Properties

Label 1775.1
Level 1775
Weight 1
Dimension 72
Nonzero newspaces 4
Newform subspaces 8
Sturm bound 252000
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1775 = 5^{2} \cdot 71 \)
Weight: \( k \) = \( 1 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 8 \)
Sturm bound: \(252000\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(\Gamma_1(1775))\).

Total New Old
Modular forms 2055 1487 568
Cusp forms 95 72 23
Eisenstein series 1960 1415 545

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 72 0 0 0

Trace form

\( 72 q + q^{2} + q^{3} + 5 q^{4} - 6 q^{6} + 2 q^{8} + 5 q^{9} + O(q^{10}) \) \( 72 q + q^{2} + q^{3} + 5 q^{4} - 6 q^{6} + 2 q^{8} + 5 q^{9} + 3 q^{12} - 4 q^{16} - 18 q^{18} + q^{19} - 45 q^{24} + 2 q^{27} + q^{29} + 3 q^{32} - 10 q^{36} + q^{37} - 19 q^{38} + q^{43} - 16 q^{48} + 4 q^{49} + 4 q^{54} + 2 q^{57} + 2 q^{58} + 7 q^{64} + 2 q^{71} + 55 q^{72} + q^{73} - 47 q^{74} - 14 q^{75} - 9 q^{76} + q^{79} + 56 q^{80} - 4 q^{81} + q^{83} - 6 q^{86} - 19 q^{87} + q^{89} - 11 q^{96} + q^{98} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(\Gamma_1(1775))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1775.1.c \(\chi_{1775}(1774, \cdot)\) 1775.1.c.a 6 1
1775.1.d \(\chi_{1775}(851, \cdot)\) 1775.1.d.a 1 1
1775.1.d.b 3
1775.1.d.c 6
1775.1.f \(\chi_{1775}(143, \cdot)\) None 0 2
1775.1.n \(\chi_{1775}(259, \cdot)\) None 0 4
1775.1.p \(\chi_{1775}(141, \cdot)\) 1775.1.p.a 4 4
1775.1.p.b 24
1775.1.q \(\chi_{1775}(301, \cdot)\) None 0 4
1775.1.r \(\chi_{1775}(66, \cdot)\) None 0 4
1775.1.s \(\chi_{1775}(1111, \cdot)\) None 0 4
1775.1.t \(\chi_{1775}(46, \cdot)\) None 0 4
1775.1.u \(\chi_{1775}(869, \cdot)\) None 0 4
1775.1.x \(\chi_{1775}(14, \cdot)\) None 0 4
1775.1.y \(\chi_{1775}(724, \cdot)\) None 0 4
1775.1.bb \(\chi_{1775}(354, \cdot)\) 1775.1.bb.a 4 4
1775.1.bb.b 24
1775.1.bc \(\chi_{1775}(159, \cdot)\) None 0 4
1775.1.be \(\chi_{1775}(156, \cdot)\) None 0 4
1775.1.bf \(\chi_{1775}(26, \cdot)\) None 0 6
1775.1.bg \(\chi_{1775}(449, \cdot)\) None 0 6
1775.1.bj \(\chi_{1775}(147, \cdot)\) None 0 8
1775.1.bk \(\chi_{1775}(267, \cdot)\) None 0 8
1775.1.bm \(\chi_{1775}(167, \cdot)\) None 0 8
1775.1.bn \(\chi_{1775}(72, \cdot)\) None 0 8
1775.1.bo \(\chi_{1775}(57, \cdot)\) None 0 8
1775.1.bs \(\chi_{1775}(128, \cdot)\) None 0 8
1775.1.bu \(\chi_{1775}(32, \cdot)\) None 0 12
1775.1.cc \(\chi_{1775}(61, \cdot)\) None 0 24
1775.1.ce \(\chi_{1775}(44, \cdot)\) None 0 24
1775.1.cf \(\chi_{1775}(34, \cdot)\) None 0 24
1775.1.ci \(\chi_{1775}(99, \cdot)\) None 0 24
1775.1.cj \(\chi_{1775}(59, \cdot)\) None 0 24
1775.1.cm \(\chi_{1775}(209, \cdot)\) None 0 24
1775.1.cn \(\chi_{1775}(56, \cdot)\) None 0 24
1775.1.co \(\chi_{1775}(11, \cdot)\) None 0 24
1775.1.cp \(\chi_{1775}(31, \cdot)\) None 0 24
1775.1.cq \(\chi_{1775}(126, \cdot)\) None 0 24
1775.1.cr \(\chi_{1775}(41, \cdot)\) None 0 24
1775.1.ct \(\chi_{1775}(189, \cdot)\) None 0 24
1775.1.cv \(\chi_{1775}(2, \cdot)\) None 0 48
1775.1.cz \(\chi_{1775}(12, \cdot)\) None 0 48
1775.1.da \(\chi_{1775}(18, \cdot)\) None 0 48
1775.1.db \(\chi_{1775}(37, \cdot)\) None 0 48
1775.1.dd \(\chi_{1775}(3, \cdot)\) None 0 48
1775.1.de \(\chi_{1775}(152, \cdot)\) None 0 48

Decomposition of \(S_{1}^{\mathrm{old}}(\Gamma_1(1775))\) into lower level spaces

\( S_{1}^{\mathrm{old}}(\Gamma_1(1775)) \cong \) \(S_{1}^{\mathrm{new}}(\Gamma_1(71))\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(\Gamma_1(355))\)\(^{\oplus 2}\)