 8.00000i − 0.262189i
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ −48.0000 −1.56977
$$936$$ 0 0
$$937$$ −10.0000 −0.326686 −0.163343 0.986569i $$-0.552228\pi$$
−0.163343 + 0.986569i $$0.552228\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ 54.0000i 1.76035i 0.474650 + 0.880175i $$0.342575\pi$$
−0.474650 + 0.880175i $$0.657425\pi$$
$$942$$ 0 0
$$943$$ 0 0
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ − 52.0000i − 1.68977i −0.534946 0.844886i $$-0.679668\pi$$
0.534946 0.844886i $$-0.320332\pi$$
$$948$$ 0 0
$$949$$ 20.0000i 0.649227i
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 6.00000 0.194359 0.0971795 0.995267i $$-0.469018\pi$$
0.0971795 + 0.995267i $$0.469018\pi$$
$$954$$ 0 0
$$955$$ − 32.0000i − 1.03550i
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ 6.00000 0.193750
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ 0 0
$$963$$ − 36.0000i − 1.16008i
$$964$$ 0 0
$$965$$ − 28.0000i − 0.901352i
$$966$$ 0 0
$$967$$ 16.0000 0.514525 0.257263 0.966342i $$-0.417179\pi$$
0.257263 + 0.966342i $$0.417179\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 48.0000i 1.54039i 0.637806 + 0.770197i $$0.279842\pi$$
−0.637806 + 0.770197i $$0.720158\pi$$
$$972$$ 0 0
$$973$$ − 8.00000i − 0.256468i
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 2.00000 0.0639857 0.0319928 0.999488i $$-0.489815\pi$$
0.0319928 + 0.999488i $$0.489815\pi$$
$$978$$ 0 0
$$979$$ − 24.0000i − 0.767043i
$$980$$ 0 0
$$981$$ 30.0000i 0.957826i
$$982$$ 0 0
$$983$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$984$$ 0 0
$$985$$ −12.0000 −0.382352
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 0 0
$$990$$ 0 0
$$991$$ −16.0000 −0.508257 −0.254128 0.967170i $$-0.581789\pi$$
−0.254128 + 0.967170i $$0.581789\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ 0 0
$$996$$ 0 0
$$997$$ − 14.0000i − 0.443384i −0.975117 0.221692i $$-0.928842\pi$$
0.975117 0.221692i $$-0.0711580\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1792.2.b.i.897.2 2
4.3 odd 2 1792.2.b.d.897.2 2
8.3 odd 2 1792.2.b.d.897.1 2
8.5 even 2 inner 1792.2.b.i.897.1 2
16.3 odd 4 112.2.a.b.1.1 1
16.5 even 4 448.2.a.d.1.1 1
16.11 odd 4 448.2.a.e.1.1 1
16.13 even 4 56.2.a.a.1.1 1
48.5 odd 4 4032.2.a.bb.1.1 1
48.11 even 4 4032.2.a.bk.1.1 1
48.29 odd 4 504.2.a.c.1.1 1
48.35 even 4 1008.2.a.d.1.1 1
80.3 even 4 2800.2.g.p.449.1 2
80.13 odd 4 1400.2.g.g.449.2 2
80.19 odd 4 2800.2.a.p.1.1 1
80.29 even 4 1400.2.a.g.1.1 1
80.67 even 4 2800.2.g.p.449.2 2
80.77 odd 4 1400.2.g.g.449.1 2
112.3 even 12 784.2.i.g.177.1 2
112.13 odd 4 392.2.a.d.1.1 1
112.19 even 12 784.2.i.g.753.1 2
112.27 even 4 3136.2.a.p.1.1 1
112.45 odd 12 392.2.i.d.177.1 2
112.51 odd 12 784.2.i.e.753.1 2
112.61 odd 12 392.2.i.d.361.1 2
112.67 odd 12 784.2.i.e.177.1 2
112.69 odd 4 3136.2.a.q.1.1 1
112.83 even 4 784.2.a.e.1.1 1
112.93 even 12 392.2.i.c.361.1 2
112.109 even 12 392.2.i.c.177.1 2
176.109 odd 4 6776.2.a.g.1.1 1
208.77 even 4 9464.2.a.c.1.1 1
336.83 odd 4 7056.2.a.bo.1.1 1
336.125 even 4 3528.2.a.x.1.1 1
336.173 even 12 3528.2.s.e.361.1 2
336.221 odd 12 3528.2.s.t.3313.1 2
336.269 even 12 3528.2.s.e.3313.1 2
336.317 odd 12 3528.2.s.t.361.1 2
560.349 odd 4 9800.2.a.u.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
56.2.a.a.1.1 1 16.13 even 4
112.2.a.b.1.1 1 16.3 odd 4
392.2.a.d.1.1 1 112.13 odd 4
392.2.i.c.177.1 2 112.109 even 12
392.2.i.c.361.1 2 112.93 even 12
392.2.i.d.177.1 2 112.45 odd 12
392.2.i.d.361.1 2 112.61 odd 12
448.2.a.d.1.1 1 16.5 even 4
448.2.a.e.1.1 1 16.11 odd 4
504.2.a.c.1.1 1 48.29 odd 4
784.2.a.e.1.1 1 112.83 even 4
784.2.i.e.177.1 2 112.67 odd 12
784.2.i.e.753.1 2 112.51 odd 12
784.2.i.g.177.1 2 112.3 even 12
784.2.i.g.753.1 2 112.19 even 12
1008.2.a.d.1.1 1 48.35 even 4
1400.2.a.g.1.1 1 80.29 even 4
1400.2.g.g.449.1 2 80.77 odd 4
1400.2.g.g.449.2 2 80.13 odd 4
1792.2.b.d.897.1 2 8.3 odd 2
1792.2.b.d.897.2 2 4.3 odd 2
1792.2.b.i.897.1 2 8.5 even 2 inner
1792.2.b.i.897.2 2 1.1 even 1 trivial
2800.2.a.p.1.1 1 80.19 odd 4
2800.2.g.p.449.1 2 80.3 even 4
2800.2.g.p.449.2 2 80.67 even 4
3136.2.a.p.1.1 1 112.27 even 4
3136.2.a.q.1.1 1 112.69 odd 4
3528.2.a.x.1.1 1 336.125 even 4
3528.2.s.e.361.1 2 336.173 even 12
3528.2.s.e.3313.1 2 336.269 even 12
3528.2.s.t.361.1 2 336.317 odd 12
3528.2.s.t.3313.1 2 336.221 odd 12
4032.2.a.bb.1.1 1 48.5 odd 4
4032.2.a.bk.1.1 1 48.11 even 4
6776.2.a.g.1.1 1 176.109 odd 4
7056.2.a.bo.1.1 1 336.83 odd 4
9464.2.a.c.1.1 1 208.77 even 4
9800.2.a.u.1.1 1 560.349 odd 4