Newform invariants
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
This newform subspace can be constructed as the kernel of the linear operator \(12\!\cdots\!10\)\( T_{2}^{405} + \)\(15\!\cdots\!41\)\( T_{2}^{404} + \)\(45\!\cdots\!51\)\( T_{2}^{403} + \)\(52\!\cdots\!58\)\( T_{2}^{402} + \)\(16\!\cdots\!47\)\( T_{2}^{401} + \)\(16\!\cdots\!20\)\( T_{2}^{400} + \)\(58\!\cdots\!65\)\( T_{2}^{399} + \)\(52\!\cdots\!82\)\( T_{2}^{398} + \)\(19\!\cdots\!40\)\( T_{2}^{397} + \)\(16\!\cdots\!47\)\( T_{2}^{396} + \)\(65\!\cdots\!37\)\( T_{2}^{395} + \)\(49\!\cdots\!90\)\( T_{2}^{394} + \)\(21\!\cdots\!59\)\( T_{2}^{393} + \)\(14\!\cdots\!35\)\( T_{2}^{392} + \)\(65\!\cdots\!27\)\( T_{2}^{391} + \)\(43\!\cdots\!59\)\( T_{2}^{390} + \)\(19\!\cdots\!84\)\( T_{2}^{389} + \)\(12\!\cdots\!75\)\( T_{2}^{388} + \)\(55\!\cdots\!48\)\( T_{2}^{387} + \)\(36\!\cdots\!77\)\( T_{2}^{386} + \)\(15\!\cdots\!42\)\( T_{2}^{385} + \)\(10\!\cdots\!81\)\( T_{2}^{384} + \)\(41\!\cdots\!84\)\( T_{2}^{383} + \)\(29\!\cdots\!24\)\( T_{2}^{382} + \)\(10\!\cdots\!41\)\( T_{2}^{381} + \)\(79\!\cdots\!23\)\( T_{2}^{380} + \)\(27\!\cdots\!93\)\( T_{2}^{379} + \)\(21\!\cdots\!60\)\( T_{2}^{378} + \)\(68\!\cdots\!54\)\( T_{2}^{377} + \)\(54\!\cdots\!31\)\( T_{2}^{376} + \)\(16\!\cdots\!34\)\( T_{2}^{375} + \)\(13\!\cdots\!09\)\( T_{2}^{374} + \)\(42\!\cdots\!03\)\( T_{2}^{373} + \)\(35\!\cdots\!37\)\( T_{2}^{372} + \)\(10\!\cdots\!46\)\( T_{2}^{371} + \)\(89\!\cdots\!75\)\( T_{2}^{370} + \)\(28\!\cdots\!54\)\( T_{2}^{369} + \)\(23\!\cdots\!75\)\( T_{2}^{368} + \)\(75\!\cdots\!87\)\( T_{2}^{367} + \)\(63\!\cdots\!37\)\( T_{2}^{366} + \)\(20\!\cdots\!59\)\( T_{2}^{365} + \)\(18\!\cdots\!93\)\( T_{2}^{364} + \)\(58\!\cdots\!38\)\( T_{2}^{363} + \)\(51\!\cdots\!13\)\( T_{2}^{362} + \)\(16\!\cdots\!93\)\( T_{2}^{361} + \)\(14\!\cdots\!31\)\( T_{2}^{360} + \)\(43\!\cdots\!15\)\( T_{2}^{359} + \)\(36\!\cdots\!89\)\( T_{2}^{358} + \)\(11\!\cdots\!13\)\( T_{2}^{357} + \)\(92\!\cdots\!59\)\( T_{2}^{356} + \)\(31\!\cdots\!82\)\( T_{2}^{355} + \)\(23\!\cdots\!57\)\( T_{2}^{354} + \)\(83\!\cdots\!50\)\( T_{2}^{353} + \)\(57\!\cdots\!80\)\( T_{2}^{352} + \)\(21\!\cdots\!48\)\( T_{2}^{351} + \)\(13\!\cdots\!56\)\( T_{2}^{350} + \)\(53\!\cdots\!26\)\( T_{2}^{349} + \)\(33\!\cdots\!91\)\( T_{2}^{348} + \)\(12\!\cdots\!34\)\( T_{2}^{347} + \)\(81\!\cdots\!87\)\( T_{2}^{346} + \)\(28\!\cdots\!10\)\( T_{2}^{345} + \)\(19\!\cdots\!48\)\( T_{2}^{344} + \)\(64\!\cdots\!19\)\( T_{2}^{343} + \)\(46\!\cdots\!70\)\( T_{2}^{342} + \)\(14\!\cdots\!57\)\( T_{2}^{341} + \)\(10\!\cdots\!05\)\( T_{2}^{340} + \)\(31\!\cdots\!06\)\( T_{2}^{339} + \)\(24\!\cdots\!08\)\( T_{2}^{338} + \)\(66\!\cdots\!13\)\( T_{2}^{337} + \)\(54\!\cdots\!78\)\( T_{2}^{336} + \)\(13\!\cdots\!20\)\( T_{2}^{335} + \)\(12\!\cdots\!69\)\( T_{2}^{334} + \)\(28\!\cdots\!33\)\( T_{2}^{333} + \)\(26\!\cdots\!40\)\( T_{2}^{332} + \)\(55\!\cdots\!43\)\( T_{2}^{331} + \)\(58\!\cdots\!31\)\( T_{2}^{330} + \)\(10\!\cdots\!86\)\( T_{2}^{329} + \)\(12\!\cdots\!84\)\( T_{2}^{328} + \)\(19\!\cdots\!65\)\( T_{2}^{327} + \)\(25\!\cdots\!44\)\( T_{2}^{326} + \)\(35\!\cdots\!02\)\( T_{2}^{325} + \)\(52\!\cdots\!46\)\( T_{2}^{324} + \)\(62\!\cdots\!81\)\( T_{2}^{323} + \)\(10\!\cdots\!65\)\( T_{2}^{322} + \)\(10\!\cdots\!23\)\( T_{2}^{321} + \)\(21\!\cdots\!54\)\( T_{2}^{320} + \)\(17\!\cdots\!61\)\( T_{2}^{319} + \)\(43\!\cdots\!16\)\( T_{2}^{318} + \)\(29\!\cdots\!19\)\( T_{2}^{317} + \)\(86\!\cdots\!96\)\( T_{2}^{316} + \)\(56\!\cdots\!23\)\( T_{2}^{315} + \)\(17\!\cdots\!32\)\( T_{2}^{314} + \)\(11\!\cdots\!50\)\( T_{2}^{313} + \)\(34\!\cdots\!61\)\( T_{2}^{312} + \)\(27\!\cdots\!07\)\( T_{2}^{311} + \)\(70\!\cdots\!55\)\( T_{2}^{310} + \)\(63\!\cdots\!20\)\( T_{2}^{309} + \)\(13\!\cdots\!02\)\( T_{2}^{308} + \)\(14\!\cdots\!46\)\( T_{2}^{307} + \)\(27\!\cdots\!02\)\( T_{2}^{306} + \)\(33\!\cdots\!52\)\( T_{2}^{305} + \)\(52\!\cdots\!32\)\( T_{2}^{304} + \)\(73\!\cdots\!88\)\( T_{2}^{303} + \)\(99\!\cdots\!62\)\( T_{2}^{302} + \)\(15\!\cdots\!32\)\( T_{2}^{301} + \)\(18\!\cdots\!80\)\( T_{2}^{300} + \)\(31\!\cdots\!94\)\( T_{2}^{299} + \)\(34\!\cdots\!88\)\( T_{2}^{298} + \)\(63\!\cdots\!84\)\( T_{2}^{297} + \)\(62\!\cdots\!13\)\( T_{2}^{296} + \)\(12\!\cdots\!51\)\( T_{2}^{295} + \)\(11\!\cdots\!67\)\( T_{2}^{294} + \)\(23\!\cdots\!75\)\( T_{2}^{293} + \)\(20\!\cdots\!96\)\( T_{2}^{292} + \)\(44\!\cdots\!08\)\( T_{2}^{291} + \)\(35\!\cdots\!69\)\( T_{2}^{290} + \)\(81\!\cdots\!10\)\( T_{2}^{289} + \)\(62\!\cdots\!13\)\( T_{2}^{288} + \)\(14\!\cdots\!67\)\( T_{2}^{287} + \)\(10\!\cdots\!65\)\( T_{2}^{286} + \)\(25\!\cdots\!28\)\( T_{2}^{285} + \)\(17\!\cdots\!92\)\( T_{2}^{284} + \)\(42\!\cdots\!84\)\( T_{2}^{283} + \)\(28\!\cdots\!72\)\( T_{2}^{282} + \)\(68\!\cdots\!52\)\( T_{2}^{281} + \)\(46\!\cdots\!06\)\( T_{2}^{280} + \)\(10\!\cdots\!24\)\( T_{2}^{279} + \)\(72\!\cdots\!74\)\( T_{2}^{278} + \)\(15\!\cdots\!92\)\( T_{2}^{277} + \)\(10\!\cdots\!81\)\( T_{2}^{276} + \)\(22\!\cdots\!33\)\( T_{2}^{275} + \)\(16\!\cdots\!73\)\( T_{2}^{274} + \)\(29\!\cdots\!78\)\( T_{2}^{273} + \)\(23\!\cdots\!27\)\( T_{2}^{272} + \)\(33\!\cdots\!45\)\( T_{2}^{271} + \)\(32\!\cdots\!16\)\( T_{2}^{270} + \)\(31\!\cdots\!03\)\( T_{2}^{269} + \)\(44\!\cdots\!52\)\( T_{2}^{268} + \)\(21\!\cdots\!09\)\( T_{2}^{267} + \)\(63\!\cdots\!83\)\( T_{2}^{266} + \)\(10\!\cdots\!46\)\( T_{2}^{265} + \)\(10\!\cdots\!03\)\( T_{2}^{264} + \)\(44\!\cdots\!69\)\( T_{2}^{263} + \)\(18\!\cdots\!97\)\( T_{2}^{262} + \)\(22\!\cdots\!96\)\( T_{2}^{261} + \)\(37\!\cdots\!46\)\( T_{2}^{260} + \)\(72\!\cdots\!40\)\( T_{2}^{259} + \)\(72\!\cdots\!61\)\( T_{2}^{258} + \)\(17\!\cdots\!70\)\( T_{2}^{257} + \)\(13\!\cdots\!86\)\( T_{2}^{256} + \)\(33\!\cdots\!98\)\( T_{2}^{255} + \)\(21\!\cdots\!55\)\( T_{2}^{254} + \)\(56\!\cdots\!73\)\( T_{2}^{253} + \)\(31\!\cdots\!13\)\( T_{2}^{252} + \)\(80\!\cdots\!97\)\( T_{2}^{251} + \)\(41\!\cdots\!03\)\( T_{2}^{250} + \)\(10\!\cdots\!34\)\( T_{2}^{249} + \)\(48\!\cdots\!65\)\( T_{2}^{248} + \)\(10\!\cdots\!22\)\( T_{2}^{247} + \)\(50\!\cdots\!67\)\( T_{2}^{246} + \)\(91\!\cdots\!78\)\( T_{2}^{245} + \)\(44\!\cdots\!31\)\( T_{2}^{244} + \)\(63\!\cdots\!05\)\( T_{2}^{243} + \)\(35\!\cdots\!15\)\( T_{2}^{242} + \)\(36\!\cdots\!76\)\( T_{2}^{241} + \)\(29\!\cdots\!47\)\( T_{2}^{240} + \)\(30\!\cdots\!70\)\( T_{2}^{239} + \)\(33\!\cdots\!17\)\( T_{2}^{238} + \)\(68\!\cdots\!33\)\( T_{2}^{237} + \)\(51\!\cdots\!10\)\( T_{2}^{236} + \)\(15\!\cdots\!84\)\( T_{2}^{235} + \)\(84\!\cdots\!22\)\( T_{2}^{234} + \)\(26\!\cdots\!77\)\( T_{2}^{233} + \)\(12\!\cdots\!49\)\( T_{2}^{232} + \)\(37\!\cdots\!86\)\( T_{2}^{231} + \)\(16\!\cdots\!35\)\( T_{2}^{230} + \)\(45\!\cdots\!57\)\( T_{2}^{229} + \)\(20\!\cdots\!74\)\( T_{2}^{228} + \)\(49\!\cdots\!37\)\( T_{2}^{227} + \)\(23\!\cdots\!48\)\( T_{2}^{226} + \)\(48\!\cdots\!60\)\( T_{2}^{225} + \)\(26\!\cdots\!73\)\( T_{2}^{224} + \)\(45\!\cdots\!90\)\( T_{2}^{223} + \)\(30\!\cdots\!94\)\( T_{2}^{222} + \)\(46\!\cdots\!26\)\( T_{2}^{221} + \)\(36\!\cdots\!74\)\( T_{2}^{220} + \)\(52\!\cdots\!02\)\( T_{2}^{219} + \)\(43\!\cdots\!97\)\( T_{2}^{218} + \)\(67\!\cdots\!62\)\( T_{2}^{217} + \)\(51\!\cdots\!54\)\( T_{2}^{216} + \)\(88\!\cdots\!75\)\( T_{2}^{215} + \)\(57\!\cdots\!75\)\( T_{2}^{214} + \)\(11\!\cdots\!57\)\( T_{2}^{213} + \)\(60\!\cdots\!80\)\( T_{2}^{212} + \)\(13\!\cdots\!65\)\( T_{2}^{211} + \)\(61\!\cdots\!02\)\( T_{2}^{210} + \)\(15\!\cdots\!39\)\( T_{2}^{209} + \)\(60\!\cdots\!36\)\( T_{2}^{208} + \)\(17\!\cdots\!53\)\( T_{2}^{207} + \)\(58\!\cdots\!21\)\( T_{2}^{206} + \)\(17\!\cdots\!30\)\( T_{2}^{205} + \)\(53\!\cdots\!56\)\( T_{2}^{204} + \)\(15\!\cdots\!79\)\( T_{2}^{203} + \)\(47\!\cdots\!58\)\( T_{2}^{202} + \)\(12\!\cdots\!78\)\( T_{2}^{201} + \)\(41\!\cdots\!54\)\( T_{2}^{200} + \)\(99\!\cdots\!35\)\( T_{2}^{199} + \)\(35\!\cdots\!06\)\( T_{2}^{198} + \)\(79\!\cdots\!23\)\( T_{2}^{197} + \)\(30\!\cdots\!15\)\( T_{2}^{196} + \)\(62\!\cdots\!35\)\( T_{2}^{195} + \)\(24\!\cdots\!59\)\( T_{2}^{194} + \)\(45\!\cdots\!77\)\( T_{2}^{193} + \)\(18\!\cdots\!84\)\( T_{2}^{192} + \)\(32\!\cdots\!66\)\( T_{2}^{191} + \)\(13\!\cdots\!98\)\( T_{2}^{190} + \)\(21\!\cdots\!97\)\( T_{2}^{189} + \)\(10\!\cdots\!73\)\( T_{2}^{188} + \)\(14\!\cdots\!84\)\( T_{2}^{187} + \)\(80\!\cdots\!40\)\( T_{2}^{186} + \)\(85\!\cdots\!03\)\( T_{2}^{185} + \)\(62\!\cdots\!73\)\( T_{2}^{184} + \)\(41\!\cdots\!37\)\( T_{2}^{183} + \)\(46\!\cdots\!19\)\( T_{2}^{182} + \)\(11\!\cdots\!48\)\( T_{2}^{181} + \)\(33\!\cdots\!35\)\( T_{2}^{180} + \)\(12\!\cdots\!18\)\( T_{2}^{179} + \)\(25\!\cdots\!94\)\( T_{2}^{178} - \)\(22\!\cdots\!31\)\( T_{2}^{177} + \)\(17\!\cdots\!78\)\( T_{2}^{176} - \)\(45\!\cdots\!84\)\( T_{2}^{175} + \)\(12\!\cdots\!93\)\( T_{2}^{174} - \)\(57\!\cdots\!51\)\( T_{2}^{173} + \)\(88\!\cdots\!06\)\( T_{2}^{172} - \)\(85\!\cdots\!36\)\( T_{2}^{171} + \)\(64\!\cdots\!33\)\( T_{2}^{170} - \)\(70\!\cdots\!94\)\( T_{2}^{169} + \)\(48\!\cdots\!20\)\( T_{2}^{168} - \)\(60\!\cdots\!73\)\( T_{2}^{167} + \)\(31\!\cdots\!06\)\( T_{2}^{166} - \)\(37\!\cdots\!71\)\( T_{2}^{165} + \)\(20\!\cdots\!99\)\( T_{2}^{164} - \)\(21\!\cdots\!87\)\( T_{2}^{163} + \)\(99\!\cdots\!34\)\( T_{2}^{162} - \)\(11\!\cdots\!96\)\( T_{2}^{161} + \)\(52\!\cdots\!32\)\( T_{2}^{160} - \)\(22\!\cdots\!78\)\( T_{2}^{159} + \)\(25\!\cdots\!28\)\( T_{2}^{158} - \)\(32\!\cdots\!99\)\( T_{2}^{157} + \)\(14\!\cdots\!78\)\( T_{2}^{156} + \)\(11\!\cdots\!77\)\( T_{2}^{155} + \)\(85\!\cdots\!13\)\( T_{2}^{154} + \)\(17\!\cdots\!38\)\( T_{2}^{153} + \)\(32\!\cdots\!99\)\( T_{2}^{152} + \)\(10\!\cdots\!87\)\( T_{2}^{151} + \)\(22\!\cdots\!69\)\( T_{2}^{150} + \)\(12\!\cdots\!64\)\( T_{2}^{149} + \)\(12\!\cdots\!50\)\( T_{2}^{148} + \)\(11\!\cdots\!66\)\( T_{2}^{147} + \)\(82\!\cdots\!95\)\( T_{2}^{146} + \)\(13\!\cdots\!63\)\( T_{2}^{145} + \)\(52\!\cdots\!15\)\( T_{2}^{144} + \)\(72\!\cdots\!42\)\( T_{2}^{143} + \)\(24\!\cdots\!50\)\( T_{2}^{142} + \)\(33\!\cdots\!78\)\( T_{2}^{141} + \)\(12\!\cdots\!13\)\( T_{2}^{140} + \)\(22\!\cdots\!36\)\( T_{2}^{139} + \)\(62\!\cdots\!52\)\( T_{2}^{138} + \)\(12\!\cdots\!64\)\( T_{2}^{137} + \)\(28\!\cdots\!32\)\( T_{2}^{136} + \)\(81\!\cdots\!28\)\( T_{2}^{135} + \)\(18\!\cdots\!60\)\( T_{2}^{134} + \)\(53\!\cdots\!88\)\( T_{2}^{133} + \)\(11\!\cdots\!28\)\( T_{2}^{132} + \)\(30\!\cdots\!16\)\( T_{2}^{131} + \)\(72\!\cdots\!96\)\( T_{2}^{130} + \)\(16\!\cdots\!40\)\( T_{2}^{129} + \)\(40\!\cdots\!04\)\( T_{2}^{128} + \)\(80\!\cdots\!08\)\( T_{2}^{127} + \)\(18\!\cdots\!44\)\( T_{2}^{126} + \)\(36\!\cdots\!04\)\( T_{2}^{125} + \)\(83\!\cdots\!36\)\( T_{2}^{124} + \)\(17\!\cdots\!40\)\( T_{2}^{123} + \)\(37\!\cdots\!76\)\( T_{2}^{122} + \)\(78\!\cdots\!36\)\( T_{2}^{121} + \)\(14\!\cdots\!32\)\( T_{2}^{120} + \)\(27\!\cdots\!04\)\( T_{2}^{119} + \)\(53\!\cdots\!68\)\( T_{2}^{118} + \)\(97\!\cdots\!56\)\( T_{2}^{117} + \)\(20\!\cdots\!08\)\( T_{2}^{116} + \)\(35\!\cdots\!16\)\( T_{2}^{115} + \)\(66\!\cdots\!24\)\( T_{2}^{114} + \)\(10\!\cdots\!12\)\( T_{2}^{113} + \)\(16\!\cdots\!60\)\( T_{2}^{112} + \)\(28\!\cdots\!96\)\( T_{2}^{111} + \)\(48\!\cdots\!80\)\( T_{2}^{110} + \)\(95\!\cdots\!92\)\( T_{2}^{109} + \)\(18\!\cdots\!04\)\( T_{2}^{108} + \)\(30\!\cdots\!36\)\( T_{2}^{107} + \)\(52\!\cdots\!20\)\( T_{2}^{106} + \)\(69\!\cdots\!08\)\( T_{2}^{105} + \)\(98\!\cdots\!56\)\( T_{2}^{104} + \)\(11\!\cdots\!48\)\( T_{2}^{103} + \)\(13\!\cdots\!24\)\( T_{2}^{102} + \)\(15\!\cdots\!36\)\( T_{2}^{101} + \)\(23\!\cdots\!68\)\( T_{2}^{100} + \)\(19\!\cdots\!84\)\( T_{2}^{99} + \)\(41\!\cdots\!60\)\( T_{2}^{98} + \)\(67\!\cdots\!72\)\( T_{2}^{97} + \)\(16\!\cdots\!52\)\( T_{2}^{96} - \)\(36\!\cdots\!20\)\( T_{2}^{95} - \)\(90\!\cdots\!20\)\( T_{2}^{94} - \)\(10\!\cdots\!04\)\( T_{2}^{93} - \)\(73\!\cdots\!28\)\( T_{2}^{92} - \)\(23\!\cdots\!24\)\( T_{2}^{91} + \)\(28\!\cdots\!76\)\( T_{2}^{90} - \)\(40\!\cdots\!96\)\( T_{2}^{89} + \)\(66\!\cdots\!68\)\( T_{2}^{88} - \)\(59\!\cdots\!80\)\( T_{2}^{87} + \)\(11\!\cdots\!24\)\( T_{2}^{86} - \)\(15\!\cdots\!60\)\( T_{2}^{85} + \)\(26\!\cdots\!16\)\( T_{2}^{84} - \)\(38\!\cdots\!48\)\( T_{2}^{83} + \)\(52\!\cdots\!24\)\( T_{2}^{82} - \)\(69\!\cdots\!92\)\( T_{2}^{81} + \)\(90\!\cdots\!60\)\( T_{2}^{80} - \)\(11\!\cdots\!08\)\( T_{2}^{79} + \)\(15\!\cdots\!92\)\( T_{2}^{78} - \)\(19\!\cdots\!68\)\( T_{2}^{77} + \)\(24\!\cdots\!20\)\( T_{2}^{76} - \)\(30\!\cdots\!52\)\( T_{2}^{75} + \)\(35\!\cdots\!68\)\( T_{2}^{74} - \)\(39\!\cdots\!92\)\( T_{2}^{73} + \)\(44\!\cdots\!24\)\( T_{2}^{72} - \)\(51\!\cdots\!36\)\( T_{2}^{71} + \)\(60\!\cdots\!04\)\( T_{2}^{70} - \)\(69\!\cdots\!84\)\( T_{2}^{69} + \)\(77\!\cdots\!20\)\( T_{2}^{68} - \)\(84\!\cdots\!76\)\( T_{2}^{67} + \)\(91\!\cdots\!76\)\( T_{2}^{66} - \)\(99\!\cdots\!52\)\( T_{2}^{65} + \)\(10\!\cdots\!08\)\( T_{2}^{64} - \)\(11\!\cdots\!76\)\( T_{2}^{63} + \)\(11\!\cdots\!84\)\( T_{2}^{62} - \)\(10\!\cdots\!20\)\( T_{2}^{61} + \)\(94\!\cdots\!40\)\( T_{2}^{60} - \)\(83\!\cdots\!36\)\( T_{2}^{59} + \)\(74\!\cdots\!72\)\( T_{2}^{58} - \)\(66\!\cdots\!28\)\( T_{2}^{57} + \)\(59\!\cdots\!36\)\( T_{2}^{56} - \)\(50\!\cdots\!16\)\( T_{2}^{55} + \)\(41\!\cdots\!40\)\( T_{2}^{54} - \)\(32\!\cdots\!76\)\( T_{2}^{53} + \)\(24\!\cdots\!80\)\( T_{2}^{52} - \)\(17\!\cdots\!20\)\( T_{2}^{51} + \)\(11\!\cdots\!44\)\( T_{2}^{50} - \)\(69\!\cdots\!04\)\( T_{2}^{49} + \)\(37\!\cdots\!24\)\( T_{2}^{48} - \)\(17\!\cdots\!40\)\( T_{2}^{47} + \)\(54\!\cdots\!32\)\( T_{2}^{46} + \)\(20\!\cdots\!24\)\( T_{2}^{45} - \)\(62\!\cdots\!04\)\( T_{2}^{44} + \)\(79\!\cdots\!56\)\( T_{2}^{43} - \)\(81\!\cdots\!12\)\( T_{2}^{42} + \)\(72\!\cdots\!88\)\( T_{2}^{41} - \)\(56\!\cdots\!48\)\( T_{2}^{40} + \)\(37\!\cdots\!80\)\( T_{2}^{39} - \)\(18\!\cdots\!76\)\( T_{2}^{38} + \)\(41\!\cdots\!96\)\( T_{2}^{37} + \)\(45\!\cdots\!68\)\( T_{2}^{36} - \)\(75\!\cdots\!08\)\( T_{2}^{35} + \)\(69\!\cdots\!40\)\( T_{2}^{34} - \)\(49\!\cdots\!52\)\( T_{2}^{33} + \)\(30\!\cdots\!52\)\( T_{2}^{32} - \)\(15\!\cdots\!36\)\( T_{2}^{31} + \)\(76\!\cdots\!92\)\( T_{2}^{30} - \)\(33\!\cdots\!32\)\( T_{2}^{29} + \)\(13\!\cdots\!32\)\( T_{2}^{28} - \)\(51\!\cdots\!36\)\( T_{2}^{27} + \)\(18\!\cdots\!00\)\( T_{2}^{26} - \)\(62\!\cdots\!32\)\( T_{2}^{25} + \)\(19\!\cdots\!56\)\( T_{2}^{24} - \)\(60\!\cdots\!20\)\( T_{2}^{23} + \)\(17\!\cdots\!00\)\( T_{2}^{22} - \)\(48\!\cdots\!44\)\( T_{2}^{21} + \)\(12\!\cdots\!56\)\( T_{2}^{20} - \)\(29\!\cdots\!28\)\( T_{2}^{19} + \)\(60\!\cdots\!16\)\( T_{2}^{18} - \)\(10\!\cdots\!36\)\( T_{2}^{17} + \)\(14\!\cdots\!84\)\( T_{2}^{16} - \)\(15\!\cdots\!32\)\( T_{2}^{15} + \)\(86\!\cdots\!24\)\( T_{2}^{14} + \)\(16\!\cdots\!68\)\( T_{2}^{13} - \)\(25\!\cdots\!92\)\( T_{2}^{12} - \)\(31\!\cdots\!60\)\( T_{2}^{11} + \)\(98\!\cdots\!00\)\( T_{2}^{10} - \)\(18\!\cdots\!84\)\( T_{2}^{9} + \)\(25\!\cdots\!48\)\( T_{2}^{8} - \)\(29\!\cdots\!08\)\( T_{2}^{7} + \)\(30\!\cdots\!48\)\( T_{2}^{6} - \)\(32\!\cdots\!08\)\( T_{2}^{5} + \)\(37\!\cdots\!36\)\( T_{2}^{4} - \)\(38\!\cdots\!36\)\( T_{2}^{3} + \)\(28\!\cdots\!52\)\( T_{2}^{2} - \)\(12\!\cdots\!08\)\( T_{2} + \)\(25\!\cdots\!36\)\( \)">\(T_{2}^{420} + \cdots\) acting on \(S_{4}^{\mathrm{new}}(177, [\chi])\).