Properties

Label 1792.2.a.h.1.1
Level $1792$
Weight $2$
Character 1792.1
Self dual yes
Analytic conductor $14.309$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1792 = 2^{8} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1792.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(14.3091920422\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 448)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1792.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.00000 q^{3} +4.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{3} +4.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} +2.00000 q^{11} -4.00000 q^{13} +8.00000 q^{15} +2.00000 q^{17} -6.00000 q^{19} +2.00000 q^{21} +11.0000 q^{25} -4.00000 q^{27} +8.00000 q^{29} +8.00000 q^{31} +4.00000 q^{33} +4.00000 q^{35} +8.00000 q^{37} -8.00000 q^{39} -10.0000 q^{41} +2.00000 q^{43} +4.00000 q^{45} -8.00000 q^{47} +1.00000 q^{49} +4.00000 q^{51} +8.00000 q^{55} -12.0000 q^{57} -10.0000 q^{59} +4.00000 q^{61} +1.00000 q^{63} -16.0000 q^{65} -2.00000 q^{67} +8.00000 q^{71} +6.00000 q^{73} +22.0000 q^{75} +2.00000 q^{77} -8.00000 q^{79} -11.0000 q^{81} -6.00000 q^{83} +8.00000 q^{85} +16.0000 q^{87} -10.0000 q^{89} -4.00000 q^{91} +16.0000 q^{93} -24.0000 q^{95} +2.00000 q^{97} +2.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 0 0
\(5\) 4.00000 1.78885 0.894427 0.447214i \(-0.147584\pi\)
0.894427 + 0.447214i \(0.147584\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −4.00000 −1.10940 −0.554700 0.832050i \(-0.687167\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) 8.00000 2.06559
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) −6.00000 −1.37649 −0.688247 0.725476i \(-0.741620\pi\)
−0.688247 + 0.725476i \(0.741620\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) 8.00000 1.43684 0.718421 0.695608i \(-0.244865\pi\)
0.718421 + 0.695608i \(0.244865\pi\)
\(32\) 0 0
\(33\) 4.00000 0.696311
\(34\) 0 0
\(35\) 4.00000 0.676123
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) −8.00000 −1.28103
\(40\) 0 0
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 2.00000 0.304997 0.152499 0.988304i \(-0.451268\pi\)
0.152499 + 0.988304i \(0.451268\pi\)
\(44\) 0 0
\(45\) 4.00000 0.596285
\(46\) 0 0
\(47\) −8.00000 −1.16692 −0.583460 0.812142i \(-0.698301\pi\)
−0.583460 + 0.812142i \(0.698301\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 4.00000 0.560112
\(52\) 0 0
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 8.00000 1.07872
\(56\) 0 0
\(57\) −12.0000 −1.58944
\(58\) 0 0
\(59\) −10.0000 −1.30189 −0.650945 0.759125i \(-0.725627\pi\)
−0.650945 + 0.759125i \(0.725627\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) −16.0000 −1.98456
\(66\) 0 0
\(67\) −2.00000 −0.244339 −0.122169 0.992509i \(-0.538985\pi\)
−0.122169 + 0.992509i \(0.538985\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 8.00000 0.949425 0.474713 0.880141i \(-0.342552\pi\)
0.474713 + 0.880141i \(0.342552\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 0 0
\(75\) 22.0000 2.54034
\(76\) 0 0
\(77\) 2.00000 0.227921
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) 16.0000 1.71538
\(88\) 0 0
\(89\) −10.0000 −1.06000 −0.529999 0.847998i \(-0.677808\pi\)
−0.529999 + 0.847998i \(0.677808\pi\)
\(90\) 0 0
\(91\) −4.00000 −0.419314
\(92\) 0 0
\(93\) 16.0000 1.65912
\(94\) 0 0
\(95\) −24.0000 −2.46235
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 2.00000 0.201008
\(100\) 0 0
\(101\) 4.00000 0.398015 0.199007 0.979998i \(-0.436228\pi\)
0.199007 + 0.979998i \(0.436228\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 8.00000 0.780720
\(106\) 0 0
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) 8.00000 0.766261 0.383131 0.923694i \(-0.374846\pi\)
0.383131 + 0.923694i \(0.374846\pi\)
\(110\) 0 0
\(111\) 16.0000 1.51865
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −4.00000 −0.369800
\(118\) 0 0
\(119\) 2.00000 0.183340
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −20.0000 −1.80334
\(124\) 0 0
\(125\) 24.0000 2.14663
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 0 0
\(135\) −16.0000 −1.37706
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) −16.0000 −1.34744
\(142\) 0 0
\(143\) −8.00000 −0.668994
\(144\) 0 0
\(145\) 32.0000 2.65746
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) −16.0000 −1.31077 −0.655386 0.755295i \(-0.727494\pi\)
−0.655386 + 0.755295i \(0.727494\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 32.0000 2.57030
\(156\) 0 0
\(157\) −4.00000 −0.319235 −0.159617 0.987179i \(-0.551026\pi\)
−0.159617 + 0.987179i \(0.551026\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 22.0000 1.72317 0.861586 0.507611i \(-0.169471\pi\)
0.861586 + 0.507611i \(0.169471\pi\)
\(164\) 0 0
\(165\) 16.0000 1.24560
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −6.00000 −0.458831
\(172\) 0 0
\(173\) 12.0000 0.912343 0.456172 0.889892i \(-0.349220\pi\)
0.456172 + 0.889892i \(0.349220\pi\)
\(174\) 0 0
\(175\) 11.0000 0.831522
\(176\) 0 0
\(177\) −20.0000 −1.50329
\(178\) 0 0
\(179\) 14.0000 1.04641 0.523205 0.852207i \(-0.324736\pi\)
0.523205 + 0.852207i \(0.324736\pi\)
\(180\) 0 0
\(181\) 12.0000 0.891953 0.445976 0.895045i \(-0.352856\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(182\) 0 0
\(183\) 8.00000 0.591377
\(184\) 0 0
\(185\) 32.0000 2.35269
\(186\) 0 0
\(187\) 4.00000 0.292509
\(188\) 0 0
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 10.0000 0.719816 0.359908 0.932988i \(-0.382808\pi\)
0.359908 + 0.932988i \(0.382808\pi\)
\(194\) 0 0
\(195\) −32.0000 −2.29157
\(196\) 0 0
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 8.00000 0.561490
\(204\) 0 0
\(205\) −40.0000 −2.79372
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −12.0000 −0.830057
\(210\) 0 0
\(211\) −2.00000 −0.137686 −0.0688428 0.997628i \(-0.521931\pi\)
−0.0688428 + 0.997628i \(0.521931\pi\)
\(212\) 0 0
\(213\) 16.0000 1.09630
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) 12.0000 0.810885
\(220\) 0 0
\(221\) −8.00000 −0.538138
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 11.0000 0.733333
\(226\) 0 0
\(227\) −6.00000 −0.398234 −0.199117 0.979976i \(-0.563807\pi\)
−0.199117 + 0.979976i \(0.563807\pi\)
\(228\) 0 0
\(229\) −4.00000 −0.264327 −0.132164 0.991228i \(-0.542192\pi\)
−0.132164 + 0.991228i \(0.542192\pi\)
\(230\) 0 0
\(231\) 4.00000 0.263181
\(232\) 0 0
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) −32.0000 −2.08745
\(236\) 0 0
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) 0 0
\(241\) 2.00000 0.128831 0.0644157 0.997923i \(-0.479482\pi\)
0.0644157 + 0.997923i \(0.479482\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) 4.00000 0.255551
\(246\) 0 0
\(247\) 24.0000 1.52708
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) −18.0000 −1.13615 −0.568075 0.822977i \(-0.692312\pi\)
−0.568075 + 0.822977i \(0.692312\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 16.0000 1.00196
\(256\) 0 0
\(257\) 18.0000 1.12281 0.561405 0.827541i \(-0.310261\pi\)
0.561405 + 0.827541i \(0.310261\pi\)
\(258\) 0 0
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 8.00000 0.495188
\(262\) 0 0
\(263\) −8.00000 −0.493301 −0.246651 0.969104i \(-0.579330\pi\)
−0.246651 + 0.969104i \(0.579330\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −20.0000 −1.22398
\(268\) 0 0
\(269\) 12.0000 0.731653 0.365826 0.930683i \(-0.380786\pi\)
0.365826 + 0.930683i \(0.380786\pi\)
\(270\) 0 0
\(271\) 16.0000 0.971931 0.485965 0.873978i \(-0.338468\pi\)
0.485965 + 0.873978i \(0.338468\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) 22.0000 1.32665
\(276\) 0 0
\(277\) −16.0000 −0.961347 −0.480673 0.876900i \(-0.659608\pi\)
−0.480673 + 0.876900i \(0.659608\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) −2.00000 −0.119310 −0.0596550 0.998219i \(-0.519000\pi\)
−0.0596550 + 0.998219i \(0.519000\pi\)
\(282\) 0 0
\(283\) 22.0000 1.30776 0.653882 0.756596i \(-0.273139\pi\)
0.653882 + 0.756596i \(0.273139\pi\)
\(284\) 0 0
\(285\) −48.0000 −2.84327
\(286\) 0 0
\(287\) −10.0000 −0.590281
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 4.00000 0.234484
\(292\) 0 0
\(293\) 4.00000 0.233682 0.116841 0.993151i \(-0.462723\pi\)
0.116841 + 0.993151i \(0.462723\pi\)
\(294\) 0 0
\(295\) −40.0000 −2.32889
\(296\) 0 0
\(297\) −8.00000 −0.464207
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) 0 0
\(303\) 8.00000 0.459588
\(304\) 0 0
\(305\) 16.0000 0.916157
\(306\) 0 0
\(307\) −22.0000 −1.25561 −0.627803 0.778372i \(-0.716046\pi\)
−0.627803 + 0.778372i \(0.716046\pi\)
\(308\) 0 0
\(309\) −32.0000 −1.82042
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 4.00000 0.225374
\(316\) 0 0
\(317\) 32.0000 1.79730 0.898650 0.438667i \(-0.144549\pi\)
0.898650 + 0.438667i \(0.144549\pi\)
\(318\) 0 0
\(319\) 16.0000 0.895828
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) −12.0000 −0.667698
\(324\) 0 0
\(325\) −44.0000 −2.44068
\(326\) 0 0
\(327\) 16.0000 0.884802
\(328\) 0 0
\(329\) −8.00000 −0.441054
\(330\) 0 0
\(331\) 18.0000 0.989369 0.494685 0.869072i \(-0.335284\pi\)
0.494685 + 0.869072i \(0.335284\pi\)
\(332\) 0 0
\(333\) 8.00000 0.438397
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −30.0000 −1.63420 −0.817102 0.576493i \(-0.804421\pi\)
−0.817102 + 0.576493i \(0.804421\pi\)
\(338\) 0 0
\(339\) 4.00000 0.217250
\(340\) 0 0
\(341\) 16.0000 0.866449
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 18.0000 0.966291 0.483145 0.875540i \(-0.339494\pi\)
0.483145 + 0.875540i \(0.339494\pi\)
\(348\) 0 0
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) 16.0000 0.854017
\(352\) 0 0
\(353\) −30.0000 −1.59674 −0.798369 0.602168i \(-0.794304\pi\)
−0.798369 + 0.602168i \(0.794304\pi\)
\(354\) 0 0
\(355\) 32.0000 1.69838
\(356\) 0 0
\(357\) 4.00000 0.211702
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −14.0000 −0.734809
\(364\) 0 0
\(365\) 24.0000 1.25622
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) −10.0000 −0.520579
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 48.0000 2.47871
\(376\) 0 0
\(377\) −32.0000 −1.64808
\(378\) 0 0
\(379\) 34.0000 1.74646 0.873231 0.487306i \(-0.162020\pi\)
0.873231 + 0.487306i \(0.162020\pi\)
\(380\) 0 0
\(381\) −32.0000 −1.63941
\(382\) 0 0
\(383\) −24.0000 −1.22634 −0.613171 0.789950i \(-0.710106\pi\)
−0.613171 + 0.789950i \(0.710106\pi\)
\(384\) 0 0
\(385\) 8.00000 0.407718
\(386\) 0 0
\(387\) 2.00000 0.101666
\(388\) 0 0
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −12.0000 −0.605320
\(394\) 0 0
\(395\) −32.0000 −1.61009
\(396\) 0 0
\(397\) 28.0000 1.40528 0.702640 0.711546i \(-0.252005\pi\)
0.702640 + 0.711546i \(0.252005\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) −32.0000 −1.59403
\(404\) 0 0
\(405\) −44.0000 −2.18638
\(406\) 0 0
\(407\) 16.0000 0.793091
\(408\) 0 0
\(409\) −26.0000 −1.28562 −0.642809 0.766027i \(-0.722231\pi\)
−0.642809 + 0.766027i \(0.722231\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) −10.0000 −0.492068
\(414\) 0 0
\(415\) −24.0000 −1.17811
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) 0 0
\(419\) −14.0000 −0.683945 −0.341972 0.939710i \(-0.611095\pi\)
−0.341972 + 0.939710i \(0.611095\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) −8.00000 −0.388973
\(424\) 0 0
\(425\) 22.0000 1.06716
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) 0 0
\(429\) −16.0000 −0.772487
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 64.0000 3.06857
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.0000 1.14546 0.572729 0.819745i \(-0.305885\pi\)
0.572729 + 0.819745i \(0.305885\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) −6.00000 −0.285069 −0.142534 0.989790i \(-0.545525\pi\)
−0.142534 + 0.989790i \(0.545525\pi\)
\(444\) 0 0
\(445\) −40.0000 −1.89618
\(446\) 0 0
\(447\) −32.0000 −1.51355
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) −20.0000 −0.941763
\(452\) 0 0
\(453\) −32.0000 −1.50349
\(454\) 0 0
\(455\) −16.0000 −0.750092
\(456\) 0 0
\(457\) −10.0000 −0.467780 −0.233890 0.972263i \(-0.575146\pi\)
−0.233890 + 0.972263i \(0.575146\pi\)
\(458\) 0 0
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) 0 0
\(463\) −40.0000 −1.85896 −0.929479 0.368875i \(-0.879743\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(464\) 0 0
\(465\) 64.0000 2.96793
\(466\) 0 0
\(467\) 26.0000 1.20314 0.601568 0.798821i \(-0.294543\pi\)
0.601568 + 0.798821i \(0.294543\pi\)
\(468\) 0 0
\(469\) −2.00000 −0.0923514
\(470\) 0 0
\(471\) −8.00000 −0.368621
\(472\) 0 0
\(473\) 4.00000 0.183920
\(474\) 0 0
\(475\) −66.0000 −3.02829
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −40.0000 −1.82765 −0.913823 0.406112i \(-0.866884\pi\)
−0.913823 + 0.406112i \(0.866884\pi\)
\(480\) 0 0
\(481\) −32.0000 −1.45907
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.00000 0.363261
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) 44.0000 1.98975
\(490\) 0 0
\(491\) −6.00000 −0.270776 −0.135388 0.990793i \(-0.543228\pi\)
−0.135388 + 0.990793i \(0.543228\pi\)
\(492\) 0 0
\(493\) 16.0000 0.720604
\(494\) 0 0
\(495\) 8.00000 0.359573
\(496\) 0 0
\(497\) 8.00000 0.358849
\(498\) 0 0
\(499\) −34.0000 −1.52205 −0.761025 0.648723i \(-0.775303\pi\)
−0.761025 + 0.648723i \(0.775303\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −24.0000 −1.07011 −0.535054 0.844818i \(-0.679709\pi\)
−0.535054 + 0.844818i \(0.679709\pi\)
\(504\) 0 0
\(505\) 16.0000 0.711991
\(506\) 0 0
\(507\) 6.00000 0.266469
\(508\) 0 0
\(509\) 12.0000 0.531891 0.265945 0.963988i \(-0.414316\pi\)
0.265945 + 0.963988i \(0.414316\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 0 0
\(513\) 24.0000 1.05963
\(514\) 0 0
\(515\) −64.0000 −2.82018
\(516\) 0 0
\(517\) −16.0000 −0.703679
\(518\) 0 0
\(519\) 24.0000 1.05348
\(520\) 0 0
\(521\) 6.00000 0.262865 0.131432 0.991325i \(-0.458042\pi\)
0.131432 + 0.991325i \(0.458042\pi\)
\(522\) 0 0
\(523\) 22.0000 0.961993 0.480996 0.876723i \(-0.340275\pi\)
0.480996 + 0.876723i \(0.340275\pi\)
\(524\) 0 0
\(525\) 22.0000 0.960159
\(526\) 0 0
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −10.0000 −0.433963
\(532\) 0 0
\(533\) 40.0000 1.73259
\(534\) 0 0
\(535\) −24.0000 −1.03761
\(536\) 0 0
\(537\) 28.0000 1.20829
\(538\) 0 0
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) 16.0000 0.687894 0.343947 0.938989i \(-0.388236\pi\)
0.343947 + 0.938989i \(0.388236\pi\)
\(542\) 0 0
\(543\) 24.0000 1.02994
\(544\) 0 0
\(545\) 32.0000 1.37073
\(546\) 0 0
\(547\) 22.0000 0.940652 0.470326 0.882493i \(-0.344136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(548\) 0 0
\(549\) 4.00000 0.170716
\(550\) 0 0
\(551\) −48.0000 −2.04487
\(552\) 0 0
\(553\) −8.00000 −0.340195
\(554\) 0 0
\(555\) 64.0000 2.71665
\(556\) 0 0
\(557\) 16.0000 0.677942 0.338971 0.940797i \(-0.389921\pi\)
0.338971 + 0.940797i \(0.389921\pi\)
\(558\) 0 0
\(559\) −8.00000 −0.338364
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) 0 0
\(565\) 8.00000 0.336563
\(566\) 0 0
\(567\) −11.0000 −0.461957
\(568\) 0 0
\(569\) 38.0000 1.59304 0.796521 0.604610i \(-0.206671\pi\)
0.796521 + 0.604610i \(0.206671\pi\)
\(570\) 0 0
\(571\) 18.0000 0.753277 0.376638 0.926360i \(-0.377080\pi\)
0.376638 + 0.926360i \(0.377080\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −14.0000 −0.582828 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(578\) 0 0
\(579\) 20.0000 0.831172
\(580\) 0 0
\(581\) −6.00000 −0.248922
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −16.0000 −0.661519
\(586\) 0 0
\(587\) −2.00000 −0.0825488 −0.0412744 0.999148i \(-0.513142\pi\)
−0.0412744 + 0.999148i \(0.513142\pi\)
\(588\) 0 0
\(589\) −48.0000 −1.97781
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −46.0000 −1.88899 −0.944497 0.328521i \(-0.893450\pi\)
−0.944497 + 0.328521i \(0.893450\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) 0 0
\(597\) −32.0000 −1.30967
\(598\) 0 0
\(599\) 24.0000 0.980613 0.490307 0.871550i \(-0.336885\pi\)
0.490307 + 0.871550i \(0.336885\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) −2.00000 −0.0814463
\(604\) 0 0
\(605\) −28.0000 −1.13836
\(606\) 0 0
\(607\) 48.0000 1.94826 0.974130 0.225989i \(-0.0725612\pi\)
0.974130 + 0.225989i \(0.0725612\pi\)
\(608\) 0 0
\(609\) 16.0000 0.648353
\(610\) 0 0
\(611\) 32.0000 1.29458
\(612\) 0 0
\(613\) −8.00000 −0.323117 −0.161558 0.986863i \(-0.551652\pi\)
−0.161558 + 0.986863i \(0.551652\pi\)
\(614\) 0 0
\(615\) −80.0000 −3.22591
\(616\) 0 0
\(617\) 14.0000 0.563619 0.281809 0.959470i \(-0.409065\pi\)
0.281809 + 0.959470i \(0.409065\pi\)
\(618\) 0 0
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −10.0000 −0.400642
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) −24.0000 −0.958468
\(628\) 0 0
\(629\) 16.0000 0.637962
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) −4.00000 −0.158986
\(634\) 0 0
\(635\) −64.0000 −2.53976
\(636\) 0 0
\(637\) −4.00000 −0.158486
\(638\) 0 0
\(639\) 8.00000 0.316475
\(640\) 0 0
\(641\) 26.0000 1.02694 0.513469 0.858108i \(-0.328360\pi\)
0.513469 + 0.858108i \(0.328360\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) 16.0000 0.629999
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −20.0000 −0.785069
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 0 0
\(653\) −24.0000 −0.939193 −0.469596 0.882881i \(-0.655601\pi\)
−0.469596 + 0.882881i \(0.655601\pi\)
\(654\) 0 0
\(655\) −24.0000 −0.937758
\(656\) 0 0
\(657\) 6.00000 0.234082
\(658\) 0 0
\(659\) −10.0000 −0.389545 −0.194772 0.980848i \(-0.562397\pi\)
−0.194772 + 0.980848i \(0.562397\pi\)
\(660\) 0 0
\(661\) 36.0000 1.40024 0.700119 0.714026i \(-0.253130\pi\)
0.700119 + 0.714026i \(0.253130\pi\)
\(662\) 0 0
\(663\) −16.0000 −0.621389
\(664\) 0 0
\(665\) −24.0000 −0.930680
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) −6.00000 −0.231283 −0.115642 0.993291i \(-0.536892\pi\)
−0.115642 + 0.993291i \(0.536892\pi\)
\(674\) 0 0
\(675\) −44.0000 −1.69356
\(676\) 0 0
\(677\) 12.0000 0.461197 0.230599 0.973049i \(-0.425932\pi\)
0.230599 + 0.973049i \(0.425932\pi\)
\(678\) 0 0
\(679\) 2.00000 0.0767530
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) 26.0000 0.994862 0.497431 0.867503i \(-0.334277\pi\)
0.497431 + 0.867503i \(0.334277\pi\)
\(684\) 0 0
\(685\) 24.0000 0.916993
\(686\) 0 0
\(687\) −8.00000 −0.305219
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) 0 0
\(693\) 2.00000 0.0759737
\(694\) 0 0
\(695\) −8.00000 −0.303457
\(696\) 0 0
\(697\) −20.0000 −0.757554
\(698\) 0 0
\(699\) −36.0000 −1.36165
\(700\) 0 0
\(701\) −24.0000 −0.906467 −0.453234 0.891392i \(-0.649730\pi\)
−0.453234 + 0.891392i \(0.649730\pi\)
\(702\) 0 0
\(703\) −48.0000 −1.81035
\(704\) 0 0
\(705\) −64.0000 −2.41038
\(706\) 0 0
\(707\) 4.00000 0.150435
\(708\) 0 0
\(709\) −8.00000 −0.300446 −0.150223 0.988652i \(-0.547999\pi\)
−0.150223 + 0.988652i \(0.547999\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −32.0000 −1.19673
\(716\) 0 0
\(717\) 32.0000 1.19506
\(718\) 0 0
\(719\) 8.00000 0.298350 0.149175 0.988811i \(-0.452338\pi\)
0.149175 + 0.988811i \(0.452338\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) 4.00000 0.148762
\(724\) 0 0
\(725\) 88.0000 3.26824
\(726\) 0 0
\(727\) 16.0000 0.593407 0.296704 0.954970i \(-0.404113\pi\)
0.296704 + 0.954970i \(0.404113\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 4.00000 0.147945
\(732\) 0 0
\(733\) −28.0000 −1.03420 −0.517102 0.855924i \(-0.672989\pi\)
−0.517102 + 0.855924i \(0.672989\pi\)
\(734\) 0 0
\(735\) 8.00000 0.295084
\(736\) 0 0
\(737\) −4.00000 −0.147342
\(738\) 0 0
\(739\) 22.0000 0.809283 0.404642 0.914475i \(-0.367396\pi\)
0.404642 + 0.914475i \(0.367396\pi\)
\(740\) 0 0
\(741\) 48.0000 1.76332
\(742\) 0 0
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 0 0
\(745\) −64.0000 −2.34478
\(746\) 0 0
\(747\) −6.00000 −0.219529
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 48.0000 1.75154 0.875772 0.482724i \(-0.160353\pi\)
0.875772 + 0.482724i \(0.160353\pi\)
\(752\) 0 0
\(753\) −36.0000 −1.31191
\(754\) 0 0
\(755\) −64.0000 −2.32920
\(756\) 0 0
\(757\) −40.0000 −1.45382 −0.726912 0.686730i \(-0.759045\pi\)
−0.726912 + 0.686730i \(0.759045\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 8.00000 0.289619
\(764\) 0 0
\(765\) 8.00000 0.289241
\(766\) 0 0
\(767\) 40.0000 1.44432
\(768\) 0 0
\(769\) −14.0000 −0.504853 −0.252426 0.967616i \(-0.581229\pi\)
−0.252426 + 0.967616i \(0.581229\pi\)
\(770\) 0 0
\(771\) 36.0000 1.29651
\(772\) 0 0
\(773\) 36.0000 1.29483 0.647415 0.762138i \(-0.275850\pi\)
0.647415 + 0.762138i \(0.275850\pi\)
\(774\) 0 0
\(775\) 88.0000 3.16105
\(776\) 0 0
\(777\) 16.0000 0.573997
\(778\) 0 0
\(779\) 60.0000 2.14972
\(780\) 0 0
\(781\) 16.0000 0.572525
\(782\) 0 0
\(783\) −32.0000 −1.14359
\(784\) 0 0
\(785\) −16.0000 −0.571064
\(786\) 0 0
\(787\) −38.0000 −1.35455 −0.677277 0.735728i \(-0.736840\pi\)
−0.677277 + 0.735728i \(0.736840\pi\)
\(788\) 0 0
\(789\) −16.0000 −0.569615
\(790\) 0 0
\(791\) 2.00000 0.0711118
\(792\) 0 0
\(793\) −16.0000 −0.568177
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 28.0000 0.991811 0.495905 0.868377i \(-0.334836\pi\)
0.495905 + 0.868377i \(0.334836\pi\)
\(798\) 0 0
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) −10.0000 −0.353333
\(802\) 0 0
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 24.0000 0.844840
\(808\) 0 0
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 6.00000 0.210688 0.105344 0.994436i \(-0.466406\pi\)
0.105344 + 0.994436i \(0.466406\pi\)
\(812\) 0 0
\(813\) 32.0000 1.12229
\(814\) 0 0
\(815\) 88.0000 3.08251
\(816\) 0 0
\(817\) −12.0000 −0.419827
\(818\) 0 0
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 48.0000 1.67521 0.837606 0.546275i \(-0.183955\pi\)
0.837606 + 0.546275i \(0.183955\pi\)
\(822\) 0 0
\(823\) −8.00000 −0.278862 −0.139431 0.990232i \(-0.544527\pi\)
−0.139431 + 0.990232i \(0.544527\pi\)
\(824\) 0 0
\(825\) 44.0000 1.53188
\(826\) 0 0
\(827\) 42.0000 1.46048 0.730242 0.683189i \(-0.239408\pi\)
0.730242 + 0.683189i \(0.239408\pi\)
\(828\) 0 0
\(829\) −12.0000 −0.416777 −0.208389 0.978046i \(-0.566822\pi\)
−0.208389 + 0.978046i \(0.566822\pi\)
\(830\) 0 0
\(831\) −32.0000 −1.11007
\(832\) 0 0
\(833\) 2.00000 0.0692959
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −32.0000 −1.10608
\(838\) 0 0
\(839\) 48.0000 1.65714 0.828572 0.559883i \(-0.189154\pi\)
0.828572 + 0.559883i \(0.189154\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) −4.00000 −0.137767
\(844\) 0 0
\(845\) 12.0000 0.412813
\(846\) 0 0
\(847\) −7.00000 −0.240523
\(848\) 0 0
\(849\) 44.0000 1.51008
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 12.0000 0.410872 0.205436 0.978671i \(-0.434139\pi\)
0.205436 + 0.978671i \(0.434139\pi\)
\(854\) 0 0
\(855\) −24.0000 −0.820783
\(856\) 0 0
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −34.0000 −1.16007 −0.580033 0.814593i \(-0.696960\pi\)
−0.580033 + 0.814593i \(0.696960\pi\)
\(860\) 0 0
\(861\) −20.0000 −0.681598
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 48.0000 1.63205
\(866\) 0 0
\(867\) −26.0000 −0.883006
\(868\) 0 0
\(869\) −16.0000 −0.542763
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) 24.0000 0.811348
\(876\) 0 0
\(877\) 8.00000 0.270141 0.135070 0.990836i \(-0.456874\pi\)
0.135070 + 0.990836i \(0.456874\pi\)
\(878\) 0 0
\(879\) 8.00000 0.269833
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) 0 0
\(883\) 30.0000 1.00958 0.504790 0.863242i \(-0.331570\pi\)
0.504790 + 0.863242i \(0.331570\pi\)
\(884\) 0 0
\(885\) −80.0000 −2.68917
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) −16.0000 −0.536623
\(890\) 0 0
\(891\) −22.0000 −0.737028
\(892\) 0 0
\(893\) 48.0000 1.60626
\(894\) 0 0
\(895\) 56.0000 1.87187
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 64.0000 2.13452
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) 48.0000 1.59557
\(906\) 0 0
\(907\) −22.0000 −0.730498 −0.365249 0.930910i \(-0.619016\pi\)
−0.365249 + 0.930910i \(0.619016\pi\)
\(908\) 0 0
\(909\) 4.00000 0.132672
\(910\) 0 0
\(911\) 32.0000 1.06021 0.530104 0.847933i \(-0.322153\pi\)
0.530104 + 0.847933i \(0.322153\pi\)
\(912\) 0 0
\(913\) −12.0000 −0.397142
\(914\) 0 0
\(915\) 32.0000 1.05789
\(916\) 0 0
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) −44.0000 −1.44985
\(922\) 0 0
\(923\) −32.0000 −1.05329
\(924\) 0 0
\(925\) 88.0000 2.89342
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) 34.0000 1.11550 0.557752 0.830008i \(-0.311664\pi\)
0.557752 + 0.830008i \(0.311664\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 0 0
\(933\) 16.0000 0.523816
\(934\) 0 0
\(935\) 16.0000 0.523256
\(936\) 0 0
\(937\) −10.0000 −0.326686 −0.163343 0.986569i \(-0.552228\pi\)
−0.163343 + 0.986569i \(0.552228\pi\)
\(938\) 0 0
\(939\) 12.0000 0.391605
\(940\) 0 0
\(941\) 52.0000 1.69515 0.847576 0.530674i \(-0.178061\pi\)
0.847576 + 0.530674i \(0.178061\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −16.0000 −0.520480
\(946\) 0 0
\(947\) 38.0000 1.23483 0.617417 0.786636i \(-0.288179\pi\)
0.617417 + 0.786636i \(0.288179\pi\)
\(948\) 0 0
\(949\) −24.0000 −0.779073
\(950\) 0 0
\(951\) 64.0000 2.07534
\(952\) 0 0
\(953\) −42.0000 −1.36051 −0.680257 0.732974i \(-0.738132\pi\)
−0.680257 + 0.732974i \(0.738132\pi\)
\(954\) 0 0
\(955\) 32.0000 1.03550
\(956\) 0 0
\(957\) 32.0000 1.03441
\(958\) 0 0
\(959\) 6.00000 0.193750
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) 0 0
\(965\) 40.0000 1.28765
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) −24.0000 −0.770991
\(970\) 0 0
\(971\) 6.00000 0.192549 0.0962746 0.995355i \(-0.469307\pi\)
0.0962746 + 0.995355i \(0.469307\pi\)
\(972\) 0 0
\(973\) −2.00000 −0.0641171
\(974\) 0 0
\(975\) −88.0000 −2.81826
\(976\) 0 0
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) −20.0000 −0.639203
\(980\) 0 0
\(981\) 8.00000 0.255420
\(982\) 0 0
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −16.0000 −0.509286
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −40.0000 −1.27064 −0.635321 0.772248i \(-0.719132\pi\)
−0.635321 + 0.772248i \(0.719132\pi\)
\(992\) 0 0
\(993\) 36.0000 1.14243
\(994\) 0 0
\(995\) −64.0000 −2.02894
\(996\) 0 0
\(997\) 20.0000 0.633406 0.316703 0.948525i \(-0.397424\pi\)
0.316703 + 0.948525i \(0.397424\pi\)
\(998\) 0 0
\(999\) −32.0000 −1.01244
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1792.2.a.h.1.1 1
4.3 odd 2 1792.2.a.d.1.1 1
8.3 odd 2 1792.2.a.e.1.1 1
8.5 even 2 1792.2.a.a.1.1 1
16.3 odd 4 448.2.b.b.225.1 yes 2
16.5 even 4 448.2.b.a.225.1 2
16.11 odd 4 448.2.b.b.225.2 yes 2
16.13 even 4 448.2.b.a.225.2 yes 2
48.5 odd 4 4032.2.c.b.2017.1 2
48.11 even 4 4032.2.c.f.2017.1 2
48.29 odd 4 4032.2.c.b.2017.2 2
48.35 even 4 4032.2.c.f.2017.2 2
112.13 odd 4 3136.2.b.c.1569.1 2
112.27 even 4 3136.2.b.a.1569.1 2
112.69 odd 4 3136.2.b.c.1569.2 2
112.83 even 4 3136.2.b.a.1569.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
448.2.b.a.225.1 2 16.5 even 4
448.2.b.a.225.2 yes 2 16.13 even 4
448.2.b.b.225.1 yes 2 16.3 odd 4
448.2.b.b.225.2 yes 2 16.11 odd 4
1792.2.a.a.1.1 1 8.5 even 2
1792.2.a.d.1.1 1 4.3 odd 2
1792.2.a.e.1.1 1 8.3 odd 2
1792.2.a.h.1.1 1 1.1 even 1 trivial
3136.2.b.a.1569.1 2 112.27 even 4
3136.2.b.a.1569.2 2 112.83 even 4
3136.2.b.c.1569.1 2 112.13 odd 4
3136.2.b.c.1569.2 2 112.69 odd 4
4032.2.c.b.2017.1 2 48.5 odd 4
4032.2.c.b.2017.2 2 48.29 odd 4
4032.2.c.f.2017.1 2 48.11 even 4
4032.2.c.f.2017.2 2 48.35 even 4