Defining parameters
Level: | \( N \) | = | \( 177 = 3 \cdot 59 \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 4 \) | ||
Sturm bound: | \(18560\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(177))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 8236 | 6146 | 2090 |
Cusp forms | 8004 | 6030 | 1974 |
Eisenstein series | 232 | 116 | 116 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(177))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
177.8.a | \(\chi_{177}(1, \cdot)\) | 177.8.a.a | 16 | 1 |
177.8.a.b | 17 | |||
177.8.a.c | 17 | |||
177.8.a.d | 18 | |||
177.8.d | \(\chi_{177}(176, \cdot)\) | n/a | 138 | 1 |
177.8.e | \(\chi_{177}(4, \cdot)\) | n/a | 1960 | 28 |
177.8.f | \(\chi_{177}(2, \cdot)\) | n/a | 3864 | 28 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(177))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(177)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(59))\)\(^{\oplus 2}\)