Properties

Label 1773.2.a.e
Level $1773$
Weight $2$
Character orbit 1773.a
Self dual yes
Analytic conductor $14.157$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1773,2,Mod(1,1773)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1773.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1773, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1773 = 3^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1773.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(14.1574762784\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.24217.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 5x^{3} - x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 197)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1) q^{2} + (\beta_{4} + \beta_{3} - \beta_1) q^{4} + ( - \beta_{4} - \beta_1) q^{5} + ( - \beta_{4} + \beta_{3} + \beta_1 - 2) q^{7} + (\beta_{3} - \beta_{2} + 1) q^{8} + ( - \beta_{4} - 2 \beta_{3} + \beta_{2} + \cdots - 2) q^{10}+ \cdots + ( - 7 \beta_{4} - 6 \beta_{3} + \cdots - 6) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 4 q^{5} - 10 q^{7} + 3 q^{8} - 10 q^{10} + 8 q^{11} - 8 q^{13} + 3 q^{14} - 2 q^{16} - 9 q^{17} - 16 q^{19} - 4 q^{20} + 9 q^{22} + q^{23} + 7 q^{25} - 11 q^{26} - 2 q^{28} - 2 q^{29} + 2 q^{31}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 5x^{3} - x^{2} + 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{4} - 5\nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{4} + 5\nu^{2} + \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\nu^{4} + \nu^{3} + 5\nu^{2} - 3\nu - 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 2\nu^{4} - \nu^{3} - 9\nu^{2} + 3\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{4} + \beta_{3} - \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_{2} + 4\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 5\beta_{4} + 5\beta_{3} - 4\beta _1 + 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.96003
−0.722813
−0.369680
0.878095
2.17442
−1.96003 0 1.84170 2.85802 0 −4.24157 0.310264 0 −5.60180
1.2 −0.722813 0 −1.47754 3.28633 0 1.73780 2.51361 0 −2.37540
1.3 −0.369680 0 −1.86334 −2.08422 0 −2.69034 1.42820 0 0.770496
1.4 0.878095 0 −1.22895 2.05392 0 −4.16404 −2.83532 0 1.80354
1.5 2.17442 0 2.72812 −2.11405 0 −0.641841 1.58325 0 −4.59684
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(197\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1773.2.a.e 5
3.b odd 2 1 197.2.a.b 5
12.b even 2 1 3152.2.a.j 5
15.d odd 2 1 4925.2.a.h 5
21.c even 2 1 9653.2.a.h 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
197.2.a.b 5 3.b odd 2 1
1773.2.a.e 5 1.a even 1 1 trivial
3152.2.a.j 5 12.b even 2 1
4925.2.a.h 5 15.d odd 2 1
9653.2.a.h 5 21.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{5} - 5T_{2}^{3} - T_{2}^{2} + 3T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1773))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 5 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( T^{5} - 4 T^{4} + \cdots - 85 \) Copy content Toggle raw display
$7$ \( T^{5} + 10 T^{4} + \cdots - 53 \) Copy content Toggle raw display
$11$ \( T^{5} - 8 T^{4} + \cdots - 59 \) Copy content Toggle raw display
$13$ \( T^{5} + 8 T^{4} + \cdots + 493 \) Copy content Toggle raw display
$17$ \( T^{5} + 9 T^{4} + \cdots + 289 \) Copy content Toggle raw display
$19$ \( T^{5} + 16 T^{4} + \cdots - 761 \) Copy content Toggle raw display
$23$ \( T^{5} - T^{4} - 27 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( T^{5} + 2 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$31$ \( T^{5} - 2 T^{4} + \cdots + 235 \) Copy content Toggle raw display
$37$ \( T^{5} + 17 T^{4} + \cdots - 7121 \) Copy content Toggle raw display
$41$ \( T^{5} - 5 T^{4} + \cdots - 16859 \) Copy content Toggle raw display
$43$ \( T^{5} + 26 T^{4} + \cdots - 2027 \) Copy content Toggle raw display
$47$ \( T^{5} + 16 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$53$ \( T^{5} + 2 T^{4} + \cdots + 5615 \) Copy content Toggle raw display
$59$ \( T^{5} - 13 T^{4} + \cdots - 7055 \) Copy content Toggle raw display
$61$ \( T^{5} + 3 T^{4} + \cdots - 4835 \) Copy content Toggle raw display
$67$ \( T^{5} + 40 T^{4} + \cdots + 745 \) Copy content Toggle raw display
$71$ \( T^{5} - 5 T^{4} + \cdots + 617 \) Copy content Toggle raw display
$73$ \( T^{5} + 9 T^{4} + \cdots + 10889 \) Copy content Toggle raw display
$79$ \( T^{5} - 13 T^{4} + \cdots + 20567 \) Copy content Toggle raw display
$83$ \( T^{5} - 17 T^{4} + \cdots - 4447 \) Copy content Toggle raw display
$89$ \( T^{5} + 10 T^{4} + \cdots + 9043 \) Copy content Toggle raw display
$97$ \( T^{5} + 42 T^{4} + \cdots + 16711 \) Copy content Toggle raw display
show more
show less