Defining parameters
| Level: | \( N \) | \(=\) | \( 1785 = 3 \cdot 5 \cdot 7 \cdot 17 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1785.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 30 \) | ||
| Sturm bound: | \(576\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(2\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1785))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 296 | 65 | 231 |
| Cusp forms | 281 | 65 | 216 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(3\) | \(5\) | \(7\) | \(17\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(12\) | \(5\) | \(7\) | \(12\) | \(5\) | \(7\) | \(0\) | \(0\) | \(0\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(22\) | \(5\) | \(17\) | \(21\) | \(5\) | \(16\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(22\) | \(2\) | \(20\) | \(21\) | \(2\) | \(19\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(18\) | \(4\) | \(14\) | \(17\) | \(4\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(19\) | \(5\) | \(14\) | \(18\) | \(5\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(19\) | \(3\) | \(16\) | \(18\) | \(3\) | \(15\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(21\) | \(4\) | \(17\) | \(20\) | \(4\) | \(16\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(15\) | \(4\) | \(11\) | \(14\) | \(4\) | \(10\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(18\) | \(5\) | \(13\) | \(17\) | \(5\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(18\) | \(3\) | \(15\) | \(17\) | \(3\) | \(14\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(22\) | \(2\) | \(20\) | \(21\) | \(2\) | \(19\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(16\) | \(6\) | \(10\) | \(15\) | \(6\) | \(9\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(15\) | \(3\) | \(12\) | \(14\) | \(3\) | \(11\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(25\) | \(7\) | \(18\) | \(24\) | \(7\) | \(17\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(19\) | \(6\) | \(13\) | \(18\) | \(6\) | \(12\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(15\) | \(1\) | \(14\) | \(14\) | \(1\) | \(13\) | \(1\) | \(0\) | \(1\) | |||
| Plus space | \(+\) | \(140\) | \(25\) | \(115\) | \(133\) | \(25\) | \(108\) | \(7\) | \(0\) | \(7\) | ||||||
| Minus space | \(-\) | \(156\) | \(40\) | \(116\) | \(148\) | \(40\) | \(108\) | \(8\) | \(0\) | \(8\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1785))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1785))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1785)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(17))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(21))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(51))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(85))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(105))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(119))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(255))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(357))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(595))\)\(^{\oplus 2}\)