Properties

Label 1776.1.bw.a
Level $1776$
Weight $1$
Character orbit 1776.bw
Analytic conductor $0.886$
Analytic rank $0$
Dimension $2$
Projective image $D_{3}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1776 = 2^{4} \cdot 3 \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1776.bw (of order \(6\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.886339462436\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 111)
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.4107.1
Artin image: $C_6\times S_3$
Artin field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

$q$-expansion

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{6} q^{3} -\zeta_{6} q^{7} + \zeta_{6}^{2} q^{9} +O(q^{10})\) \( q + \zeta_{6} q^{3} -\zeta_{6} q^{7} + \zeta_{6}^{2} q^{9} + \zeta_{6} q^{13} + 2 \zeta_{6} q^{19} -\zeta_{6}^{2} q^{21} + \zeta_{6}^{2} q^{25} - q^{27} + q^{31} + q^{37} + \zeta_{6}^{2} q^{39} + q^{43} + 2 \zeta_{6}^{2} q^{57} -2 \zeta_{6} q^{61} + q^{63} -\zeta_{6} q^{67} - q^{73} - q^{75} -\zeta_{6} q^{79} -\zeta_{6} q^{81} -\zeta_{6}^{2} q^{91} + \zeta_{6} q^{93} - q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - q^{7} - q^{9} + O(q^{10}) \) \( 2 q + q^{3} - q^{7} - q^{9} + q^{13} + 2 q^{19} + q^{21} - q^{25} - 2 q^{27} + 2 q^{31} + 2 q^{37} - q^{39} + 2 q^{43} - 2 q^{57} - 2 q^{61} + 2 q^{63} - q^{67} - 2 q^{73} - 2 q^{75} - q^{79} - q^{81} + q^{91} + q^{93} - 2 q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1776\mathbb{Z}\right)^\times\).

\(n\) \(223\) \(593\) \(1297\) \(1333\)
\(\chi(n)\) \(1\) \(-1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1025.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0.500000 0.866025i 0 0 0 −0.500000 + 0.866025i 0 −0.500000 0.866025i 0
1601.1 0 0.500000 + 0.866025i 0 0 0 −0.500000 0.866025i 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
37.c even 3 1 inner
111.i odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1776.1.bw.a 2
3.b odd 2 1 CM 1776.1.bw.a 2
4.b odd 2 1 111.1.i.a 2
12.b even 2 1 111.1.i.a 2
20.d odd 2 1 2775.1.z.a 2
20.e even 4 2 2775.1.x.a 4
36.f odd 6 1 2997.1.l.a 2
36.f odd 6 1 2997.1.u.a 2
36.h even 6 1 2997.1.l.a 2
36.h even 6 1 2997.1.u.a 2
37.c even 3 1 inner 1776.1.bw.a 2
60.h even 2 1 2775.1.z.a 2
60.l odd 4 2 2775.1.x.a 4
111.i odd 6 1 inner 1776.1.bw.a 2
148.i odd 6 1 111.1.i.a 2
444.t even 6 1 111.1.i.a 2
740.w odd 6 1 2775.1.z.a 2
740.bg even 12 2 2775.1.x.a 4
1332.s even 6 1 2997.1.u.a 2
1332.v odd 6 1 2997.1.l.a 2
1332.bd even 6 1 2997.1.l.a 2
1332.br odd 6 1 2997.1.u.a 2
2220.bu even 6 1 2775.1.z.a 2
2220.cu odd 12 2 2775.1.x.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
111.1.i.a 2 4.b odd 2 1
111.1.i.a 2 12.b even 2 1
111.1.i.a 2 148.i odd 6 1
111.1.i.a 2 444.t even 6 1
1776.1.bw.a 2 1.a even 1 1 trivial
1776.1.bw.a 2 3.b odd 2 1 CM
1776.1.bw.a 2 37.c even 3 1 inner
1776.1.bw.a 2 111.i odd 6 1 inner
2775.1.x.a 4 20.e even 4 2
2775.1.x.a 4 60.l odd 4 2
2775.1.x.a 4 740.bg even 12 2
2775.1.x.a 4 2220.cu odd 12 2
2775.1.z.a 2 20.d odd 2 1
2775.1.z.a 2 60.h even 2 1
2775.1.z.a 2 740.w odd 6 1
2775.1.z.a 2 2220.bu even 6 1
2997.1.l.a 2 36.f odd 6 1
2997.1.l.a 2 36.h even 6 1
2997.1.l.a 2 1332.v odd 6 1
2997.1.l.a 2 1332.bd even 6 1
2997.1.u.a 2 36.f odd 6 1
2997.1.u.a 2 36.h even 6 1
2997.1.u.a 2 1332.s even 6 1
2997.1.u.a 2 1332.br odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1776, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 1 - T + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 1 + T + T^{2} \)
$11$ \( T^{2} \)
$13$ \( 1 - T + T^{2} \)
$17$ \( T^{2} \)
$19$ \( 4 - 2 T + T^{2} \)
$23$ \( T^{2} \)
$29$ \( T^{2} \)
$31$ \( ( -1 + T )^{2} \)
$37$ \( ( -1 + T )^{2} \)
$41$ \( T^{2} \)
$43$ \( ( -1 + T )^{2} \)
$47$ \( T^{2} \)
$53$ \( T^{2} \)
$59$ \( T^{2} \)
$61$ \( 4 + 2 T + T^{2} \)
$67$ \( 1 + T + T^{2} \)
$71$ \( T^{2} \)
$73$ \( ( 1 + T )^{2} \)
$79$ \( 1 + T + T^{2} \)
$83$ \( T^{2} \)
$89$ \( T^{2} \)
$97$ \( ( 1 + T )^{2} \)
show more
show less