Properties

Label 177.6.d.b.176.10
Level $177$
Weight $6$
Character 177.176
Analytic conductor $28.388$
Analytic rank $0$
Dimension $92$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 177.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(28.3879361069\)
Analytic rank: \(0\)
Dimension: \(92\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 176.10
Character \(\chi\) \(=\) 177.176
Dual form 177.6.d.b.176.9

$q$-expansion

\(f(q)\) \(=\) \(q-9.63720 q^{2} +(15.3454 + 2.74211i) q^{3} +60.8757 q^{4} +48.0995i q^{5} +(-147.887 - 26.4263i) q^{6} +55.2643 q^{7} -278.281 q^{8} +(227.962 + 84.1575i) q^{9} +O(q^{10})\) \(q-9.63720 q^{2} +(15.3454 + 2.74211i) q^{3} +60.8757 q^{4} +48.0995i q^{5} +(-147.887 - 26.4263i) q^{6} +55.2643 q^{7} -278.281 q^{8} +(227.962 + 84.1575i) q^{9} -463.545i q^{10} -33.0223 q^{11} +(934.161 + 166.928i) q^{12} +847.868i q^{13} -532.594 q^{14} +(-131.894 + 738.106i) q^{15} +733.828 q^{16} +1128.87i q^{17} +(-2196.91 - 811.043i) q^{18} -1381.08 q^{19} +2928.09i q^{20} +(848.052 + 151.541i) q^{21} +318.243 q^{22} +468.321 q^{23} +(-4270.33 - 763.077i) q^{24} +811.434 q^{25} -8171.08i q^{26} +(3267.39 + 1916.53i) q^{27} +3364.25 q^{28} -408.390i q^{29} +(1271.09 - 7113.28i) q^{30} -5084.86i q^{31} +1832.94 q^{32} +(-506.740 - 90.5508i) q^{33} -10879.1i q^{34} +2658.19i q^{35} +(13877.3 + 5123.15i) q^{36} +1578.30i q^{37} +13309.8 q^{38} +(-2324.95 + 13010.9i) q^{39} -13385.2i q^{40} -16986.4i q^{41} +(-8172.85 - 1460.43i) q^{42} +11165.2i q^{43} -2010.26 q^{44} +(-4047.94 + 10964.9i) q^{45} -4513.30 q^{46} -12073.6 q^{47} +(11260.9 + 2012.24i) q^{48} -13752.9 q^{49} -7819.96 q^{50} +(-3095.48 + 17322.9i) q^{51} +51614.6i q^{52} -9984.02i q^{53} +(-31488.5 - 18469.9i) q^{54} -1588.36i q^{55} -15379.0 q^{56} +(-21193.2 - 3787.08i) q^{57} +3935.73i q^{58} +(19800.7 + 17968.2i) q^{59} +(-8029.16 + 44932.7i) q^{60} +50439.9i q^{61} +49003.8i q^{62} +(12598.1 + 4650.91i) q^{63} -41146.9 q^{64} -40782.1 q^{65} +(4883.55 + 872.656i) q^{66} +34064.3i q^{67} +68720.5i q^{68} +(7186.57 + 1284.19i) q^{69} -25617.5i q^{70} +18917.3i q^{71} +(-63437.4 - 23419.4i) q^{72} -23663.0i q^{73} -15210.4i q^{74} +(12451.8 + 2225.04i) q^{75} -84074.3 q^{76} -1824.95 q^{77} +(22406.0 - 125388. i) q^{78} -61929.7 q^{79} +35296.8i q^{80} +(44884.0 + 38369.4i) q^{81} +163701. i q^{82} -31566.8 q^{83} +(51625.8 + 9225.16i) q^{84} -54297.9 q^{85} -107601. i q^{86} +(1119.85 - 6266.90i) q^{87} +9189.48 q^{88} +52358.2 q^{89} +(39010.8 - 105671. i) q^{90} +46856.9i q^{91} +28509.4 q^{92} +(13943.2 - 78029.1i) q^{93} +116356. q^{94} -66429.4i q^{95} +(28127.2 + 5026.12i) q^{96} -25026.4i q^{97} +132539. q^{98} +(-7527.82 - 2779.07i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 92q + 22q^{3} + 1724q^{4} - 80q^{7} + 2q^{9} + O(q^{10}) \) \( 92q + 22q^{3} + 1724q^{4} - 80q^{7} + 2q^{9} - 1244q^{12} + 1116q^{15} + 14724q^{16} + 1784q^{19} + 6388q^{21} - 8140q^{22} - 48208q^{25} - 6458q^{27} - 19092q^{28} - 20832q^{36} - 134984q^{45} + 51180q^{46} + 61720q^{48} + 174556q^{49} + 8332q^{51} + 236784q^{57} + 375208q^{60} - 429890q^{63} + 561472q^{64} - 11596q^{66} + 169948q^{75} + 111488q^{76} + 356264q^{78} + 180260q^{79} + 79554q^{81} + 269308q^{84} + 111028q^{85} - 318764q^{87} - 1242976q^{88} - 513608q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −9.63720 −1.70363 −0.851817 0.523840i \(-0.824499\pi\)
−0.851817 + 0.523840i \(0.824499\pi\)
\(3\) 15.3454 + 2.74211i 0.984407 + 0.175907i
\(4\) 60.8757 1.90237
\(5\) 48.0995i 0.860431i 0.902726 + 0.430215i \(0.141562\pi\)
−0.902726 + 0.430215i \(0.858438\pi\)
\(6\) −147.887 26.4263i −1.67707 0.299680i
\(7\) 55.2643 0.426285 0.213142 0.977021i \(-0.431630\pi\)
0.213142 + 0.977021i \(0.431630\pi\)
\(8\) −278.281 −1.53730
\(9\) 227.962 + 84.1575i 0.938114 + 0.346327i
\(10\) 463.545i 1.46586i
\(11\) −33.0223 −0.0822859 −0.0411430 0.999153i \(-0.513100\pi\)
−0.0411430 + 0.999153i \(0.513100\pi\)
\(12\) 934.161 + 166.928i 1.87270 + 0.334638i
\(13\) 847.868i 1.39146i 0.718305 + 0.695729i \(0.244918\pi\)
−0.718305 + 0.695729i \(0.755082\pi\)
\(14\) −532.594 −0.726233
\(15\) −131.894 + 738.106i −0.151355 + 0.847014i
\(16\) 733.828 0.716629
\(17\) 1128.87i 0.947371i 0.880694 + 0.473686i \(0.157077\pi\)
−0.880694 + 0.473686i \(0.842923\pi\)
\(18\) −2196.91 811.043i −1.59820 0.590014i
\(19\) −1381.08 −0.877678 −0.438839 0.898566i \(-0.644610\pi\)
−0.438839 + 0.898566i \(0.644610\pi\)
\(20\) 2928.09i 1.63685i
\(21\) 848.052 + 151.541i 0.419638 + 0.0749863i
\(22\) 318.243 0.140185
\(23\) 468.321 0.184597 0.0922984 0.995731i \(-0.470579\pi\)
0.0922984 + 0.995731i \(0.470579\pi\)
\(24\) −4270.33 763.077i −1.51333 0.270421i
\(25\) 811.434 0.259659
\(26\) 8171.08i 2.37053i
\(27\) 3267.39 + 1916.53i 0.862564 + 0.505947i
\(28\) 3364.25 0.810949
\(29\) 408.390i 0.0901737i −0.998983 0.0450868i \(-0.985644\pi\)
0.998983 0.0450868i \(-0.0143565\pi\)
\(30\) 1271.09 7113.28i 0.257854 1.44300i
\(31\) 5084.86i 0.950330i −0.879897 0.475165i \(-0.842388\pi\)
0.879897 0.475165i \(-0.157612\pi\)
\(32\) 1832.94 0.316427
\(33\) −506.740 90.5508i −0.0810028 0.0144746i
\(34\) 10879.1i 1.61397i
\(35\) 2658.19i 0.366789i
\(36\) 13877.3 + 5123.15i 1.78464 + 0.658841i
\(37\) 1578.30i 0.189533i 0.995500 + 0.0947666i \(0.0302105\pi\)
−0.995500 + 0.0947666i \(0.969790\pi\)
\(38\) 13309.8 1.49524
\(39\) −2324.95 + 13010.9i −0.244766 + 1.36976i
\(40\) 13385.2i 1.32274i
\(41\) 16986.4i 1.57813i −0.614312 0.789063i \(-0.710566\pi\)
0.614312 0.789063i \(-0.289434\pi\)
\(42\) −8172.85 1460.43i −0.714909 0.127749i
\(43\) 11165.2i 0.920863i 0.887695 + 0.460431i \(0.152305\pi\)
−0.887695 + 0.460431i \(0.847695\pi\)
\(44\) −2010.26 −0.156538
\(45\) −4047.94 + 10964.9i −0.297991 + 0.807182i
\(46\) −4513.30 −0.314485
\(47\) −12073.6 −0.797249 −0.398624 0.917114i \(-0.630512\pi\)
−0.398624 + 0.917114i \(0.630512\pi\)
\(48\) 11260.9 + 2012.24i 0.705455 + 0.126060i
\(49\) −13752.9 −0.818281
\(50\) −7819.96 −0.442364
\(51\) −3095.48 + 17322.9i −0.166649 + 0.932599i
\(52\) 51614.6i 2.64706i
\(53\) 9984.02i 0.488220i −0.969748 0.244110i \(-0.921504\pi\)
0.969748 0.244110i \(-0.0784958\pi\)
\(54\) −31488.5 18469.9i −1.46949 0.861948i
\(55\) 1588.36i 0.0708013i
\(56\) −15379.0 −0.655327
\(57\) −21193.2 3787.08i −0.863992 0.154389i
\(58\) 3935.73i 0.153623i
\(59\) 19800.7 + 17968.2i 0.740543 + 0.672009i
\(60\) −8029.16 + 44932.7i −0.287933 + 1.61133i
\(61\) 50439.9i 1.73560i 0.496914 + 0.867800i \(0.334466\pi\)
−0.496914 + 0.867800i \(0.665534\pi\)
\(62\) 49003.8i 1.61901i
\(63\) 12598.1 + 4650.91i 0.399904 + 0.147634i
\(64\) −41146.9 −1.25570
\(65\) −40782.1 −1.19725
\(66\) 4883.55 + 872.656i 0.137999 + 0.0246595i
\(67\) 34064.3i 0.927070i 0.886079 + 0.463535i \(0.153419\pi\)
−0.886079 + 0.463535i \(0.846581\pi\)
\(68\) 68720.5i 1.80225i
\(69\) 7186.57 + 1284.19i 0.181718 + 0.0324718i
\(70\) 25617.5i 0.624873i
\(71\) 18917.3i 0.445363i 0.974891 + 0.222682i \(0.0714810\pi\)
−0.974891 + 0.222682i \(0.928519\pi\)
\(72\) −63437.4 23419.4i −1.44216 0.532409i
\(73\) 23663.0i 0.519711i −0.965647 0.259856i \(-0.916325\pi\)
0.965647 0.259856i \(-0.0836750\pi\)
\(74\) 15210.4i 0.322895i
\(75\) 12451.8 + 2225.04i 0.255610 + 0.0456757i
\(76\) −84074.3 −1.66966
\(77\) −1824.95 −0.0350772
\(78\) 22406.0 125388.i 0.416992 2.33357i
\(79\) −61929.7 −1.11643 −0.558214 0.829697i \(-0.688513\pi\)
−0.558214 + 0.829697i \(0.688513\pi\)
\(80\) 35296.8i 0.616610i
\(81\) 44884.0 + 38369.4i 0.760115 + 0.649789i
\(82\) 163701.i 2.68855i
\(83\) −31566.8 −0.502962 −0.251481 0.967862i \(-0.580918\pi\)
−0.251481 + 0.967862i \(0.580918\pi\)
\(84\) 51625.8 + 9225.16i 0.798304 + 0.142651i
\(85\) −54297.9 −0.815147
\(86\) 107601.i 1.56881i
\(87\) 1119.85 6266.90i 0.0158621 0.0887676i
\(88\) 9189.48 0.126498
\(89\) 52358.2 0.700664 0.350332 0.936626i \(-0.386069\pi\)
0.350332 + 0.936626i \(0.386069\pi\)
\(90\) 39010.8 105671.i 0.507667 1.37514i
\(91\) 46856.9i 0.593157i
\(92\) 28509.4 0.351170
\(93\) 13943.2 78029.1i 0.167169 0.935512i
\(94\) 116356. 1.35822
\(95\) 66429.4i 0.755181i
\(96\) 28127.2 + 5026.12i 0.311493 + 0.0556615i
\(97\) 25026.4i 0.270066i −0.990841 0.135033i \(-0.956886\pi\)
0.990841 0.135033i \(-0.0431140\pi\)
\(98\) 132539. 1.39405
\(99\) −7527.82 2779.07i −0.0771936 0.0284978i
\(100\) 49396.6 0.493966
\(101\) −43891.2 −0.428128 −0.214064 0.976820i \(-0.568670\pi\)
−0.214064 + 0.976820i \(0.568670\pi\)
\(102\) 29831.7 166944.i 0.283908 1.58881i
\(103\) 13348.4i 0.123976i −0.998077 0.0619880i \(-0.980256\pi\)
0.998077 0.0619880i \(-0.0197440\pi\)
\(104\) 235946.i 2.13909i
\(105\) −7289.05 + 40790.9i −0.0645205 + 0.361069i
\(106\) 96218.0i 0.831748i
\(107\) 202715.i 1.71170i 0.517226 + 0.855849i \(0.326965\pi\)
−0.517226 + 0.855849i \(0.673035\pi\)
\(108\) 198905. + 116670.i 1.64091 + 0.962496i
\(109\) 25308.3i 0.204031i −0.994783 0.102016i \(-0.967471\pi\)
0.994783 0.102016i \(-0.0325292\pi\)
\(110\) 15307.3i 0.120619i
\(111\) −4327.87 + 24219.6i −0.0333401 + 0.186578i
\(112\) 40554.5 0.305488
\(113\) −158888. −1.17056 −0.585281 0.810831i \(-0.699016\pi\)
−0.585281 + 0.810831i \(0.699016\pi\)
\(114\) 204243. + 36496.8i 1.47193 + 0.263023i
\(115\) 22526.0i 0.158833i
\(116\) 24861.0i 0.171543i
\(117\) −71354.5 + 193281.i −0.481899 + 1.30535i
\(118\) −190823. 173163.i −1.26161 1.14486i
\(119\) 62386.0i 0.403850i
\(120\) 36703.7 205401.i 0.232679 1.30211i
\(121\) −159961. −0.993229
\(122\) 486099.i 2.95682i
\(123\) 46578.6 260663.i 0.277603 1.55352i
\(124\) 309544.i 1.80788i
\(125\) 189341.i 1.08385i
\(126\) −121411. 44821.7i −0.681289 0.251514i
\(127\) 22410.3 0.123293 0.0616464 0.998098i \(-0.480365\pi\)
0.0616464 + 0.998098i \(0.480365\pi\)
\(128\) 337887. 1.82283
\(129\) −30616.2 + 171334.i −0.161986 + 0.906504i
\(130\) 393025. 2.03968
\(131\) 21644.2 0.110195 0.0550976 0.998481i \(-0.482453\pi\)
0.0550976 + 0.998481i \(0.482453\pi\)
\(132\) −30848.1 5512.34i −0.154097 0.0275360i
\(133\) −76324.5 −0.374141
\(134\) 328285.i 1.57939i
\(135\) −92184.0 + 157160.i −0.435333 + 0.742177i
\(136\) 314142.i 1.45639i
\(137\) 79532.7i 0.362030i −0.983480 0.181015i \(-0.942062\pi\)
0.983480 0.181015i \(-0.0579382\pi\)
\(138\) −69258.4 12376.0i −0.309581 0.0553200i
\(139\) 102245. 0.448852 0.224426 0.974491i \(-0.427949\pi\)
0.224426 + 0.974491i \(0.427949\pi\)
\(140\) 161819.i 0.697766i
\(141\) −185275. 33107.3i −0.784817 0.140241i
\(142\) 182310.i 0.758735i
\(143\) 27998.5i 0.114497i
\(144\) 167285. + 61757.1i 0.672280 + 0.248188i
\(145\) 19643.4 0.0775882
\(146\) 228045.i 0.885398i
\(147\) −211043. 37711.9i −0.805522 0.143941i
\(148\) 96080.1i 0.360561i
\(149\) 73849.9 0.272511 0.136256 0.990674i \(-0.456493\pi\)
0.136256 + 0.990674i \(0.456493\pi\)
\(150\) −120000. 21443.2i −0.435466 0.0778146i
\(151\) 396440.i 1.41493i 0.706748 + 0.707465i \(0.250161\pi\)
−0.706748 + 0.707465i \(0.749839\pi\)
\(152\) 384329. 1.34925
\(153\) −95002.5 + 257338.i −0.328100 + 0.888742i
\(154\) 17587.5 0.0597587
\(155\) 244579. 0.817694
\(156\) −141533. + 792045.i −0.465635 + 2.60578i
\(157\) 318654.i 1.03174i −0.856667 0.515870i \(-0.827469\pi\)
0.856667 0.515870i \(-0.172531\pi\)
\(158\) 596829. 1.90198
\(159\) 27377.3 153209.i 0.0858811 0.480607i
\(160\) 88163.5i 0.272263i
\(161\) 25881.4 0.0786908
\(162\) −432557. 369773.i −1.29496 1.10700i
\(163\) −44552.9 −0.131343 −0.0656715 0.997841i \(-0.520919\pi\)
−0.0656715 + 0.997841i \(0.520919\pi\)
\(164\) 1.03406e6i 3.00217i
\(165\) 4355.45 24373.9i 0.0124544 0.0696973i
\(166\) 304216. 0.856863
\(167\) 217795.i 0.604305i −0.953260 0.302152i \(-0.902295\pi\)
0.953260 0.302152i \(-0.0977052\pi\)
\(168\) −235997. 42171.0i −0.645109 0.115276i
\(169\) −347587. −0.936153
\(170\) 523280. 1.38871
\(171\) −314834. 116228.i −0.823362 0.303964i
\(172\) 679689.i 1.75182i
\(173\) 320693. 0.814657 0.407328 0.913282i \(-0.366460\pi\)
0.407328 + 0.913282i \(0.366460\pi\)
\(174\) −10792.2 + 60395.4i −0.0270233 + 0.151227i
\(175\) 44843.4 0.110689
\(176\) −24232.7 −0.0589685
\(177\) 254579. + 330025.i 0.610785 + 0.791796i
\(178\) −504587. −1.19367
\(179\) 309289. 0.721492 0.360746 0.932664i \(-0.382522\pi\)
0.360746 + 0.932664i \(0.382522\pi\)
\(180\) −246421. + 667493.i −0.566887 + 1.53556i
\(181\) −519260. −1.17812 −0.589058 0.808090i \(-0.700501\pi\)
−0.589058 + 0.808090i \(0.700501\pi\)
\(182\) 451569.i 1.01052i
\(183\) −138312. + 774019.i −0.305303 + 1.70854i
\(184\) −130325. −0.283781
\(185\) −75915.5 −0.163080
\(186\) −134374. + 751982.i −0.284795 + 1.59377i
\(187\) 37277.7i 0.0779553i
\(188\) −734992. −1.51666
\(189\) 180570. + 105915.i 0.367698 + 0.215678i
\(190\) 640193.i 1.28655i
\(191\) −381662. −0.757000 −0.378500 0.925601i \(-0.623560\pi\)
−0.378500 + 0.925601i \(0.623560\pi\)
\(192\) −631415. 112829.i −1.23612 0.220887i
\(193\) 383123. 0.740364 0.370182 0.928959i \(-0.379295\pi\)
0.370182 + 0.928959i \(0.379295\pi\)
\(194\) 241185.i 0.460093i
\(195\) −625816. 111829.i −1.17858 0.210605i
\(196\) −837215. −1.55667
\(197\) 536432.i 0.984802i 0.870368 + 0.492401i \(0.163881\pi\)
−0.870368 + 0.492401i \(0.836119\pi\)
\(198\) 72547.1 + 26782.5i 0.131509 + 0.0485499i
\(199\) 694003. 1.24231 0.621153 0.783689i \(-0.286665\pi\)
0.621153 + 0.783689i \(0.286665\pi\)
\(200\) −225807. −0.399174
\(201\) −93408.1 + 522730.i −0.163078 + 0.912614i
\(202\) 422988. 0.729373
\(203\) 22569.4i 0.0384397i
\(204\) −188439. + 1.05454e6i −0.317027 + 1.77414i
\(205\) 817038. 1.35787
\(206\) 128642.i 0.211210i
\(207\) 106759. + 39412.7i 0.173173 + 0.0639309i
\(208\) 622189.i 0.997159i
\(209\) 45606.5 0.0722205
\(210\) 70246.1 393111.i 0.109919 0.615129i
\(211\) 328315.i 0.507673i −0.967247 0.253836i \(-0.918307\pi\)
0.967247 0.253836i \(-0.0816925\pi\)
\(212\) 607784.i 0.928773i
\(213\) −51873.5 + 290294.i −0.0783423 + 0.438419i
\(214\) 1.95361e6i 2.91611i
\(215\) −537040. −0.792339
\(216\) −909252. 533333.i −1.32602 0.777792i
\(217\) 281011.i 0.405111i
\(218\) 243901.i 0.347594i
\(219\) 64886.5 363118.i 0.0914206 0.511608i
\(220\) 96692.3i 0.134690i
\(221\) −957129. −1.31823
\(222\) 41708.6 233409.i 0.0567993 0.317860i
\(223\) 1.15178e6 1.55098 0.775492 0.631358i \(-0.217502\pi\)
0.775492 + 0.631358i \(0.217502\pi\)
\(224\) 101296. 0.134888
\(225\) 184976. + 68288.3i 0.243590 + 0.0899269i
\(226\) 1.53123e6 1.99421
\(227\) 1.07066e6 1.37907 0.689535 0.724252i \(-0.257815\pi\)
0.689535 + 0.724252i \(0.257815\pi\)
\(228\) −1.29015e6 230541.i −1.64363 0.293705i
\(229\) 1.32871e6i 1.67433i −0.546950 0.837165i \(-0.684211\pi\)
0.546950 0.837165i \(-0.315789\pi\)
\(230\) 217088.i 0.270593i
\(231\) −28004.6 5004.23i −0.0345303 0.00617031i
\(232\) 113647.i 0.138624i
\(233\) −1.58830e6 −1.91664 −0.958322 0.285690i \(-0.907777\pi\)
−0.958322 + 0.285690i \(0.907777\pi\)
\(234\) 687657. 1.86269e6i 0.820980 2.22383i
\(235\) 580737.i 0.685977i
\(236\) 1.20538e6 + 1.09383e6i 1.40878 + 1.27841i
\(237\) −950334. 169818.i −1.09902 0.196387i
\(238\) 601227.i 0.688012i
\(239\) 820213.i 0.928821i −0.885620 0.464410i \(-0.846266\pi\)
0.885620 0.464410i \(-0.153734\pi\)
\(240\) −96787.7 + 541643.i −0.108466 + 0.606995i
\(241\) 1.58114e6 1.75359 0.876794 0.480867i \(-0.159678\pi\)
0.876794 + 0.480867i \(0.159678\pi\)
\(242\) 1.54157e6 1.69210
\(243\) 583550. + 711870.i 0.633960 + 0.773366i
\(244\) 3.07056e6i 3.30174i
\(245\) 661506.i 0.704074i
\(246\) −448888. + 2.51206e6i −0.472933 + 2.64663i
\(247\) 1.17097e6i 1.22125i
\(248\) 1.41502e6i 1.46094i
\(249\) −484405. 86559.7i −0.495120 0.0884743i
\(250\) 1.82471e6i 1.84648i
\(251\) 1.28330e6i 1.28572i 0.765985 + 0.642858i \(0.222252\pi\)
−0.765985 + 0.642858i \(0.777748\pi\)
\(252\) 766921. + 283127.i 0.760763 + 0.280854i
\(253\) −15465.0 −0.0151897
\(254\) −215972. −0.210046
\(255\) −833223. 148891.i −0.802436 0.143390i
\(256\) −1.93959e6 −1.84973
\(257\) 369551.i 0.349013i 0.984656 + 0.174507i \(0.0558330\pi\)
−0.984656 + 0.174507i \(0.944167\pi\)
\(258\) 295054. 1.65118e6i 0.275964 1.54435i
\(259\) 87223.7i 0.0807951i
\(260\) −2.48264e6 −2.27761
\(261\) 34369.1 93097.2i 0.0312296 0.0845932i
\(262\) −208589. −0.187732
\(263\) 408145.i 0.363852i −0.983312 0.181926i \(-0.941767\pi\)
0.983312 0.181926i \(-0.0582332\pi\)
\(264\) 141016. + 25198.6i 0.124526 + 0.0222518i
\(265\) 480227. 0.420080
\(266\) 735555. 0.637399
\(267\) 803457. + 143572.i 0.689738 + 0.123251i
\(268\) 2.07369e6i 1.76363i
\(269\) −1.05990e6 −0.893070 −0.446535 0.894766i \(-0.647342\pi\)
−0.446535 + 0.894766i \(0.647342\pi\)
\(270\) 888396. 1.51458e6i 0.741647 1.26440i
\(271\) 477246. 0.394747 0.197373 0.980328i \(-0.436759\pi\)
0.197373 + 0.980328i \(0.436759\pi\)
\(272\) 828394.i 0.678914i
\(273\) −128487. + 719037.i −0.104340 + 0.583908i
\(274\) 766472.i 0.616766i
\(275\) −26795.4 −0.0213663
\(276\) 437487. + 78175.9i 0.345695 + 0.0617732i
\(277\) 924308. 0.723798 0.361899 0.932217i \(-0.382129\pi\)
0.361899 + 0.932217i \(0.382129\pi\)
\(278\) −985352. −0.764679
\(279\) 427929. 1.15915e6i 0.329125 0.891518i
\(280\) 739723.i 0.563864i
\(281\) 621749.i 0.469731i 0.972028 + 0.234865i \(0.0754649\pi\)
−0.972028 + 0.234865i \(0.924535\pi\)
\(282\) 1.78553e6 + 319062.i 1.33704 + 0.238920i
\(283\) 325081.i 0.241282i −0.992696 0.120641i \(-0.961505\pi\)
0.992696 0.120641i \(-0.0384950\pi\)
\(284\) 1.15161e6i 0.847244i
\(285\) 182157. 1.01938e6i 0.132841 0.743406i
\(286\) 269828.i 0.195061i
\(287\) 938742.i 0.672731i
\(288\) 417840. + 154256.i 0.296844 + 0.109587i
\(289\) 145519. 0.102488
\(290\) −189307. −0.132182
\(291\) 68625.2 384040.i 0.0475063 0.265854i
\(292\) 1.44050e6i 0.988681i
\(293\) 2.07939e6i 1.41503i 0.706697 + 0.707517i \(0.250185\pi\)
−0.706697 + 0.707517i \(0.749815\pi\)
\(294\) 2.03386e6 + 363437.i 1.37231 + 0.245223i
\(295\) −864263. + 952405.i −0.578217 + 0.637186i
\(296\) 439211.i 0.291369i
\(297\) −107897. 63288.1i −0.0709769 0.0416323i
\(298\) −711707. −0.464259
\(299\) 397074.i 0.256858i
\(300\) 758010. + 135451.i 0.486264 + 0.0868919i
\(301\) 617037.i 0.392550i
\(302\) 3.82057e6i 2.41052i
\(303\) −673527. 120354.i −0.421452 0.0753105i
\(304\) −1.01348e6 −0.628970
\(305\) −2.42614e6 −1.49336
\(306\) 915559. 2.48002e6i 0.558963 1.51409i
\(307\) −394536. −0.238913 −0.119457 0.992839i \(-0.538115\pi\)
−0.119457 + 0.992839i \(0.538115\pi\)
\(308\) −111095. −0.0667297
\(309\) 36602.9 204837.i 0.0218082 0.122043i
\(310\) −2.35706e6 −1.39305
\(311\) 1.25601e6i 0.736362i 0.929754 + 0.368181i \(0.120019\pi\)
−0.929754 + 0.368181i \(0.879981\pi\)
\(312\) 646989. 3.62068e6i 0.376279 2.10573i
\(313\) 2.31075e6i 1.33319i −0.745421 0.666594i \(-0.767752\pi\)
0.745421 0.666594i \(-0.232248\pi\)
\(314\) 3.07093e6i 1.75771i
\(315\) −223707. + 605965.i −0.127029 + 0.344089i
\(316\) −3.77001e6 −2.12386
\(317\) 1.10004e6i 0.614839i −0.951574 0.307419i \(-0.900535\pi\)
0.951574 0.307419i \(-0.0994654\pi\)
\(318\) −263840. + 1.47650e6i −0.146310 + 0.818778i
\(319\) 13486.0i 0.00742002i
\(320\) 1.97915e6i 1.08045i
\(321\) −555868. + 3.11074e6i −0.301099 + 1.68501i
\(322\) −249425. −0.134060
\(323\) 1.55906e6i 0.831487i
\(324\) 2.73235e6 + 2.33576e6i 1.44602 + 1.23614i
\(325\) 687989.i 0.361304i
\(326\) 429365. 0.223760
\(327\) 69398.2 388366.i 0.0358904 0.200850i
\(328\) 4.72699e6i 2.42605i
\(329\) −667242. −0.339855
\(330\) −41974.4 + 234897.i −0.0212178 + 0.118739i
\(331\) 1.71679e6 0.861288 0.430644 0.902522i \(-0.358287\pi\)
0.430644 + 0.902522i \(0.358287\pi\)
\(332\) −1.92165e6 −0.956818
\(333\) −132826. + 359792.i −0.0656405 + 0.177804i
\(334\) 2.09893e6i 1.02951i
\(335\) −1.63848e6 −0.797680
\(336\) 622325. + 111205.i 0.300725 + 0.0537373i
\(337\) 2.23142e6i 1.07030i 0.844757 + 0.535151i \(0.179745\pi\)
−0.844757 + 0.535151i \(0.820255\pi\)
\(338\) 3.34977e6 1.59486
\(339\) −2.43819e6 435688.i −1.15231 0.205909i
\(340\) −3.30542e6 −1.55071
\(341\) 167914.i 0.0781988i
\(342\) 3.03412e6 + 1.12012e6i 1.40271 + 0.517843i
\(343\) −1.68887e6 −0.775106
\(344\) 3.10706e6i 1.41564i
\(345\) −61768.9 + 345671.i −0.0279397 + 0.156356i
\(346\) −3.09059e6 −1.38788
\(347\) 4.17683e6 1.86219 0.931093 0.364781i \(-0.118856\pi\)
0.931093 + 0.364781i \(0.118856\pi\)
\(348\) 68171.6 381502.i 0.0301756 0.168868i
\(349\) 3.68822e6i 1.62089i 0.585816 + 0.810444i \(0.300774\pi\)
−0.585816 + 0.810444i \(0.699226\pi\)
\(350\) −432165. −0.188573
\(351\) −1.62496e6 + 2.77032e6i −0.704004 + 1.20022i
\(352\) −60527.9 −0.0260375
\(353\) 4.38448e6 1.87276 0.936378 0.350993i \(-0.114156\pi\)
0.936378 + 0.350993i \(0.114156\pi\)
\(354\) −2.45343e6 3.18052e6i −1.04055 1.34893i
\(355\) −909916. −0.383204
\(356\) 3.18734e6 1.33292
\(357\) −171069. + 957338.i −0.0710398 + 0.397553i
\(358\) −2.98068e6 −1.22916
\(359\) 4.69179e6i 1.92133i 0.277704 + 0.960667i \(0.410427\pi\)
−0.277704 + 0.960667i \(0.589573\pi\)
\(360\) 1.12646e6 3.05131e6i 0.458101 1.24088i
\(361\) −568714. −0.229681
\(362\) 5.00421e6 2.00708
\(363\) −2.45466e6 438630.i −0.977741 0.174715i
\(364\) 2.85244e6i 1.12840i
\(365\) 1.13818e6 0.447176
\(366\) 1.33294e6 7.45938e6i 0.520125 2.91072i
\(367\) 2.42409e6i 0.939471i −0.882807 0.469736i \(-0.844349\pi\)
0.882807 0.469736i \(-0.155651\pi\)
\(368\) 343667. 0.132287
\(369\) 1.42953e6 3.87225e6i 0.546548 1.48046i
\(370\) 731613. 0.277829
\(371\) 551760.i 0.208121i
\(372\) 848805. 4.75008e6i 0.318017 1.77969i
\(373\) −182981. −0.0680978 −0.0340489 0.999420i \(-0.510840\pi\)
−0.0340489 + 0.999420i \(0.510840\pi\)
\(374\) 359253.i 0.132807i
\(375\) −519193. + 2.90551e6i −0.190656 + 1.06695i
\(376\) 3.35987e6 1.22561
\(377\) 346261. 0.125473
\(378\) −1.74019e6 1.02073e6i −0.626423 0.367435i
\(379\) 2.41234e6 0.862661 0.431330 0.902194i \(-0.358044\pi\)
0.431330 + 0.902194i \(0.358044\pi\)
\(380\) 4.04393e6i 1.43663i
\(381\) 343894. + 61451.4i 0.121370 + 0.0216880i
\(382\) 3.67816e6 1.28965
\(383\) 2.53581e6i 0.883324i −0.897181 0.441662i \(-0.854389\pi\)
0.897181 0.441662i \(-0.145611\pi\)
\(384\) 5.18501e6 + 926524.i 1.79441 + 0.320648i
\(385\) 87779.5i 0.0301815i
\(386\) −3.69224e6 −1.26131
\(387\) −939634. + 2.54523e6i −0.318920 + 0.863874i
\(388\) 1.52350e6i 0.513764i
\(389\) 4.74262e6i 1.58908i −0.607214 0.794538i \(-0.707713\pi\)
0.607214 0.794538i \(-0.292287\pi\)
\(390\) 6.03112e6 + 1.07772e6i 2.00787 + 0.358793i
\(391\) 528672.i 0.174882i
\(392\) 3.82716e6 1.25794
\(393\) 332138. + 59350.7i 0.108477 + 0.0193840i
\(394\) 5.16970e6i 1.67774i
\(395\) 2.97879e6i 0.960610i
\(396\) −458261. 169178.i −0.146850 0.0542133i
\(397\) 5.12390e6i 1.63164i −0.578306 0.815820i \(-0.696286\pi\)
0.578306 0.815820i \(-0.303714\pi\)
\(398\) −6.68825e6 −2.11643
\(399\) −1.17123e6 209290.i −0.368307 0.0658138i
\(400\) 595453. 0.186079
\(401\) 4.04090e6 1.25492 0.627461 0.778648i \(-0.284094\pi\)
0.627461 + 0.778648i \(0.284094\pi\)
\(402\) 900193. 5.03765e6i 0.277824 1.55476i
\(403\) 4.31129e6 1.32234
\(404\) −2.67190e6 −0.814456
\(405\) −1.84555e6 + 2.15890e6i −0.559098 + 0.654026i
\(406\) 217506.i 0.0654871i
\(407\) 52119.1i 0.0155959i
\(408\) 861412. 4.82063e6i 0.256189 1.43368i
\(409\) 3.45461e6i 1.02115i 0.859832 + 0.510577i \(0.170568\pi\)
−0.859832 + 0.510577i \(0.829432\pi\)
\(410\) −7.87397e6 −2.31331
\(411\) 218087. 1.22046e6i 0.0636834 0.356384i
\(412\) 812596.i 0.235848i
\(413\) 1.09427e6 + 993001.i 0.315682 + 0.286467i
\(414\) −1.02886e6 379828.i −0.295023 0.108915i
\(415\) 1.51835e6i 0.432764i
\(416\) 1.55409e6i 0.440294i
\(417\) 1.56898e6 + 280366.i 0.441853 + 0.0789560i
\(418\) −439519. −0.123037
\(419\) 905432. 0.251954 0.125977 0.992033i \(-0.459793\pi\)
0.125977 + 0.992033i \(0.459793\pi\)
\(420\) −443726. + 2.48318e6i −0.122742 + 0.686885i
\(421\) 6.97621e6i 1.91829i −0.282914 0.959145i \(-0.591301\pi\)
0.282914 0.959145i \(-0.408699\pi\)
\(422\) 3.16403e6i 0.864888i
\(423\) −2.75233e6 1.01609e6i −0.747910 0.276109i
\(424\) 2.77836e6i 0.750541i
\(425\) 916000.i 0.245993i
\(426\) 499915. 2.79762e6i 0.133467 0.746904i
\(427\) 2.78753e6i 0.739860i
\(428\) 1.23404e7i 3.25628i
\(429\) 76775.1 429648.i 0.0201408 0.112712i
\(430\) 5.17557e6 1.34985
\(431\) −5.22450e6 −1.35473 −0.677363 0.735649i \(-0.736877\pi\)
−0.677363 + 0.735649i \(0.736877\pi\)
\(432\) 2.39770e6 + 1.40640e6i 0.618139 + 0.362576i
\(433\) 530639. 0.136013 0.0680064 0.997685i \(-0.478336\pi\)
0.0680064 + 0.997685i \(0.478336\pi\)
\(434\) 2.70816e6i 0.690161i
\(435\) 301435. + 53864.3i 0.0763784 + 0.0136483i
\(436\) 1.54066e6i 0.388142i
\(437\) −646789. −0.162017
\(438\) −625325. + 3.49944e6i −0.155747 + 0.871591i
\(439\) −2.98179e6 −0.738441 −0.369221 0.929342i \(-0.620375\pi\)
−0.369221 + 0.929342i \(0.620375\pi\)
\(440\) 442010.i 0.108843i
\(441\) −3.13512e6 1.15741e6i −0.767641 0.283393i
\(442\) 9.22405e6 2.24577
\(443\) 6.64975e6 1.60989 0.804944 0.593350i \(-0.202195\pi\)
0.804944 + 0.593350i \(0.202195\pi\)
\(444\) −263462. + 1.47439e6i −0.0634251 + 0.354939i
\(445\) 2.51840e6i 0.602873i
\(446\) −1.10999e7 −2.64231
\(447\) 1.13326e6 + 202505.i 0.268262 + 0.0479365i
\(448\) −2.27396e6 −0.535288
\(449\) 8.28821e6i 1.94019i −0.242722 0.970096i \(-0.578040\pi\)
0.242722 0.970096i \(-0.421960\pi\)
\(450\) −1.78265e6 658108.i −0.414987 0.153203i
\(451\) 560930.i 0.129858i
\(452\) −9.67240e6 −2.22684
\(453\) −1.08708e6 + 6.08352e6i −0.248895 + 1.39287i
\(454\) −1.03182e7 −2.34943
\(455\) −2.25379e6 −0.510371
\(456\) 5.89767e6 + 1.05387e6i 1.32822 + 0.237343i
\(457\) 3.74700e6i 0.839253i −0.907697 0.419626i \(-0.862161\pi\)
0.907697 0.419626i \(-0.137839\pi\)
\(458\) 1.28050e7i 2.85245i
\(459\) −2.16350e6 + 3.68845e6i −0.479320 + 0.817169i
\(460\) 1.37129e6i 0.302158i
\(461\) 3.49127e6i 0.765122i 0.923930 + 0.382561i \(0.124958\pi\)
−0.923930 + 0.382561i \(0.875042\pi\)
\(462\) 269886. + 48226.8i 0.0588269 + 0.0105120i
\(463\) 2.88066e6i 0.624511i 0.949998 + 0.312255i \(0.101084\pi\)
−0.949998 + 0.312255i \(0.898916\pi\)
\(464\) 299688.i 0.0646211i
\(465\) 3.75316e6 + 670664.i 0.804943 + 0.143838i
\(466\) 1.53067e7 3.26526
\(467\) −1.99736e6 −0.423803 −0.211901 0.977291i \(-0.567966\pi\)
−0.211901 + 0.977291i \(0.567966\pi\)
\(468\) −4.34375e6 + 1.17661e7i −0.916749 + 2.48324i
\(469\) 1.88254e6i 0.395196i
\(470\) 5.59668e6i 1.16865i
\(471\) 873785. 4.88987e6i 0.181490 1.01565i
\(472\) −5.51016e6 5.00021e6i −1.13844 1.03308i
\(473\) 368700.i 0.0757740i
\(474\) 9.15857e6 + 1.63657e6i 1.87233 + 0.334572i
\(475\) −1.12066e6 −0.227897
\(476\) 3.79779e6i 0.768270i
\(477\) 840230. 2.27597e6i 0.169084 0.458006i
\(478\) 7.90456e6i 1.58237i
\(479\) 2.25462e6i 0.448988i −0.974475 0.224494i \(-0.927927\pi\)
0.974475 0.224494i \(-0.0720729\pi\)
\(480\) −241754. + 1.35290e6i −0.0478929 + 0.268018i
\(481\) −1.33819e6 −0.263727
\(482\) −1.52378e7 −2.98747
\(483\) 397161. + 70969.8i 0.0774637 + 0.0138422i
\(484\) −9.73771e6 −1.88948
\(485\) 1.20376e6 0.232373
\(486\) −5.62379e6 6.86043e6i −1.08004 1.31753i
\(487\) 7.50521e6 1.43397 0.716985 0.697088i \(-0.245522\pi\)
0.716985 + 0.697088i \(0.245522\pi\)
\(488\) 1.40365e7i 2.66814i
\(489\) −683681. 122169.i −0.129295 0.0231041i
\(490\) 6.37507e6i 1.19948i
\(491\) 5.42009e6i 1.01462i −0.861764 0.507309i \(-0.830640\pi\)
0.861764 0.507309i \(-0.169360\pi\)
\(492\) 2.83551e6 1.58680e7i 0.528102 2.95536i
\(493\) 461017. 0.0854279
\(494\) 1.12849e7i 2.08056i
\(495\) 133672. 362084.i 0.0245204 0.0664197i
\(496\) 3.73141e6i 0.681034i
\(497\) 1.04545e6i 0.189852i
\(498\) 4.66831e6 + 834193.i 0.843502 + 0.150728i
\(499\) −7.03295e6 −1.26441 −0.632203 0.774803i \(-0.717849\pi\)
−0.632203 + 0.774803i \(0.717849\pi\)
\(500\) 1.15262e7i 2.06188i
\(501\) 597217. 3.34214e6i 0.106301 0.594882i
\(502\) 1.23675e7i 2.19039i
\(503\) −3.22241e6 −0.567885 −0.283942 0.958841i \(-0.591642\pi\)
−0.283942 + 0.958841i \(0.591642\pi\)
\(504\) −3.50583e6 1.29426e6i −0.614772 0.226958i
\(505\) 2.11114e6i 0.368374i
\(506\) 149040. 0.0258777
\(507\) −5.33386e6 953123.i −0.921556 0.164675i
\(508\) 1.36424e6 0.234548
\(509\) 7.78339e6 1.33160 0.665800 0.746130i \(-0.268090\pi\)
0.665800 + 0.746130i \(0.268090\pi\)
\(510\) 8.02994e6 + 1.43489e6i 1.36706 + 0.244283i
\(511\) 1.30772e6i 0.221545i
\(512\) 7.87980e6 1.32843
\(513\) −4.51253e6 2.64688e6i −0.757054 0.444059i
\(514\) 3.56144e6i 0.594590i
\(515\) 642054. 0.106673
\(516\) −1.86378e6 + 1.04301e7i −0.308156 + 1.72450i
\(517\) 398699. 0.0656023
\(518\) 840593.i 0.137645i
\(519\) 4.92116e6 + 879377.i 0.801954 + 0.143303i
\(520\) 1.13489e7 1.84054
\(521\) 3.75797e6i 0.606539i 0.952905 + 0.303270i \(0.0980783\pi\)
−0.952905 + 0.303270i \(0.901922\pi\)
\(522\) −331222. + 897197.i −0.0532038 + 0.144116i
\(523\) −1.66971e6 −0.266923 −0.133462 0.991054i \(-0.542609\pi\)
−0.133462 + 0.991054i \(0.542609\pi\)
\(524\) 1.31760e6 0.209631
\(525\) 688139. + 122965.i 0.108963 + 0.0194709i
\(526\) 3.93338e6i 0.619871i
\(527\) 5.74012e6 0.900316
\(528\) −371860. 66448.7i −0.0580490 0.0103729i
\(529\) −6.21702e6 −0.965924
\(530\) −4.62804e6 −0.715661
\(531\) 3.00164e6 + 5.76244e6i 0.461979 + 0.886891i
\(532\) −4.64631e6 −0.711753
\(533\) 1.44022e7 2.19590
\(534\) −7.74307e6 1.38363e6i −1.17506 0.209975i
\(535\) −9.75051e6 −1.47280
\(536\) 9.47945e6i 1.42518i
\(537\) 4.74615e6 + 848104.i 0.710241 + 0.126915i
\(538\) 1.02145e7 1.52146
\(539\) 454151. 0.0673330
\(540\) −5.61176e6 + 9.56722e6i −0.828162 + 1.41189i
\(541\) 9.67521e6i 1.42124i 0.703576 + 0.710620i \(0.251585\pi\)
−0.703576 + 0.710620i \(0.748415\pi\)
\(542\) −4.59931e6 −0.672504
\(543\) −7.96824e6 1.42387e6i −1.15975 0.207238i
\(544\) 2.06914e6i 0.299774i
\(545\) 1.21732e6 0.175555
\(546\) 1.23825e6 6.92950e6i 0.177757 0.994765i
\(547\) 5.44757e6 0.778456 0.389228 0.921141i \(-0.372742\pi\)
0.389228 + 0.921141i \(0.372742\pi\)
\(548\) 4.84161e6i 0.688713i
\(549\) −4.24490e6 + 1.14984e7i −0.601085 + 1.62819i
\(550\) 258233. 0.0364003
\(551\) 564019.i 0.0791435i
\(552\) −1.99988e6 357365.i −0.279355 0.0499188i
\(553\) −3.42250e6 −0.475917
\(554\) −8.90775e6 −1.23309
\(555\) −1.16495e6 208169.i −0.160537 0.0286869i
\(556\) 6.22421e6 0.853881
\(557\) 1.58568e6i 0.216560i 0.994120 + 0.108280i \(0.0345343\pi\)
−0.994120 + 0.108280i \(0.965466\pi\)
\(558\) −4.12404e6 + 1.11710e7i −0.560709 + 1.51882i
\(559\) −9.46661e6 −1.28134
\(560\) 1.95065e6i 0.262851i
\(561\) 102220. 572041.i 0.0137128 0.0767397i
\(562\) 5.99192e6i 0.800249i
\(563\) −9.24513e6 −1.22925 −0.614627 0.788818i \(-0.710694\pi\)
−0.614627 + 0.788818i \(0.710694\pi\)
\(564\) −1.12787e7 2.01543e6i −1.49301 0.266790i
\(565\) 7.64242e6i 1.00719i
\(566\) 3.13287e6i 0.411057i
\(567\) 2.48049e6 + 2.12046e6i 0.324025 + 0.276995i
\(568\) 5.26434e6i 0.684657i
\(569\) 5.61709e6 0.727328 0.363664 0.931530i \(-0.381526\pi\)
0.363664 + 0.931530i \(0.381526\pi\)
\(570\) −1.75548e6 + 9.82401e6i −0.226313 + 1.26649i
\(571\) 4.82900e6i 0.619822i −0.950766 0.309911i \(-0.899701\pi\)
0.950766 0.309911i \(-0.100299\pi\)
\(572\) 1.70443e6i 0.217816i
\(573\) −5.85676e6 1.04656e6i −0.745196 0.133161i
\(574\) 9.04685e6i 1.14609i
\(575\) 380012. 0.0479322
\(576\) −9.37992e6 3.46282e6i −1.17799 0.434884i
\(577\) 3.89350e6 0.486856 0.243428 0.969919i \(-0.421728\pi\)
0.243428 + 0.969919i \(0.421728\pi\)
\(578\) −1.40239e6 −0.174602
\(579\) 5.87917e6 + 1.05057e6i 0.728819 + 0.130235i
\(580\) 1.19580e6 0.147601
\(581\) −1.74452e6 −0.214405
\(582\) −661355. + 3.70107e6i −0.0809333 + 0.452918i
\(583\) 329695.i 0.0401736i
\(584\) 6.58496e6i 0.798952i
\(585\) −9.29675e6 3.43212e6i −1.12316 0.414641i
\(586\) 2.00395e7i 2.41070i
\(587\) −4.16847e6 −0.499323 −0.249661 0.968333i \(-0.580319\pi\)
−0.249661 + 0.968333i \(0.580319\pi\)
\(588\) −1.28474e7 2.29574e6i −1.53240 0.273828i
\(589\) 7.02260e6i 0.834084i
\(590\) 8.32907e6 9.17852e6i 0.985069 1.08553i
\(591\) −1.47096e6 + 8.23175e6i −0.173233 + 0.969446i
\(592\) 1.15820e6i 0.135825i
\(593\) 4.87840e6i 0.569692i −0.958573 0.284846i \(-0.908057\pi\)
0.958573 0.284846i \(-0.0919425\pi\)
\(594\) 1.03982e6 + 609920.i 0.120919 + 0.0709262i
\(595\) −3.00074e6 −0.347485
\(596\) 4.49566e6 0.518416
\(597\) 1.06497e7 + 1.90303e6i 1.22293 + 0.218530i
\(598\) 3.82669e6i 0.437593i
\(599\) 1.20293e7i 1.36985i 0.728613 + 0.684925i \(0.240165\pi\)
−0.728613 + 0.684925i \(0.759835\pi\)
\(600\) −3.46509e6 619187.i −0.392949 0.0702172i
\(601\) 1.12790e6i 0.127375i −0.997970 0.0636874i \(-0.979714\pi\)
0.997970 0.0636874i \(-0.0202861\pi\)
\(602\) 5.94651e6i 0.668761i
\(603\) −2.86677e6 + 7.76536e6i −0.321070 + 0.869697i
\(604\) 2.41336e7i 2.69171i
\(605\) 7.69403e6i 0.854605i
\(606\) 6.49091e6 + 1.15988e6i 0.718000 + 0.128301i
\(607\) 1.48593e7 1.63691 0.818457 0.574568i \(-0.194830\pi\)
0.818457 + 0.574568i \(0.194830\pi\)
\(608\) −2.53144e6 −0.277721
\(609\) 61887.8 346336.i 0.00676179 0.0378403i
\(610\) 2.33812e7 2.54414
\(611\) 1.02369e7i 1.10934i
\(612\) −5.78335e6 + 1.56656e7i −0.624167 + 1.69071i
\(613\) 8.32649e6i 0.894975i −0.894290 0.447488i \(-0.852319\pi\)
0.894290 0.447488i \(-0.147681\pi\)
\(614\) 3.80222e6 0.407021
\(615\) 1.25378e7 + 2.24041e6i 1.33670 + 0.238858i
\(616\) 507850. 0.0539242
\(617\) 1.68119e7i 1.77789i −0.458016 0.888944i \(-0.651440\pi\)
0.458016 0.888944i \(-0.348560\pi\)
\(618\) −352750. + 1.97406e6i −0.0371531 + 0.207916i
\(619\) 1.19071e7 1.24905 0.624525 0.781005i \(-0.285293\pi\)
0.624525 + 0.781005i \(0.285293\pi\)
\(620\) 1.48889e7 1.55555
\(621\) 1.53019e6 + 897549.i 0.159227 + 0.0933962i
\(622\) 1.21044e7i 1.25449i
\(623\) 2.89354e6 0.298682
\(624\) −1.70611e6 + 9.54774e6i −0.175407 + 0.981610i
\(625\) −6.57147e6 −0.672918
\(626\) 2.22691e7i 2.27126i
\(627\) 699849. + 125058.i 0.0710944 + 0.0127041i
\(628\) 1.93983e7i 1.96275i
\(629\) −1.78169e6 −0.179558
\(630\) 2.15591e6 5.83981e6i 0.216411 0.586202i
\(631\) −3.12556e6 −0.312503 −0.156251 0.987717i \(-0.549941\pi\)
−0.156251 + 0.987717i \(0.549941\pi\)
\(632\) 1.72338e7 1.71629
\(633\) 900275. 5.03811e6i 0.0893030 0.499757i
\(634\) 1.06013e7i 1.04746i
\(635\) 1.07792e6i 0.106085i
\(636\) 1.66661e6 9.32668e6i 0.163377 0.914291i
\(637\) 1.16606e7i 1.13860i
\(638\) 129967.i 0.0126410i
\(639\) −1.59204e6 + 4.31243e6i −0.154241 + 0.417801i
\(640\) 1.62522e7i 1.56842i
\(641\) 9.31161e6i 0.895116i −0.894255 0.447558i \(-0.852294\pi\)
0.894255 0.447558i \(-0.147706\pi\)
\(642\) 5.35701e6 2.99789e7i 0.512962 2.87063i
\(643\) 1.32930e7 1.26793 0.633965 0.773362i \(-0.281426\pi\)
0.633965 + 0.773362i \(0.281426\pi\)
\(644\) 1.57555e6 0.149699
\(645\) −8.24109e6 1.47262e6i −0.779984 0.139378i
\(646\) 1.50249e7i 1.41655i
\(647\) 9.08894e6i 0.853597i 0.904347 + 0.426798i \(0.140359\pi\)
−0.904347 + 0.426798i \(0.859641\pi\)
\(648\) −1.24904e7 1.06775e7i −1.16852 0.998920i
\(649\) −653865. 593351.i −0.0609363 0.0552968i
\(650\) 6.63029e6i 0.615530i
\(651\) 770564. 4.31223e6i 0.0712617 0.398794i
\(652\) −2.71219e6 −0.249862
\(653\) 1.83478e7i 1.68384i −0.539605 0.841919i \(-0.681426\pi\)
0.539605 0.841919i \(-0.318574\pi\)
\(654\) −668804. + 3.74276e6i −0.0611441 + 0.342174i
\(655\) 1.04107e6i 0.0948153i
\(656\) 1.24651e7i 1.13093i
\(657\) 1.99142e6 5.39425e6i 0.179990 0.487548i
\(658\) 6.43035e6 0.578988
\(659\) −5.04508e6 −0.452537 −0.226269 0.974065i \(-0.572653\pi\)
−0.226269 + 0.974065i \(0.572653\pi\)
\(660\) 265141. 1.48378e6i 0.0236929 0.132590i
\(661\) −1.92331e7 −1.71216 −0.856081 0.516842i \(-0.827108\pi\)
−0.856081 + 0.516842i \(0.827108\pi\)
\(662\) −1.65451e7 −1.46732
\(663\) −1.46875e7 2.62456e6i −1.29767 0.231885i
\(664\) 8.78444e6 0.773204
\(665\) 3.67117e6i 0.321922i
\(666\) 1.28007e6 3.46739e6i 0.111827 0.302912i
\(667\) 191257.i 0.0166458i
\(668\) 1.32584e7i 1.14961i
\(669\) 1.76745e7 + 3.15831e6i 1.52680 + 0.272828i
\(670\) 1.57903e7 1.35895
\(671\) 1.66564e6i 0.142815i
\(672\) 1.55443e6 + 277765.i 0.132785 + 0.0237277i
\(673\) 3.51575e6i 0.299213i −0.988746 0.149607i \(-0.952199\pi\)
0.988746 0.149607i \(-0.0478007\pi\)
\(674\) 2.15046e7i 1.82340i
\(675\) 2.65127e6 + 1.55513e6i 0.223973 + 0.131374i
\(676\) −2.11596e7 −1.78091
\(677\) 4.86746e6i 0.408160i 0.978954 + 0.204080i \(0.0654203\pi\)
−0.978954 + 0.204080i \(0.934580\pi\)
\(678\) 2.34974e7 + 4.19881e6i 1.96311 + 0.350794i
\(679\) 1.38307e6i 0.115125i
\(680\) 1.51101e7 1.25313
\(681\) 1.64297e7 + 2.93587e6i 1.35757 + 0.242587i
\(682\) 1.61822e6i 0.133222i
\(683\) 1.34481e7 1.10308 0.551541 0.834148i \(-0.314040\pi\)
0.551541 + 0.834148i \(0.314040\pi\)
\(684\) −1.91657e7 7.07548e6i −1.56634 0.578250i
\(685\) 3.82548e6 0.311501
\(686\) 1.62760e7 1.32050
\(687\) 3.64347e6 2.03896e7i 0.294526 1.64822i
\(688\) 8.19333e6i 0.659917i
\(689\) 8.46513e6 0.679337
\(690\) 595279. 3.33130e6i 0.0475990 0.266373i
\(691\) 2.19353e7i 1.74763i 0.486262 + 0.873813i \(0.338360\pi\)
−0.486262 + 0.873813i \(0.661640\pi\)
\(692\) 1.95224e7 1.54978
\(693\) −416020. 153584.i −0.0329064 0.0121482i
\(694\) −4.02530e7 −3.17248
\(695\) 4.91792e6i 0.386206i
\(696\) −311633. + 1.74396e6i −0.0243849 + 0.136462i
\(697\) 1.91754e7 1.49507
\(698\) 3.55441e7i 2.76140i
\(699\) −2.43730e7 4.35528e6i −1.88676 0.337150i
\(700\) 2.72987e6 0.210570
\(701\) 2.35117e7 1.80713 0.903565 0.428452i \(-0.140941\pi\)
0.903565 + 0.428452i \(0.140941\pi\)
\(702\) 1.56601e7 2.66981e7i 1.19936 2.04474i
\(703\) 2.17976e6i 0.166349i
\(704\) 1.35877e6 0.103327
\(705\) 1.59245e6 8.91163e6i 0.120668 0.675281i
\(706\) −4.22541e7 −3.19049
\(707\) −2.42562e6 −0.182504
\(708\) 1.54976e7 + 2.00905e7i 1.16194 + 1.50629i
\(709\) −1.29200e7 −0.965263 −0.482632 0.875823i \(-0.660319\pi\)
−0.482632 + 0.875823i \(0.660319\pi\)
\(710\) 8.76904e6 0.652839
\(711\) −1.41176e7 5.21185e6i −1.04734 0.386650i
\(712\) −1.45703e7 −1.07713
\(713\) 2.38135e6i 0.175428i
\(714\) 1.64863e6 9.22606e6i 0.121026 0.677284i
\(715\) 1.34672e6 0.0985170
\(716\) 1.88282e7 1.37254
\(717\) 2.24912e6 1.25865e7i 0.163386 0.914338i
\(718\) 4.52158e7i 3.27325i
\(719\) 3.00043e6 0.216452 0.108226 0.994126i \(-0.465483\pi\)
0.108226 + 0.994126i \(0.465483\pi\)
\(720\) −2.97049e6 + 8.04632e6i −0.213549 + 0.578450i
\(721\) 737693.i 0.0528491i
\(722\) 5.48081e6 0.391293
\(723\) 2.42632e7 + 4.33566e6i 1.72624 + 0.308467i
\(724\) −3.16103e7 −2.24121
\(725\) 331381.i 0.0234144i
\(726\) 2.36560e7 + 4.22716e6i 1.66571 + 0.297651i
\(727\) 1.45696e7 1.02238 0.511191 0.859467i \(-0.329205\pi\)
0.511191 + 0.859467i \(0.329205\pi\)
\(728\) 1.30394e7i 0.911860i
\(729\) 7.00277e6 + 1.25241e7i 0.488035 + 0.872824i
\(730\) −1.09689e7 −0.761823
\(731\) −1.26040e7 −0.872399
\(732\) −8.41983e6 + 4.71190e7i −0.580798 + 3.25026i
\(733\) 3.65619e6 0.251344 0.125672 0.992072i \(-0.459891\pi\)
0.125672 + 0.992072i \(0.459891\pi\)
\(734\) 2.33614e7i 1.60051i
\(735\) 1.81392e6 1.01511e7i 0.123851 0.693096i
\(736\) 858404. 0.0584113
\(737\) 1.12488e6i 0.0762848i
\(738\) −1.37767e7 + 3.73177e7i −0.931118 + 2.52216i
\(739\) 1.91970e7i 1.29307i 0.762885 + 0.646535i \(0.223782\pi\)
−0.762885 + 0.646535i \(0.776218\pi\)
\(740\) −4.62141e6 −0.310238
\(741\) 3.21094e6 1.79691e7i 0.214826 1.20221i
\(742\) 5.31742e6i 0.354561i
\(743\) 2.03356e7i 1.35140i 0.737175 + 0.675702i \(0.236159\pi\)
−0.737175 + 0.675702i \(0.763841\pi\)
\(744\) −3.88014e6 + 2.17140e7i −0.256989 + 1.43816i
\(745\) 3.55215e6i 0.234477i
\(746\) 1.76342e6 0.116014
\(747\) −7.19602e6 2.65658e6i −0.471836 0.174190i
\(748\) 2.26931e6i 0.148299i
\(749\) 1.12029e7i 0.729671i
\(750\) 5.00357e6 2.80009e7i 0.324808 1.81769i
\(751\) 1.95164e7i 1.26270i 0.775500 + 0.631348i \(0.217498\pi\)
−0.775500 + 0.631348i \(0.782502\pi\)
\(752\) −8.85998e6 −0.571332
\(753\) −3.51896e6 + 1.96928e7i −0.226166 + 1.26567i
\(754\) −3.33698e6 −0.213760
\(755\) −1.90686e7 −1.21745
\(756\) 1.09923e7 + 6.44768e6i 0.699496 + 0.410298i
\(757\) 1.06126e7 0.673103 0.336551 0.941665i \(-0.390739\pi\)
0.336551 + 0.941665i \(0.390739\pi\)
\(758\) −2.32482e7 −1.46966
\(759\) −237317. 42406.8i −0.0149529 0.00267197i
\(760\) 1.84860e7i 1.16094i
\(761\) 2.01406e7i 1.26070i −0.776313 0.630348i \(-0.782912\pi\)
0.776313 0.630348i \(-0.217088\pi\)
\(762\) −3.31418e6 592220.i −0.206770 0.0369484i
\(763\) 1.39865e6i 0.0869754i
\(764\) −2.32340e7 −1.44009
\(765\) −1.23778e7 4.56958e6i −0.764701 0.282308i
\(766\) 2.44381e7i 1.50486i
\(767\) −1.52347e7 + 1.67884e7i −0.935071 + 1.03043i
\(768\) −2.97637e7 5.31856e6i −1.82089 0.325380i
\(769\) 1.52355e7i 0.929053i −0.885559 0.464526i \(-0.846225\pi\)
0.885559 0.464526i \(-0.153775\pi\)
\(770\) 845949.i 0.0514182i
\(771\) −1.01335e6 + 5.67090e6i −0.0613937 + 0.343571i
\(772\) 2.33229e7 1.40844
\(773\) 8.57975e6 0.516447 0.258224 0.966085i \(-0.416863\pi\)
0.258224 + 0.966085i \(0.416863\pi\)
\(774\) 9.05545e6 2.45289e7i 0.543322 1.47172i
\(775\) 4.12603e6i 0.246762i
\(776\) 6.96438e6i 0.415172i
\(777\) −239177. + 1.33848e6i −0.0142124 + 0.0795353i
\(778\) 4.57056e7i 2.70720i
\(779\) 2.34596e7i 1.38509i