Defining parameters
Level: | \( N \) | \(=\) | \( 177 = 3 \cdot 59 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 177.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(177))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 102 | 48 | 54 |
Cusp forms | 98 | 48 | 50 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(59\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(12\) |
\(+\) | \(-\) | \(-\) | \(13\) |
\(-\) | \(+\) | \(-\) | \(12\) |
\(-\) | \(-\) | \(+\) | \(11\) |
Plus space | \(+\) | \(23\) | |
Minus space | \(-\) | \(25\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(177))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 3 | 59 | |||||||
177.6.a.a | \(11\) | \(28.388\) | \(\mathbb{Q}[x]/(x^{11} - \cdots)\) | None | \(-6\) | \(99\) | \(-192\) | \(-371\) | \(-\) | \(-\) | \(q+(-1+\beta _{1})q^{2}+9q^{3}+(14-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) | |
177.6.a.b | \(12\) | \(28.388\) | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-4\) | \(-108\) | \(36\) | \(-411\) | \(+\) | \(+\) | \(q-\beta _{1}q^{2}-9q^{3}+(17+\beta _{2})q^{4}+(3+\beta _{1}+\cdots)q^{5}+\cdots\) | |
177.6.a.c | \(12\) | \(28.388\) | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(22\) | \(108\) | \(158\) | \(413\) | \(-\) | \(+\) | \(q+(2-\beta _{1})q^{2}+9q^{3}+(17-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) | |
177.6.a.d | \(13\) | \(28.388\) | \(\mathbb{Q}[x]/(x^{13} - \cdots)\) | None | \(0\) | \(-117\) | \(-14\) | \(373\) | \(+\) | \(-\) | \(q+\beta _{1}q^{2}-9q^{3}+(19+\beta _{2})q^{4}+(-1+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(177))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(177)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(59))\)\(^{\oplus 2}\)