Properties

Label 1792.2.a.f.1.1
Level $1792$
Weight $2$
Character 1792.1
Self dual yes
Analytic conductor $14.309$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1792 = 2^{8} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1792.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(14.3091920422\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 896)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1792.1

$q$-expansion

\(f(q)\) \(=\) \(q+2.00000 q^{3} -2.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{3} -2.00000 q^{5} -1.00000 q^{7} +1.00000 q^{9} +2.00000 q^{13} -4.00000 q^{15} +6.00000 q^{17} +6.00000 q^{19} -2.00000 q^{21} +4.00000 q^{23} -1.00000 q^{25} -4.00000 q^{27} -8.00000 q^{31} +2.00000 q^{35} +8.00000 q^{37} +4.00000 q^{39} +6.00000 q^{41} +8.00000 q^{43} -2.00000 q^{45} +1.00000 q^{49} +12.0000 q^{51} -4.00000 q^{53} +12.0000 q^{57} +6.00000 q^{59} -2.00000 q^{61} -1.00000 q^{63} -4.00000 q^{65} +4.00000 q^{67} +8.00000 q^{69} +16.0000 q^{71} -6.00000 q^{73} -2.00000 q^{75} +16.0000 q^{79} -11.0000 q^{81} +14.0000 q^{83} -12.0000 q^{85} -14.0000 q^{89} -2.00000 q^{91} -16.0000 q^{93} -12.0000 q^{95} -2.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.00000 1.15470 0.577350 0.816497i \(-0.304087\pi\)
0.577350 + 0.816497i \(0.304087\pi\)
\(4\) 0 0
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0 0
\(17\) 6.00000 1.45521 0.727607 0.685994i \(-0.240633\pi\)
0.727607 + 0.685994i \(0.240633\pi\)
\(18\) 0 0
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) 0 0
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −8.00000 −1.43684 −0.718421 0.695608i \(-0.755135\pi\)
−0.718421 + 0.695608i \(0.755135\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 0.338062
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 12.0000 1.58944
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) −1.00000 −0.125988
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 8.00000 0.963087
\(70\) 0 0
\(71\) 16.0000 1.89885 0.949425 0.313993i \(-0.101667\pi\)
0.949425 + 0.313993i \(0.101667\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) −2.00000 −0.230940
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 14.0000 1.53670 0.768350 0.640030i \(-0.221078\pi\)
0.768350 + 0.640030i \(0.221078\pi\)
\(84\) 0 0
\(85\) −12.0000 −1.30158
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.0000 −1.48400 −0.741999 0.670402i \(-0.766122\pi\)
−0.741999 + 0.670402i \(0.766122\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) 0 0
\(93\) −16.0000 −1.65912
\(94\) 0 0
\(95\) −12.0000 −1.23117
\(96\) 0 0
\(97\) −2.00000 −0.203069 −0.101535 0.994832i \(-0.532375\pi\)
−0.101535 + 0.994832i \(0.532375\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) −16.0000 −1.57653 −0.788263 0.615338i \(-0.789020\pi\)
−0.788263 + 0.615338i \(0.789020\pi\)
\(104\) 0 0
\(105\) 4.00000 0.390360
\(106\) 0 0
\(107\) 4.00000 0.386695 0.193347 0.981130i \(-0.438066\pi\)
0.193347 + 0.981130i \(0.438066\pi\)
\(108\) 0 0
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) 16.0000 1.51865
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) −8.00000 −0.746004
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) −6.00000 −0.550019
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 12.0000 1.08200
\(124\) 0 0
\(125\) 12.0000 1.07331
\(126\) 0 0
\(127\) −4.00000 −0.354943 −0.177471 0.984126i \(-0.556792\pi\)
−0.177471 + 0.984126i \(0.556792\pi\)
\(128\) 0 0
\(129\) 16.0000 1.40872
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 0 0
\(135\) 8.00000 0.688530
\(136\) 0 0
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) 0 0
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) −20.0000 −1.63846 −0.819232 0.573462i \(-0.805600\pi\)
−0.819232 + 0.573462i \(0.805600\pi\)
\(150\) 0 0
\(151\) −20.0000 −1.62758 −0.813788 0.581161i \(-0.802599\pi\)
−0.813788 + 0.581161i \(0.802599\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −6.00000 −0.478852 −0.239426 0.970915i \(-0.576959\pi\)
−0.239426 + 0.970915i \(0.576959\pi\)
\(158\) 0 0
\(159\) −8.00000 −0.634441
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) −16.0000 −1.25322 −0.626608 0.779334i \(-0.715557\pi\)
−0.626608 + 0.779334i \(0.715557\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 6.00000 0.458831
\(172\) 0 0
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 1.00000 0.0755929
\(176\) 0 0
\(177\) 12.0000 0.901975
\(178\) 0 0
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) −16.0000 −1.17634
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 4.00000 0.290957
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) −22.0000 −1.58359 −0.791797 0.610784i \(-0.790854\pi\)
−0.791797 + 0.610784i \(0.790854\pi\)
\(194\) 0 0
\(195\) −8.00000 −0.572892
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) −16.0000 −1.13421 −0.567105 0.823646i \(-0.691937\pi\)
−0.567105 + 0.823646i \(0.691937\pi\)
\(200\) 0 0
\(201\) 8.00000 0.564276
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −12.0000 −0.838116
\(206\) 0 0
\(207\) 4.00000 0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −28.0000 −1.92760 −0.963800 0.266627i \(-0.914091\pi\)
−0.963800 + 0.266627i \(0.914091\pi\)
\(212\) 0 0
\(213\) 32.0000 2.19260
\(214\) 0 0
\(215\) −16.0000 −1.09119
\(216\) 0 0
\(217\) 8.00000 0.543075
\(218\) 0 0
\(219\) −12.0000 −0.810885
\(220\) 0 0
\(221\) 12.0000 0.807207
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) −1.00000 −0.0666667
\(226\) 0 0
\(227\) 14.0000 0.929213 0.464606 0.885517i \(-0.346196\pi\)
0.464606 + 0.885517i \(0.346196\pi\)
\(228\) 0 0
\(229\) 2.00000 0.132164 0.0660819 0.997814i \(-0.478950\pi\)
0.0660819 + 0.997814i \(0.478950\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 32.0000 2.07862
\(238\) 0 0
\(239\) 20.0000 1.29369 0.646846 0.762620i \(-0.276088\pi\)
0.646846 + 0.762620i \(0.276088\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) −10.0000 −0.641500
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) 12.0000 0.763542
\(248\) 0 0
\(249\) 28.0000 1.77443
\(250\) 0 0
\(251\) 2.00000 0.126239 0.0631194 0.998006i \(-0.479895\pi\)
0.0631194 + 0.998006i \(0.479895\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −24.0000 −1.50294
\(256\) 0 0
\(257\) 2.00000 0.124757 0.0623783 0.998053i \(-0.480131\pi\)
0.0623783 + 0.998053i \(0.480131\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 8.00000 0.491436
\(266\) 0 0
\(267\) −28.0000 −1.71357
\(268\) 0 0
\(269\) −30.0000 −1.82913 −0.914566 0.404436i \(-0.867468\pi\)
−0.914566 + 0.404436i \(0.867468\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 0 0
\(273\) −4.00000 −0.242091
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 20.0000 1.20168 0.600842 0.799368i \(-0.294832\pi\)
0.600842 + 0.799368i \(0.294832\pi\)
\(278\) 0 0
\(279\) −8.00000 −0.478947
\(280\) 0 0
\(281\) 26.0000 1.55103 0.775515 0.631329i \(-0.217490\pi\)
0.775515 + 0.631329i \(0.217490\pi\)
\(282\) 0 0
\(283\) −2.00000 −0.118888 −0.0594438 0.998232i \(-0.518933\pi\)
−0.0594438 + 0.998232i \(0.518933\pi\)
\(284\) 0 0
\(285\) −24.0000 −1.42164
\(286\) 0 0
\(287\) −6.00000 −0.354169
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) −4.00000 −0.234484
\(292\) 0 0
\(293\) 30.0000 1.75262 0.876309 0.481749i \(-0.159998\pi\)
0.876309 + 0.481749i \(0.159998\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.00000 0.462652
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) 0 0
\(303\) 28.0000 1.60856
\(304\) 0 0
\(305\) 4.00000 0.229039
\(306\) 0 0
\(307\) −10.0000 −0.570730 −0.285365 0.958419i \(-0.592115\pi\)
−0.285365 + 0.958419i \(0.592115\pi\)
\(308\) 0 0
\(309\) −32.0000 −1.82042
\(310\) 0 0
\(311\) −8.00000 −0.453638 −0.226819 0.973937i \(-0.572833\pi\)
−0.226819 + 0.973937i \(0.572833\pi\)
\(312\) 0 0
\(313\) 6.00000 0.339140 0.169570 0.985518i \(-0.445762\pi\)
0.169570 + 0.985518i \(0.445762\pi\)
\(314\) 0 0
\(315\) 2.00000 0.112687
\(316\) 0 0
\(317\) −12.0000 −0.673987 −0.336994 0.941507i \(-0.609410\pi\)
−0.336994 + 0.941507i \(0.609410\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 8.00000 0.446516
\(322\) 0 0
\(323\) 36.0000 2.00309
\(324\) 0 0
\(325\) −2.00000 −0.110940
\(326\) 0 0
\(327\) 32.0000 1.76960
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) 8.00000 0.438397
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) −20.0000 −1.08625
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) −16.0000 −0.861411
\(346\) 0 0
\(347\) −24.0000 −1.28839 −0.644194 0.764862i \(-0.722807\pi\)
−0.644194 + 0.764862i \(0.722807\pi\)
\(348\) 0 0
\(349\) 34.0000 1.81998 0.909989 0.414632i \(-0.136090\pi\)
0.909989 + 0.414632i \(0.136090\pi\)
\(350\) 0 0
\(351\) −8.00000 −0.427008
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) −32.0000 −1.69838
\(356\) 0 0
\(357\) −12.0000 −0.635107
\(358\) 0 0
\(359\) 20.0000 1.05556 0.527780 0.849381i \(-0.323025\pi\)
0.527780 + 0.849381i \(0.323025\pi\)
\(360\) 0 0
\(361\) 17.0000 0.894737
\(362\) 0 0
\(363\) −22.0000 −1.15470
\(364\) 0 0
\(365\) 12.0000 0.628109
\(366\) 0 0
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) 4.00000 0.207670
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 0 0
\(375\) 24.0000 1.23935
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) 0 0
\(383\) −32.0000 −1.63512 −0.817562 0.575841i \(-0.804675\pi\)
−0.817562 + 0.575841i \(0.804675\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.00000 0.406663
\(388\) 0 0
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 24.0000 1.21373
\(392\) 0 0
\(393\) 12.0000 0.605320
\(394\) 0 0
\(395\) −32.0000 −1.61009
\(396\) 0 0
\(397\) −22.0000 −1.10415 −0.552074 0.833795i \(-0.686163\pi\)
−0.552074 + 0.833795i \(0.686163\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) 0 0
\(401\) 18.0000 0.898877 0.449439 0.893311i \(-0.351624\pi\)
0.449439 + 0.893311i \(0.351624\pi\)
\(402\) 0 0
\(403\) −16.0000 −0.797017
\(404\) 0 0
\(405\) 22.0000 1.09319
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −34.0000 −1.68119 −0.840596 0.541663i \(-0.817795\pi\)
−0.840596 + 0.541663i \(0.817795\pi\)
\(410\) 0 0
\(411\) −20.0000 −0.986527
\(412\) 0 0
\(413\) −6.00000 −0.295241
\(414\) 0 0
\(415\) −28.0000 −1.37447
\(416\) 0 0
\(417\) 20.0000 0.979404
\(418\) 0 0
\(419\) −22.0000 −1.07477 −0.537385 0.843337i \(-0.680588\pi\)
−0.537385 + 0.843337i \(0.680588\pi\)
\(420\) 0 0
\(421\) −12.0000 −0.584844 −0.292422 0.956289i \(-0.594461\pi\)
−0.292422 + 0.956289i \(0.594461\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 2.00000 0.0967868
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) −26.0000 −1.24948 −0.624740 0.780833i \(-0.714795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.0000 1.14808
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 28.0000 1.32733
\(446\) 0 0
\(447\) −40.0000 −1.89194
\(448\) 0 0
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −40.0000 −1.87936
\(454\) 0 0
\(455\) 4.00000 0.187523
\(456\) 0 0
\(457\) 2.00000 0.0935561 0.0467780 0.998905i \(-0.485105\pi\)
0.0467780 + 0.998905i \(0.485105\pi\)
\(458\) 0 0
\(459\) −24.0000 −1.12022
\(460\) 0 0
\(461\) 18.0000 0.838344 0.419172 0.907907i \(-0.362320\pi\)
0.419172 + 0.907907i \(0.362320\pi\)
\(462\) 0 0
\(463\) 24.0000 1.11537 0.557687 0.830051i \(-0.311689\pi\)
0.557687 + 0.830051i \(0.311689\pi\)
\(464\) 0 0
\(465\) 32.0000 1.48396
\(466\) 0 0
\(467\) 38.0000 1.75843 0.879215 0.476425i \(-0.158068\pi\)
0.879215 + 0.476425i \(0.158068\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) 0 0
\(471\) −12.0000 −0.552931
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −6.00000 −0.275299
\(476\) 0 0
\(477\) −4.00000 −0.183147
\(478\) 0 0
\(479\) 8.00000 0.365529 0.182765 0.983157i \(-0.441495\pi\)
0.182765 + 0.983157i \(0.441495\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) 0 0
\(483\) −8.00000 −0.364013
\(484\) 0 0
\(485\) 4.00000 0.181631
\(486\) 0 0
\(487\) −12.0000 −0.543772 −0.271886 0.962329i \(-0.587647\pi\)
−0.271886 + 0.962329i \(0.587647\pi\)
\(488\) 0 0
\(489\) −32.0000 −1.44709
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −16.0000 −0.717698
\(498\) 0 0
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 16.0000 0.714827
\(502\) 0 0
\(503\) 16.0000 0.713405 0.356702 0.934218i \(-0.383901\pi\)
0.356702 + 0.934218i \(0.383901\pi\)
\(504\) 0 0
\(505\) −28.0000 −1.24598
\(506\) 0 0
\(507\) −18.0000 −0.799408
\(508\) 0 0
\(509\) 26.0000 1.15243 0.576215 0.817298i \(-0.304529\pi\)
0.576215 + 0.817298i \(0.304529\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 0 0
\(513\) −24.0000 −1.05963
\(514\) 0 0
\(515\) 32.0000 1.41009
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −12.0000 −0.526742
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) 14.0000 0.612177 0.306089 0.952003i \(-0.400980\pi\)
0.306089 + 0.952003i \(0.400980\pi\)
\(524\) 0 0
\(525\) 2.00000 0.0872872
\(526\) 0 0
\(527\) −48.0000 −2.09091
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 0 0
\(537\) −8.00000 −0.345225
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −36.0000 −1.54776 −0.773880 0.633332i \(-0.781687\pi\)
−0.773880 + 0.633332i \(0.781687\pi\)
\(542\) 0 0
\(543\) −12.0000 −0.514969
\(544\) 0 0
\(545\) −32.0000 −1.37073
\(546\) 0 0
\(547\) 40.0000 1.71028 0.855138 0.518400i \(-0.173472\pi\)
0.855138 + 0.518400i \(0.173472\pi\)
\(548\) 0 0
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) 0 0
\(555\) −32.0000 −1.35832
\(556\) 0 0
\(557\) 4.00000 0.169485 0.0847427 0.996403i \(-0.472993\pi\)
0.0847427 + 0.996403i \(0.472993\pi\)
\(558\) 0 0
\(559\) 16.0000 0.676728
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 26.0000 1.09577 0.547885 0.836554i \(-0.315433\pi\)
0.547885 + 0.836554i \(0.315433\pi\)
\(564\) 0 0
\(565\) 20.0000 0.841406
\(566\) 0 0
\(567\) 11.0000 0.461957
\(568\) 0 0
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 16.0000 0.668410
\(574\) 0 0
\(575\) −4.00000 −0.166812
\(576\) 0 0
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 0 0
\(579\) −44.0000 −1.82858
\(580\) 0 0
\(581\) −14.0000 −0.580818
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −4.00000 −0.165380
\(586\) 0 0
\(587\) 26.0000 1.07313 0.536567 0.843857i \(-0.319721\pi\)
0.536567 + 0.843857i \(0.319721\pi\)
\(588\) 0 0
\(589\) −48.0000 −1.97781
\(590\) 0 0
\(591\) −24.0000 −0.987228
\(592\) 0 0
\(593\) −14.0000 −0.574911 −0.287456 0.957794i \(-0.592809\pi\)
−0.287456 + 0.957794i \(0.592809\pi\)
\(594\) 0 0
\(595\) 12.0000 0.491952
\(596\) 0 0
\(597\) −32.0000 −1.30967
\(598\) 0 0
\(599\) −24.0000 −0.980613 −0.490307 0.871550i \(-0.663115\pi\)
−0.490307 + 0.871550i \(0.663115\pi\)
\(600\) 0 0
\(601\) 34.0000 1.38689 0.693444 0.720510i \(-0.256092\pi\)
0.693444 + 0.720510i \(0.256092\pi\)
\(602\) 0 0
\(603\) 4.00000 0.162893
\(604\) 0 0
\(605\) 22.0000 0.894427
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 16.0000 0.646234 0.323117 0.946359i \(-0.395269\pi\)
0.323117 + 0.946359i \(0.395269\pi\)
\(614\) 0 0
\(615\) −24.0000 −0.967773
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −10.0000 −0.401934 −0.200967 0.979598i \(-0.564408\pi\)
−0.200967 + 0.979598i \(0.564408\pi\)
\(620\) 0 0
\(621\) −16.0000 −0.642058
\(622\) 0 0
\(623\) 14.0000 0.560898
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 48.0000 1.91389
\(630\) 0 0
\(631\) −8.00000 −0.318475 −0.159237 0.987240i \(-0.550904\pi\)
−0.159237 + 0.987240i \(0.550904\pi\)
\(632\) 0 0
\(633\) −56.0000 −2.22580
\(634\) 0 0
\(635\) 8.00000 0.317470
\(636\) 0 0
\(637\) 2.00000 0.0792429
\(638\) 0 0
\(639\) 16.0000 0.632950
\(640\) 0 0
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) 0 0
\(643\) −22.0000 −0.867595 −0.433798 0.901010i \(-0.642827\pi\)
−0.433798 + 0.901010i \(0.642827\pi\)
\(644\) 0 0
\(645\) −32.0000 −1.26000
\(646\) 0 0
\(647\) 48.0000 1.88707 0.943537 0.331266i \(-0.107476\pi\)
0.943537 + 0.331266i \(0.107476\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 0 0
\(653\) −40.0000 −1.56532 −0.782660 0.622449i \(-0.786138\pi\)
−0.782660 + 0.622449i \(0.786138\pi\)
\(654\) 0 0
\(655\) −12.0000 −0.468879
\(656\) 0 0
\(657\) −6.00000 −0.234082
\(658\) 0 0
\(659\) −40.0000 −1.55818 −0.779089 0.626913i \(-0.784318\pi\)
−0.779089 + 0.626913i \(0.784318\pi\)
\(660\) 0 0
\(661\) 22.0000 0.855701 0.427850 0.903850i \(-0.359271\pi\)
0.427850 + 0.903850i \(0.359271\pi\)
\(662\) 0 0
\(663\) 24.0000 0.932083
\(664\) 0 0
\(665\) 12.0000 0.465340
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 16.0000 0.618596
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −18.0000 −0.693849 −0.346925 0.937893i \(-0.612774\pi\)
−0.346925 + 0.937893i \(0.612774\pi\)
\(674\) 0 0
\(675\) 4.00000 0.153960
\(676\) 0 0
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) 2.00000 0.0767530
\(680\) 0 0
\(681\) 28.0000 1.07296
\(682\) 0 0
\(683\) 44.0000 1.68361 0.841807 0.539779i \(-0.181492\pi\)
0.841807 + 0.539779i \(0.181492\pi\)
\(684\) 0 0
\(685\) 20.0000 0.764161
\(686\) 0 0
\(687\) 4.00000 0.152610
\(688\) 0 0
\(689\) −8.00000 −0.304776
\(690\) 0 0
\(691\) 22.0000 0.836919 0.418460 0.908235i \(-0.362570\pi\)
0.418460 + 0.908235i \(0.362570\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.0000 −0.758643
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) 0 0
\(699\) −12.0000 −0.453882
\(700\) 0 0
\(701\) −24.0000 −0.906467 −0.453234 0.891392i \(-0.649730\pi\)
−0.453234 + 0.891392i \(0.649730\pi\)
\(702\) 0 0
\(703\) 48.0000 1.81035
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.0000 −0.526524
\(708\) 0 0
\(709\) 8.00000 0.300446 0.150223 0.988652i \(-0.452001\pi\)
0.150223 + 0.988652i \(0.452001\pi\)
\(710\) 0 0
\(711\) 16.0000 0.600047
\(712\) 0 0
\(713\) −32.0000 −1.19841
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 40.0000 1.49383
\(718\) 0 0
\(719\) 16.0000 0.596699 0.298350 0.954457i \(-0.403564\pi\)
0.298350 + 0.954457i \(0.403564\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 0 0
\(723\) 28.0000 1.04133
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 48.0000 1.77534
\(732\) 0 0
\(733\) −10.0000 −0.369358 −0.184679 0.982799i \(-0.559125\pi\)
−0.184679 + 0.982799i \(0.559125\pi\)
\(734\) 0 0
\(735\) −4.00000 −0.147542
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −32.0000 −1.17714 −0.588570 0.808447i \(-0.700309\pi\)
−0.588570 + 0.808447i \(0.700309\pi\)
\(740\) 0 0
\(741\) 24.0000 0.881662
\(742\) 0 0
\(743\) −12.0000 −0.440237 −0.220119 0.975473i \(-0.570644\pi\)
−0.220119 + 0.975473i \(0.570644\pi\)
\(744\) 0 0
\(745\) 40.0000 1.46549
\(746\) 0 0
\(747\) 14.0000 0.512233
\(748\) 0 0
\(749\) −4.00000 −0.146157
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 4.00000 0.145768
\(754\) 0 0
\(755\) 40.0000 1.45575
\(756\) 0 0
\(757\) −16.0000 −0.581530 −0.290765 0.956795i \(-0.593910\pi\)
−0.290765 + 0.956795i \(0.593910\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) −16.0000 −0.579239
\(764\) 0 0
\(765\) −12.0000 −0.433861
\(766\) 0 0
\(767\) 12.0000 0.433295
\(768\) 0 0
\(769\) 30.0000 1.08183 0.540914 0.841078i \(-0.318079\pi\)
0.540914 + 0.841078i \(0.318079\pi\)
\(770\) 0 0
\(771\) 4.00000 0.144056
\(772\) 0 0
\(773\) −18.0000 −0.647415 −0.323708 0.946157i \(-0.604929\pi\)
−0.323708 + 0.946157i \(0.604929\pi\)
\(774\) 0 0
\(775\) 8.00000 0.287368
\(776\) 0 0
\(777\) −16.0000 −0.573997
\(778\) 0 0
\(779\) 36.0000 1.28983
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) −10.0000 −0.356462 −0.178231 0.983989i \(-0.557037\pi\)
−0.178231 + 0.983989i \(0.557037\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 10.0000 0.355559
\(792\) 0 0
\(793\) −4.00000 −0.142044
\(794\) 0 0
\(795\) 16.0000 0.567462
\(796\) 0 0
\(797\) −30.0000 −1.06265 −0.531327 0.847167i \(-0.678307\pi\)
−0.531327 + 0.847167i \(0.678307\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −14.0000 −0.494666
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 8.00000 0.281963
\(806\) 0 0
\(807\) −60.0000 −2.11210
\(808\) 0 0
\(809\) −14.0000 −0.492214 −0.246107 0.969243i \(-0.579151\pi\)
−0.246107 + 0.969243i \(0.579151\pi\)
\(810\) 0 0
\(811\) 30.0000 1.05344 0.526721 0.850038i \(-0.323421\pi\)
0.526721 + 0.850038i \(0.323421\pi\)
\(812\) 0 0
\(813\) 16.0000 0.561144
\(814\) 0 0
\(815\) 32.0000 1.12091
\(816\) 0 0
\(817\) 48.0000 1.67931
\(818\) 0 0
\(819\) −2.00000 −0.0698857
\(820\) 0 0
\(821\) −28.0000 −0.977207 −0.488603 0.872506i \(-0.662493\pi\)
−0.488603 + 0.872506i \(0.662493\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.0000 1.25184 0.625921 0.779886i \(-0.284723\pi\)
0.625921 + 0.779886i \(0.284723\pi\)
\(828\) 0 0
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 0 0
\(831\) 40.0000 1.38758
\(832\) 0 0
\(833\) 6.00000 0.207888
\(834\) 0 0
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) 32.0000 1.10608
\(838\) 0 0
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 52.0000 1.79098
\(844\) 0 0
\(845\) 18.0000 0.619219
\(846\) 0 0
\(847\) 11.0000 0.377964
\(848\) 0 0
\(849\) −4.00000 −0.137280
\(850\) 0 0
\(851\) 32.0000 1.09695
\(852\) 0 0
\(853\) −30.0000 −1.02718 −0.513590 0.858036i \(-0.671685\pi\)
−0.513590 + 0.858036i \(0.671685\pi\)
\(854\) 0 0
\(855\) −12.0000 −0.410391
\(856\) 0 0
\(857\) −2.00000 −0.0683187 −0.0341593 0.999416i \(-0.510875\pi\)
−0.0341593 + 0.999416i \(0.510875\pi\)
\(858\) 0 0
\(859\) −22.0000 −0.750630 −0.375315 0.926897i \(-0.622466\pi\)
−0.375315 + 0.926897i \(0.622466\pi\)
\(860\) 0 0
\(861\) −12.0000 −0.408959
\(862\) 0 0
\(863\) −24.0000 −0.816970 −0.408485 0.912765i \(-0.633943\pi\)
−0.408485 + 0.912765i \(0.633943\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) 0 0
\(867\) 38.0000 1.29055
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 8.00000 0.271070
\(872\) 0 0
\(873\) −2.00000 −0.0676897
\(874\) 0 0
\(875\) −12.0000 −0.405674
\(876\) 0 0
\(877\) 8.00000 0.270141 0.135070 0.990836i \(-0.456874\pi\)
0.135070 + 0.990836i \(0.456874\pi\)
\(878\) 0 0
\(879\) 60.0000 2.02375
\(880\) 0 0
\(881\) 26.0000 0.875962 0.437981 0.898984i \(-0.355694\pi\)
0.437981 + 0.898984i \(0.355694\pi\)
\(882\) 0 0
\(883\) −36.0000 −1.21150 −0.605748 0.795656i \(-0.707126\pi\)
−0.605748 + 0.795656i \(0.707126\pi\)
\(884\) 0 0
\(885\) −24.0000 −0.806751
\(886\) 0 0
\(887\) −8.00000 −0.268614 −0.134307 0.990940i \(-0.542881\pi\)
−0.134307 + 0.990940i \(0.542881\pi\)
\(888\) 0 0
\(889\) 4.00000 0.134156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 8.00000 0.267411
\(896\) 0 0
\(897\) 16.0000 0.534224
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) 0 0
\(903\) −16.0000 −0.532447
\(904\) 0 0
\(905\) 12.0000 0.398893
\(906\) 0 0
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 0 0
\(909\) 14.0000 0.464351
\(910\) 0 0
\(911\) −60.0000 −1.98789 −0.993944 0.109885i \(-0.964952\pi\)
−0.993944 + 0.109885i \(0.964952\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 8.00000 0.264472
\(916\) 0 0
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) −32.0000 −1.05558 −0.527791 0.849374i \(-0.676980\pi\)
−0.527791 + 0.849374i \(0.676980\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) 0 0
\(923\) 32.0000 1.05329
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) 0 0
\(927\) −16.0000 −0.525509
\(928\) 0 0
\(929\) −10.0000 −0.328089 −0.164045 0.986453i \(-0.552454\pi\)
−0.164045 + 0.986453i \(0.552454\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) 0 0
\(933\) −16.0000 −0.523816
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 26.0000 0.849383 0.424691 0.905338i \(-0.360383\pi\)
0.424691 + 0.905338i \(0.360383\pi\)
\(938\) 0 0
\(939\) 12.0000 0.391605
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) 24.0000 0.781548
\(944\) 0 0
\(945\) −8.00000 −0.260240
\(946\) 0 0
\(947\) 24.0000 0.779895 0.389948 0.920837i \(-0.372493\pi\)
0.389948 + 0.920837i \(0.372493\pi\)
\(948\) 0 0
\(949\) −12.0000 −0.389536
\(950\) 0 0
\(951\) −24.0000 −0.778253
\(952\) 0 0
\(953\) 22.0000 0.712650 0.356325 0.934362i \(-0.384030\pi\)
0.356325 + 0.934362i \(0.384030\pi\)
\(954\) 0 0
\(955\) −16.0000 −0.517748
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 10.0000 0.322917
\(960\) 0 0
\(961\) 33.0000 1.06452
\(962\) 0 0
\(963\) 4.00000 0.128898
\(964\) 0 0
\(965\) 44.0000 1.41641
\(966\) 0 0
\(967\) 52.0000 1.67221 0.836104 0.548572i \(-0.184828\pi\)
0.836104 + 0.548572i \(0.184828\pi\)
\(968\) 0 0
\(969\) 72.0000 2.31297
\(970\) 0 0
\(971\) 6.00000 0.192549 0.0962746 0.995355i \(-0.469307\pi\)
0.0962746 + 0.995355i \(0.469307\pi\)
\(972\) 0 0
\(973\) −10.0000 −0.320585
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) 14.0000 0.447900 0.223950 0.974601i \(-0.428105\pi\)
0.223950 + 0.974601i \(0.428105\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 16.0000 0.510841
\(982\) 0 0
\(983\) −32.0000 −1.02064 −0.510321 0.859984i \(-0.670473\pi\)
−0.510321 + 0.859984i \(0.670473\pi\)
\(984\) 0 0
\(985\) 24.0000 0.764704
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 32.0000 1.01754
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 0 0
\(993\) 16.0000 0.507745
\(994\) 0 0
\(995\) 32.0000 1.01447
\(996\) 0 0
\(997\) −2.00000 −0.0633406 −0.0316703 0.999498i \(-0.510083\pi\)
−0.0316703 + 0.999498i \(0.510083\pi\)
\(998\) 0 0
\(999\) −32.0000 −1.01244
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1792.2.a.f.1.1 1
4.3 odd 2 1792.2.a.b.1.1 1
8.3 odd 2 1792.2.a.g.1.1 1
8.5 even 2 1792.2.a.c.1.1 1
16.3 odd 4 896.2.b.a.449.1 2
16.5 even 4 896.2.b.c.449.1 yes 2
16.11 odd 4 896.2.b.a.449.2 yes 2
16.13 even 4 896.2.b.c.449.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
896.2.b.a.449.1 2 16.3 odd 4
896.2.b.a.449.2 yes 2 16.11 odd 4
896.2.b.c.449.1 yes 2 16.5 even 4
896.2.b.c.449.2 yes 2 16.13 even 4
1792.2.a.b.1.1 1 4.3 odd 2
1792.2.a.c.1.1 1 8.5 even 2
1792.2.a.f.1.1 1 1.1 even 1 trivial
1792.2.a.g.1.1 1 8.3 odd 2