Properties

Label 177.4.d.c.176.18
Level $177$
Weight $4$
Character 177.176
Analytic conductor $10.443$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 177.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.4433380710\)
Analytic rank: \(0\)
Dimension: \(52\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 176.18
Character \(\chi\) \(=\) 177.176
Dual form 177.4.d.c.176.17

$q$-expansion

\(f(q)\) \(=\) \(q-2.62059 q^{2} +(5.14935 + 0.695815i) q^{3} -1.13250 q^{4} +14.1294i q^{5} +(-13.4944 - 1.82345i) q^{6} +10.3672 q^{7} +23.9326 q^{8} +(26.0317 + 7.16599i) q^{9} +O(q^{10})\) \(q-2.62059 q^{2} +(5.14935 + 0.695815i) q^{3} -1.13250 q^{4} +14.1294i q^{5} +(-13.4944 - 1.82345i) q^{6} +10.3672 q^{7} +23.9326 q^{8} +(26.0317 + 7.16599i) q^{9} -37.0275i q^{10} -30.0340 q^{11} +(-5.83163 - 0.788009i) q^{12} -8.23644i q^{13} -27.1683 q^{14} +(-9.83148 + 72.7575i) q^{15} -53.6575 q^{16} +83.4833i q^{17} +(-68.2184 - 18.7791i) q^{18} -30.5066 q^{19} -16.0016i q^{20} +(53.3845 + 7.21367i) q^{21} +78.7068 q^{22} -41.7480 q^{23} +(123.237 + 16.6526i) q^{24} -74.6412 q^{25} +21.5844i q^{26} +(129.060 + 55.0135i) q^{27} -11.7409 q^{28} -73.8768i q^{29} +(25.7643 - 190.668i) q^{30} +289.520i q^{31} -50.8461 q^{32} +(-154.656 - 20.8981i) q^{33} -218.776i q^{34} +146.483i q^{35} +(-29.4808 - 8.11548i) q^{36} +191.214i q^{37} +79.9454 q^{38} +(5.73104 - 42.4124i) q^{39} +338.154i q^{40} -36.3424i q^{41} +(-139.899 - 18.9041i) q^{42} +491.069i q^{43} +34.0134 q^{44} +(-101.252 + 367.813i) q^{45} +109.405 q^{46} +26.4171 q^{47} +(-276.301 - 37.3357i) q^{48} -235.521 q^{49} +195.604 q^{50} +(-58.0889 + 429.885i) q^{51} +9.32776i q^{52} +181.825i q^{53} +(-338.214 - 144.168i) q^{54} -424.363i q^{55} +248.114 q^{56} +(-157.089 - 21.2270i) q^{57} +193.601i q^{58} +(-187.180 - 412.726i) q^{59} +(11.1341 - 82.3977i) q^{60} -775.225i q^{61} -758.713i q^{62} +(269.876 + 74.2915i) q^{63} +562.507 q^{64} +116.376 q^{65} +(405.289 + 54.7654i) q^{66} -176.188i q^{67} -94.5447i q^{68} +(-214.975 - 29.0489i) q^{69} -383.873i q^{70} -447.258i q^{71} +(623.005 + 171.501i) q^{72} +417.573i q^{73} -501.095i q^{74} +(-384.354 - 51.9364i) q^{75} +34.5487 q^{76} -311.369 q^{77} +(-15.0187 + 111.145i) q^{78} +574.434 q^{79} -758.150i q^{80} +(626.297 + 373.086i) q^{81} +95.2385i q^{82} +998.011 q^{83} +(-60.4579 - 8.16947i) q^{84} -1179.57 q^{85} -1286.89i q^{86} +(51.4046 - 380.418i) q^{87} -718.790 q^{88} +1179.83 q^{89} +(265.339 - 963.888i) q^{90} -85.3891i q^{91} +47.2796 q^{92} +(-201.452 + 1490.84i) q^{93} -69.2284 q^{94} -431.041i q^{95} +(-261.825 - 35.3795i) q^{96} -806.397i q^{97} +617.203 q^{98} +(-781.835 - 215.223i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52q - 8q^{3} + 268q^{4} - 16q^{7} - 4q^{9} + O(q^{10}) \) \( 52q - 8q^{3} + 268q^{4} - 16q^{7} - 4q^{9} + 28q^{12} + 114q^{15} + 484q^{16} - 184q^{19} - 758q^{21} - 60q^{22} + 36q^{25} + 742q^{27} - 4q^{28} - 888q^{36} + 1402q^{45} - 660q^{46} - 488q^{48} - 924q^{49} - 1772q^{51} - 630q^{57} - 1880q^{60} - 212q^{63} + 7648q^{64} + 1316q^{66} - 1556q^{75} - 5680q^{76} + 3224q^{78} - 1504q^{79} - 276q^{81} + 1228q^{84} - 848q^{85} + 3598q^{87} + 5760q^{88} + 888q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.62059 −0.926519 −0.463260 0.886223i \(-0.653320\pi\)
−0.463260 + 0.886223i \(0.653320\pi\)
\(3\) 5.14935 + 0.695815i 0.990994 + 0.133910i
\(4\) −1.13250 −0.141562
\(5\) 14.1294i 1.26378i 0.775060 + 0.631888i \(0.217720\pi\)
−0.775060 + 0.631888i \(0.782280\pi\)
\(6\) −13.4944 1.82345i −0.918174 0.124070i
\(7\) 10.3672 0.559778 0.279889 0.960032i \(-0.409702\pi\)
0.279889 + 0.960032i \(0.409702\pi\)
\(8\) 23.9326 1.05768
\(9\) 26.0317 + 7.16599i 0.964136 + 0.265407i
\(10\) 37.0275i 1.17091i
\(11\) −30.0340 −0.823235 −0.411617 0.911357i \(-0.635036\pi\)
−0.411617 + 0.911357i \(0.635036\pi\)
\(12\) −5.83163 0.788009i −0.140287 0.0189566i
\(13\) 8.23644i 0.175721i −0.996133 0.0878607i \(-0.971997\pi\)
0.996133 0.0878607i \(-0.0280030\pi\)
\(14\) −27.1683 −0.518645
\(15\) −9.83148 + 72.7575i −0.169232 + 1.25239i
\(16\) −53.6575 −0.838398
\(17\) 83.4833i 1.19104i 0.803341 + 0.595520i \(0.203054\pi\)
−0.803341 + 0.595520i \(0.796946\pi\)
\(18\) −68.2184 18.7791i −0.893291 0.245905i
\(19\) −30.5066 −0.368352 −0.184176 0.982893i \(-0.558962\pi\)
−0.184176 + 0.982893i \(0.558962\pi\)
\(20\) 16.0016i 0.178903i
\(21\) 53.3845 + 7.21367i 0.554736 + 0.0749597i
\(22\) 78.7068 0.762743
\(23\) −41.7480 −0.378481 −0.189241 0.981931i \(-0.560603\pi\)
−0.189241 + 0.981931i \(0.560603\pi\)
\(24\) 123.237 + 16.6526i 1.04815 + 0.141633i
\(25\) −74.6412 −0.597129
\(26\) 21.5844i 0.162809i
\(27\) 129.060 + 55.0135i 0.919912 + 0.392124i
\(28\) −11.7409 −0.0792434
\(29\) 73.8768i 0.473054i −0.971625 0.236527i \(-0.923991\pi\)
0.971625 0.236527i \(-0.0760092\pi\)
\(30\) 25.7643 190.668i 0.156796 1.16037i
\(31\) 289.520i 1.67740i 0.544597 + 0.838698i \(0.316683\pi\)
−0.544597 + 0.838698i \(0.683317\pi\)
\(32\) −50.8461 −0.280888
\(33\) −154.656 20.8981i −0.815821 0.110239i
\(34\) 218.776i 1.10352i
\(35\) 146.483i 0.707434i
\(36\) −29.4808 8.11548i −0.136485 0.0375716i
\(37\) 191.214i 0.849607i 0.905286 + 0.424803i \(0.139657\pi\)
−0.905286 + 0.424803i \(0.860343\pi\)
\(38\) 79.9454 0.341286
\(39\) 5.73104 42.4124i 0.0235308 0.174139i
\(40\) 338.154i 1.33667i
\(41\) 36.3424i 0.138432i −0.997602 0.0692162i \(-0.977950\pi\)
0.997602 0.0692162i \(-0.0220498\pi\)
\(42\) −139.899 18.9041i −0.513974 0.0694516i
\(43\) 491.069i 1.74156i 0.491669 + 0.870782i \(0.336387\pi\)
−0.491669 + 0.870782i \(0.663613\pi\)
\(44\) 34.0134 0.116539
\(45\) −101.252 + 367.813i −0.335415 + 1.21845i
\(46\) 109.405 0.350670
\(47\) 26.4171 0.0819857 0.0409929 0.999159i \(-0.486948\pi\)
0.0409929 + 0.999159i \(0.486948\pi\)
\(48\) −276.301 37.3357i −0.830847 0.112270i
\(49\) −235.521 −0.686649
\(50\) 195.604 0.553252
\(51\) −58.0889 + 429.885i −0.159492 + 1.18031i
\(52\) 9.32776i 0.0248755i
\(53\) 181.825i 0.471238i 0.971846 + 0.235619i \(0.0757117\pi\)
−0.971846 + 0.235619i \(0.924288\pi\)
\(54\) −338.214 144.168i −0.852316 0.363310i
\(55\) 424.363i 1.04038i
\(56\) 248.114 0.592065
\(57\) −157.089 21.2270i −0.365035 0.0493260i
\(58\) 193.601i 0.438294i
\(59\) −187.180 412.726i −0.413029 0.910718i
\(60\) 11.1341 82.3977i 0.0239568 0.177292i
\(61\) 775.225i 1.62717i −0.581446 0.813585i \(-0.697513\pi\)
0.581446 0.813585i \(-0.302487\pi\)
\(62\) 758.713i 1.55414i
\(63\) 269.876 + 74.2915i 0.539702 + 0.148569i
\(64\) 562.507 1.09865
\(65\) 116.376 0.222072
\(66\) 405.289 + 54.7654i 0.755873 + 0.102139i
\(67\) 176.188i 0.321265i −0.987014 0.160632i \(-0.948647\pi\)
0.987014 0.160632i \(-0.0513533\pi\)
\(68\) 94.5447i 0.168606i
\(69\) −214.975 29.0489i −0.375072 0.0506823i
\(70\) 383.873i 0.655451i
\(71\) 447.258i 0.747602i −0.927509 0.373801i \(-0.878054\pi\)
0.927509 0.373801i \(-0.121946\pi\)
\(72\) 623.005 + 171.501i 1.01975 + 0.280716i
\(73\) 417.573i 0.669496i 0.942308 + 0.334748i \(0.108651\pi\)
−0.942308 + 0.334748i \(0.891349\pi\)
\(74\) 501.095i 0.787177i
\(75\) −384.354 51.9364i −0.591751 0.0799614i
\(76\) 34.5487 0.0521448
\(77\) −311.369 −0.460829
\(78\) −15.0187 + 111.145i −0.0218017 + 0.161343i
\(79\) 574.434 0.818086 0.409043 0.912515i \(-0.365863\pi\)
0.409043 + 0.912515i \(0.365863\pi\)
\(80\) 758.150i 1.05955i
\(81\) 626.297 + 373.086i 0.859118 + 0.511777i
\(82\) 95.2385i 0.128260i
\(83\) 998.011 1.31983 0.659916 0.751340i \(-0.270592\pi\)
0.659916 + 0.751340i \(0.270592\pi\)
\(84\) −60.4579 8.16947i −0.0785297 0.0106115i
\(85\) −1179.57 −1.50521
\(86\) 1286.89i 1.61359i
\(87\) 51.4046 380.418i 0.0633466 0.468794i
\(88\) −718.790 −0.870719
\(89\) 1179.83 1.40518 0.702592 0.711593i \(-0.252026\pi\)
0.702592 + 0.711593i \(0.252026\pi\)
\(90\) 265.339 963.888i 0.310769 1.12892i
\(91\) 85.3891i 0.0983649i
\(92\) 47.2796 0.0535786
\(93\) −201.452 + 1490.84i −0.224619 + 1.66229i
\(94\) −69.2284 −0.0759613
\(95\) 431.041i 0.465515i
\(96\) −261.825 35.3795i −0.278358 0.0376136i
\(97\) 806.397i 0.844095i −0.906574 0.422048i \(-0.861312\pi\)
0.906574 0.422048i \(-0.138688\pi\)
\(98\) 617.203 0.636193
\(99\) −781.835 215.223i −0.793711 0.218492i
\(100\) 84.5310 0.0845310
\(101\) −891.133 −0.877931 −0.438966 0.898504i \(-0.644655\pi\)
−0.438966 + 0.898504i \(0.644655\pi\)
\(102\) 152.227 1126.55i 0.147772 1.09358i
\(103\) 950.143i 0.908936i 0.890763 + 0.454468i \(0.150171\pi\)
−0.890763 + 0.454468i \(0.849829\pi\)
\(104\) 197.119i 0.185857i
\(105\) −101.925 + 754.294i −0.0947322 + 0.701062i
\(106\) 476.489i 0.436611i
\(107\) 1066.57i 0.963637i −0.876271 0.481818i \(-0.839976\pi\)
0.876271 0.481818i \(-0.160024\pi\)
\(108\) −146.160 62.3027i −0.130225 0.0555100i
\(109\) 1354.53i 1.19028i −0.803622 0.595140i \(-0.797097\pi\)
0.803622 0.595140i \(-0.202903\pi\)
\(110\) 1112.08i 0.963936i
\(111\) −133.050 + 984.630i −0.113771 + 0.841955i
\(112\) −556.279 −0.469317
\(113\) −1014.43 −0.844506 −0.422253 0.906478i \(-0.638761\pi\)
−0.422253 + 0.906478i \(0.638761\pi\)
\(114\) 411.667 + 55.6272i 0.338212 + 0.0457014i
\(115\) 589.876i 0.478315i
\(116\) 83.6654i 0.0669667i
\(117\) 59.0223 214.408i 0.0466377 0.169419i
\(118\) 490.522 + 1081.59i 0.382680 + 0.843797i
\(119\) 865.491i 0.666718i
\(120\) −235.292 + 1741.27i −0.178993 + 1.32463i
\(121\) −428.960 −0.322284
\(122\) 2031.55i 1.50760i
\(123\) 25.2876 187.140i 0.0185374 0.137186i
\(124\) 327.881i 0.237456i
\(125\) 711.542i 0.509138i
\(126\) −707.236 194.688i −0.500044 0.137652i
\(127\) 2012.85 1.40639 0.703195 0.710997i \(-0.251756\pi\)
0.703195 + 0.710997i \(0.251756\pi\)
\(128\) −1067.33 −0.737029
\(129\) −341.693 + 2528.69i −0.233212 + 1.72588i
\(130\) −304.975 −0.205754
\(131\) 2285.52 1.52433 0.762164 0.647384i \(-0.224137\pi\)
0.762164 + 0.647384i \(0.224137\pi\)
\(132\) 175.147 + 23.6671i 0.115489 + 0.0156057i
\(133\) −316.269 −0.206196
\(134\) 461.716i 0.297658i
\(135\) −777.310 + 1823.55i −0.495557 + 1.16256i
\(136\) 1997.97i 1.25974i
\(137\) 187.297i 0.116802i 0.998293 + 0.0584009i \(0.0186002\pi\)
−0.998293 + 0.0584009i \(0.981400\pi\)
\(138\) 563.363 + 76.1253i 0.347512 + 0.0469581i
\(139\) 1350.81 0.824274 0.412137 0.911122i \(-0.364782\pi\)
0.412137 + 0.911122i \(0.364782\pi\)
\(140\) 165.892i 0.100146i
\(141\) 136.031 + 18.3814i 0.0812473 + 0.0109787i
\(142\) 1172.08i 0.692667i
\(143\) 247.373i 0.144660i
\(144\) −1396.79 384.509i −0.808330 0.222517i
\(145\) 1043.84 0.597835
\(146\) 1094.29i 0.620301i
\(147\) −1212.78 163.879i −0.680464 0.0919489i
\(148\) 216.550i 0.120272i
\(149\) 412.444 0.226770 0.113385 0.993551i \(-0.463831\pi\)
0.113385 + 0.993551i \(0.463831\pi\)
\(150\) 1007.23 + 136.104i 0.548269 + 0.0740857i
\(151\) 1168.07i 0.629509i −0.949173 0.314755i \(-0.898078\pi\)
0.949173 0.314755i \(-0.101922\pi\)
\(152\) −730.101 −0.389599
\(153\) −598.241 + 2173.21i −0.316111 + 1.14832i
\(154\) 815.972 0.426967
\(155\) −4090.75 −2.11985
\(156\) −6.49039 + 48.0319i −0.00333107 + 0.0246515i
\(157\) 1079.86i 0.548932i −0.961597 0.274466i \(-0.911499\pi\)
0.961597 0.274466i \(-0.0885010\pi\)
\(158\) −1505.36 −0.757973
\(159\) −126.517 + 936.281i −0.0631033 + 0.466993i
\(160\) 718.427i 0.354979i
\(161\) −432.811 −0.211865
\(162\) −1641.27 977.706i −0.795989 0.474172i
\(163\) 2225.21 1.06928 0.534638 0.845081i \(-0.320448\pi\)
0.534638 + 0.845081i \(0.320448\pi\)
\(164\) 41.1577i 0.0195968i
\(165\) 295.278 2185.20i 0.139318 1.03101i
\(166\) −2615.38 −1.22285
\(167\) 1986.92i 0.920675i 0.887744 + 0.460337i \(0.152272\pi\)
−0.887744 + 0.460337i \(0.847728\pi\)
\(168\) 1277.63 + 172.642i 0.586733 + 0.0792833i
\(169\) 2129.16 0.969122
\(170\) 3091.18 1.39460
\(171\) −794.139 218.610i −0.355142 0.0977634i
\(172\) 556.134i 0.246540i
\(173\) 1605.80 0.705702 0.352851 0.935679i \(-0.385212\pi\)
0.352851 + 0.935679i \(0.385212\pi\)
\(174\) −134.710 + 996.920i −0.0586918 + 0.434347i
\(175\) −773.822 −0.334260
\(176\) 1611.55 0.690198
\(177\) −676.674 2255.51i −0.287356 0.957824i
\(178\) −3091.84 −1.30193
\(179\) −2114.17 −0.882795 −0.441397 0.897312i \(-0.645517\pi\)
−0.441397 + 0.897312i \(0.645517\pi\)
\(180\) 114.667 416.548i 0.0474821 0.172487i
\(181\) 43.0123 0.0176634 0.00883172 0.999961i \(-0.497189\pi\)
0.00883172 + 0.999961i \(0.497189\pi\)
\(182\) 223.770i 0.0911370i
\(183\) 539.413 3991.91i 0.217894 1.61252i
\(184\) −999.137 −0.400312
\(185\) −2701.75 −1.07371
\(186\) 527.924 3906.88i 0.208114 1.54014i
\(187\) 2507.34i 0.980506i
\(188\) −29.9173 −0.0116061
\(189\) 1338.00 + 570.337i 0.514947 + 0.219502i
\(190\) 1129.58i 0.431309i
\(191\) 3484.72 1.32013 0.660066 0.751207i \(-0.270528\pi\)
0.660066 + 0.751207i \(0.270528\pi\)
\(192\) 2896.55 + 391.400i 1.08875 + 0.147119i
\(193\) 2185.66 0.815166 0.407583 0.913168i \(-0.366372\pi\)
0.407583 + 0.913168i \(0.366372\pi\)
\(194\) 2113.24i 0.782070i
\(195\) 599.263 + 80.9764i 0.220072 + 0.0297376i
\(196\) 266.727 0.0972036
\(197\) 2739.35i 0.990713i 0.868690 + 0.495357i \(0.164963\pi\)
−0.868690 + 0.495357i \(0.835037\pi\)
\(198\) 2048.87 + 564.012i 0.735388 + 0.202437i
\(199\) −5466.83 −1.94740 −0.973701 0.227829i \(-0.926837\pi\)
−0.973701 + 0.227829i \(0.926837\pi\)
\(200\) −1786.35 −0.631571
\(201\) 122.594 907.252i 0.0430204 0.318371i
\(202\) 2335.30 0.813420
\(203\) 765.898i 0.264805i
\(204\) 65.7856 486.844i 0.0225780 0.167088i
\(205\) 513.498 0.174947
\(206\) 2489.94i 0.842147i
\(207\) −1086.77 299.166i −0.364907 0.100452i
\(208\) 441.947i 0.147324i
\(209\) 916.235 0.303241
\(210\) 267.104 1976.70i 0.0877712 0.649548i
\(211\) 2434.64i 0.794349i 0.917743 + 0.397174i \(0.130009\pi\)
−0.917743 + 0.397174i \(0.869991\pi\)
\(212\) 205.917i 0.0667095i
\(213\) 311.209 2303.09i 0.100111 0.740868i
\(214\) 2795.04i 0.892828i
\(215\) −6938.52 −2.20095
\(216\) 3088.74 + 1316.61i 0.972972 + 0.414741i
\(217\) 3001.52i 0.938969i
\(218\) 3549.67i 1.10282i
\(219\) −290.554 + 2150.23i −0.0896520 + 0.663466i
\(220\) 480.591i 0.147279i
\(221\) 687.605 0.209291
\(222\) 348.669 2580.31i 0.105411 0.780087i
\(223\) −1839.93 −0.552516 −0.276258 0.961084i \(-0.589094\pi\)
−0.276258 + 0.961084i \(0.589094\pi\)
\(224\) −527.133 −0.157235
\(225\) −1943.03 534.878i −0.575714 0.158482i
\(226\) 2658.40 0.782451
\(227\) 5447.94 1.59292 0.796459 0.604693i \(-0.206704\pi\)
0.796459 + 0.604693i \(0.206704\pi\)
\(228\) 177.903 + 24.0395i 0.0516752 + 0.00698269i
\(229\) 514.199i 0.148381i −0.997244 0.0741904i \(-0.976363\pi\)
0.997244 0.0741904i \(-0.0236373\pi\)
\(230\) 1545.83i 0.443168i
\(231\) −1603.35 216.655i −0.456678 0.0617094i
\(232\) 1768.06i 0.500340i
\(233\) 168.140 0.0472756 0.0236378 0.999721i \(-0.492475\pi\)
0.0236378 + 0.999721i \(0.492475\pi\)
\(234\) −154.673 + 561.877i −0.0432107 + 0.156970i
\(235\) 373.259i 0.103612i
\(236\) 211.981 + 467.411i 0.0584694 + 0.128923i
\(237\) 2957.96 + 399.700i 0.810718 + 0.109550i
\(238\) 2268.10i 0.617727i
\(239\) 4028.24i 1.09023i 0.838361 + 0.545116i \(0.183514\pi\)
−0.838361 + 0.545116i \(0.816486\pi\)
\(240\) 527.532 3903.98i 0.141884 1.05000i
\(241\) −3105.01 −0.829922 −0.414961 0.909839i \(-0.636205\pi\)
−0.414961 + 0.909839i \(0.636205\pi\)
\(242\) 1124.13 0.298602
\(243\) 2965.43 + 2356.94i 0.782848 + 0.622212i
\(244\) 877.941i 0.230346i
\(245\) 3327.77i 0.867770i
\(246\) −66.2684 + 490.417i −0.0171753 + 0.127105i
\(247\) 251.266i 0.0647274i
\(248\) 6928.94i 1.77415i
\(249\) 5139.11 + 694.431i 1.30794 + 0.176738i
\(250\) 1864.66i 0.471726i
\(251\) 6148.67i 1.54622i −0.634274 0.773108i \(-0.718701\pi\)
0.634274 0.773108i \(-0.281299\pi\)
\(252\) −305.635 84.1350i −0.0764015 0.0210318i
\(253\) 1253.86 0.311579
\(254\) −5274.86 −1.30305
\(255\) −6074.04 820.764i −1.49165 0.201562i
\(256\) −1703.01 −0.415775
\(257\) 5810.82i 1.41038i −0.709016 0.705192i \(-0.750861\pi\)
0.709016 0.705192i \(-0.249139\pi\)
\(258\) 895.437 6626.65i 0.216076 1.59906i
\(259\) 1982.36i 0.475591i
\(260\) −131.796 −0.0314371
\(261\) 529.401 1923.14i 0.125552 0.456089i
\(262\) −5989.42 −1.41232
\(263\) 1977.98i 0.463756i 0.972745 + 0.231878i \(0.0744870\pi\)
−0.972745 + 0.231878i \(0.925513\pi\)
\(264\) −3701.30 500.145i −0.862877 0.116598i
\(265\) −2569.09 −0.595539
\(266\) 828.812 0.191044
\(267\) 6075.34 + 820.941i 1.39253 + 0.188168i
\(268\) 199.532i 0.0454790i
\(269\) 3386.28 0.767529 0.383765 0.923431i \(-0.374627\pi\)
0.383765 + 0.923431i \(0.374627\pi\)
\(270\) 2037.01 4778.77i 0.459143 1.07714i
\(271\) −1085.64 −0.243351 −0.121676 0.992570i \(-0.538827\pi\)
−0.121676 + 0.992570i \(0.538827\pi\)
\(272\) 4479.50i 0.998565i
\(273\) 59.4150 439.699i 0.0131720 0.0974790i
\(274\) 490.828i 0.108219i
\(275\) 2241.77 0.491578
\(276\) 243.459 + 32.8978i 0.0530961 + 0.00717470i
\(277\) 482.947 0.104756 0.0523781 0.998627i \(-0.483320\pi\)
0.0523781 + 0.998627i \(0.483320\pi\)
\(278\) −3539.92 −0.763706
\(279\) −2074.70 + 7536.68i −0.445193 + 1.61724i
\(280\) 3505.72i 0.748238i
\(281\) 8460.57i 1.79614i −0.439853 0.898070i \(-0.644969\pi\)
0.439853 0.898070i \(-0.355031\pi\)
\(282\) −356.482 48.1702i −0.0752772 0.0101720i
\(283\) 3950.67i 0.829834i 0.909859 + 0.414917i \(0.136189\pi\)
−0.909859 + 0.414917i \(0.863811\pi\)
\(284\) 506.518i 0.105832i
\(285\) 299.925 2219.58i 0.0623369 0.461322i
\(286\) 648.264i 0.134030i
\(287\) 376.770i 0.0774914i
\(288\) −1323.61 364.363i −0.270814 0.0745496i
\(289\) −2056.46 −0.418576
\(290\) −2735.47 −0.553905
\(291\) 561.103 4152.42i 0.113032 0.836493i
\(292\) 472.901i 0.0947754i
\(293\) 3996.29i 0.796812i −0.917209 0.398406i \(-0.869563\pi\)
0.917209 0.398406i \(-0.130437\pi\)
\(294\) 3178.20 + 429.459i 0.630463 + 0.0851924i
\(295\) 5831.59 2644.75i 1.15094 0.521977i
\(296\) 4576.25i 0.898611i
\(297\) −3876.19 1652.27i −0.757304 0.322810i
\(298\) −1080.85 −0.210107
\(299\) 343.855i 0.0665072i
\(300\) 435.280 + 58.8179i 0.0837697 + 0.0113195i
\(301\) 5091.02i 0.974889i
\(302\) 3061.03i 0.583252i
\(303\) −4588.76 620.064i −0.870024 0.117563i
\(304\) 1636.91 0.308826
\(305\) 10953.5 2.05638
\(306\) 1567.75 5695.10i 0.292882 1.06394i
\(307\) 3399.89 0.632058 0.316029 0.948750i \(-0.397650\pi\)
0.316029 + 0.948750i \(0.397650\pi\)
\(308\) 352.625 0.0652360
\(309\) −661.124 + 4892.62i −0.121715 + 0.900750i
\(310\) 10720.2 1.96408
\(311\) 9897.44i 1.80460i 0.431104 + 0.902302i \(0.358124\pi\)
−0.431104 + 0.902302i \(0.641876\pi\)
\(312\) 137.158 1015.04i 0.0248880 0.184183i
\(313\) 2022.75i 0.365280i −0.983180 0.182640i \(-0.941536\pi\)
0.983180 0.182640i \(-0.0584643\pi\)
\(314\) 2829.87i 0.508596i
\(315\) −1049.70 + 3813.20i −0.187758 + 0.682063i
\(316\) −650.545 −0.115810
\(317\) 4543.64i 0.805036i −0.915412 0.402518i \(-0.868135\pi\)
0.915412 0.402518i \(-0.131865\pi\)
\(318\) 331.548 2453.61i 0.0584664 0.432678i
\(319\) 2218.81i 0.389435i
\(320\) 7947.90i 1.38844i
\(321\) 742.135 5492.14i 0.129040 0.954958i
\(322\) 1134.22 0.196297
\(323\) 2546.79i 0.438722i
\(324\) −709.280 422.519i −0.121619 0.0724484i
\(325\) 614.778i 0.104928i
\(326\) −5831.37 −0.990705
\(327\) 942.502 6974.96i 0.159390 1.17956i
\(328\) 869.766i 0.146417i
\(329\) 273.872 0.0458938
\(330\) −773.804 + 5726.51i −0.129080 + 0.955254i
\(331\) 3902.76 0.648082 0.324041 0.946043i \(-0.394958\pi\)
0.324041 + 0.946043i \(0.394958\pi\)
\(332\) −1130.25 −0.186838
\(333\) −1370.24 + 4977.63i −0.225492 + 0.819137i
\(334\) 5206.91i 0.853023i
\(335\) 2489.43 0.406007
\(336\) −2864.48 387.067i −0.465090 0.0628460i
\(337\) 4345.21i 0.702369i −0.936306 0.351185i \(-0.885779\pi\)
0.936306 0.351185i \(-0.114221\pi\)
\(338\) −5579.66 −0.897910
\(339\) −5223.64 705.852i −0.836900 0.113087i
\(340\) 1335.86 0.213081
\(341\) 8695.43i 1.38089i
\(342\) 2081.11 + 572.888i 0.329046 + 0.0905797i
\(343\) −5997.66 −0.944149
\(344\) 11752.5i 1.84202i
\(345\) 410.445 3037.48i 0.0640510 0.474007i
\(346\) −4208.14 −0.653847
\(347\) −8675.42 −1.34213 −0.671067 0.741396i \(-0.734164\pi\)
−0.671067 + 0.741396i \(0.734164\pi\)
\(348\) −58.2156 + 430.822i −0.00896748 + 0.0663635i
\(349\) 1901.71i 0.291679i −0.989308 0.145840i \(-0.953412\pi\)
0.989308 0.145840i \(-0.0465883\pi\)
\(350\) 2027.87 0.309698
\(351\) 453.115 1063.00i 0.0689046 0.161648i
\(352\) 1527.11 0.231237
\(353\) 3640.14 0.548853 0.274427 0.961608i \(-0.411512\pi\)
0.274427 + 0.961608i \(0.411512\pi\)
\(354\) 1773.29 + 5910.78i 0.266241 + 0.887442i
\(355\) 6319.50 0.944801
\(356\) −1336.15 −0.198921
\(357\) −602.221 + 4456.72i −0.0892799 + 0.660713i
\(358\) 5540.37 0.817926
\(359\) 3116.66i 0.458193i 0.973404 + 0.229096i \(0.0735771\pi\)
−0.973404 + 0.229096i \(0.926423\pi\)
\(360\) −2423.21 + 8802.71i −0.354762 + 1.28873i
\(361\) −5928.35 −0.864316
\(362\) −112.718 −0.0163655
\(363\) −2208.87 298.477i −0.319382 0.0431570i
\(364\) 96.7030i 0.0139248i
\(365\) −5900.07 −0.846093
\(366\) −1413.58 + 10461.2i −0.201883 + 1.49403i
\(367\) 12568.8i 1.78770i −0.448363 0.893852i \(-0.647993\pi\)
0.448363 0.893852i \(-0.352007\pi\)
\(368\) 2240.09 0.317318
\(369\) 260.429 946.053i 0.0367409 0.133468i
\(370\) 7080.19 0.994815
\(371\) 1885.02i 0.263788i
\(372\) 228.144 1688.37i 0.0317976 0.235317i
\(373\) −7837.46 −1.08796 −0.543979 0.839099i \(-0.683083\pi\)
−0.543979 + 0.839099i \(0.683083\pi\)
\(374\) 6570.70i 0.908457i
\(375\) −495.102 + 3663.98i −0.0681785 + 0.504553i
\(376\) 632.228 0.0867146
\(377\) −608.482 −0.0831258
\(378\) −3506.34 1494.62i −0.477108 0.203373i
\(379\) −958.789 −0.129946 −0.0649732 0.997887i \(-0.520696\pi\)
−0.0649732 + 0.997887i \(0.520696\pi\)
\(380\) 488.154i 0.0658994i
\(381\) 10364.9 + 1400.57i 1.39372 + 0.188329i
\(382\) −9132.02 −1.22313
\(383\) 4651.79i 0.620615i −0.950636 0.310307i \(-0.899568\pi\)
0.950636 0.310307i \(-0.100432\pi\)
\(384\) −5496.07 742.665i −0.730391 0.0986952i
\(385\) 4399.47i 0.582384i
\(386\) −5727.72 −0.755267
\(387\) −3518.99 + 12783.3i −0.462224 + 1.67911i
\(388\) 913.243i 0.119492i
\(389\) 4534.02i 0.590961i 0.955349 + 0.295481i \(0.0954797\pi\)
−0.955349 + 0.295481i \(0.904520\pi\)
\(390\) −1570.42 212.206i −0.203901 0.0275525i
\(391\) 3485.26i 0.450786i
\(392\) −5636.61 −0.726254
\(393\) 11769.0 + 1590.30i 1.51060 + 0.204122i
\(394\) 7178.72i 0.917915i
\(395\) 8116.43i 1.03388i
\(396\) 885.427 + 243.740i 0.112360 + 0.0309303i
\(397\) 12116.2i 1.53172i −0.643006 0.765861i \(-0.722313\pi\)
0.643006 0.765861i \(-0.277687\pi\)
\(398\) 14326.3 1.80431
\(399\) −1628.58 220.065i −0.204338 0.0276116i
\(400\) 4005.06 0.500632
\(401\) 6566.79 0.817780 0.408890 0.912584i \(-0.365916\pi\)
0.408890 + 0.912584i \(0.365916\pi\)
\(402\) −321.269 + 2377.54i −0.0398593 + 0.294977i
\(403\) 2384.61 0.294754
\(404\) 1009.21 0.124282
\(405\) −5271.49 + 8849.23i −0.646772 + 1.08573i
\(406\) 2007.11i 0.245347i
\(407\) 5742.93i 0.699426i
\(408\) −1390.22 + 10288.2i −0.168691 + 1.24839i
\(409\) 13854.7i 1.67498i 0.546449 + 0.837492i \(0.315979\pi\)
−0.546449 + 0.837492i \(0.684021\pi\)
\(410\) −1345.67 −0.162092
\(411\) −130.324 + 964.457i −0.0156409 + 0.115750i
\(412\) 1076.04i 0.128671i
\(413\) −1940.54 4278.83i −0.231205 0.509800i
\(414\) 2847.98 + 783.992i 0.338094 + 0.0930703i
\(415\) 14101.3i 1.66797i
\(416\) 418.791i 0.0493580i
\(417\) 6955.79 + 939.913i 0.816850 + 0.110378i
\(418\) −2401.08 −0.280958
\(419\) −13610.4 −1.58690 −0.793452 0.608633i \(-0.791718\pi\)
−0.793452 + 0.608633i \(0.791718\pi\)
\(420\) 115.430 854.236i 0.0134105 0.0992440i
\(421\) 6670.28i 0.772185i 0.922460 + 0.386092i \(0.126175\pi\)
−0.922460 + 0.386092i \(0.873825\pi\)
\(422\) 6380.20i 0.735979i
\(423\) 687.681 + 189.305i 0.0790454 + 0.0217596i
\(424\) 4351.54i 0.498418i
\(425\) 6231.29i 0.711205i
\(426\) −815.551 + 6035.45i −0.0927548 + 0.686429i
\(427\) 8036.94i 0.910854i
\(428\) 1207.89i 0.136415i
\(429\) −172.126 + 1273.81i −0.0193714 + 0.143357i
\(430\) 18183.0 2.03922
\(431\) 3357.81 0.375266 0.187633 0.982239i \(-0.439918\pi\)
0.187633 + 0.982239i \(0.439918\pi\)
\(432\) −6925.04 2951.88i −0.771253 0.328756i
\(433\) −13001.8 −1.44301 −0.721507 0.692408i \(-0.756550\pi\)
−0.721507 + 0.692408i \(0.756550\pi\)
\(434\) 7865.75i 0.869973i
\(435\) 5375.09 + 726.318i 0.592450 + 0.0800558i
\(436\) 1534.00i 0.168499i
\(437\) 1273.59 0.139414
\(438\) 761.422 5634.88i 0.0830643 0.614714i
\(439\) −6978.94 −0.758740 −0.379370 0.925245i \(-0.623859\pi\)
−0.379370 + 0.925245i \(0.623859\pi\)
\(440\) 10156.1i 1.10039i
\(441\) −6131.00 1687.74i −0.662023 0.182242i
\(442\) −1801.93 −0.193912
\(443\) 12822.4 1.37519 0.687595 0.726094i \(-0.258666\pi\)
0.687595 + 0.726094i \(0.258666\pi\)
\(444\) 150.679 1115.09i 0.0161056 0.119189i
\(445\) 16670.3i 1.77584i
\(446\) 4821.72 0.511917
\(447\) 2123.82 + 286.985i 0.224728 + 0.0303667i
\(448\) 5831.64 0.614998
\(449\) 11068.9i 1.16342i −0.813397 0.581709i \(-0.802384\pi\)
0.813397 0.581709i \(-0.197616\pi\)
\(450\) 5091.90 + 1401.70i 0.533410 + 0.146837i
\(451\) 1091.51i 0.113962i
\(452\) 1148.84 0.119550
\(453\) 812.758 6014.79i 0.0842974 0.623840i
\(454\) −14276.8 −1.47587
\(455\) 1206.50 0.124311
\(456\) −3759.55 508.015i −0.386090 0.0521710i
\(457\) 14195.7i 1.45306i −0.687135 0.726530i \(-0.741132\pi\)
0.687135 0.726530i \(-0.258868\pi\)
\(458\) 1347.50i 0.137478i
\(459\) −4592.71 + 10774.4i −0.467035 + 1.09565i
\(460\) 668.034i 0.0677114i
\(461\) 12340.2i 1.24672i −0.781934 0.623361i \(-0.785767\pi\)
0.781934 0.623361i \(-0.214233\pi\)
\(462\) 4201.73 + 567.765i 0.423121 + 0.0571750i
\(463\) 12455.4i 1.25022i 0.780536 + 0.625111i \(0.214946\pi\)
−0.780536 + 0.625111i \(0.785054\pi\)
\(464\) 3964.04i 0.396608i
\(465\) −21064.7 2846.41i −2.10076 0.283869i
\(466\) −440.626 −0.0438018
\(467\) 14655.7 1.45221 0.726106 0.687583i \(-0.241328\pi\)
0.726106 + 0.687583i \(0.241328\pi\)
\(468\) −66.8426 + 242.817i −0.00660214 + 0.0239834i
\(469\) 1826.58i 0.179837i
\(470\) 978.159i 0.0959981i
\(471\) 751.383 5560.58i 0.0735072 0.543988i
\(472\) −4479.69 9877.58i −0.436853 0.963247i
\(473\) 14748.7i 1.43372i
\(474\) −7751.61 1047.45i −0.751146 0.101500i
\(475\) 2277.05 0.219954
\(476\) 980.167i 0.0943821i
\(477\) −1302.96 + 4733.21i −0.125070 + 0.454337i
\(478\) 10556.4i 1.01012i
\(479\) 19253.9i 1.83660i 0.395883 + 0.918301i \(0.370439\pi\)
−0.395883 + 0.918301i \(0.629561\pi\)
\(480\) 499.892 3699.43i 0.0475351 0.351782i
\(481\) 1574.93 0.149294
\(482\) 8136.96 0.768939
\(483\) −2228.70 301.157i −0.209957 0.0283708i
\(484\) 485.797 0.0456233
\(485\) 11393.9 1.06675
\(486\) −7771.17 6176.57i −0.725324 0.576492i
\(487\) −6730.13 −0.626225 −0.313112 0.949716i \(-0.601372\pi\)
−0.313112 + 0.949716i \(0.601372\pi\)
\(488\) 18553.1i 1.72102i
\(489\) 11458.4 + 1548.34i 1.05965 + 0.143186i
\(490\) 8720.74i 0.804006i
\(491\) 13349.0i 1.22695i 0.789715 + 0.613473i \(0.210228\pi\)
−0.789715 + 0.613473i \(0.789772\pi\)
\(492\) −28.6381 + 211.935i −0.00262420 + 0.0194203i
\(493\) 6167.48 0.563427
\(494\) 658.466i 0.0599712i
\(495\) 3040.99 11046.9i 0.276126 1.00307i
\(496\) 15534.9i 1.40633i
\(497\) 4636.82i 0.418491i
\(498\) −13467.5 1819.82i −1.21184 0.163751i
\(499\) 13091.9 1.17449 0.587247 0.809408i \(-0.300212\pi\)
0.587247 + 0.809408i \(0.300212\pi\)
\(500\) 805.820i 0.0720748i
\(501\) −1382.53 + 10231.4i −0.123287 + 0.912383i
\(502\) 16113.1i 1.43260i
\(503\) −22274.5 −1.97449 −0.987246 0.159205i \(-0.949107\pi\)
−0.987246 + 0.159205i \(0.949107\pi\)
\(504\) 6458.83 + 1777.99i 0.570832 + 0.157138i
\(505\) 12591.2i 1.10951i
\(506\) −3285.85 −0.288684
\(507\) 10963.8 + 1481.50i 0.960394 + 0.129775i
\(508\) −2279.55 −0.199092
\(509\) 2733.09 0.238000 0.119000 0.992894i \(-0.462031\pi\)
0.119000 + 0.992894i \(0.462031\pi\)
\(510\) 15917.6 + 2150.89i 1.38204 + 0.186751i
\(511\) 4329.08i 0.374769i
\(512\) 13001.6 1.12225
\(513\) −3937.19 1678.27i −0.338852 0.144440i
\(514\) 15227.8i 1.30675i
\(515\) −13425.0 −1.14869
\(516\) 386.966 2863.73i 0.0330141 0.244319i
\(517\) −793.410 −0.0674935
\(518\) 5194.96i 0.440644i
\(519\) 8268.82 + 1117.34i 0.699346 + 0.0945003i
\(520\) 2785.18 0.234881
\(521\) 9376.92i 0.788504i −0.919002 0.394252i \(-0.871004\pi\)
0.919002 0.394252i \(-0.128996\pi\)
\(522\) −1387.34 + 5039.76i −0.116326 + 0.422575i
\(523\) −5235.01 −0.437688 −0.218844 0.975760i \(-0.570229\pi\)
−0.218844 + 0.975760i \(0.570229\pi\)
\(524\) −2588.35 −0.215787
\(525\) −3984.68 538.437i −0.331249 0.0447606i
\(526\) 5183.49i 0.429679i
\(527\) −24170.1 −1.99784
\(528\) 8298.43 + 1121.34i 0.683982 + 0.0924242i
\(529\) −10424.1 −0.856752
\(530\) 6732.53 0.551778
\(531\) −1915.01 12085.3i −0.156506 0.987677i
\(532\) 358.174 0.0291895
\(533\) −299.332 −0.0243255
\(534\) −15921.0 2151.35i −1.29020 0.174341i
\(535\) 15070.0 1.21782
\(536\) 4216.62i 0.339795i
\(537\) −10886.6 1471.07i −0.874844 0.118215i
\(538\) −8874.07 −0.711131
\(539\) 7073.62 0.565273
\(540\) 880.302 2065.16i 0.0701522 0.164575i
\(541\) 11705.8i 0.930261i 0.885242 + 0.465131i \(0.153993\pi\)
−0.885242 + 0.465131i \(0.846007\pi\)
\(542\) 2845.03 0.225469
\(543\) 221.486 + 29.9286i 0.0175043 + 0.00236530i
\(544\) 4244.80i 0.334548i
\(545\) 19138.8 1.50425
\(546\) −155.702 + 1152.27i −0.0122041 + 0.0903162i
\(547\) 24163.1 1.88874 0.944369 0.328889i \(-0.106674\pi\)
0.944369 + 0.328889i \(0.106674\pi\)
\(548\) 212.113i 0.0165347i
\(549\) 5555.26 20180.4i 0.431863 1.56881i
\(550\) −5874.77 −0.455456
\(551\) 2253.73i 0.174251i
\(552\) −5144.91 695.214i −0.396706 0.0536056i
\(553\) 5955.29 0.457947
\(554\) −1265.61 −0.0970586
\(555\) −13912.3 1879.92i −1.06404 0.143780i
\(556\) −1529.79 −0.116686
\(557\) 1473.30i 0.112075i 0.998429 + 0.0560374i \(0.0178466\pi\)
−0.998429 + 0.0560374i \(0.982153\pi\)
\(558\) 5436.93 19750.6i 0.412480 1.49840i
\(559\) 4044.66 0.306030
\(560\) 7859.92i 0.593111i
\(561\) 1744.64 12911.2i 0.131299 0.971675i
\(562\) 22171.7i 1.66416i
\(563\) 2473.95 0.185194 0.0925971 0.995704i \(-0.470483\pi\)
0.0925971 + 0.995704i \(0.470483\pi\)
\(564\) −154.055 20.8169i −0.0115016 0.00155417i
\(565\) 14333.3i 1.06727i
\(566\) 10353.1i 0.768857i
\(567\) 6492.97 + 3867.87i 0.480915 + 0.286482i
\(568\) 10704.0i 0.790723i
\(569\) −5358.46 −0.394795 −0.197398 0.980324i \(-0.563249\pi\)
−0.197398 + 0.980324i \(0.563249\pi\)
\(570\) −785.981 + 5816.63i −0.0577564 + 0.427424i
\(571\) 14870.4i 1.08985i 0.838483 + 0.544927i \(0.183443\pi\)
−0.838483 + 0.544927i \(0.816557\pi\)
\(572\) 280.150i 0.0204784i
\(573\) 17944.0 + 2424.72i 1.30824 + 0.176779i
\(574\) 987.360i 0.0717972i
\(575\) 3116.12 0.226002
\(576\) 14643.0 + 4030.92i 1.05924 + 0.291588i
\(577\) 13682.7 0.987206 0.493603 0.869687i \(-0.335680\pi\)
0.493603 + 0.869687i \(0.335680\pi\)
\(578\) 5389.15 0.387818
\(579\) 11254.7 + 1520.81i 0.807824 + 0.109159i
\(580\) −1182.14 −0.0846309
\(581\) 10346.6 0.738812
\(582\) −1470.42 + 10881.8i −0.104727 + 0.775027i
\(583\) 5460.93i 0.387939i
\(584\) 9993.59i 0.708112i
\(585\) 3029.47 + 833.952i 0.214108 + 0.0589396i
\(586\) 10472.7i 0.738262i
\(587\) −9648.79 −0.678446 −0.339223 0.940706i \(-0.610164\pi\)
−0.339223 + 0.940706i \(0.610164\pi\)
\(588\) 1373.47 + 185.592i 0.0963281 + 0.0130165i
\(589\) 8832.27i 0.617873i
\(590\) −15282.2 + 6930.80i −1.06637 + 0.483621i
\(591\) −1906.08 + 14105.9i −0.132666 + 0.981791i
\(592\) 10260.1i 0.712308i
\(593\) 18246.6i 1.26357i −0.775143 0.631786i \(-0.782322\pi\)
0.775143 0.631786i \(-0.217678\pi\)
\(594\) 10157.9 + 4329.93i 0.701657 + 0.299090i
\(595\) −12228.9 −0.842582
\(596\) −467.092 −0.0321021
\(597\) −28150.6 3803.90i −1.92986 0.260776i
\(598\) 901.104i 0.0616202i
\(599\) 10841.3i 0.739506i 0.929130 + 0.369753i \(0.120558\pi\)
−0.929130 + 0.369753i \(0.879442\pi\)
\(600\) −9198.56 1242.97i −0.625883 0.0845735i
\(601\) 12538.7i 0.851022i −0.904953 0.425511i \(-0.860094\pi\)
0.904953 0.425511i \(-0.139906\pi\)
\(602\) 13341.5i 0.903253i
\(603\) 1262.56 4586.46i 0.0852660 0.309743i
\(604\) 1322.83i 0.0891148i
\(605\) 6060.97i 0.407295i
\(606\) 12025.3 + 1624.93i 0.806094 + 0.108925i
\(607\) 17732.8 1.18575 0.592876 0.805294i \(-0.297993\pi\)
0.592876 + 0.805294i \(0.297993\pi\)
\(608\) 1551.14 0.103466
\(609\) 532.923 3943.88i 0.0354600 0.262420i
\(610\) −28704.6 −1.90527
\(611\) 217.583i 0.0144066i
\(612\) 677.507 2461.16i 0.0447493 0.162559i
\(613\) 20181.4i 1.32972i 0.746967 + 0.664861i \(0.231509\pi\)
−0.746967 + 0.664861i \(0.768491\pi\)
\(614\) −8909.72 −0.585614
\(615\) 2644.18 + 357.299i 0.173372 + 0.0234272i
\(616\) −7451.86 −0.487409
\(617\) 12638.9i 0.824672i 0.911032 + 0.412336i \(0.135287\pi\)
−0.911032 + 0.412336i \(0.864713\pi\)
\(618\) 1732.54 12821.6i 0.112772 0.834562i
\(619\) −20291.8 −1.31760 −0.658802 0.752316i \(-0.728937\pi\)
−0.658802 + 0.752316i \(0.728937\pi\)
\(620\) 4632.77 0.300091
\(621\) −5388.01 2296.70i −0.348169 0.148412i
\(622\) 25937.1i 1.67200i
\(623\) 12231.5 0.786591
\(624\) −307.513 + 2275.74i −0.0197282 + 0.145998i
\(625\) −19383.8 −1.24057
\(626\) 5300.80i 0.338439i
\(627\) 4718.02 + 637.530i 0.300510 + 0.0406069i
\(628\) 1222.94i 0.0777080i
\(629\) −15963.2 −1.01192
\(630\) 2750.83 9992.85i 0.173961 0.631944i
\(631\) −16311.4 −1.02907 −0.514537 0.857468i \(-0.672036\pi\)
−0.514537 + 0.857468i \(0.672036\pi\)
\(632\) 13747.7 0.865273
\(633\) −1694.06 + 12536.8i −0.106371 + 0.787194i
\(634\) 11907.0i 0.745882i
\(635\) 28440.5i 1.77736i
\(636\) 143.280 1060.34i 0.00893304 0.0661086i
\(637\) 1939.85i 0.120659i
\(638\) 5814.61i 0.360819i
\(639\) 3205.05 11642.9i 0.198419 0.720790i
\(640\) 15080.8i 0.931439i
\(641\) 39.0296i 0.00240496i −0.999999 0.00120248i \(-0.999617\pi\)
0.999999 0.00120248i \(-0.000382761\pi\)
\(642\) −1944.83 + 14392.7i −0.119558 + 0.884787i
\(643\) −16730.8 −1.02612 −0.513062 0.858352i \(-0.671489\pi\)
−0.513062 + 0.858352i \(0.671489\pi\)
\(644\) 490.158 0.0299921
\(645\) −35728.9 4827.93i −2.18112 0.294728i
\(646\) 6674.10i 0.406485i
\(647\) 1223.42i 0.0743392i 0.999309 + 0.0371696i \(0.0118342\pi\)
−0.999309 + 0.0371696i \(0.988166\pi\)
\(648\) 14988.9 + 8928.89i 0.908671 + 0.541296i
\(649\) 5621.75 + 12395.8i 0.340020 + 0.749735i
\(650\) 1611.08i 0.0972182i
\(651\) −2088.50 + 15455.9i −0.125737 + 0.930512i
\(652\) −2520.05 −0.151369
\(653\) 17337.5i 1.03900i 0.854470 + 0.519501i \(0.173882\pi\)
−0.854470 + 0.519501i \(0.826118\pi\)
\(654\) −2469.91 + 18278.5i −0.147678 + 1.09288i
\(655\) 32293.1i 1.92641i
\(656\) 1950.04i 0.116061i
\(657\) −2992.33 + 10870.1i −0.177689 + 0.645486i
\(658\) −717.707 −0.0425215
\(659\) 2323.76 0.137361 0.0686805 0.997639i \(-0.478121\pi\)
0.0686805 + 0.997639i \(0.478121\pi\)
\(660\) −334.402 + 2474.73i −0.0197221 + 0.145953i
\(661\) 12976.1 0.763556 0.381778 0.924254i \(-0.375312\pi\)
0.381778 + 0.924254i \(0.375312\pi\)
\(662\) −10227.5 −0.600460
\(663\) 3540.72 + 478.446i 0.207406 + 0.0280261i
\(664\) 23885.0 1.39596
\(665\) 4468.71i 0.260585i
\(666\) 3590.84 13044.3i 0.208922 0.758946i
\(667\) 3084.21i 0.179042i
\(668\) 2250.19i 0.130333i
\(669\) −9474.47 1280.25i −0.547540 0.0739872i
\(670\) −6523.78 −0.376173
\(671\) 23283.1i 1.33954i
\(672\) −2714.40 366.787i −0.155819 0.0210552i
\(673\) 25426.3i 1.45633i 0.685400 + 0.728166i \(0.259627\pi\)
−0.685400 + 0.728166i \(0.740373\pi\)
\(674\) 11387.0i 0.650759i
\(675\) −9633.20 4106.27i −0.549307 0.234149i
\(676\) −2411.27 −0.137191
\(677\) 28904.4i 1.64090i 0.571721 + 0.820448i \(0.306276\pi\)
−0.571721 + 0.820448i \(0.693724\pi\)
\(678\) 13689.0 + 1849.75i 0.775403 + 0.104778i
\(679\) 8360.11i 0.472506i
\(680\) −28230.2 −1.59203
\(681\) 28053.3 + 3790.76i 1.57857 + 0.213307i
\(682\) 22787.2i 1.27942i
\(683\) 30973.2 1.73522 0.867611 0.497244i \(-0.165655\pi\)
0.867611 + 0.497244i \(0.165655\pi\)
\(684\) 899.360 + 247.576i 0.0502747 + 0.0138396i
\(685\) −2646.40 −0.147611
\(686\) 15717.4 0.874772
\(687\) 357.787 2647.79i 0.0198696 0.147044i
\(688\) 26349.5i 1.46012i
\(689\) 1497.59 0.0828065
\(690\) −1075.61 + 7960.00i −0.0593445 + 0.439177i
\(691\) 29027.7i 1.59807i −0.601286 0.799034i \(-0.705345\pi\)
0.601286 0.799034i \(-0.294655\pi\)
\(692\) −1818.56 −0.0999008
\(693\) −8105.46 2231.27i −0.444302 0.122307i
\(694\) 22734.7 1.24351
\(695\) 19086.2i 1.04170i
\(696\) 1230.24 9104.37i 0.0670003 0.495834i
\(697\) 3033.98 0.164878
\(698\) 4983.59i 0.270246i
\(699\) 865.812 + 116.994i 0.0468498 + 0.00633066i
\(700\) 876.352 0.0473186
\(701\) −14844.2 −0.799800 −0.399900 0.916559i \(-0.630955\pi\)
−0.399900 + 0.916559i \(0.630955\pi\)
\(702\) −1187.43 + 2785.68i −0.0638414 + 0.149770i
\(703\) 5833.30i 0.312955i
\(704\) −16894.3 −0.904444
\(705\) −259.719 + 1922.04i −0.0138746 + 0.102678i
\(706\) −9539.33 −0.508523
\(707\) −9238.58 −0.491446
\(708\) 766.332 + 2554.37i 0.0406787 + 0.135592i
\(709\) 6585.05 0.348811 0.174405 0.984674i \(-0.444200\pi\)
0.174405 + 0.984674i \(0.444200\pi\)
\(710\) −16560.8 −0.875376
\(711\) 14953.5 + 4116.39i 0.788747 + 0.217126i
\(712\) 28236.3 1.48623
\(713\) 12086.9i 0.634863i
\(714\) 1578.18 11679.2i 0.0827196 0.612163i
\(715\) −3495.24 −0.182818
\(716\) 2394.29 0.124970
\(717\) −2802.91 + 20742.8i −0.145992 + 1.08041i
\(718\) 8167.51i 0.424525i
\(719\) −37101.0 −1.92439 −0.962193 0.272368i \(-0.912193\pi\)
−0.962193 + 0.272368i \(0.912193\pi\)
\(720\) 5432.90 19735.9i 0.281211 1.02155i
\(721\) 9850.36i 0.508802i
\(722\) 15535.8 0.800806
\(723\) −15988.8 2160.51i −0.822448 0.111135i
\(724\) −48.7114 −0.00250048
\(725\) 5514.25i 0.282475i
\(726\) 5788.54 + 782.186i 0.295913 + 0.0399857i
\(727\) −25067.3 −1.27881 −0.639404 0.768871i \(-0.720819\pi\)
−0.639404 + 0.768871i \(0.720819\pi\)
\(728\) 2043.58i 0.104039i
\(729\) 13630.0 + 14200.1i 0.692478 + 0.721439i
\(730\) 15461.7 0.783921
\(731\) −40996.0 −2.07427
\(732\) −610.884 + 4520.83i −0.0308455 + 0.228271i
\(733\) 30886.1 1.55635 0.778176 0.628047i \(-0.216145\pi\)
0.778176 + 0.628047i \(0.216145\pi\)
\(734\) 32937.8i 1.65634i
\(735\) 2315.51 17135.9i 0.116203 0.859955i
\(736\) 2122.72 0.106311
\(737\) 5291.61i 0.264476i
\(738\) −682.479 + 2479.22i −0.0340412 + 0.123660i
\(739\) 13226.2i 0.658368i −0.944266 0.329184i \(-0.893226\pi\)
0.944266 0.329184i \(-0.106774\pi\)
\(740\) 3059.73 0.151997
\(741\) −174.835 + 1293.86i −0.00866762 + 0.0641444i
\(742\) 4939.87i 0.244405i
\(743\) 13180.4i 0.650797i −0.945577 0.325399i \(-0.894502\pi\)
0.945577 0.325399i \(-0.105498\pi\)
\(744\) −4821.26 + 35679.6i −0.237575 + 1.75817i
\(745\) 5827.60i 0.286586i
\(746\) 20538.8 1.00801
\(747\) 25979.9 + 7151.74i 1.27250 + 0.350293i
\(748\) 2839.55i 0.138803i
\(749\) 11057.4i 0.539423i
\(750\) 1297.46 9601.80i 0.0631687 0.467478i
\(751\) 11157.1i 0.542117i 0.962563 + 0.271058i \(0.0873737\pi\)
−0.962563 + 0.271058i \(0.912626\pi\)
\(752\) −1417.47 −0.0687366
\(753\) 4278.33 31661.7i 0.207053 1.53229i
\(754\) 1594.58 0.0770176
\(755\) 16504.1 0.795558
\(756\) −1515.28 645.906i −0.0728970 0.0310732i
\(757\) 6916.46 0.332078 0.166039 0.986119i \(-0.446902\pi\)
0.166039 + 0.986119i \(0.446902\pi\)
\(758\) 2512.60 0.120398
\(759\) 6456.56 + 872.454i 0.308773 + 0.0417234i
\(760\) 10315.9i 0.492366i
\(761\) 16380.6i 0.780283i 0.920755 + 0.390141i \(0.127574\pi\)
−0.920755 + 0.390141i \(0.872426\pi\)
\(762\) −27162.1 3670.33i −1.29131 0.174491i
\(763\) 14042.7i 0.666292i
\(764\) −3946.44 −0.186881
\(765\) −30706.3 8452.81i −1.45122 0.399493i
\(766\) 12190.5i 0.575012i
\(767\) −3399.39 + 1541.70i −0.160033 + 0.0725781i
\(768\) −8769.41 1184.98i −0.412030 0.0556762i
\(769\) 39727.7i 1.86296i −0.363792 0.931480i \(-0.618518\pi\)
0.363792 0.931480i \(-0.381482\pi\)
\(770\) 11529.2i 0.539590i
\(771\) 4043.25 29922.0i 0.188864 1.39768i
\(772\) −2475.25 −0.115397
\(773\) −21849.0 −1.01663 −0.508315 0.861171i \(-0.669732\pi\)
−0.508315 + 0.861171i \(0.669732\pi\)
\(774\) 9221.85 33499.9i 0.428259 1.55572i
\(775\) 21610.1i 1.00162i
\(776\) 19299.1i 0.892782i
\(777\) −1379.36 + 10207.9i −0.0636862 + 0.471308i
\(778\) 11881.8i 0.547537i
\(779\) 1108.68i 0.0509919i
\(780\) −678.664 91.7056i −0.0311539 0.00420973i
\(781\) 13432.9i 0.615452i
\(782\) 9133.45i 0.417662i
\(783\) 4064.22 9534.55i 0.185496 0.435169i