Properties

Label 1782.2.e.s.595.1
Level $1782$
Weight $2$
Character 1782.595
Analytic conductor $14.229$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1782 = 2 \cdot 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1782.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(14.2293416402\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 595.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1782.595
Dual form 1782.2.e.s.1189.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.00000 - 1.73205i) q^{7} -1.00000 q^{8} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.00000 - 1.73205i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{11} +(2.00000 - 3.46410i) q^{13} +(1.00000 - 1.73205i) q^{14} +(-0.500000 - 0.866025i) q^{16} -6.00000 q^{17} -4.00000 q^{19} +(-0.500000 + 0.866025i) q^{22} +(-3.00000 + 5.19615i) q^{23} +(2.50000 + 4.33013i) q^{25} +4.00000 q^{26} +2.00000 q^{28} +(-3.00000 - 5.19615i) q^{29} +(-4.00000 + 6.92820i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-3.00000 - 5.19615i) q^{34} -10.0000 q^{37} +(-2.00000 - 3.46410i) q^{38} +(-3.00000 + 5.19615i) q^{41} +(-4.00000 - 6.92820i) q^{43} -1.00000 q^{44} -6.00000 q^{46} +(3.00000 + 5.19615i) q^{47} +(1.50000 - 2.59808i) q^{49} +(-2.50000 + 4.33013i) q^{50} +(2.00000 + 3.46410i) q^{52} +(1.00000 + 1.73205i) q^{56} +(3.00000 - 5.19615i) q^{58} +(-4.00000 - 6.92820i) q^{61} -8.00000 q^{62} +1.00000 q^{64} +(2.00000 - 3.46410i) q^{67} +(3.00000 - 5.19615i) q^{68} +6.00000 q^{71} +2.00000 q^{73} +(-5.00000 - 8.66025i) q^{74} +(2.00000 - 3.46410i) q^{76} +(1.00000 - 1.73205i) q^{77} +(-7.00000 - 12.1244i) q^{79} -6.00000 q^{82} +(6.00000 + 10.3923i) q^{83} +(4.00000 - 6.92820i) q^{86} +(-0.500000 - 0.866025i) q^{88} -6.00000 q^{89} -8.00000 q^{91} +(-3.00000 - 5.19615i) q^{92} +(-3.00000 + 5.19615i) q^{94} +(-7.00000 - 12.1244i) q^{97} +3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 2 q^{7} - 2 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{2} - q^{4} - 2 q^{7} - 2 q^{8} + q^{11} + 4 q^{13} + 2 q^{14} - q^{16} - 12 q^{17} - 8 q^{19} - q^{22} - 6 q^{23} + 5 q^{25} + 8 q^{26} + 4 q^{28} - 6 q^{29} - 8 q^{31} + q^{32} - 6 q^{34} - 20 q^{37} - 4 q^{38} - 6 q^{41} - 8 q^{43} - 2 q^{44} - 12 q^{46} + 6 q^{47} + 3 q^{49} - 5 q^{50} + 4 q^{52} + 2 q^{56} + 6 q^{58} - 8 q^{61} - 16 q^{62} + 2 q^{64} + 4 q^{67} + 6 q^{68} + 12 q^{71} + 4 q^{73} - 10 q^{74} + 4 q^{76} + 2 q^{77} - 14 q^{79} - 12 q^{82} + 12 q^{83} + 8 q^{86} - q^{88} - 12 q^{89} - 16 q^{91} - 6 q^{92} - 6 q^{94} - 14 q^{97} + 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1782\mathbb{Z}\right)^\times\).

\(n\) \(1135\) \(1541\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) −1.00000 1.73205i −0.377964 0.654654i 0.612801 0.790237i \(-0.290043\pi\)
−0.990766 + 0.135583i \(0.956709\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i
\(12\) 0 0
\(13\) 2.00000 3.46410i 0.554700 0.960769i −0.443227 0.896410i \(-0.646166\pi\)
0.997927 0.0643593i \(-0.0205004\pi\)
\(14\) 1.00000 1.73205i 0.267261 0.462910i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −0.500000 + 0.866025i −0.106600 + 0.184637i
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) 4.00000 0.784465
\(27\) 0 0
\(28\) 2.00000 0.377964
\(29\) −3.00000 5.19615i −0.557086 0.964901i −0.997738 0.0672232i \(-0.978586\pi\)
0.440652 0.897678i \(-0.354747\pi\)
\(30\) 0 0
\(31\) −4.00000 + 6.92820i −0.718421 + 1.24434i 0.243204 + 0.969975i \(0.421802\pi\)
−0.961625 + 0.274367i \(0.911532\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) −3.00000 5.19615i −0.514496 0.891133i
\(35\) 0 0
\(36\) 0 0
\(37\) −10.0000 −1.64399 −0.821995 0.569495i \(-0.807139\pi\)
−0.821995 + 0.569495i \(0.807139\pi\)
\(38\) −2.00000 3.46410i −0.324443 0.561951i
\(39\) 0 0
\(40\) 0 0
\(41\) −3.00000 + 5.19615i −0.468521 + 0.811503i −0.999353 0.0359748i \(-0.988546\pi\)
0.530831 + 0.847477i \(0.321880\pi\)
\(42\) 0 0
\(43\) −4.00000 6.92820i −0.609994 1.05654i −0.991241 0.132068i \(-0.957838\pi\)
0.381246 0.924473i \(-0.375495\pi\)
\(44\) −1.00000 −0.150756
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 3.00000 + 5.19615i 0.437595 + 0.757937i 0.997503 0.0706177i \(-0.0224970\pi\)
−0.559908 + 0.828554i \(0.689164\pi\)
\(48\) 0 0
\(49\) 1.50000 2.59808i 0.214286 0.371154i
\(50\) −2.50000 + 4.33013i −0.353553 + 0.612372i
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000 + 1.73205i 0.133631 + 0.231455i
\(57\) 0 0
\(58\) 3.00000 5.19615i 0.393919 0.682288i
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) −4.00000 6.92820i −0.512148 0.887066i −0.999901 0.0140840i \(-0.995517\pi\)
0.487753 0.872982i \(-0.337817\pi\)
\(62\) −8.00000 −1.01600
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 3.46410i 0.244339 0.423207i −0.717607 0.696449i \(-0.754762\pi\)
0.961946 + 0.273241i \(0.0880957\pi\)
\(68\) 3.00000 5.19615i 0.363803 0.630126i
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) −5.00000 8.66025i −0.581238 1.00673i
\(75\) 0 0
\(76\) 2.00000 3.46410i 0.229416 0.397360i
\(77\) 1.00000 1.73205i 0.113961 0.197386i
\(78\) 0 0
\(79\) −7.00000 12.1244i −0.787562 1.36410i −0.927457 0.373930i \(-0.878010\pi\)
0.139895 0.990166i \(-0.455323\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −6.00000 −0.662589
\(83\) 6.00000 + 10.3923i 0.658586 + 1.14070i 0.980982 + 0.194099i \(0.0621783\pi\)
−0.322396 + 0.946605i \(0.604488\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 4.00000 6.92820i 0.431331 0.747087i
\(87\) 0 0
\(88\) −0.500000 0.866025i −0.0533002 0.0923186i
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) −8.00000 −0.838628
\(92\) −3.00000 5.19615i −0.312772 0.541736i
\(93\) 0 0
\(94\) −3.00000 + 5.19615i −0.309426 + 0.535942i
\(95\) 0 0
\(96\) 0 0
\(97\) −7.00000 12.1244i −0.710742 1.23104i −0.964579 0.263795i \(-0.915026\pi\)
0.253837 0.967247i \(-0.418307\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) −3.00000 5.19615i −0.298511 0.517036i 0.677284 0.735721i \(-0.263157\pi\)
−0.975796 + 0.218685i \(0.929823\pi\)
\(102\) 0 0
\(103\) 2.00000 3.46410i 0.197066 0.341328i −0.750510 0.660859i \(-0.770192\pi\)
0.947576 + 0.319531i \(0.103525\pi\)
\(104\) −2.00000 + 3.46410i −0.196116 + 0.339683i
\(105\) 0 0
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.00000 + 1.73205i −0.0944911 + 0.163663i
\(113\) −9.00000 + 15.5885i −0.846649 + 1.46644i 0.0375328 + 0.999295i \(0.488050\pi\)
−0.884182 + 0.467143i \(0.845283\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 6.00000 0.557086
\(117\) 0 0
\(118\) 0 0
\(119\) 6.00000 + 10.3923i 0.550019 + 0.952661i
\(120\) 0 0
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) 4.00000 6.92820i 0.362143 0.627250i
\(123\) 0 0
\(124\) −4.00000 6.92820i −0.359211 0.622171i
\(125\) 0 0
\(126\) 0 0
\(127\) 14.0000 1.24230 0.621150 0.783692i \(-0.286666\pi\)
0.621150 + 0.783692i \(0.286666\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0 0
\(131\) 6.00000 10.3923i 0.524222 0.907980i −0.475380 0.879781i \(-0.657689\pi\)
0.999602 0.0281993i \(-0.00897729\pi\)
\(132\) 0 0
\(133\) 4.00000 + 6.92820i 0.346844 + 0.600751i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 6.00000 0.514496
\(137\) 9.00000 + 15.5885i 0.768922 + 1.33181i 0.938148 + 0.346235i \(0.112540\pi\)
−0.169226 + 0.985577i \(0.554127\pi\)
\(138\) 0 0
\(139\) 2.00000 3.46410i 0.169638 0.293821i −0.768655 0.639664i \(-0.779074\pi\)
0.938293 + 0.345843i \(0.112407\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 3.00000 + 5.19615i 0.251754 + 0.436051i
\(143\) 4.00000 0.334497
\(144\) 0 0
\(145\) 0 0
\(146\) 1.00000 + 1.73205i 0.0827606 + 0.143346i
\(147\) 0 0
\(148\) 5.00000 8.66025i 0.410997 0.711868i
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 0 0
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 4.00000 0.324443
\(153\) 0 0
\(154\) 2.00000 0.161165
\(155\) 0 0
\(156\) 0 0
\(157\) −1.00000 + 1.73205i −0.0798087 + 0.138233i −0.903167 0.429289i \(-0.858764\pi\)
0.823359 + 0.567521i \(0.192098\pi\)
\(158\) 7.00000 12.1244i 0.556890 0.964562i
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) −4.00000 −0.313304 −0.156652 0.987654i \(-0.550070\pi\)
−0.156652 + 0.987654i \(0.550070\pi\)
\(164\) −3.00000 5.19615i −0.234261 0.405751i
\(165\) 0 0
\(166\) −6.00000 + 10.3923i −0.465690 + 0.806599i
\(167\) −6.00000 + 10.3923i −0.464294 + 0.804181i −0.999169 0.0407502i \(-0.987025\pi\)
0.534875 + 0.844931i \(0.320359\pi\)
\(168\) 0 0
\(169\) −1.50000 2.59808i −0.115385 0.199852i
\(170\) 0 0
\(171\) 0 0
\(172\) 8.00000 0.609994
\(173\) −3.00000 5.19615i −0.228086 0.395056i 0.729155 0.684349i \(-0.239913\pi\)
−0.957241 + 0.289292i \(0.906580\pi\)
\(174\) 0 0
\(175\) 5.00000 8.66025i 0.377964 0.654654i
\(176\) 0.500000 0.866025i 0.0376889 0.0652791i
\(177\) 0 0
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) 24.0000 1.79384 0.896922 0.442189i \(-0.145798\pi\)
0.896922 + 0.442189i \(0.145798\pi\)
\(180\) 0 0
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) −4.00000 6.92820i −0.296500 0.513553i
\(183\) 0 0
\(184\) 3.00000 5.19615i 0.221163 0.383065i
\(185\) 0 0
\(186\) 0 0
\(187\) −3.00000 5.19615i −0.219382 0.379980i
\(188\) −6.00000 −0.437595
\(189\) 0 0
\(190\) 0 0
\(191\) −9.00000 15.5885i −0.651217 1.12794i −0.982828 0.184525i \(-0.940925\pi\)
0.331611 0.943416i \(-0.392408\pi\)
\(192\) 0 0
\(193\) −7.00000 + 12.1244i −0.503871 + 0.872730i 0.496119 + 0.868255i \(0.334758\pi\)
−0.999990 + 0.00447566i \(0.998575\pi\)
\(194\) 7.00000 12.1244i 0.502571 0.870478i
\(195\) 0 0
\(196\) 1.50000 + 2.59808i 0.107143 + 0.185577i
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −4.00000 −0.283552 −0.141776 0.989899i \(-0.545281\pi\)
−0.141776 + 0.989899i \(0.545281\pi\)
\(200\) −2.50000 4.33013i −0.176777 0.306186i
\(201\) 0 0
\(202\) 3.00000 5.19615i 0.211079 0.365600i
\(203\) −6.00000 + 10.3923i −0.421117 + 0.729397i
\(204\) 0 0
\(205\) 0 0
\(206\) 4.00000 0.278693
\(207\) 0 0
\(208\) −4.00000 −0.277350
\(209\) −2.00000 3.46410i −0.138343 0.239617i
\(210\) 0 0
\(211\) −4.00000 + 6.92820i −0.275371 + 0.476957i −0.970229 0.242190i \(-0.922134\pi\)
0.694857 + 0.719148i \(0.255467\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) −6.00000 10.3923i −0.410152 0.710403i
\(215\) 0 0
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) −2.00000 3.46410i −0.135457 0.234619i
\(219\) 0 0
\(220\) 0 0
\(221\) −12.0000 + 20.7846i −0.807207 + 1.39812i
\(222\) 0 0
\(223\) 8.00000 + 13.8564i 0.535720 + 0.927894i 0.999128 + 0.0417488i \(0.0132929\pi\)
−0.463409 + 0.886145i \(0.653374\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) −18.0000 −1.19734
\(227\) 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i \(-0.0362899\pi\)
−0.595274 + 0.803523i \(0.702957\pi\)
\(228\) 0 0
\(229\) 11.0000 19.0526i 0.726900 1.25903i −0.231287 0.972886i \(-0.574293\pi\)
0.958187 0.286143i \(-0.0923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 3.00000 + 5.19615i 0.196960 + 0.341144i
\(233\) −18.0000 −1.17922 −0.589610 0.807688i \(-0.700718\pi\)
−0.589610 + 0.807688i \(0.700718\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) −6.00000 + 10.3923i −0.388922 + 0.673633i
\(239\) 6.00000 10.3923i 0.388108 0.672222i −0.604087 0.796918i \(-0.706462\pi\)
0.992195 + 0.124696i \(0.0397955\pi\)
\(240\) 0 0
\(241\) 5.00000 + 8.66025i 0.322078 + 0.557856i 0.980917 0.194429i \(-0.0622852\pi\)
−0.658838 + 0.752285i \(0.728952\pi\)
\(242\) −1.00000 −0.0642824
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 + 13.8564i −0.509028 + 0.881662i
\(248\) 4.00000 6.92820i 0.254000 0.439941i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) −6.00000 −0.377217
\(254\) 7.00000 + 12.1244i 0.439219 + 0.760750i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 15.0000 25.9808i 0.935674 1.62064i 0.162247 0.986750i \(-0.448126\pi\)
0.773427 0.633885i \(-0.218541\pi\)
\(258\) 0 0
\(259\) 10.0000 + 17.3205i 0.621370 + 1.07624i
\(260\) 0 0
\(261\) 0 0
\(262\) 12.0000 0.741362
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.00000 + 6.92820i −0.245256 + 0.424795i
\(267\) 0 0
\(268\) 2.00000 + 3.46410i 0.122169 + 0.211604i
\(269\) −24.0000 −1.46331 −0.731653 0.681677i \(-0.761251\pi\)
−0.731653 + 0.681677i \(0.761251\pi\)
\(270\) 0 0
\(271\) 2.00000 0.121491 0.0607457 0.998153i \(-0.480652\pi\)
0.0607457 + 0.998153i \(0.480652\pi\)
\(272\) 3.00000 + 5.19615i 0.181902 + 0.315063i
\(273\) 0 0
\(274\) −9.00000 + 15.5885i −0.543710 + 0.941733i
\(275\) −2.50000 + 4.33013i −0.150756 + 0.261116i
\(276\) 0 0
\(277\) 8.00000 + 13.8564i 0.480673 + 0.832551i 0.999754 0.0221745i \(-0.00705893\pi\)
−0.519081 + 0.854725i \(0.673726\pi\)
\(278\) 4.00000 0.239904
\(279\) 0 0
\(280\) 0 0
\(281\) 3.00000 + 5.19615i 0.178965 + 0.309976i 0.941526 0.336939i \(-0.109392\pi\)
−0.762561 + 0.646916i \(0.776058\pi\)
\(282\) 0 0
\(283\) −4.00000 + 6.92820i −0.237775 + 0.411839i −0.960076 0.279741i \(-0.909752\pi\)
0.722300 + 0.691580i \(0.243085\pi\)
\(284\) −3.00000 + 5.19615i −0.178017 + 0.308335i
\(285\) 0 0
\(286\) 2.00000 + 3.46410i 0.118262 + 0.204837i
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) −1.00000 + 1.73205i −0.0585206 + 0.101361i
\(293\) 3.00000 5.19615i 0.175262 0.303562i −0.764990 0.644042i \(-0.777256\pi\)
0.940252 + 0.340480i \(0.110589\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) 6.00000 0.347571
\(299\) 12.0000 + 20.7846i 0.693978 + 1.20201i
\(300\) 0 0
\(301\) −8.00000 + 13.8564i −0.461112 + 0.798670i
\(302\) −5.00000 + 8.66025i −0.287718 + 0.498342i
\(303\) 0 0
\(304\) 2.00000 + 3.46410i 0.114708 + 0.198680i
\(305\) 0 0
\(306\) 0 0
\(307\) 20.0000 1.14146 0.570730 0.821138i \(-0.306660\pi\)
0.570730 + 0.821138i \(0.306660\pi\)
\(308\) 1.00000 + 1.73205i 0.0569803 + 0.0986928i
\(309\) 0 0
\(310\) 0 0
\(311\) 9.00000 15.5885i 0.510343 0.883940i −0.489585 0.871956i \(-0.662852\pi\)
0.999928 0.0119847i \(-0.00381495\pi\)
\(312\) 0 0
\(313\) −13.0000 22.5167i −0.734803 1.27272i −0.954810 0.297218i \(-0.903941\pi\)
0.220006 0.975499i \(-0.429392\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) 14.0000 0.787562
\(317\) −6.00000 10.3923i −0.336994 0.583690i 0.646872 0.762598i \(-0.276077\pi\)
−0.983866 + 0.178908i \(0.942743\pi\)
\(318\) 0 0
\(319\) 3.00000 5.19615i 0.167968 0.290929i
\(320\) 0 0
\(321\) 0 0
\(322\) 6.00000 + 10.3923i 0.334367 + 0.579141i
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) 20.0000 1.10940
\(326\) −2.00000 3.46410i −0.110770 0.191859i
\(327\) 0 0
\(328\) 3.00000 5.19615i 0.165647 0.286910i
\(329\) 6.00000 10.3923i 0.330791 0.572946i
\(330\) 0 0
\(331\) 2.00000 + 3.46410i 0.109930 + 0.190404i 0.915742 0.401768i \(-0.131604\pi\)
−0.805812 + 0.592172i \(0.798271\pi\)
\(332\) −12.0000 −0.658586
\(333\) 0 0
\(334\) −12.0000 −0.656611
\(335\) 0 0
\(336\) 0 0
\(337\) −1.00000 + 1.73205i −0.0544735 + 0.0943508i −0.891976 0.452082i \(-0.850681\pi\)
0.837503 + 0.546433i \(0.184015\pi\)
\(338\) 1.50000 2.59808i 0.0815892 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 4.00000 + 6.92820i 0.215666 + 0.373544i
\(345\) 0 0
\(346\) 3.00000 5.19615i 0.161281 0.279347i
\(347\) −18.0000 + 31.1769i −0.966291 + 1.67366i −0.260184 + 0.965559i \(0.583783\pi\)
−0.706107 + 0.708105i \(0.749550\pi\)
\(348\) 0 0
\(349\) 2.00000 + 3.46410i 0.107058 + 0.185429i 0.914577 0.404412i \(-0.132524\pi\)
−0.807519 + 0.589841i \(0.799190\pi\)
\(350\) 10.0000 0.534522
\(351\) 0 0
\(352\) 1.00000 0.0533002
\(353\) 3.00000 + 5.19615i 0.159674 + 0.276563i 0.934751 0.355303i \(-0.115622\pi\)
−0.775077 + 0.631867i \(0.782289\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 3.00000 5.19615i 0.159000 0.275396i
\(357\) 0 0
\(358\) 12.0000 + 20.7846i 0.634220 + 1.09850i
\(359\) −12.0000 −0.633336 −0.316668 0.948536i \(-0.602564\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) −11.0000 19.0526i −0.578147 1.00138i
\(363\) 0 0
\(364\) 4.00000 6.92820i 0.209657 0.363137i
\(365\) 0 0
\(366\) 0 0
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) 6.00000 0.312772
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 + 17.3205i −0.517780 + 0.896822i 0.482006 + 0.876168i \(0.339908\pi\)
−0.999787 + 0.0206542i \(0.993425\pi\)
\(374\) 3.00000 5.19615i 0.155126 0.268687i
\(375\) 0 0
\(376\) −3.00000 5.19615i −0.154713 0.267971i
\(377\) −24.0000 −1.23606
\(378\) 0 0
\(379\) 20.0000 1.02733 0.513665 0.857991i \(-0.328287\pi\)
0.513665 + 0.857991i \(0.328287\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 9.00000 15.5885i 0.460480 0.797575i
\(383\) −3.00000 + 5.19615i −0.153293 + 0.265511i −0.932436 0.361335i \(-0.882321\pi\)
0.779143 + 0.626846i \(0.215654\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) 14.0000 0.710742
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 0 0
\(391\) 18.0000 31.1769i 0.910299 1.57668i
\(392\) −1.50000 + 2.59808i −0.0757614 + 0.131223i
\(393\) 0 0
\(394\) 3.00000 + 5.19615i 0.151138 + 0.261778i
\(395\) 0 0
\(396\) 0 0
\(397\) 26.0000 1.30490 0.652451 0.757831i \(-0.273741\pi\)
0.652451 + 0.757831i \(0.273741\pi\)
\(398\) −2.00000 3.46410i −0.100251 0.173640i
\(399\) 0 0
\(400\) 2.50000 4.33013i 0.125000 0.216506i
\(401\) −15.0000 + 25.9808i −0.749064 + 1.29742i 0.199207 + 0.979957i \(0.436163\pi\)
−0.948272 + 0.317460i \(0.897170\pi\)
\(402\) 0 0
\(403\) 16.0000 + 27.7128i 0.797017 + 1.38047i
\(404\) 6.00000 0.298511
\(405\) 0 0
\(406\) −12.0000 −0.595550
\(407\) −5.00000 8.66025i −0.247841 0.429273i
\(408\) 0 0
\(409\) 17.0000 29.4449i 0.840596 1.45595i −0.0487958 0.998809i \(-0.515538\pi\)
0.889392 0.457146i \(-0.151128\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.00000 + 3.46410i 0.0985329 + 0.170664i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 3.46410i −0.0980581 0.169842i
\(417\) 0 0
\(418\) 2.00000 3.46410i 0.0978232 0.169435i
\(419\) −12.0000 + 20.7846i −0.586238 + 1.01539i 0.408481 + 0.912767i \(0.366058\pi\)
−0.994720 + 0.102628i \(0.967275\pi\)
\(420\) 0 0
\(421\) 5.00000 + 8.66025i 0.243685 + 0.422075i 0.961761 0.273890i \(-0.0883103\pi\)
−0.718076 + 0.695965i \(0.754977\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) 0 0
\(425\) −15.0000 25.9808i −0.727607 1.26025i
\(426\) 0 0
\(427\) −8.00000 + 13.8564i −0.387147 + 0.670559i
\(428\) 6.00000 10.3923i 0.290021 0.502331i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) 8.00000 + 13.8564i 0.384012 + 0.665129i
\(435\) 0 0
\(436\) 2.00000 3.46410i 0.0957826 0.165900i
\(437\) 12.0000 20.7846i 0.574038 0.994263i
\(438\) 0 0
\(439\) 5.00000 + 8.66025i 0.238637 + 0.413331i 0.960323 0.278889i \(-0.0899661\pi\)
−0.721686 + 0.692220i \(0.756633\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −24.0000 −1.14156
\(443\) 12.0000 + 20.7846i 0.570137 + 0.987507i 0.996551 + 0.0829786i \(0.0264433\pi\)
−0.426414 + 0.904528i \(0.640223\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −8.00000 + 13.8564i −0.378811 + 0.656120i
\(447\) 0 0
\(448\) −1.00000 1.73205i −0.0472456 0.0818317i
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) −9.00000 15.5885i −0.423324 0.733219i
\(453\) 0 0
\(454\) −6.00000 + 10.3923i −0.281594 + 0.487735i
\(455\) 0 0
\(456\) 0 0
\(457\) 5.00000 + 8.66025i 0.233890 + 0.405110i 0.958950 0.283577i \(-0.0915211\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) 22.0000 1.02799
\(459\) 0 0
\(460\) 0 0
\(461\) −21.0000 36.3731i −0.978068 1.69406i −0.669417 0.742887i \(-0.733456\pi\)
−0.308651 0.951175i \(-0.599877\pi\)
\(462\) 0 0
\(463\) 2.00000 3.46410i 0.0929479 0.160990i −0.815802 0.578331i \(-0.803704\pi\)
0.908750 + 0.417340i \(0.137038\pi\)
\(464\) −3.00000 + 5.19615i −0.139272 + 0.241225i
\(465\) 0 0
\(466\) −9.00000 15.5885i −0.416917 0.722121i
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) −8.00000 −0.369406
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.00000 6.92820i 0.183920 0.318559i
\(474\) 0 0
\(475\) −10.0000 17.3205i −0.458831 0.794719i
\(476\) −12.0000 −0.550019
\(477\) 0 0
\(478\) 12.0000 0.548867
\(479\) 12.0000 + 20.7846i 0.548294 + 0.949673i 0.998392 + 0.0566937i \(0.0180558\pi\)
−0.450098 + 0.892979i \(0.648611\pi\)
\(480\) 0 0
\(481\) −20.0000 + 34.6410i −0.911922 + 1.57949i
\(482\) −5.00000 + 8.66025i −0.227744 + 0.394464i
\(483\) 0 0
\(484\) −0.500000 0.866025i −0.0227273 0.0393648i
\(485\) 0 0
\(486\) 0 0
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 4.00000 + 6.92820i 0.181071 + 0.313625i
\(489\) 0 0
\(490\) 0 0
\(491\) −6.00000 + 10.3923i −0.270776 + 0.468998i −0.969061 0.246822i \(-0.920614\pi\)
0.698285 + 0.715820i \(0.253947\pi\)
\(492\) 0 0
\(493\) 18.0000 + 31.1769i 0.810679 + 1.40414i
\(494\) −16.0000 −0.719874
\(495\) 0 0
\(496\) 8.00000 0.359211
\(497\) −6.00000 10.3923i −0.269137 0.466159i
\(498\) 0 0
\(499\) 2.00000 3.46410i 0.0895323 0.155074i −0.817781 0.575529i \(-0.804796\pi\)
0.907314 + 0.420455i \(0.138129\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.00000 5.19615i −0.133366 0.230997i
\(507\) 0 0
\(508\) −7.00000 + 12.1244i −0.310575 + 0.537931i
\(509\) −12.0000 + 20.7846i −0.531891 + 0.921262i 0.467416 + 0.884037i \(0.345185\pi\)
−0.999307 + 0.0372243i \(0.988148\pi\)
\(510\) 0 0
\(511\) −2.00000 3.46410i −0.0884748 0.153243i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 30.0000 1.32324
\(515\) 0 0
\(516\) 0 0
\(517\) −3.00000 + 5.19615i −0.131940 + 0.228527i
\(518\) −10.0000 + 17.3205i −0.439375 + 0.761019i
\(519\) 0 0
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 6.00000 + 10.3923i 0.262111 + 0.453990i
\(525\) 0 0
\(526\) 0 0
\(527\) 24.0000 41.5692i 1.04546 1.81078i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) 0 0
\(532\) −8.00000 −0.346844
\(533\) 12.0000 + 20.7846i 0.519778 + 0.900281i
\(534\) 0 0
\(535\) 0 0
\(536\) −2.00000 + 3.46410i −0.0863868 + 0.149626i
\(537\) 0 0
\(538\) −12.0000 20.7846i −0.517357 0.896088i
\(539\) 3.00000 0.129219
\(540\) 0 0
\(541\) 20.0000 0.859867 0.429934 0.902861i \(-0.358537\pi\)
0.429934 + 0.902861i \(0.358537\pi\)
\(542\) 1.00000 + 1.73205i 0.0429537 + 0.0743980i
\(543\) 0 0
\(544\) −3.00000 + 5.19615i −0.128624 + 0.222783i
\(545\) 0 0
\(546\) 0 0
\(547\) 14.0000 + 24.2487i 0.598597 + 1.03680i 0.993028 + 0.117875i \(0.0376081\pi\)
−0.394432 + 0.918925i \(0.629059\pi\)
\(548\) −18.0000 −0.768922
\(549\) 0 0
\(550\) −5.00000 −0.213201
\(551\) 12.0000 + 20.7846i 0.511217 + 0.885454i
\(552\) 0 0
\(553\) −14.0000 + 24.2487i −0.595341 + 1.03116i
\(554\) −8.00000 + 13.8564i −0.339887 + 0.588702i
\(555\) 0 0
\(556\) 2.00000 + 3.46410i 0.0848189 + 0.146911i
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 0 0
\(559\) −32.0000 −1.35346
\(560\) 0 0
\(561\) 0 0
\(562\) −3.00000 + 5.19615i −0.126547 + 0.219186i
\(563\) 6.00000 10.3923i 0.252870 0.437983i −0.711445 0.702742i \(-0.751959\pi\)
0.964315 + 0.264758i \(0.0852922\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −8.00000 −0.336265
\(567\) 0 0
\(568\) −6.00000 −0.251754
\(569\) −9.00000 15.5885i −0.377300 0.653502i 0.613369 0.789797i \(-0.289814\pi\)
−0.990668 + 0.136295i \(0.956481\pi\)
\(570\) 0 0
\(571\) 14.0000 24.2487i 0.585882 1.01478i −0.408883 0.912587i \(-0.634082\pi\)
0.994765 0.102190i \(-0.0325850\pi\)
\(572\) −2.00000 + 3.46410i −0.0836242 + 0.144841i
\(573\) 0 0
\(574\) 6.00000 + 10.3923i 0.250435 + 0.433766i
\(575\) −30.0000 −1.25109
\(576\) 0 0
\(577\) −34.0000 −1.41544 −0.707719 0.706494i \(-0.750276\pi\)
−0.707719 + 0.706494i \(0.750276\pi\)
\(578\) 9.50000 + 16.4545i 0.395148 + 0.684416i
\(579\) 0 0
\(580\) 0 0
\(581\) 12.0000 20.7846i 0.497844 0.862291i
\(582\) 0 0
\(583\) 0 0
\(584\) −2.00000 −0.0827606
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) −12.0000 20.7846i −0.495293 0.857873i 0.504692 0.863299i \(-0.331606\pi\)
−0.999985 + 0.00542667i \(0.998273\pi\)
\(588\) 0 0
\(589\) 16.0000 27.7128i 0.659269 1.14189i
\(590\) 0 0
\(591\) 0 0
\(592\) 5.00000 + 8.66025i 0.205499 + 0.355934i
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) 0 0
\(598\) −12.0000 + 20.7846i −0.490716 + 0.849946i
\(599\) −15.0000 + 25.9808i −0.612883 + 1.06155i 0.377869 + 0.925859i \(0.376657\pi\)
−0.990752 + 0.135686i \(0.956676\pi\)
\(600\) 0 0
\(601\) 11.0000 + 19.0526i 0.448699 + 0.777170i 0.998302 0.0582563i \(-0.0185541\pi\)
−0.549602 + 0.835426i \(0.685221\pi\)
\(602\) −16.0000 −0.652111
\(603\) 0 0
\(604\) −10.0000 −0.406894
\(605\) 0 0
\(606\) 0 0
\(607\) −7.00000 + 12.1244i −0.284121 + 0.492112i −0.972396 0.233338i \(-0.925035\pi\)
0.688274 + 0.725450i \(0.258368\pi\)
\(608\) −2.00000 + 3.46410i −0.0811107 + 0.140488i
\(609\) 0 0
\(610\) 0 0
\(611\) 24.0000 0.970936
\(612\) 0 0
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 10.0000 + 17.3205i 0.403567 + 0.698999i
\(615\) 0 0
\(616\) −1.00000 + 1.73205i −0.0402911 + 0.0697863i
\(617\) 15.0000 25.9808i 0.603877 1.04595i −0.388351 0.921512i \(-0.626955\pi\)
0.992228 0.124434i \(-0.0397116\pi\)
\(618\) 0 0
\(619\) −22.0000 38.1051i −0.884255 1.53157i −0.846566 0.532284i \(-0.821334\pi\)
−0.0376891 0.999290i \(-0.512000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 18.0000 0.721734
\(623\) 6.00000 + 10.3923i 0.240385 + 0.416359i
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) 13.0000 22.5167i 0.519584 0.899947i
\(627\) 0 0
\(628\) −1.00000 1.73205i −0.0399043 0.0691164i
\(629\) 60.0000 2.39236
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 7.00000 + 12.1244i 0.278445 + 0.482281i
\(633\) 0 0
\(634\) 6.00000 10.3923i 0.238290 0.412731i
\(635\) 0 0
\(636\) 0 0
\(637\) −6.00000 10.3923i −0.237729 0.411758i
\(638\) 6.00000 0.237542
\(639\) 0 0
\(640\) 0 0
\(641\) −3.00000 5.19615i −0.118493 0.205236i 0.800678 0.599095i \(-0.204473\pi\)
−0.919171 + 0.393860i \(0.871140\pi\)
\(642\) 0 0
\(643\) 2.00000 3.46410i 0.0788723 0.136611i −0.823891 0.566748i \(-0.808201\pi\)
0.902764 + 0.430137i \(0.141535\pi\)
\(644\) −6.00000 + 10.3923i −0.236433 + 0.409514i
\(645\) 0 0
\(646\) 12.0000 + 20.7846i 0.472134 + 0.817760i
\(647\) 6.00000 0.235884 0.117942 0.993020i \(-0.462370\pi\)
0.117942 + 0.993020i \(0.462370\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 10.0000 + 17.3205i 0.392232 + 0.679366i
\(651\) 0 0
\(652\) 2.00000 3.46410i 0.0783260 0.135665i
\(653\) 18.0000 31.1769i 0.704394 1.22005i −0.262515 0.964928i \(-0.584552\pi\)
0.966910 0.255119i \(-0.0821147\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 6.00000 0.234261
\(657\) 0 0
\(658\) 12.0000 0.467809
\(659\) −18.0000 31.1769i −0.701180 1.21448i −0.968052 0.250748i \(-0.919323\pi\)
0.266872 0.963732i \(-0.414010\pi\)
\(660\) 0 0
\(661\) 11.0000 19.0526i 0.427850 0.741059i −0.568831 0.822454i \(-0.692604\pi\)
0.996682 + 0.0813955i \(0.0259377\pi\)
\(662\) −2.00000 + 3.46410i −0.0777322 + 0.134636i
\(663\) 0 0
\(664\) −6.00000 10.3923i −0.232845 0.403300i
\(665\) 0 0
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) −6.00000 10.3923i −0.232147 0.402090i
\(669\) 0 0
\(670\) 0 0
\(671\) 4.00000 6.92820i 0.154418 0.267460i
\(672\) 0 0
\(673\) −7.00000 12.1244i −0.269830 0.467360i 0.698988 0.715134i \(-0.253634\pi\)
−0.968818 + 0.247774i \(0.920301\pi\)
\(674\) −2.00000 −0.0770371
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) −15.0000 25.9808i −0.576497 0.998522i −0.995877 0.0907112i \(-0.971086\pi\)
0.419380 0.907811i \(-0.362247\pi\)
\(678\) 0 0
\(679\) −14.0000 + 24.2487i −0.537271 + 0.930580i
\(680\) 0 0
\(681\) 0 0
\(682\) −4.00000 6.92820i −0.153168 0.265295i
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −10.0000 17.3205i −0.381802 0.661300i
\(687\) 0 0
\(688\) −4.00000 + 6.92820i −0.152499 + 0.264135i
\(689\) 0 0
\(690\) 0 0
\(691\) −10.0000 17.3205i −0.380418 0.658903i 0.610704 0.791859i \(-0.290887\pi\)
−0.991122 + 0.132956i \(0.957553\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −36.0000 −1.36654
\(695\) 0 0
\(696\) 0 0
\(697\) 18.0000 31.1769i 0.681799 1.18091i
\(698\) −2.00000 + 3.46410i −0.0757011 + 0.131118i
\(699\) 0 0
\(700\) 5.00000 + 8.66025i 0.188982 + 0.327327i
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) 40.0000 1.50863
\(704\) 0.500000 + 0.866025i 0.0188445 + 0.0326396i
\(705\) 0 0
\(706\) −3.00000 + 5.19615i −0.112906 + 0.195560i
\(707\) −6.00000 + 10.3923i −0.225653 + 0.390843i
\(708\) 0 0
\(709\) −13.0000 22.5167i −0.488225 0.845631i 0.511683 0.859174i \(-0.329022\pi\)
−0.999908 + 0.0135434i \(0.995689\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) −24.0000 41.5692i −0.898807 1.55678i
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 + 20.7846i −0.448461 + 0.776757i
\(717\) 0 0
\(718\) −6.00000 10.3923i −0.223918 0.387837i
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) −1.50000 2.59808i −0.0558242 0.0966904i
\(723\) 0 0
\(724\) 11.0000 19.0526i 0.408812 0.708083i
\(725\) 15.0000 25.9808i 0.557086 0.964901i
\(726\) 0 0
\(727\) 14.0000 + 24.2487i 0.519231 + 0.899335i 0.999750 + 0.0223506i \(0.00711500\pi\)
−0.480519 + 0.876984i \(0.659552\pi\)
\(728\) 8.00000 0.296500
\(729\) 0 0
\(730\) 0 0
\(731\) 24.0000 + 41.5692i 0.887672 + 1.53749i
\(732\) 0 0
\(733\) 2.00000 3.46410i 0.0738717 0.127950i −0.826723 0.562609i \(-0.809798\pi\)
0.900595 + 0.434659i \(0.143131\pi\)
\(734\) 4.00000 6.92820i 0.147643 0.255725i
\(735\) 0 0
\(736\) 3.00000 + 5.19615i 0.110581 + 0.191533i
\(737\) 4.00000 0.147342
\(738\) 0 0
\(739\) 8.00000 0.294285 0.147142 0.989115i \(-0.452992\pi\)
0.147142 + 0.989115i \(0.452992\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −18.0000 + 31.1769i −0.660356 + 1.14377i 0.320166 + 0.947361i \(0.396261\pi\)
−0.980522 + 0.196409i \(0.937072\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −20.0000 −0.732252
\(747\) 0 0
\(748\) 6.00000 0.219382
\(749\) 12.0000 + 20.7846i 0.438470 + 0.759453i
\(750\) 0 0
\(751\) −4.00000 + 6.92820i −0.145962 + 0.252814i −0.929731 0.368238i \(-0.879961\pi\)
0.783769 + 0.621052i \(0.213294\pi\)
\(752\) 3.00000 5.19615i 0.109399 0.189484i
\(753\) 0 0
\(754\) −12.0000 20.7846i −0.437014 0.756931i
\(755\) 0 0
\(756\) 0 0
\(757\) −34.0000 −1.23575 −0.617876 0.786276i \(-0.712006\pi\)
−0.617876 + 0.786276i \(0.712006\pi\)
\(758\) 10.0000 + 17.3205i 0.363216 + 0.629109i
\(759\) 0 0
\(760\) 0 0
\(761\) −9.00000 + 15.5885i −0.326250 + 0.565081i −0.981764 0.190101i \(-0.939118\pi\)
0.655515 + 0.755182i \(0.272452\pi\)
\(762\) 0 0
\(763\) 4.00000 + 6.92820i 0.144810 + 0.250818i
\(764\) 18.0000 0.651217
\(765\) 0 0
\(766\) −6.00000 −0.216789
\(767\) 0 0
\(768\) 0 0
\(769\) 17.0000 29.4449i 0.613036 1.06181i −0.377690 0.925932i \(-0.623282\pi\)
0.990726 0.135877i \(-0.0433852\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.00000 12.1244i −0.251936 0.436365i
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) −40.0000 −1.43684
\(776\) 7.00000 + 12.1244i 0.251285 + 0.435239i
\(777\) 0 0
\(778\) 0 0
\(779\) 12.0000 20.7846i 0.429945 0.744686i
\(780\) 0 0
\(781\) 3.00000 + 5.19615i 0.107348 + 0.185933i
\(782\) 36.0000 1.28736
\(783\) 0 0
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 0 0
\(787\) −16.0000 + 27.7128i −0.570338 + 0.987855i 0.426193 + 0.904632i \(0.359855\pi\)
−0.996531 + 0.0832226i \(0.973479\pi\)
\(788\) −3.00000 + 5.19615i −0.106871 + 0.185105i
\(789\) 0 0
\(790\) 0 0
\(791\) 36.0000 1.28001
\(792\) 0 0
\(793\) −32.0000 −1.13635
\(794\) 13.0000 + 22.5167i 0.461353 + 0.799086i