Properties

Label 1776.2.a.g.1.1
Level $1776$
Weight $2$
Character 1776.1
Self dual yes
Analytic conductor $14.181$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1776,2,Mod(1,1776)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1776.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1776, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1776 = 2^{4} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1776.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,1,0,-4,0,1,0,1,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.1814313990\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 888)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1776.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -4.00000 q^{5} +1.00000 q^{7} +1.00000 q^{9} +3.00000 q^{11} -5.00000 q^{13} -4.00000 q^{15} +7.00000 q^{17} -5.00000 q^{19} +1.00000 q^{21} -1.00000 q^{23} +11.0000 q^{25} +1.00000 q^{27} -8.00000 q^{29} -6.00000 q^{31} +3.00000 q^{33} -4.00000 q^{35} +1.00000 q^{37} -5.00000 q^{39} -2.00000 q^{41} -12.0000 q^{43} -4.00000 q^{45} +2.00000 q^{47} -6.00000 q^{49} +7.00000 q^{51} -1.00000 q^{53} -12.0000 q^{55} -5.00000 q^{57} +4.00000 q^{59} +14.0000 q^{61} +1.00000 q^{63} +20.0000 q^{65} -14.0000 q^{67} -1.00000 q^{69} -4.00000 q^{71} -11.0000 q^{73} +11.0000 q^{75} +3.00000 q^{77} -10.0000 q^{79} +1.00000 q^{81} -5.00000 q^{83} -28.0000 q^{85} -8.00000 q^{87} -9.00000 q^{89} -5.00000 q^{91} -6.00000 q^{93} +20.0000 q^{95} -10.0000 q^{97} +3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350
\(4\) 0 0
\(5\) −4.00000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) 0 0
\(7\) 1.00000 0.377964 0.188982 0.981981i \(-0.439481\pi\)
0.188982 + 0.981981i \(0.439481\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) −5.00000 −1.38675 −0.693375 0.720577i \(-0.743877\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) 0 0
\(15\) −4.00000 −1.03280
\(16\) 0 0
\(17\) 7.00000 1.69775 0.848875 0.528594i \(-0.177281\pi\)
0.848875 + 0.528594i \(0.177281\pi\)
\(18\) 0 0
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) 0 0
\(23\) −1.00000 −0.208514 −0.104257 0.994550i \(-0.533247\pi\)
−0.104257 + 0.994550i \(0.533247\pi\)
\(24\) 0 0
\(25\) 11.0000 2.20000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) −6.00000 −1.07763 −0.538816 0.842424i \(-0.681128\pi\)
−0.538816 + 0.842424i \(0.681128\pi\)
\(32\) 0 0
\(33\) 3.00000 0.522233
\(34\) 0 0
\(35\) −4.00000 −0.676123
\(36\) 0 0
\(37\) 1.00000 0.164399
\(38\) 0 0
\(39\) −5.00000 −0.800641
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) −4.00000 −0.596285
\(46\) 0 0
\(47\) 2.00000 0.291730 0.145865 0.989305i \(-0.453403\pi\)
0.145865 + 0.989305i \(0.453403\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 7.00000 0.980196
\(52\) 0 0
\(53\) −1.00000 −0.137361 −0.0686803 0.997639i \(-0.521879\pi\)
−0.0686803 + 0.997639i \(0.521879\pi\)
\(54\) 0 0
\(55\) −12.0000 −1.61808
\(56\) 0 0
\(57\) −5.00000 −0.662266
\(58\) 0 0
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 1.00000 0.125988
\(64\) 0 0
\(65\) 20.0000 2.48069
\(66\) 0 0
\(67\) −14.0000 −1.71037 −0.855186 0.518321i \(-0.826557\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) −11.0000 −1.28745 −0.643726 0.765256i \(-0.722612\pi\)
−0.643726 + 0.765256i \(0.722612\pi\)
\(74\) 0 0
\(75\) 11.0000 1.27017
\(76\) 0 0
\(77\) 3.00000 0.341882
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −5.00000 −0.548821 −0.274411 0.961613i \(-0.588483\pi\)
−0.274411 + 0.961613i \(0.588483\pi\)
\(84\) 0 0
\(85\) −28.0000 −3.03703
\(86\) 0 0
\(87\) −8.00000 −0.857690
\(88\) 0 0
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) −5.00000 −0.524142
\(92\) 0 0
\(93\) −6.00000 −0.622171
\(94\) 0 0
\(95\) 20.0000 2.05196
\(96\) 0 0
\(97\) −10.0000 −1.01535 −0.507673 0.861550i \(-0.669494\pi\)
−0.507673 + 0.861550i \(0.669494\pi\)
\(98\) 0 0
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 10.0000 0.985329 0.492665 0.870219i \(-0.336023\pi\)
0.492665 + 0.870219i \(0.336023\pi\)
\(104\) 0 0
\(105\) −4.00000 −0.390360
\(106\) 0 0
\(107\) −15.0000 −1.45010 −0.725052 0.688694i \(-0.758184\pi\)
−0.725052 + 0.688694i \(0.758184\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) 0 0
\(111\) 1.00000 0.0949158
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) −5.00000 −0.462250
\(118\) 0 0
\(119\) 7.00000 0.641689
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) −2.00000 −0.180334
\(124\) 0 0
\(125\) −24.0000 −2.14663
\(126\) 0 0
\(127\) −13.0000 −1.15356 −0.576782 0.816898i \(-0.695692\pi\)
−0.576782 + 0.816898i \(0.695692\pi\)
\(128\) 0 0
\(129\) −12.0000 −1.05654
\(130\) 0 0
\(131\) 18.0000 1.57267 0.786334 0.617802i \(-0.211977\pi\)
0.786334 + 0.617802i \(0.211977\pi\)
\(132\) 0 0
\(133\) −5.00000 −0.433555
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) 12.0000 1.02523 0.512615 0.858619i \(-0.328677\pi\)
0.512615 + 0.858619i \(0.328677\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) 2.00000 0.168430
\(142\) 0 0
\(143\) −15.0000 −1.25436
\(144\) 0 0
\(145\) 32.0000 2.65746
\(146\) 0 0
\(147\) −6.00000 −0.494872
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 19.0000 1.54620 0.773099 0.634285i \(-0.218706\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(152\) 0 0
\(153\) 7.00000 0.565916
\(154\) 0 0
\(155\) 24.0000 1.92773
\(156\) 0 0
\(157\) 20.0000 1.59617 0.798087 0.602542i \(-0.205846\pi\)
0.798087 + 0.602542i \(0.205846\pi\)
\(158\) 0 0
\(159\) −1.00000 −0.0793052
\(160\) 0 0
\(161\) −1.00000 −0.0788110
\(162\) 0 0
\(163\) −7.00000 −0.548282 −0.274141 0.961689i \(-0.588394\pi\)
−0.274141 + 0.961689i \(0.588394\pi\)
\(164\) 0 0
\(165\) −12.0000 −0.934199
\(166\) 0 0
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −5.00000 −0.382360
\(172\) 0 0
\(173\) 1.00000 0.0760286 0.0380143 0.999277i \(-0.487897\pi\)
0.0380143 + 0.999277i \(0.487897\pi\)
\(174\) 0 0
\(175\) 11.0000 0.831522
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 0 0
\(183\) 14.0000 1.03491
\(184\) 0 0
\(185\) −4.00000 −0.294086
\(186\) 0 0
\(187\) 21.0000 1.53567
\(188\) 0 0
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −21.0000 −1.51951 −0.759753 0.650211i \(-0.774680\pi\)
−0.759753 + 0.650211i \(0.774680\pi\)
\(192\) 0 0
\(193\) −2.00000 −0.143963 −0.0719816 0.997406i \(-0.522932\pi\)
−0.0719816 + 0.997406i \(0.522932\pi\)
\(194\) 0 0
\(195\) 20.0000 1.43223
\(196\) 0 0
\(197\) 5.00000 0.356235 0.178118 0.984009i \(-0.442999\pi\)
0.178118 + 0.984009i \(0.442999\pi\)
\(198\) 0 0
\(199\) 12.0000 0.850657 0.425329 0.905039i \(-0.360158\pi\)
0.425329 + 0.905039i \(0.360158\pi\)
\(200\) 0 0
\(201\) −14.0000 −0.987484
\(202\) 0 0
\(203\) −8.00000 −0.561490
\(204\) 0 0
\(205\) 8.00000 0.558744
\(206\) 0 0
\(207\) −1.00000 −0.0695048
\(208\) 0 0
\(209\) −15.0000 −1.03757
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) −4.00000 −0.274075
\(214\) 0 0
\(215\) 48.0000 3.27357
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) 0 0
\(219\) −11.0000 −0.743311
\(220\) 0 0
\(221\) −35.0000 −2.35435
\(222\) 0 0
\(223\) 8.00000 0.535720 0.267860 0.963458i \(-0.413684\pi\)
0.267860 + 0.963458i \(0.413684\pi\)
\(224\) 0 0
\(225\) 11.0000 0.733333
\(226\) 0 0
\(227\) 12.0000 0.796468 0.398234 0.917284i \(-0.369623\pi\)
0.398234 + 0.917284i \(0.369623\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 3.00000 0.197386
\(232\) 0 0
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 0 0
\(235\) −8.00000 −0.521862
\(236\) 0 0
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −16.0000 −1.03065 −0.515325 0.856995i \(-0.672329\pi\)
−0.515325 + 0.856995i \(0.672329\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 24.0000 1.53330
\(246\) 0 0
\(247\) 25.0000 1.59071
\(248\) 0 0
\(249\) −5.00000 −0.316862
\(250\) 0 0
\(251\) 10.0000 0.631194 0.315597 0.948893i \(-0.397795\pi\)
0.315597 + 0.948893i \(0.397795\pi\)
\(252\) 0 0
\(253\) −3.00000 −0.188608
\(254\) 0 0
\(255\) −28.0000 −1.75343
\(256\) 0 0
\(257\) −1.00000 −0.0623783 −0.0311891 0.999514i \(-0.509929\pi\)
−0.0311891 + 0.999514i \(0.509929\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) 0 0
\(261\) −8.00000 −0.495188
\(262\) 0 0
\(263\) −6.00000 −0.369976 −0.184988 0.982741i \(-0.559225\pi\)
−0.184988 + 0.982741i \(0.559225\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) −9.00000 −0.550791
\(268\) 0 0
\(269\) 1.00000 0.0609711 0.0304855 0.999535i \(-0.490295\pi\)
0.0304855 + 0.999535i \(0.490295\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) −5.00000 −0.302614
\(274\) 0 0
\(275\) 33.0000 1.98997
\(276\) 0 0
\(277\) −19.0000 −1.14160 −0.570800 0.821089i \(-0.693367\pi\)
−0.570800 + 0.821089i \(0.693367\pi\)
\(278\) 0 0
\(279\) −6.00000 −0.359211
\(280\) 0 0
\(281\) 19.0000 1.13344 0.566722 0.823909i \(-0.308211\pi\)
0.566722 + 0.823909i \(0.308211\pi\)
\(282\) 0 0
\(283\) −11.0000 −0.653882 −0.326941 0.945045i \(-0.606018\pi\)
−0.326941 + 0.945045i \(0.606018\pi\)
\(284\) 0 0
\(285\) 20.0000 1.18470
\(286\) 0 0
\(287\) −2.00000 −0.118056
\(288\) 0 0
\(289\) 32.0000 1.88235
\(290\) 0 0
\(291\) −10.0000 −0.586210
\(292\) 0 0
\(293\) 7.00000 0.408944 0.204472 0.978872i \(-0.434452\pi\)
0.204472 + 0.978872i \(0.434452\pi\)
\(294\) 0 0
\(295\) −16.0000 −0.931556
\(296\) 0 0
\(297\) 3.00000 0.174078
\(298\) 0 0
\(299\) 5.00000 0.289157
\(300\) 0 0
\(301\) −12.0000 −0.691669
\(302\) 0 0
\(303\) 10.0000 0.574485
\(304\) 0 0
\(305\) −56.0000 −3.20655
\(306\) 0 0
\(307\) 4.00000 0.228292 0.114146 0.993464i \(-0.463587\pi\)
0.114146 + 0.993464i \(0.463587\pi\)
\(308\) 0 0
\(309\) 10.0000 0.568880
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 0 0
\(315\) −4.00000 −0.225374
\(316\) 0 0
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) 0 0
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) −15.0000 −0.837218
\(322\) 0 0
\(323\) −35.0000 −1.94745
\(324\) 0 0
\(325\) −55.0000 −3.05085
\(326\) 0 0
\(327\) −7.00000 −0.387101
\(328\) 0 0
\(329\) 2.00000 0.110264
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 0 0
\(333\) 1.00000 0.0547997
\(334\) 0 0
\(335\) 56.0000 3.05961
\(336\) 0 0
\(337\) 5.00000 0.272367 0.136184 0.990684i \(-0.456516\pi\)
0.136184 + 0.990684i \(0.456516\pi\)
\(338\) 0 0
\(339\) 6.00000 0.325875
\(340\) 0 0
\(341\) −18.0000 −0.974755
\(342\) 0 0
\(343\) −13.0000 −0.701934
\(344\) 0 0
\(345\) 4.00000 0.215353
\(346\) 0 0
\(347\) −18.0000 −0.966291 −0.483145 0.875540i \(-0.660506\pi\)
−0.483145 + 0.875540i \(0.660506\pi\)
\(348\) 0 0
\(349\) 18.0000 0.963518 0.481759 0.876304i \(-0.339998\pi\)
0.481759 + 0.876304i \(0.339998\pi\)
\(350\) 0 0
\(351\) −5.00000 −0.266880
\(352\) 0 0
\(353\) 14.0000 0.745145 0.372572 0.928003i \(-0.378476\pi\)
0.372572 + 0.928003i \(0.378476\pi\)
\(354\) 0 0
\(355\) 16.0000 0.849192
\(356\) 0 0
\(357\) 7.00000 0.370479
\(358\) 0 0
\(359\) −30.0000 −1.58334 −0.791670 0.610949i \(-0.790788\pi\)
−0.791670 + 0.610949i \(0.790788\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) 44.0000 2.30307
\(366\) 0 0
\(367\) −23.0000 −1.20059 −0.600295 0.799779i \(-0.704950\pi\)
−0.600295 + 0.799779i \(0.704950\pi\)
\(368\) 0 0
\(369\) −2.00000 −0.104116
\(370\) 0 0
\(371\) −1.00000 −0.0519174
\(372\) 0 0
\(373\) 4.00000 0.207112 0.103556 0.994624i \(-0.466978\pi\)
0.103556 + 0.994624i \(0.466978\pi\)
\(374\) 0 0
\(375\) −24.0000 −1.23935
\(376\) 0 0
\(377\) 40.0000 2.06010
\(378\) 0 0
\(379\) −24.0000 −1.23280 −0.616399 0.787434i \(-0.711409\pi\)
−0.616399 + 0.787434i \(0.711409\pi\)
\(380\) 0 0
\(381\) −13.0000 −0.666010
\(382\) 0 0
\(383\) 1.00000 0.0510976 0.0255488 0.999674i \(-0.491867\pi\)
0.0255488 + 0.999674i \(0.491867\pi\)
\(384\) 0 0
\(385\) −12.0000 −0.611577
\(386\) 0 0
\(387\) −12.0000 −0.609994
\(388\) 0 0
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) −7.00000 −0.354005
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) 0 0
\(395\) 40.0000 2.01262
\(396\) 0 0
\(397\) 20.0000 1.00377 0.501886 0.864934i \(-0.332640\pi\)
0.501886 + 0.864934i \(0.332640\pi\)
\(398\) 0 0
\(399\) −5.00000 −0.250313
\(400\) 0 0
\(401\) −25.0000 −1.24844 −0.624220 0.781248i \(-0.714583\pi\)
−0.624220 + 0.781248i \(0.714583\pi\)
\(402\) 0 0
\(403\) 30.0000 1.49441
\(404\) 0 0
\(405\) −4.00000 −0.198762
\(406\) 0 0
\(407\) 3.00000 0.148704
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 0 0
\(411\) 12.0000 0.591916
\(412\) 0 0
\(413\) 4.00000 0.196827
\(414\) 0 0
\(415\) 20.0000 0.981761
\(416\) 0 0
\(417\) −2.00000 −0.0979404
\(418\) 0 0
\(419\) −39.0000 −1.90527 −0.952637 0.304109i \(-0.901641\pi\)
−0.952637 + 0.304109i \(0.901641\pi\)
\(420\) 0 0
\(421\) 6.00000 0.292422 0.146211 0.989253i \(-0.453292\pi\)
0.146211 + 0.989253i \(0.453292\pi\)
\(422\) 0 0
\(423\) 2.00000 0.0972433
\(424\) 0 0
\(425\) 77.0000 3.73505
\(426\) 0 0
\(427\) 14.0000 0.677507
\(428\) 0 0
\(429\) −15.0000 −0.724207
\(430\) 0 0
\(431\) −3.00000 −0.144505 −0.0722525 0.997386i \(-0.523019\pi\)
−0.0722525 + 0.997386i \(0.523019\pi\)
\(432\) 0 0
\(433\) 7.00000 0.336399 0.168199 0.985753i \(-0.446205\pi\)
0.168199 + 0.985753i \(0.446205\pi\)
\(434\) 0 0
\(435\) 32.0000 1.53428
\(436\) 0 0
\(437\) 5.00000 0.239182
\(438\) 0 0
\(439\) 34.0000 1.62273 0.811366 0.584539i \(-0.198725\pi\)
0.811366 + 0.584539i \(0.198725\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 36.0000 1.70656
\(446\) 0 0
\(447\) −6.00000 −0.283790
\(448\) 0 0
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) −6.00000 −0.282529
\(452\) 0 0
\(453\) 19.0000 0.892698
\(454\) 0 0
\(455\) 20.0000 0.937614
\(456\) 0 0
\(457\) 32.0000 1.49690 0.748448 0.663193i \(-0.230799\pi\)
0.748448 + 0.663193i \(0.230799\pi\)
\(458\) 0 0
\(459\) 7.00000 0.326732
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 30.0000 1.39422 0.697109 0.716965i \(-0.254469\pi\)
0.697109 + 0.716965i \(0.254469\pi\)
\(464\) 0 0
\(465\) 24.0000 1.11297
\(466\) 0 0
\(467\) 22.0000 1.01804 0.509019 0.860755i \(-0.330008\pi\)
0.509019 + 0.860755i \(0.330008\pi\)
\(468\) 0 0
\(469\) −14.0000 −0.646460
\(470\) 0 0
\(471\) 20.0000 0.921551
\(472\) 0 0
\(473\) −36.0000 −1.65528
\(474\) 0 0
\(475\) −55.0000 −2.52357
\(476\) 0 0
\(477\) −1.00000 −0.0457869
\(478\) 0 0
\(479\) 21.0000 0.959514 0.479757 0.877401i \(-0.340725\pi\)
0.479757 + 0.877401i \(0.340725\pi\)
\(480\) 0 0
\(481\) −5.00000 −0.227980
\(482\) 0 0
\(483\) −1.00000 −0.0455016
\(484\) 0 0
\(485\) 40.0000 1.81631
\(486\) 0 0
\(487\) −2.00000 −0.0906287 −0.0453143 0.998973i \(-0.514429\pi\)
−0.0453143 + 0.998973i \(0.514429\pi\)
\(488\) 0 0
\(489\) −7.00000 −0.316551
\(490\) 0 0
\(491\) −41.0000 −1.85030 −0.925152 0.379597i \(-0.876063\pi\)
−0.925152 + 0.379597i \(0.876063\pi\)
\(492\) 0 0
\(493\) −56.0000 −2.52211
\(494\) 0 0
\(495\) −12.0000 −0.539360
\(496\) 0 0
\(497\) −4.00000 −0.179425
\(498\) 0 0
\(499\) −31.0000 −1.38775 −0.693875 0.720095i \(-0.744098\pi\)
−0.693875 + 0.720095i \(0.744098\pi\)
\(500\) 0 0
\(501\) −3.00000 −0.134030
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −40.0000 −1.77998
\(506\) 0 0
\(507\) 12.0000 0.532939
\(508\) 0 0
\(509\) 11.0000 0.487566 0.243783 0.969830i \(-0.421611\pi\)
0.243783 + 0.969830i \(0.421611\pi\)
\(510\) 0 0
\(511\) −11.0000 −0.486611
\(512\) 0 0
\(513\) −5.00000 −0.220755
\(514\) 0 0
\(515\) −40.0000 −1.76261
\(516\) 0 0
\(517\) 6.00000 0.263880
\(518\) 0 0
\(519\) 1.00000 0.0438951
\(520\) 0 0
\(521\) −22.0000 −0.963837 −0.481919 0.876216i \(-0.660060\pi\)
−0.481919 + 0.876216i \(0.660060\pi\)
\(522\) 0 0
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) 0 0
\(525\) 11.0000 0.480079
\(526\) 0 0
\(527\) −42.0000 −1.82955
\(528\) 0 0
\(529\) −22.0000 −0.956522
\(530\) 0 0
\(531\) 4.00000 0.173585
\(532\) 0 0
\(533\) 10.0000 0.433148
\(534\) 0 0
\(535\) 60.0000 2.59403
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 0 0
\(543\) 16.0000 0.686626
\(544\) 0 0
\(545\) 28.0000 1.19939
\(546\) 0 0
\(547\) 33.0000 1.41098 0.705489 0.708721i \(-0.250727\pi\)
0.705489 + 0.708721i \(0.250727\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 40.0000 1.70406
\(552\) 0 0
\(553\) −10.0000 −0.425243
\(554\) 0 0
\(555\) −4.00000 −0.169791
\(556\) 0 0
\(557\) 2.00000 0.0847427 0.0423714 0.999102i \(-0.486509\pi\)
0.0423714 + 0.999102i \(0.486509\pi\)
\(558\) 0 0
\(559\) 60.0000 2.53773
\(560\) 0 0
\(561\) 21.0000 0.886621
\(562\) 0 0
\(563\) 8.00000 0.337160 0.168580 0.985688i \(-0.446082\pi\)
0.168580 + 0.985688i \(0.446082\pi\)
\(564\) 0 0
\(565\) −24.0000 −1.00969
\(566\) 0 0
\(567\) 1.00000 0.0419961
\(568\) 0 0
\(569\) 41.0000 1.71881 0.859405 0.511296i \(-0.170834\pi\)
0.859405 + 0.511296i \(0.170834\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 0 0
\(573\) −21.0000 −0.877288
\(574\) 0 0
\(575\) −11.0000 −0.458732
\(576\) 0 0
\(577\) 34.0000 1.41544 0.707719 0.706494i \(-0.249724\pi\)
0.707719 + 0.706494i \(0.249724\pi\)
\(578\) 0 0
\(579\) −2.00000 −0.0831172
\(580\) 0 0
\(581\) −5.00000 −0.207435
\(582\) 0 0
\(583\) −3.00000 −0.124247
\(584\) 0 0
\(585\) 20.0000 0.826898
\(586\) 0 0
\(587\) −16.0000 −0.660391 −0.330195 0.943913i \(-0.607115\pi\)
−0.330195 + 0.943913i \(0.607115\pi\)
\(588\) 0 0
\(589\) 30.0000 1.23613
\(590\) 0 0
\(591\) 5.00000 0.205673
\(592\) 0 0
\(593\) 12.0000 0.492781 0.246390 0.969171i \(-0.420755\pi\)
0.246390 + 0.969171i \(0.420755\pi\)
\(594\) 0 0
\(595\) −28.0000 −1.14789
\(596\) 0 0
\(597\) 12.0000 0.491127
\(598\) 0 0
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) −49.0000 −1.99875 −0.999376 0.0353259i \(-0.988753\pi\)
−0.999376 + 0.0353259i \(0.988753\pi\)
\(602\) 0 0
\(603\) −14.0000 −0.570124
\(604\) 0 0
\(605\) 8.00000 0.325246
\(606\) 0 0
\(607\) −42.0000 −1.70473 −0.852364 0.522949i \(-0.824832\pi\)
−0.852364 + 0.522949i \(0.824832\pi\)
\(608\) 0 0
\(609\) −8.00000 −0.324176
\(610\) 0 0
\(611\) −10.0000 −0.404557
\(612\) 0 0
\(613\) −14.0000 −0.565455 −0.282727 0.959200i \(-0.591239\pi\)
−0.282727 + 0.959200i \(0.591239\pi\)
\(614\) 0 0
\(615\) 8.00000 0.322591
\(616\) 0 0
\(617\) 12.0000 0.483102 0.241551 0.970388i \(-0.422344\pi\)
0.241551 + 0.970388i \(0.422344\pi\)
\(618\) 0 0
\(619\) 46.0000 1.84890 0.924448 0.381308i \(-0.124526\pi\)
0.924448 + 0.381308i \(0.124526\pi\)
\(620\) 0 0
\(621\) −1.00000 −0.0401286
\(622\) 0 0
\(623\) −9.00000 −0.360577
\(624\) 0 0
\(625\) 41.0000 1.64000
\(626\) 0 0
\(627\) −15.0000 −0.599042
\(628\) 0 0
\(629\) 7.00000 0.279108
\(630\) 0 0
\(631\) −16.0000 −0.636950 −0.318475 0.947931i \(-0.603171\pi\)
−0.318475 + 0.947931i \(0.603171\pi\)
\(632\) 0 0
\(633\) 4.00000 0.158986
\(634\) 0 0
\(635\) 52.0000 2.06356
\(636\) 0 0
\(637\) 30.0000 1.18864
\(638\) 0 0
\(639\) −4.00000 −0.158238
\(640\) 0 0
\(641\) 16.0000 0.631962 0.315981 0.948766i \(-0.397666\pi\)
0.315981 + 0.948766i \(0.397666\pi\)
\(642\) 0 0
\(643\) 23.0000 0.907031 0.453516 0.891248i \(-0.350170\pi\)
0.453516 + 0.891248i \(0.350170\pi\)
\(644\) 0 0
\(645\) 48.0000 1.89000
\(646\) 0 0
\(647\) 7.00000 0.275198 0.137599 0.990488i \(-0.456061\pi\)
0.137599 + 0.990488i \(0.456061\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) −6.00000 −0.235159
\(652\) 0 0
\(653\) −36.0000 −1.40879 −0.704394 0.709809i \(-0.748781\pi\)
−0.704394 + 0.709809i \(0.748781\pi\)
\(654\) 0 0
\(655\) −72.0000 −2.81327
\(656\) 0 0
\(657\) −11.0000 −0.429151
\(658\) 0 0
\(659\) −8.00000 −0.311636 −0.155818 0.987786i \(-0.549801\pi\)
−0.155818 + 0.987786i \(0.549801\pi\)
\(660\) 0 0
\(661\) −21.0000 −0.816805 −0.408403 0.912802i \(-0.633914\pi\)
−0.408403 + 0.912802i \(0.633914\pi\)
\(662\) 0 0
\(663\) −35.0000 −1.35929
\(664\) 0 0
\(665\) 20.0000 0.775567
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) 0 0
\(669\) 8.00000 0.309298
\(670\) 0 0
\(671\) 42.0000 1.62139
\(672\) 0 0
\(673\) 13.0000 0.501113 0.250557 0.968102i \(-0.419386\pi\)
0.250557 + 0.968102i \(0.419386\pi\)
\(674\) 0 0
\(675\) 11.0000 0.423390
\(676\) 0 0
\(677\) −27.0000 −1.03769 −0.518847 0.854867i \(-0.673639\pi\)
−0.518847 + 0.854867i \(0.673639\pi\)
\(678\) 0 0
\(679\) −10.0000 −0.383765
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −6.00000 −0.229584 −0.114792 0.993390i \(-0.536620\pi\)
−0.114792 + 0.993390i \(0.536620\pi\)
\(684\) 0 0
\(685\) −48.0000 −1.83399
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.00000 0.190485
\(690\) 0 0
\(691\) −28.0000 −1.06517 −0.532585 0.846376i \(-0.678779\pi\)
−0.532585 + 0.846376i \(0.678779\pi\)
\(692\) 0 0
\(693\) 3.00000 0.113961
\(694\) 0 0
\(695\) 8.00000 0.303457
\(696\) 0 0
\(697\) −14.0000 −0.530288
\(698\) 0 0
\(699\) 14.0000 0.529529
\(700\) 0 0
\(701\) 16.0000 0.604312 0.302156 0.953259i \(-0.402294\pi\)
0.302156 + 0.953259i \(0.402294\pi\)
\(702\) 0 0
\(703\) −5.00000 −0.188579
\(704\) 0 0
\(705\) −8.00000 −0.301297
\(706\) 0 0
\(707\) 10.0000 0.376089
\(708\) 0 0
\(709\) −29.0000 −1.08912 −0.544559 0.838723i \(-0.683303\pi\)
−0.544559 + 0.838723i \(0.683303\pi\)
\(710\) 0 0
\(711\) −10.0000 −0.375029
\(712\) 0 0
\(713\) 6.00000 0.224702
\(714\) 0 0
\(715\) 60.0000 2.24387
\(716\) 0 0
\(717\) −24.0000 −0.896296
\(718\) 0 0
\(719\) −12.0000 −0.447524 −0.223762 0.974644i \(-0.571834\pi\)
−0.223762 + 0.974644i \(0.571834\pi\)
\(720\) 0 0
\(721\) 10.0000 0.372419
\(722\) 0 0
\(723\) −16.0000 −0.595046
\(724\) 0 0
\(725\) −88.0000 −3.26824
\(726\) 0 0
\(727\) −16.0000 −0.593407 −0.296704 0.954970i \(-0.595887\pi\)
−0.296704 + 0.954970i \(0.595887\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −84.0000 −3.10685
\(732\) 0 0
\(733\) 18.0000 0.664845 0.332423 0.943131i \(-0.392134\pi\)
0.332423 + 0.943131i \(0.392134\pi\)
\(734\) 0 0
\(735\) 24.0000 0.885253
\(736\) 0 0
\(737\) −42.0000 −1.54709
\(738\) 0 0
\(739\) 10.0000 0.367856 0.183928 0.982940i \(-0.441119\pi\)
0.183928 + 0.982940i \(0.441119\pi\)
\(740\) 0 0
\(741\) 25.0000 0.918398
\(742\) 0 0
\(743\) 12.0000 0.440237 0.220119 0.975473i \(-0.429356\pi\)
0.220119 + 0.975473i \(0.429356\pi\)
\(744\) 0 0
\(745\) 24.0000 0.879292
\(746\) 0 0
\(747\) −5.00000 −0.182940
\(748\) 0 0
\(749\) −15.0000 −0.548088
\(750\) 0 0
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) 0 0
\(753\) 10.0000 0.364420
\(754\) 0 0
\(755\) −76.0000 −2.76592
\(756\) 0 0
\(757\) −7.00000 −0.254419 −0.127210 0.991876i \(-0.540602\pi\)
−0.127210 + 0.991876i \(0.540602\pi\)
\(758\) 0 0
\(759\) −3.00000 −0.108893
\(760\) 0 0
\(761\) −6.00000 −0.217500 −0.108750 0.994069i \(-0.534685\pi\)
−0.108750 + 0.994069i \(0.534685\pi\)
\(762\) 0 0
\(763\) −7.00000 −0.253417
\(764\) 0 0
\(765\) −28.0000 −1.01234
\(766\) 0 0
\(767\) −20.0000 −0.722158
\(768\) 0 0
\(769\) −24.0000 −0.865462 −0.432731 0.901523i \(-0.642450\pi\)
−0.432731 + 0.901523i \(0.642450\pi\)
\(770\) 0 0
\(771\) −1.00000 −0.0360141
\(772\) 0 0
\(773\) −11.0000 −0.395643 −0.197821 0.980238i \(-0.563387\pi\)
−0.197821 + 0.980238i \(0.563387\pi\)
\(774\) 0 0
\(775\) −66.0000 −2.37079
\(776\) 0 0
\(777\) 1.00000 0.0358748
\(778\) 0 0
\(779\) 10.0000 0.358287
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) −8.00000 −0.285897
\(784\) 0 0
\(785\) −80.0000 −2.85532
\(786\) 0 0
\(787\) −42.0000 −1.49714 −0.748569 0.663057i \(-0.769259\pi\)
−0.748569 + 0.663057i \(0.769259\pi\)
\(788\) 0 0
\(789\) −6.00000 −0.213606
\(790\) 0 0
\(791\) 6.00000 0.213335
\(792\) 0 0
\(793\) −70.0000 −2.48577
\(794\) 0 0
\(795\) 4.00000 0.141865
\(796\) 0 0
\(797\) −40.0000 −1.41687 −0.708436 0.705775i \(-0.750599\pi\)
−0.708436 + 0.705775i \(0.750599\pi\)
\(798\) 0 0
\(799\) 14.0000 0.495284
\(800\) 0 0
\(801\) −9.00000 −0.317999
\(802\) 0 0
\(803\) −33.0000 −1.16454
\(804\) 0 0
\(805\) 4.00000 0.140981
\(806\) 0 0
\(807\) 1.00000 0.0352017
\(808\) 0 0
\(809\) 39.0000 1.37117 0.685583 0.727994i \(-0.259547\pi\)
0.685583 + 0.727994i \(0.259547\pi\)
\(810\) 0 0
\(811\) 40.0000 1.40459 0.702295 0.711886i \(-0.252159\pi\)
0.702295 + 0.711886i \(0.252159\pi\)
\(812\) 0 0
\(813\) −24.0000 −0.841717
\(814\) 0 0
\(815\) 28.0000 0.980797
\(816\) 0 0
\(817\) 60.0000 2.09913
\(818\) 0 0
\(819\) −5.00000 −0.174714
\(820\) 0 0
\(821\) −45.0000 −1.57051 −0.785255 0.619172i \(-0.787468\pi\)
−0.785255 + 0.619172i \(0.787468\pi\)
\(822\) 0 0
\(823\) 23.0000 0.801730 0.400865 0.916137i \(-0.368710\pi\)
0.400865 + 0.916137i \(0.368710\pi\)
\(824\) 0 0
\(825\) 33.0000 1.14891
\(826\) 0 0
\(827\) 18.0000 0.625921 0.312961 0.949766i \(-0.398679\pi\)
0.312961 + 0.949766i \(0.398679\pi\)
\(828\) 0 0
\(829\) −11.0000 −0.382046 −0.191023 0.981586i \(-0.561180\pi\)
−0.191023 + 0.981586i \(0.561180\pi\)
\(830\) 0 0
\(831\) −19.0000 −0.659103
\(832\) 0 0
\(833\) −42.0000 −1.45521
\(834\) 0 0
\(835\) 12.0000 0.415277
\(836\) 0 0
\(837\) −6.00000 −0.207390
\(838\) 0 0
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 0 0
\(843\) 19.0000 0.654395
\(844\) 0 0
\(845\) −48.0000 −1.65125
\(846\) 0 0
\(847\) −2.00000 −0.0687208
\(848\) 0 0
\(849\) −11.0000 −0.377519
\(850\) 0 0
\(851\) −1.00000 −0.0342796
\(852\) 0 0
\(853\) −17.0000 −0.582069 −0.291034 0.956713i \(-0.593999\pi\)
−0.291034 + 0.956713i \(0.593999\pi\)
\(854\) 0 0
\(855\) 20.0000 0.683986
\(856\) 0 0
\(857\) 33.0000 1.12726 0.563629 0.826028i \(-0.309405\pi\)
0.563629 + 0.826028i \(0.309405\pi\)
\(858\) 0 0
\(859\) 41.0000 1.39890 0.699451 0.714681i \(-0.253428\pi\)
0.699451 + 0.714681i \(0.253428\pi\)
\(860\) 0 0
\(861\) −2.00000 −0.0681598
\(862\) 0 0
\(863\) −34.0000 −1.15737 −0.578687 0.815550i \(-0.696435\pi\)
−0.578687 + 0.815550i \(0.696435\pi\)
\(864\) 0 0
\(865\) −4.00000 −0.136004
\(866\) 0 0
\(867\) 32.0000 1.08678
\(868\) 0 0
\(869\) −30.0000 −1.01768
\(870\) 0 0
\(871\) 70.0000 2.37186
\(872\) 0 0
\(873\) −10.0000 −0.338449
\(874\) 0 0
\(875\) −24.0000 −0.811348
\(876\) 0 0
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) 0 0
\(879\) 7.00000 0.236104
\(880\) 0 0
\(881\) −48.0000 −1.61716 −0.808581 0.588386i \(-0.799764\pi\)
−0.808581 + 0.588386i \(0.799764\pi\)
\(882\) 0 0
\(883\) 13.0000 0.437485 0.218742 0.975783i \(-0.429805\pi\)
0.218742 + 0.975783i \(0.429805\pi\)
\(884\) 0 0
\(885\) −16.0000 −0.537834
\(886\) 0 0
\(887\) 42.0000 1.41022 0.705111 0.709097i \(-0.250897\pi\)
0.705111 + 0.709097i \(0.250897\pi\)
\(888\) 0 0
\(889\) −13.0000 −0.436006
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 0 0
\(893\) −10.0000 −0.334637
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 5.00000 0.166945
\(898\) 0 0
\(899\) 48.0000 1.60089
\(900\) 0 0
\(901\) −7.00000 −0.233204
\(902\) 0 0
\(903\) −12.0000 −0.399335
\(904\) 0 0
\(905\) −64.0000 −2.12743
\(906\) 0 0
\(907\) −19.0000 −0.630885 −0.315442 0.948945i \(-0.602153\pi\)
−0.315442 + 0.948945i \(0.602153\pi\)
\(908\) 0 0
\(909\) 10.0000 0.331679
\(910\) 0 0
\(911\) 24.0000 0.795155 0.397578 0.917568i \(-0.369851\pi\)
0.397578 + 0.917568i \(0.369851\pi\)
\(912\) 0 0
\(913\) −15.0000 −0.496428
\(914\) 0 0
\(915\) −56.0000 −1.85130
\(916\) 0 0
\(917\) 18.0000 0.594412
\(918\) 0 0
\(919\) −22.0000 −0.725713 −0.362857 0.931845i \(-0.618198\pi\)
−0.362857 + 0.931845i \(0.618198\pi\)
\(920\) 0 0
\(921\) 4.00000 0.131804
\(922\) 0 0
\(923\) 20.0000 0.658308
\(924\) 0 0
\(925\) 11.0000 0.361678
\(926\) 0 0
\(927\) 10.0000 0.328443
\(928\) 0 0
\(929\) −30.0000 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(930\) 0 0
\(931\) 30.0000 0.983210
\(932\) 0 0
\(933\) 24.0000 0.785725
\(934\) 0 0
\(935\) −84.0000 −2.74709
\(936\) 0 0
\(937\) −26.0000 −0.849383 −0.424691 0.905338i \(-0.639617\pi\)
−0.424691 + 0.905338i \(0.639617\pi\)
\(938\) 0 0
\(939\) 10.0000 0.326338
\(940\) 0 0
\(941\) 54.0000 1.76035 0.880175 0.474650i \(-0.157425\pi\)
0.880175 + 0.474650i \(0.157425\pi\)
\(942\) 0 0
\(943\) 2.00000 0.0651290
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) 14.0000 0.454939 0.227469 0.973785i \(-0.426955\pi\)
0.227469 + 0.973785i \(0.426955\pi\)
\(948\) 0 0
\(949\) 55.0000 1.78538
\(950\) 0 0
\(951\) 18.0000 0.583690
\(952\) 0 0
\(953\) −12.0000 −0.388718 −0.194359 0.980930i \(-0.562263\pi\)
−0.194359 + 0.980930i \(0.562263\pi\)
\(954\) 0 0
\(955\) 84.0000 2.71818
\(956\) 0 0
\(957\) −24.0000 −0.775810
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 0 0
\(963\) −15.0000 −0.483368
\(964\) 0 0
\(965\) 8.00000 0.257529
\(966\) 0 0
\(967\) −52.0000 −1.67221 −0.836104 0.548572i \(-0.815172\pi\)
−0.836104 + 0.548572i \(0.815172\pi\)
\(968\) 0 0
\(969\) −35.0000 −1.12436
\(970\) 0 0
\(971\) 28.0000 0.898563 0.449281 0.893390i \(-0.351680\pi\)
0.449281 + 0.893390i \(0.351680\pi\)
\(972\) 0 0
\(973\) −2.00000 −0.0641171
\(974\) 0 0
\(975\) −55.0000 −1.76141
\(976\) 0 0
\(977\) 23.0000 0.735835 0.367918 0.929858i \(-0.380071\pi\)
0.367918 + 0.929858i \(0.380071\pi\)
\(978\) 0 0
\(979\) −27.0000 −0.862924
\(980\) 0 0
\(981\) −7.00000 −0.223493
\(982\) 0 0
\(983\) 30.0000 0.956851 0.478426 0.878128i \(-0.341208\pi\)
0.478426 + 0.878128i \(0.341208\pi\)
\(984\) 0 0
\(985\) −20.0000 −0.637253
\(986\) 0 0
\(987\) 2.00000 0.0636607
\(988\) 0 0
\(989\) 12.0000 0.381578
\(990\) 0 0
\(991\) 4.00000 0.127064 0.0635321 0.997980i \(-0.479763\pi\)
0.0635321 + 0.997980i \(0.479763\pi\)
\(992\) 0 0
\(993\) 12.0000 0.380808
\(994\) 0 0
\(995\) −48.0000 −1.52170
\(996\) 0 0
\(997\) 33.0000 1.04512 0.522560 0.852602i \(-0.324977\pi\)
0.522560 + 0.852602i \(0.324977\pi\)
\(998\) 0 0
\(999\) 1.00000 0.0316386
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1776.2.a.g.1.1 1
3.2 odd 2 5328.2.a.w.1.1 1
4.3 odd 2 888.2.a.a.1.1 1
8.3 odd 2 7104.2.a.ba.1.1 1
8.5 even 2 7104.2.a.n.1.1 1
12.11 even 2 2664.2.a.h.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
888.2.a.a.1.1 1 4.3 odd 2
1776.2.a.g.1.1 1 1.1 even 1 trivial
2664.2.a.h.1.1 1 12.11 even 2
5328.2.a.w.1.1 1 3.2 odd 2
7104.2.a.n.1.1 1 8.5 even 2
7104.2.a.ba.1.1 1 8.3 odd 2