Properties

Label 177.4.d.c.176.15
Level $177$
Weight $4$
Character 177.176
Analytic conductor $10.443$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 177.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.4433380710\)
Analytic rank: \(0\)
Dimension: \(52\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 176.15
Character \(\chi\) \(=\) 177.176
Dual form 177.4.d.c.176.16

$q$-expansion

\(f(q)\) \(=\) \(q-2.68371 q^{2} +(-3.19645 - 4.09667i) q^{3} -0.797724 q^{4} -15.8157i q^{5} +(8.57832 + 10.9943i) q^{6} +25.4256 q^{7} +23.6105 q^{8} +(-6.56545 + 26.1896i) q^{9} +O(q^{10})\) \(q-2.68371 q^{2} +(-3.19645 - 4.09667i) q^{3} -0.797724 q^{4} -15.8157i q^{5} +(8.57832 + 10.9943i) q^{6} +25.4256 q^{7} +23.6105 q^{8} +(-6.56545 + 26.1896i) q^{9} +42.4446i q^{10} +64.0388 q^{11} +(2.54988 + 3.26801i) q^{12} -26.7287i q^{13} -68.2349 q^{14} +(-64.7916 + 50.5539i) q^{15} -56.9818 q^{16} -54.3878i q^{17} +(17.6197 - 70.2852i) q^{18} +47.4395 q^{19} +12.6165i q^{20} +(-81.2717 - 104.160i) q^{21} -171.861 q^{22} +174.401 q^{23} +(-75.4697 - 96.7245i) q^{24} -125.135 q^{25} +71.7320i q^{26} +(128.276 - 56.8171i) q^{27} -20.2826 q^{28} -169.829i q^{29} +(173.882 - 135.672i) q^{30} +217.458i q^{31} -35.9615 q^{32} +(-204.697 - 262.346i) q^{33} +145.961i q^{34} -402.123i q^{35} +(5.23742 - 20.8921i) q^{36} -122.447i q^{37} -127.314 q^{38} +(-109.499 + 85.4369i) q^{39} -373.416i q^{40} +368.046i q^{41} +(218.109 + 279.536i) q^{42} +3.01728i q^{43} -51.0853 q^{44} +(414.206 + 103.837i) q^{45} -468.041 q^{46} -314.192 q^{47} +(182.139 + 233.436i) q^{48} +303.463 q^{49} +335.826 q^{50} +(-222.809 + 173.848i) q^{51} +21.3221i q^{52} -468.533i q^{53} +(-344.256 + 152.480i) q^{54} -1012.82i q^{55} +600.312 q^{56} +(-151.638 - 194.344i) q^{57} +455.771i q^{58} +(-224.948 - 393.417i) q^{59} +(51.6858 - 40.3281i) q^{60} +558.899i q^{61} -583.593i q^{62} +(-166.931 + 665.887i) q^{63} +552.365 q^{64} -422.733 q^{65} +(549.346 + 704.060i) q^{66} +284.086i q^{67} +43.3865i q^{68} +(-557.464 - 714.464i) q^{69} +1079.18i q^{70} +279.692i q^{71} +(-155.014 + 618.349i) q^{72} +877.906i q^{73} +328.611i q^{74} +(399.988 + 512.638i) q^{75} -37.8436 q^{76} +1628.23 q^{77} +(293.863 - 229.288i) q^{78} -63.0858 q^{79} +901.206i q^{80} +(-642.790 - 343.893i) q^{81} -987.728i q^{82} +941.269 q^{83} +(64.8323 + 83.0913i) q^{84} -860.180 q^{85} -8.09748i q^{86} +(-695.733 + 542.849i) q^{87} +1511.99 q^{88} -199.336 q^{89} +(-1111.61 - 278.668i) q^{90} -679.594i q^{91} -139.124 q^{92} +(890.854 - 695.093i) q^{93} +843.199 q^{94} -750.288i q^{95} +(114.949 + 147.322i) q^{96} -432.568i q^{97} -814.404 q^{98} +(-420.444 + 1677.15i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52q - 8q^{3} + 268q^{4} - 16q^{7} - 4q^{9} + O(q^{10}) \) \( 52q - 8q^{3} + 268q^{4} - 16q^{7} - 4q^{9} + 28q^{12} + 114q^{15} + 484q^{16} - 184q^{19} - 758q^{21} - 60q^{22} + 36q^{25} + 742q^{27} - 4q^{28} - 888q^{36} + 1402q^{45} - 660q^{46} - 488q^{48} - 924q^{49} - 1772q^{51} - 630q^{57} - 1880q^{60} - 212q^{63} + 7648q^{64} + 1316q^{66} - 1556q^{75} - 5680q^{76} + 3224q^{78} - 1504q^{79} - 276q^{81} + 1228q^{84} - 848q^{85} + 3598q^{87} + 5760q^{88} + 888q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.68371 −0.948833 −0.474417 0.880300i \(-0.657341\pi\)
−0.474417 + 0.880300i \(0.657341\pi\)
\(3\) −3.19645 4.09667i −0.615157 0.788405i
\(4\) −0.797724 −0.0997154
\(5\) 15.8157i 1.41460i −0.706915 0.707298i \(-0.749914\pi\)
0.706915 0.707298i \(-0.250086\pi\)
\(6\) 8.57832 + 10.9943i 0.583681 + 0.748065i
\(7\) 25.4256 1.37285 0.686427 0.727198i \(-0.259178\pi\)
0.686427 + 0.727198i \(0.259178\pi\)
\(8\) 23.6105 1.04345
\(9\) −6.56545 + 26.1896i −0.243165 + 0.969985i
\(10\) 42.4446i 1.34222i
\(11\) 64.0388 1.75531 0.877656 0.479291i \(-0.159106\pi\)
0.877656 + 0.479291i \(0.159106\pi\)
\(12\) 2.54988 + 3.26801i 0.0613406 + 0.0786162i
\(13\) 26.7287i 0.570247i −0.958491 0.285124i \(-0.907965\pi\)
0.958491 0.285124i \(-0.0920346\pi\)
\(14\) −68.2349 −1.30261
\(15\) −64.7916 + 50.5539i −1.11527 + 0.870198i
\(16\) −56.9818 −0.890341
\(17\) 54.3878i 0.775940i −0.921672 0.387970i \(-0.873176\pi\)
0.921672 0.387970i \(-0.126824\pi\)
\(18\) 17.6197 70.2852i 0.230723 0.920354i
\(19\) 47.4395 0.572809 0.286405 0.958109i \(-0.407540\pi\)
0.286405 + 0.958109i \(0.407540\pi\)
\(20\) 12.6165i 0.141057i
\(21\) −81.2717 104.160i −0.844521 1.08237i
\(22\) −171.861 −1.66550
\(23\) 174.401 1.58109 0.790546 0.612402i \(-0.209797\pi\)
0.790546 + 0.612402i \(0.209797\pi\)
\(24\) −75.4697 96.7245i −0.641883 0.822659i
\(25\) −125.135 −1.00108
\(26\) 71.7320i 0.541069i
\(27\) 128.276 56.8171i 0.914325 0.404980i
\(28\) −20.2826 −0.136895
\(29\) 169.829i 1.08746i −0.839259 0.543732i \(-0.817011\pi\)
0.839259 0.543732i \(-0.182989\pi\)
\(30\) 173.882 135.672i 1.05821 0.825673i
\(31\) 217.458i 1.25989i 0.776639 + 0.629945i \(0.216923\pi\)
−0.776639 + 0.629945i \(0.783077\pi\)
\(32\) −35.9615 −0.198661
\(33\) −204.697 262.346i −1.07979 1.38390i
\(34\) 145.961i 0.736238i
\(35\) 402.123i 1.94204i
\(36\) 5.23742 20.8921i 0.0242473 0.0967225i
\(37\) 122.447i 0.544057i −0.962289 0.272028i \(-0.912306\pi\)
0.962289 0.272028i \(-0.0876944\pi\)
\(38\) −127.314 −0.543500
\(39\) −109.499 + 85.4369i −0.449586 + 0.350791i
\(40\) 373.416i 1.47606i
\(41\) 368.046i 1.40193i 0.713195 + 0.700966i \(0.247247\pi\)
−0.713195 + 0.700966i \(0.752753\pi\)
\(42\) 218.109 + 279.536i 0.801309 + 1.02698i
\(43\) 3.01728i 0.0107007i 0.999986 + 0.00535035i \(0.00170308\pi\)
−0.999986 + 0.00535035i \(0.998297\pi\)
\(44\) −51.0853 −0.175032
\(45\) 414.206 + 103.837i 1.37214 + 0.343980i
\(46\) −468.041 −1.50019
\(47\) −314.192 −0.975098 −0.487549 0.873096i \(-0.662109\pi\)
−0.487549 + 0.873096i \(0.662109\pi\)
\(48\) 182.139 + 233.436i 0.547699 + 0.701950i
\(49\) 303.463 0.884731
\(50\) 335.826 0.949860
\(51\) −222.809 + 173.848i −0.611755 + 0.477325i
\(52\) 21.3221i 0.0568624i
\(53\) 468.533i 1.21430i −0.794587 0.607150i \(-0.792313\pi\)
0.794587 0.607150i \(-0.207687\pi\)
\(54\) −344.256 + 152.480i −0.867542 + 0.384259i
\(55\) 1012.82i 2.48306i
\(56\) 600.312 1.43250
\(57\) −151.638 194.344i −0.352367 0.451606i
\(58\) 455.771i 1.03182i
\(59\) −224.948 393.417i −0.496369 0.868112i
\(60\) 51.6858 40.3281i 0.111210 0.0867722i
\(61\) 558.899i 1.17311i 0.809910 + 0.586554i \(0.199516\pi\)
−0.809910 + 0.586554i \(0.800484\pi\)
\(62\) 583.593i 1.19543i
\(63\) −166.931 + 665.887i −0.333830 + 1.33165i
\(64\) 552.365 1.07884
\(65\) −422.733 −0.806669
\(66\) 549.346 + 704.060i 1.02454 + 1.31309i
\(67\) 284.086i 0.518009i 0.965876 + 0.259004i \(0.0833944\pi\)
−0.965876 + 0.259004i \(0.916606\pi\)
\(68\) 43.3865i 0.0773732i
\(69\) −557.464 714.464i −0.972619 1.24654i
\(70\) 1079.18i 1.84267i
\(71\) 279.692i 0.467512i 0.972295 + 0.233756i \(0.0751017\pi\)
−0.972295 + 0.233756i \(0.924898\pi\)
\(72\) −155.014 + 618.349i −0.253730 + 1.01213i
\(73\) 877.906i 1.40755i 0.710423 + 0.703775i \(0.248504\pi\)
−0.710423 + 0.703775i \(0.751496\pi\)
\(74\) 328.611i 0.516219i
\(75\) 399.988 + 512.638i 0.615822 + 0.789258i
\(76\) −37.8436 −0.0571179
\(77\) 1628.23 2.40979
\(78\) 293.863 229.288i 0.426582 0.332842i
\(79\) −63.0858 −0.0898445 −0.0449222 0.998990i \(-0.514304\pi\)
−0.0449222 + 0.998990i \(0.514304\pi\)
\(80\) 901.206i 1.25947i
\(81\) −642.790 343.893i −0.881742 0.471733i
\(82\) 987.728i 1.33020i
\(83\) 941.269 1.24479 0.622396 0.782703i \(-0.286159\pi\)
0.622396 + 0.782703i \(0.286159\pi\)
\(84\) 64.8323 + 83.0913i 0.0842118 + 0.107929i
\(85\) −860.180 −1.09764
\(86\) 8.09748i 0.0101532i
\(87\) −695.733 + 542.849i −0.857361 + 0.668960i
\(88\) 1511.99 1.83157
\(89\) −199.336 −0.237411 −0.118706 0.992930i \(-0.537874\pi\)
−0.118706 + 0.992930i \(0.537874\pi\)
\(90\) −1111.61 278.668i −1.30193 0.326380i
\(91\) 679.594i 0.782867i
\(92\) −139.124 −0.157659
\(93\) 890.854 695.093i 0.993304 0.775030i
\(94\) 843.199 0.925206
\(95\) 750.288i 0.810294i
\(96\) 114.949 + 147.322i 0.122208 + 0.156625i
\(97\) 432.568i 0.452790i −0.974036 0.226395i \(-0.927306\pi\)
0.974036 0.226395i \(-0.0726939\pi\)
\(98\) −814.404 −0.839462
\(99\) −420.444 + 1677.15i −0.426830 + 1.70263i
\(100\) 99.8234 0.0998234
\(101\) −1768.19 −1.74200 −0.870999 0.491285i \(-0.836528\pi\)
−0.870999 + 0.491285i \(0.836528\pi\)
\(102\) 597.954 466.556i 0.580454 0.452902i
\(103\) 947.121i 0.906044i 0.891499 + 0.453022i \(0.149654\pi\)
−0.891499 + 0.453022i \(0.850346\pi\)
\(104\) 631.078i 0.595022i
\(105\) −1647.37 + 1285.37i −1.53111 + 1.19466i
\(106\) 1257.40i 1.15217i
\(107\) 1078.46i 0.974379i −0.873296 0.487190i \(-0.838022\pi\)
0.873296 0.487190i \(-0.161978\pi\)
\(108\) −102.329 + 45.3244i −0.0911724 + 0.0403828i
\(109\) 1042.51i 0.916096i −0.888927 0.458048i \(-0.848549\pi\)
0.888927 0.458048i \(-0.151451\pi\)
\(110\) 2718.10i 2.35601i
\(111\) −501.624 + 391.394i −0.428937 + 0.334680i
\(112\) −1448.80 −1.22231
\(113\) 733.402 0.610555 0.305277 0.952263i \(-0.401251\pi\)
0.305277 + 0.952263i \(0.401251\pi\)
\(114\) 406.952 + 521.563i 0.334338 + 0.428498i
\(115\) 2758.27i 2.23661i
\(116\) 135.476i 0.108437i
\(117\) 700.014 + 175.486i 0.553131 + 0.138664i
\(118\) 603.695 + 1055.82i 0.470972 + 0.823693i
\(119\) 1382.84i 1.06525i
\(120\) −1529.76 + 1193.60i −1.16373 + 0.908005i
\(121\) 2769.97 2.08112
\(122\) 1499.92i 1.11308i
\(123\) 1507.77 1176.44i 1.10529 0.862407i
\(124\) 173.471i 0.125631i
\(125\) 2.14016i 0.00153137i
\(126\) 447.993 1787.04i 0.316749 1.26351i
\(127\) −365.016 −0.255039 −0.127520 0.991836i \(-0.540702\pi\)
−0.127520 + 0.991836i \(0.540702\pi\)
\(128\) −1194.69 −0.824976
\(129\) 12.3608 9.64457i 0.00843649 0.00658261i
\(130\) 1134.49 0.765395
\(131\) 263.810 0.175948 0.0879741 0.996123i \(-0.471961\pi\)
0.0879741 + 0.996123i \(0.471961\pi\)
\(132\) 163.291 + 209.280i 0.107672 + 0.137996i
\(133\) 1206.18 0.786384
\(134\) 762.403i 0.491504i
\(135\) −898.601 2028.78i −0.572883 1.29340i
\(136\) 1284.12i 0.809652i
\(137\) 1218.37i 0.759799i 0.925028 + 0.379900i \(0.124041\pi\)
−0.925028 + 0.379900i \(0.875959\pi\)
\(138\) 1496.07 + 1917.41i 0.922854 + 1.18276i
\(139\) −1137.74 −0.694256 −0.347128 0.937818i \(-0.612843\pi\)
−0.347128 + 0.937818i \(0.612843\pi\)
\(140\) 320.783i 0.193651i
\(141\) 1004.30 + 1287.14i 0.599838 + 0.768772i
\(142\) 750.612i 0.443591i
\(143\) 1711.68i 1.00096i
\(144\) 374.112 1492.33i 0.216500 0.863618i
\(145\) −2685.96 −1.53832
\(146\) 2356.04i 1.33553i
\(147\) −970.002 1243.19i −0.544248 0.697526i
\(148\) 97.6785i 0.0542509i
\(149\) −991.213 −0.544989 −0.272494 0.962157i \(-0.587849\pi\)
−0.272494 + 0.962157i \(0.587849\pi\)
\(150\) −1073.45 1375.77i −0.584313 0.748875i
\(151\) 3527.16i 1.90090i −0.310874 0.950451i \(-0.600622\pi\)
0.310874 0.950451i \(-0.399378\pi\)
\(152\) 1120.07 0.597696
\(153\) 1424.40 + 357.081i 0.752650 + 0.188681i
\(154\) −4369.68 −2.28649
\(155\) 3439.24 1.78224
\(156\) 87.3498 68.1551i 0.0448306 0.0349793i
\(157\) 1442.44i 0.733241i 0.930371 + 0.366621i \(0.119485\pi\)
−0.930371 + 0.366621i \(0.880515\pi\)
\(158\) 169.304 0.0852474
\(159\) −1919.43 + 1497.64i −0.957361 + 0.746985i
\(160\) 568.755i 0.281025i
\(161\) 4434.26 2.17061
\(162\) 1725.06 + 922.908i 0.836626 + 0.447596i
\(163\) −2181.89 −1.04846 −0.524229 0.851577i \(-0.675646\pi\)
−0.524229 + 0.851577i \(0.675646\pi\)
\(164\) 293.599i 0.139794i
\(165\) −4149.18 + 3237.41i −1.95766 + 1.52747i
\(166\) −2526.09 −1.18110
\(167\) 2121.08i 0.982840i 0.870923 + 0.491420i \(0.163522\pi\)
−0.870923 + 0.491420i \(0.836478\pi\)
\(168\) −1918.86 2459.28i −0.881212 1.12939i
\(169\) 1482.58 0.674818
\(170\) 2308.47 1.04148
\(171\) −311.462 + 1242.42i −0.139287 + 0.555616i
\(172\) 2.40695i 0.00106703i
\(173\) −3125.58 −1.37360 −0.686801 0.726845i \(-0.740986\pi\)
−0.686801 + 0.726845i \(0.740986\pi\)
\(174\) 1867.14 1456.85i 0.813493 0.634732i
\(175\) −3181.64 −1.37434
\(176\) −3649.05 −1.56283
\(177\) −892.667 + 2179.08i −0.379079 + 0.925364i
\(178\) 534.959 0.225263
\(179\) −509.207 −0.212625 −0.106313 0.994333i \(-0.533904\pi\)
−0.106313 + 0.994333i \(0.533904\pi\)
\(180\) −330.422 82.8332i −0.136823 0.0343001i
\(181\) 454.608 0.186689 0.0933445 0.995634i \(-0.470244\pi\)
0.0933445 + 0.995634i \(0.470244\pi\)
\(182\) 1823.83i 0.742810i
\(183\) 2289.62 1786.49i 0.924885 0.721645i
\(184\) 4117.70 1.64979
\(185\) −1936.57 −0.769621
\(186\) −2390.79 + 1865.43i −0.942480 + 0.735374i
\(187\) 3482.93i 1.36202i
\(188\) 250.638 0.0972324
\(189\) 3261.51 1444.61i 1.25524 0.555979i
\(190\) 2013.55i 0.768833i
\(191\) 162.666 0.0616234 0.0308117 0.999525i \(-0.490191\pi\)
0.0308117 + 0.999525i \(0.490191\pi\)
\(192\) −1765.61 2262.86i −0.663654 0.850561i
\(193\) −2139.02 −0.797773 −0.398887 0.917000i \(-0.630603\pi\)
−0.398887 + 0.917000i \(0.630603\pi\)
\(194\) 1160.88i 0.429622i
\(195\) 1351.24 + 1731.80i 0.496228 + 0.635982i
\(196\) −242.079 −0.0882213
\(197\) 5343.19i 1.93242i 0.257755 + 0.966210i \(0.417017\pi\)
−0.257755 + 0.966210i \(0.582983\pi\)
\(198\) 1128.35 4500.98i 0.404991 1.61551i
\(199\) −3654.95 −1.30197 −0.650987 0.759089i \(-0.725645\pi\)
−0.650987 + 0.759089i \(0.725645\pi\)
\(200\) −2954.51 −1.04458
\(201\) 1163.81 908.065i 0.408401 0.318657i
\(202\) 4745.31 1.65287
\(203\) 4318.01i 1.49293i
\(204\) 177.740 138.682i 0.0610014 0.0475967i
\(205\) 5820.90 1.98317
\(206\) 2541.79i 0.859685i
\(207\) −1145.02 + 4567.49i −0.384466 + 1.53364i
\(208\) 1523.05i 0.507715i
\(209\) 3037.97 1.00546
\(210\) 4421.05 3449.54i 1.45277 1.13353i
\(211\) 3655.96i 1.19283i 0.802677 + 0.596415i \(0.203409\pi\)
−0.802677 + 0.596415i \(0.796591\pi\)
\(212\) 373.760i 0.121085i
\(213\) 1145.81 894.022i 0.368589 0.287593i
\(214\) 2894.27i 0.924524i
\(215\) 47.7202 0.0151372
\(216\) 3028.67 1341.48i 0.954050 0.422575i
\(217\) 5529.01i 1.72965i
\(218\) 2797.79i 0.869222i
\(219\) 3596.49 2806.18i 1.10972 0.865864i
\(220\) 807.948i 0.247599i
\(221\) −1453.72 −0.442478
\(222\) 1346.21 1050.39i 0.406990 0.317556i
\(223\) 111.332 0.0334319 0.0167160 0.999860i \(-0.494679\pi\)
0.0167160 + 0.999860i \(0.494679\pi\)
\(224\) −914.344 −0.272733
\(225\) 821.570 3277.24i 0.243428 0.971035i
\(226\) −1968.24 −0.579315
\(227\) 1122.58 0.328229 0.164115 0.986441i \(-0.447523\pi\)
0.164115 + 0.986441i \(0.447523\pi\)
\(228\) 120.965 + 155.033i 0.0351365 + 0.0450320i
\(229\) 113.487i 0.0327485i 0.999866 + 0.0163743i \(0.00521232\pi\)
−0.999866 + 0.0163743i \(0.994788\pi\)
\(230\) 7402.38i 2.12217i
\(231\) −5204.54 6670.31i −1.48240 1.89989i
\(232\) 4009.74i 1.13471i
\(233\) 704.563 0.198101 0.0990503 0.995082i \(-0.468420\pi\)
0.0990503 + 0.995082i \(0.468420\pi\)
\(234\) −1878.63 470.953i −0.524829 0.131569i
\(235\) 4969.16i 1.37937i
\(236\) 179.447 + 313.838i 0.0494957 + 0.0865641i
\(237\) 201.651 + 258.442i 0.0552684 + 0.0708338i
\(238\) 3711.15i 1.01075i
\(239\) 5082.40i 1.37554i 0.725930 + 0.687768i \(0.241409\pi\)
−0.725930 + 0.687768i \(0.758591\pi\)
\(240\) 3691.95 2880.66i 0.992975 0.774773i
\(241\) 3832.06 1.02425 0.512126 0.858910i \(-0.328858\pi\)
0.512126 + 0.858910i \(0.328858\pi\)
\(242\) −7433.79 −1.97464
\(243\) 645.826 + 3732.53i 0.170493 + 0.985359i
\(244\) 445.847i 0.116977i
\(245\) 4799.46i 1.25154i
\(246\) −4046.40 + 3157.22i −1.04874 + 0.818281i
\(247\) 1268.00i 0.326643i
\(248\) 5134.29i 1.31463i
\(249\) −3008.72 3856.07i −0.765742 0.981400i
\(250\) 5.74355i 0.00145302i
\(251\) 2141.56i 0.538542i −0.963064 0.269271i \(-0.913217\pi\)
0.963064 0.269271i \(-0.0867828\pi\)
\(252\) 133.165 531.194i 0.0332880 0.132786i
\(253\) 11168.4 2.77531
\(254\) 979.596 0.241990
\(255\) 2749.52 + 3523.87i 0.675222 + 0.865387i
\(256\) −1212.72 −0.296073
\(257\) 2229.18i 0.541059i −0.962712 0.270530i \(-0.912801\pi\)
0.962712 0.270530i \(-0.0871988\pi\)
\(258\) −33.1727 + 25.8832i −0.00800482 + 0.00624580i
\(259\) 3113.28i 0.746911i
\(260\) 337.224 0.0804374
\(261\) 4447.75 + 1115.00i 1.05482 + 0.264433i
\(262\) −707.989 −0.166945
\(263\) 2699.89i 0.633013i 0.948590 + 0.316506i \(0.102510\pi\)
−0.948590 + 0.316506i \(0.897490\pi\)
\(264\) −4832.99 6194.12i −1.12670 1.44402i
\(265\) −7410.16 −1.71775
\(266\) −3237.03 −0.746147
\(267\) 637.167 + 816.615i 0.146045 + 0.187176i
\(268\) 226.622i 0.0516535i
\(269\) −6427.83 −1.45692 −0.728460 0.685088i \(-0.759764\pi\)
−0.728460 + 0.685088i \(0.759764\pi\)
\(270\) 2411.58 + 5444.64i 0.543571 + 1.22722i
\(271\) −2588.09 −0.580130 −0.290065 0.957007i \(-0.593677\pi\)
−0.290065 + 0.957007i \(0.593677\pi\)
\(272\) 3099.12i 0.690852i
\(273\) −2784.08 + 2172.29i −0.617216 + 0.481585i
\(274\) 3269.75i 0.720923i
\(275\) −8013.52 −1.75721
\(276\) 444.702 + 569.945i 0.0969852 + 0.124299i
\(277\) 7307.96 1.58517 0.792586 0.609760i \(-0.208734\pi\)
0.792586 + 0.609760i \(0.208734\pi\)
\(278\) 3053.35 0.658733
\(279\) −5695.14 1427.71i −1.22208 0.306361i
\(280\) 9494.33i 2.02641i
\(281\) 4020.21i 0.853472i −0.904376 0.426736i \(-0.859663\pi\)
0.904376 0.426736i \(-0.140337\pi\)
\(282\) −2695.24 3454.31i −0.569146 0.729437i
\(283\) 246.102i 0.0516934i 0.999666 + 0.0258467i \(0.00822817\pi\)
−0.999666 + 0.0258467i \(0.991772\pi\)
\(284\) 223.117i 0.0466182i
\(285\) −3073.68 + 2398.25i −0.638839 + 0.498457i
\(286\) 4593.63i 0.949746i
\(287\) 9357.81i 1.92465i
\(288\) 236.103 941.817i 0.0483074 0.192698i
\(289\) 1954.96 0.397917
\(290\) 7208.32 1.45961
\(291\) −1772.09 + 1382.68i −0.356982 + 0.278536i
\(292\) 700.326i 0.140354i
\(293\) 3404.05i 0.678726i 0.940656 + 0.339363i \(0.110211\pi\)
−0.940656 + 0.339363i \(0.889789\pi\)
\(294\) 2603.20 + 3336.35i 0.516400 + 0.661836i
\(295\) −6222.16 + 3557.71i −1.22803 + 0.702162i
\(296\) 2891.03i 0.567694i
\(297\) 8214.66 3638.50i 1.60493 0.710866i
\(298\) 2660.12 0.517103
\(299\) 4661.52i 0.901614i
\(300\) −319.080 408.944i −0.0614070 0.0787013i
\(301\) 76.7162i 0.0146905i
\(302\) 9465.86i 1.80364i
\(303\) 5651.94 + 7243.71i 1.07160 + 1.37340i
\(304\) −2703.19 −0.509996
\(305\) 8839.35 1.65948
\(306\) −3822.66 958.300i −0.714140 0.179027i
\(307\) 4099.88 0.762190 0.381095 0.924536i \(-0.375547\pi\)
0.381095 + 0.924536i \(0.375547\pi\)
\(308\) −1298.88 −0.240293
\(309\) 3880.04 3027.42i 0.714330 0.557359i
\(310\) −9229.92 −1.69105
\(311\) 1445.91i 0.263633i −0.991274 0.131817i \(-0.957919\pi\)
0.991274 0.131817i \(-0.0420810\pi\)
\(312\) −2585.32 + 2017.21i −0.469119 + 0.366032i
\(313\) 1949.24i 0.352005i −0.984390 0.176002i \(-0.943683\pi\)
0.984390 0.176002i \(-0.0563166\pi\)
\(314\) 3871.07i 0.695724i
\(315\) 10531.4 + 2640.12i 1.88375 + 0.472235i
\(316\) 50.3251 0.00895888
\(317\) 8787.37i 1.55693i −0.627686 0.778466i \(-0.715998\pi\)
0.627686 0.778466i \(-0.284002\pi\)
\(318\) 5151.17 4019.23i 0.908376 0.708764i
\(319\) 10875.6i 1.90884i
\(320\) 8736.02i 1.52612i
\(321\) −4418.09 + 3447.24i −0.768206 + 0.599396i
\(322\) −11900.2 −2.05955
\(323\) 2580.13i 0.444466i
\(324\) 512.768 + 274.332i 0.0879233 + 0.0470390i
\(325\) 3344.71i 0.570864i
\(326\) 5855.54 0.994811
\(327\) −4270.83 + 3332.33i −0.722255 + 0.563542i
\(328\) 8689.76i 1.46284i
\(329\) −7988.53 −1.33867
\(330\) 11135.2 8688.27i 1.85749 1.44931i
\(331\) −2972.50 −0.493606 −0.246803 0.969066i \(-0.579380\pi\)
−0.246803 + 0.969066i \(0.579380\pi\)
\(332\) −750.873 −0.124125
\(333\) 3206.83 + 803.917i 0.527727 + 0.132295i
\(334\) 5692.36i 0.932552i
\(335\) 4493.01 0.732773
\(336\) 4631.01 + 5935.26i 0.751912 + 0.963675i
\(337\) 4402.05i 0.711558i 0.934570 + 0.355779i \(0.115784\pi\)
−0.934570 + 0.355779i \(0.884216\pi\)
\(338\) −3978.80 −0.640290
\(339\) −2344.28 3004.51i −0.375587 0.481364i
\(340\) 686.186 0.109452
\(341\) 13925.8i 2.21150i
\(342\) 835.872 3334.29i 0.132160 0.527187i
\(343\) −1005.26 −0.158248
\(344\) 71.2394i 0.0111656i
\(345\) −11299.7 + 8816.66i −1.76335 + 1.37586i
\(346\) 8388.13 1.30332
\(347\) 4806.25 0.743554 0.371777 0.928322i \(-0.378749\pi\)
0.371777 + 0.928322i \(0.378749\pi\)
\(348\) 555.003 433.043i 0.0854922 0.0667056i
\(349\) 9011.33i 1.38214i 0.722790 + 0.691068i \(0.242859\pi\)
−0.722790 + 0.691068i \(0.757141\pi\)
\(350\) 8538.60 1.30402
\(351\) −1518.65 3428.66i −0.230939 0.521391i
\(352\) −2302.93 −0.348712
\(353\) −11298.7 −1.70359 −0.851797 0.523872i \(-0.824487\pi\)
−0.851797 + 0.523872i \(0.824487\pi\)
\(354\) 2395.66 5848.00i 0.359683 0.878017i
\(355\) 4423.52 0.661341
\(356\) 159.015 0.0236735
\(357\) −5665.06 + 4420.19i −0.839851 + 0.655298i
\(358\) 1366.56 0.201746
\(359\) 7880.94i 1.15861i −0.815112 0.579304i \(-0.803324\pi\)
0.815112 0.579304i \(-0.196676\pi\)
\(360\) 9779.61 + 2451.64i 1.43175 + 0.358925i
\(361\) −4608.49 −0.671890
\(362\) −1220.03 −0.177137
\(363\) −8854.06 11347.7i −1.28021 1.64077i
\(364\) 542.129i 0.0780639i
\(365\) 13884.7 1.99111
\(366\) −6144.68 + 4794.41i −0.877561 + 0.684721i
\(367\) 4266.06i 0.606775i 0.952867 + 0.303388i \(0.0981177\pi\)
−0.952867 + 0.303388i \(0.901882\pi\)
\(368\) −9937.69 −1.40771
\(369\) −9638.99 2416.39i −1.35985 0.340901i
\(370\) 5197.20 0.730242
\(371\) 11912.7i 1.66706i
\(372\) −710.656 + 554.492i −0.0990478 + 0.0772825i
\(373\) 5386.56 0.747736 0.373868 0.927482i \(-0.378031\pi\)
0.373868 + 0.927482i \(0.378031\pi\)
\(374\) 9347.17i 1.29233i
\(375\) 8.76751 6.84089i 0.00120734 0.000942032i
\(376\) −7418.23 −1.01746
\(377\) −4539.31 −0.620123
\(378\) −8752.92 + 3876.91i −1.19101 + 0.527531i
\(379\) −2251.27 −0.305119 −0.152560 0.988294i \(-0.548752\pi\)
−0.152560 + 0.988294i \(0.548752\pi\)
\(380\) 598.522i 0.0807988i
\(381\) 1166.76 + 1495.35i 0.156889 + 0.201074i
\(382\) −436.547 −0.0584703
\(383\) 7169.18i 0.956470i 0.878232 + 0.478235i \(0.158723\pi\)
−0.878232 + 0.478235i \(0.841277\pi\)
\(384\) 3818.77 + 4894.27i 0.507489 + 0.650415i
\(385\) 25751.5i 3.40888i
\(386\) 5740.51 0.756954
\(387\) −79.0213 19.8098i −0.0103795 0.00260204i
\(388\) 345.069i 0.0451501i
\(389\) 2424.33i 0.315986i 0.987440 + 0.157993i \(0.0505024\pi\)
−0.987440 + 0.157993i \(0.949498\pi\)
\(390\) −3626.34 4647.63i −0.470838 0.603441i
\(391\) 9485.29i 1.22683i
\(392\) 7164.90 0.923169
\(393\) −843.255 1080.74i −0.108236 0.138718i
\(394\) 14339.6i 1.83354i
\(395\) 997.745i 0.127094i
\(396\) 335.398 1337.90i 0.0425616 0.169778i
\(397\) 14687.4i 1.85677i 0.371615 + 0.928387i \(0.378804\pi\)
−0.371615 + 0.928387i \(0.621196\pi\)
\(398\) 9808.82 1.23536
\(399\) −3855.49 4941.32i −0.483749 0.619989i
\(400\) 7130.44 0.891305
\(401\) 9413.70 1.17231 0.586157 0.810198i \(-0.300640\pi\)
0.586157 + 0.810198i \(0.300640\pi\)
\(402\) −3123.31 + 2436.98i −0.387504 + 0.302352i
\(403\) 5812.37 0.718449
\(404\) 1410.53 0.173704
\(405\) −5438.90 + 10166.1i −0.667311 + 1.24731i
\(406\) 11588.3i 1.41654i
\(407\) 7841.34i 0.954989i
\(408\) −5260.64 + 4104.63i −0.638334 + 0.498063i
\(409\) 7052.63i 0.852641i −0.904572 0.426321i \(-0.859810\pi\)
0.904572 0.426321i \(-0.140190\pi\)
\(410\) −15621.6 −1.88169
\(411\) 4991.27 3894.46i 0.599029 0.467395i
\(412\) 755.540i 0.0903466i
\(413\) −5719.45 10002.9i −0.681443 1.19179i
\(414\) 3072.90 12257.8i 0.364794 1.45516i
\(415\) 14886.8i 1.76088i
\(416\) 961.205i 0.113286i
\(417\) 3636.72 + 4660.94i 0.427076 + 0.547355i
\(418\) −8153.02 −0.954012
\(419\) 8388.86 0.978097 0.489048 0.872257i \(-0.337344\pi\)
0.489048 + 0.872257i \(0.337344\pi\)
\(420\) 1314.14 1025.37i 0.152675 0.119126i
\(421\) 8187.26i 0.947797i −0.880580 0.473898i \(-0.842846\pi\)
0.880580 0.473898i \(-0.157154\pi\)
\(422\) 9811.53i 1.13180i
\(423\) 2062.81 8228.56i 0.237110 0.945831i
\(424\) 11062.3i 1.26706i
\(425\) 6805.84i 0.776780i
\(426\) −3075.01 + 2399.29i −0.349730 + 0.272878i
\(427\) 14210.3i 1.61051i
\(428\) 860.312i 0.0971607i
\(429\) −7012.17 + 5471.28i −0.789163 + 0.615748i
\(430\) −128.067 −0.0143627
\(431\) −12633.2 −1.41188 −0.705941 0.708271i \(-0.749476\pi\)
−0.705941 + 0.708271i \(0.749476\pi\)
\(432\) −7309.42 + 3237.55i −0.814062 + 0.360571i
\(433\) 6515.64 0.723145 0.361572 0.932344i \(-0.382240\pi\)
0.361572 + 0.932344i \(0.382240\pi\)
\(434\) 14838.2i 1.64115i
\(435\) 8585.52 + 11003.5i 0.946308 + 1.21282i
\(436\) 831.636i 0.0913489i
\(437\) 8273.50 0.905664
\(438\) −9651.93 + 7530.96i −1.05294 + 0.821560i
\(439\) −196.698 −0.0213848 −0.0106924 0.999943i \(-0.503404\pi\)
−0.0106924 + 0.999943i \(0.503404\pi\)
\(440\) 23913.1i 2.59094i
\(441\) −1992.37 + 7947.56i −0.215135 + 0.858175i
\(442\) 3901.35 0.419838
\(443\) −1592.00 −0.170741 −0.0853705 0.996349i \(-0.527207\pi\)
−0.0853705 + 0.996349i \(0.527207\pi\)
\(444\) 400.157 312.224i 0.0427716 0.0333728i
\(445\) 3152.63i 0.335841i
\(446\) −298.781 −0.0317213
\(447\) 3168.36 + 4060.67i 0.335253 + 0.429672i
\(448\) 14044.2 1.48109
\(449\) 13078.6i 1.37464i −0.726352 0.687322i \(-0.758786\pi\)
0.726352 0.687322i \(-0.241214\pi\)
\(450\) −2204.85 + 8795.16i −0.230973 + 0.921350i
\(451\) 23569.3i 2.46083i
\(452\) −585.052 −0.0608817
\(453\) −14449.6 + 11274.4i −1.49868 + 1.16935i
\(454\) −3012.66 −0.311435
\(455\) −10748.2 −1.10744
\(456\) −3580.25 4588.56i −0.367676 0.471226i
\(457\) 10222.0i 1.04632i −0.852236 0.523158i \(-0.824754\pi\)
0.852236 0.523158i \(-0.175246\pi\)
\(458\) 304.565i 0.0310729i
\(459\) −3090.16 6976.67i −0.314240 0.709462i
\(460\) 2200.34i 0.223024i
\(461\) 18372.6i 1.85618i 0.372354 + 0.928091i \(0.378551\pi\)
−0.372354 + 0.928091i \(0.621449\pi\)
\(462\) 13967.5 + 17901.2i 1.40655 + 1.80268i
\(463\) 3624.32i 0.363794i 0.983318 + 0.181897i \(0.0582237\pi\)
−0.983318 + 0.181897i \(0.941776\pi\)
\(464\) 9677.16i 0.968213i
\(465\) −10993.4 14089.5i −1.09635 1.40512i
\(466\) −1890.84 −0.187964
\(467\) 16332.5 1.61837 0.809184 0.587556i \(-0.199910\pi\)
0.809184 + 0.587556i \(0.199910\pi\)
\(468\) −558.418 139.989i −0.0551557 0.0138270i
\(469\) 7223.06i 0.711151i
\(470\) 13335.8i 1.30879i
\(471\) 5909.19 4610.67i 0.578091 0.451058i
\(472\) −5311.14 9288.78i −0.517935 0.905828i
\(473\) 193.223i 0.0187831i
\(474\) −541.171 693.582i −0.0524405 0.0672095i
\(475\) −5936.36 −0.573429
\(476\) 1103.13i 0.106222i
\(477\) 12270.7 + 3076.13i 1.17785 + 0.295275i
\(478\) 13639.7i 1.30515i
\(479\) 2919.57i 0.278494i −0.990258 0.139247i \(-0.955532\pi\)
0.990258 0.139247i \(-0.0444682\pi\)
\(480\) 2330.00 1818.00i 0.221562 0.172874i
\(481\) −3272.84 −0.310247
\(482\) −10284.1 −0.971845
\(483\) −14173.9 18165.7i −1.33527 1.71132i
\(484\) −2209.67 −0.207520
\(485\) −6841.34 −0.640514
\(486\) −1733.21 10017.0i −0.161769 0.934941i
\(487\) 10408.9 0.968524 0.484262 0.874923i \(-0.339088\pi\)
0.484262 + 0.874923i \(0.339088\pi\)
\(488\) 13195.9i 1.22408i
\(489\) 6974.29 + 8938.48i 0.644965 + 0.826609i
\(490\) 12880.3i 1.18750i
\(491\) 4360.92i 0.400826i 0.979712 + 0.200413i \(0.0642284\pi\)
−0.979712 + 0.200413i \(0.935772\pi\)
\(492\) −1202.78 + 938.475i −0.110214 + 0.0859953i
\(493\) −9236.62 −0.843806
\(494\) 3402.93i 0.309929i
\(495\) 26525.3 + 6649.60i 2.40853 + 0.603793i
\(496\) 12391.2i 1.12173i
\(497\) 7111.35i 0.641827i
\(498\) 8074.51 + 10348.6i 0.726561 + 0.931185i
\(499\) 984.722 0.0883411 0.0441705 0.999024i \(-0.485936\pi\)
0.0441705 + 0.999024i \(0.485936\pi\)
\(500\) 1.70725i 0.000152701i
\(501\) 8689.38 6779.93i 0.774876 0.604601i
\(502\) 5747.32i 0.510987i
\(503\) 11292.6 1.00102 0.500510 0.865731i \(-0.333146\pi\)
0.500510 + 0.865731i \(0.333146\pi\)
\(504\) −3941.32 + 15721.9i −0.348334 + 1.38950i
\(505\) 27965.2i 2.46422i
\(506\) −29972.8 −2.63331
\(507\) −4738.97 6073.63i −0.415119 0.532030i
\(508\) 291.182 0.0254313
\(509\) −1779.89 −0.154994 −0.0774971 0.996993i \(-0.524693\pi\)
−0.0774971 + 0.996993i \(0.524693\pi\)
\(510\) −7378.90 9457.04i −0.640673 0.821108i
\(511\) 22321.3i 1.93236i
\(512\) 12812.1 1.10590
\(513\) 6085.37 2695.38i 0.523734 0.231976i
\(514\) 5982.46i 0.513375i
\(515\) 14979.3 1.28169
\(516\) −9.86050 + 7.69370i −0.000841248 + 0.000656388i
\(517\) −20120.5 −1.71160
\(518\) 8355.13i 0.708694i
\(519\) 9990.74 + 12804.5i 0.844981 + 1.08296i
\(520\) −9980.93 −0.841716
\(521\) 10556.1i 0.887662i −0.896110 0.443831i \(-0.853619\pi\)
0.896110 0.443831i \(-0.146381\pi\)
\(522\) −11936.4 2992.34i −1.00085 0.250903i
\(523\) −1374.67 −0.114934 −0.0574668 0.998347i \(-0.518302\pi\)
−0.0574668 + 0.998347i \(0.518302\pi\)
\(524\) −210.448 −0.0175447
\(525\) 10170.0 + 13034.2i 0.845435 + 1.08354i
\(526\) 7245.71i 0.600623i
\(527\) 11827.1 0.977600
\(528\) 11664.0 + 14949.0i 0.961383 + 1.23214i
\(529\) 18248.7 1.49985
\(530\) 19886.7 1.62985
\(531\) 11780.3 3308.34i 0.962755 0.270376i
\(532\) −962.198 −0.0784146
\(533\) 9837.41 0.799447
\(534\) −1709.97 2191.55i −0.138572 0.177599i
\(535\) −17056.6 −1.37835
\(536\) 6707.41i 0.540515i
\(537\) 1627.65 + 2086.06i 0.130798 + 0.167635i
\(538\) 17250.4 1.38237
\(539\) 19433.4 1.55298
\(540\) 716.835 + 1618.40i 0.0571253 + 0.128972i
\(541\) 10311.3i 0.819443i 0.912211 + 0.409722i \(0.134374\pi\)
−0.912211 + 0.409722i \(0.865626\pi\)
\(542\) 6945.67 0.550446
\(543\) −1453.13 1862.38i −0.114843 0.147187i
\(544\) 1955.87i 0.154149i
\(545\) −16488.0 −1.29591
\(546\) 7471.64 5829.78i 0.585635 0.456944i
\(547\) 24725.9 1.93273 0.966367 0.257168i \(-0.0827895\pi\)
0.966367 + 0.257168i \(0.0827895\pi\)
\(548\) 971.923i 0.0757637i
\(549\) −14637.3 3669.42i −1.13790 0.285259i
\(550\) 21505.9 1.66730
\(551\) 8056.60i 0.622909i
\(552\) −13162.0 16868.9i −1.01488 1.30070i
\(553\) −1604.00 −0.123343
\(554\) −19612.4 −1.50406
\(555\) 6190.16 + 7933.51i 0.473437 + 0.606773i
\(556\) 907.600 0.0692281
\(557\) 8023.94i 0.610387i −0.952290 0.305193i \(-0.901279\pi\)
0.952290 0.305193i \(-0.0987211\pi\)
\(558\) 15284.1 + 3831.55i 1.15955 + 0.290686i
\(559\) 80.6479 0.00610205
\(560\) 22913.7i 1.72907i
\(561\) −14268.4 + 11133.0i −1.07382 + 0.837854i
\(562\) 10789.1i 0.809803i
\(563\) −25776.6 −1.92958 −0.964791 0.263017i \(-0.915283\pi\)
−0.964791 + 0.263017i \(0.915283\pi\)
\(564\) −801.152 1026.78i −0.0598131 0.0766585i
\(565\) 11599.2i 0.863689i
\(566\) 660.464i 0.0490484i
\(567\) −16343.3 8743.70i −1.21050 0.647620i
\(568\) 6603.68i 0.487824i
\(569\) 5461.25 0.402368 0.201184 0.979553i \(-0.435521\pi\)
0.201184 + 0.979553i \(0.435521\pi\)
\(570\) 8248.86 6436.21i 0.606152 0.472953i
\(571\) 6208.29i 0.455007i 0.973777 + 0.227503i \(0.0730562\pi\)
−0.973777 + 0.227503i \(0.926944\pi\)
\(572\) 1365.44i 0.0998113i
\(573\) −519.952 666.388i −0.0379080 0.0485842i
\(574\) 25113.6i 1.82617i
\(575\) −21823.7 −1.58280
\(576\) −3626.53 + 14466.2i −0.262335 + 1.04646i
\(577\) −4213.28 −0.303988 −0.151994 0.988381i \(-0.548569\pi\)
−0.151994 + 0.988381i \(0.548569\pi\)
\(578\) −5246.55 −0.377556
\(579\) 6837.27 + 8762.87i 0.490755 + 0.628968i
\(580\) 2142.65 0.153394
\(581\) 23932.4 1.70892
\(582\) 4755.76 3710.70i 0.338716 0.264285i
\(583\) 30004.3i 2.13148i
\(584\) 20727.8i 1.46870i
\(585\) 2775.43 11071.2i 0.196154 0.782457i
\(586\) 9135.46i 0.643997i
\(587\) −3713.24 −0.261093 −0.130547 0.991442i \(-0.541673\pi\)
−0.130547 + 0.991442i \(0.541673\pi\)
\(588\) 773.794 + 991.719i 0.0542699 + 0.0695541i
\(589\) 10316.1i 0.721677i
\(590\) 16698.4 9547.84i 1.16519 0.666235i
\(591\) 21889.3 17079.2i 1.52353 1.18874i
\(592\) 6977.23i 0.484396i
\(593\) 13741.9i 0.951621i 0.879548 + 0.475811i \(0.157845\pi\)
−0.879548 + 0.475811i \(0.842155\pi\)
\(594\) −22045.7 + 9764.67i −1.52281 + 0.674494i
\(595\) −21870.6 −1.50690
\(596\) 790.714 0.0543438
\(597\) 11682.9 + 14973.2i 0.800918 + 1.02648i
\(598\) 12510.1i 0.855481i
\(599\) 13344.3i 0.910242i −0.890430 0.455121i \(-0.849596\pi\)
0.890430 0.455121i \(-0.150404\pi\)
\(600\) 9443.93 + 12103.7i 0.642578 + 0.823549i
\(601\) 11246.9i 0.763348i 0.924297 + 0.381674i \(0.124652\pi\)
−0.924297 + 0.381674i \(0.875348\pi\)
\(602\) 205.884i 0.0139389i
\(603\) −7440.09 1865.15i −0.502461 0.125962i
\(604\) 2813.70i 0.189549i
\(605\) 43808.9i 2.94394i
\(606\) −15168.1 19440.0i −1.01677 1.30313i
\(607\) −25098.2 −1.67826 −0.839129 0.543932i \(-0.816935\pi\)
−0.839129 + 0.543932i \(0.816935\pi\)
\(608\) −1706.00 −0.113795
\(609\) −17689.5 + 13802.3i −1.17703 + 0.918385i
\(610\) −23722.2 −1.57457
\(611\) 8397.95i 0.556047i
\(612\) −1136.27 284.852i −0.0750509 0.0188145i
\(613\) 25146.8i 1.65688i −0.560074 0.828442i \(-0.689227\pi\)
0.560074 0.828442i \(-0.310773\pi\)
\(614\) −11002.9 −0.723192
\(615\) −18606.2 23846.3i −1.21996 1.56354i
\(616\) 38443.3 2.51449
\(617\) 10367.6i 0.676476i 0.941061 + 0.338238i \(0.109831\pi\)
−0.941061 + 0.338238i \(0.890169\pi\)
\(618\) −10412.9 + 8124.71i −0.677780 + 0.528841i
\(619\) −19220.6 −1.24804 −0.624022 0.781407i \(-0.714502\pi\)
−0.624022 + 0.781407i \(0.714502\pi\)
\(620\) −2743.57 −0.177717
\(621\) 22371.5 9908.97i 1.44563 0.640311i
\(622\) 3880.39i 0.250144i
\(623\) −5068.25 −0.325931
\(624\) 6239.44 4868.35i 0.400285 0.312324i
\(625\) −15608.1 −0.998916
\(626\) 5231.18i 0.333994i
\(627\) −9710.71 12445.6i −0.618514 0.792709i
\(628\) 1150.66i 0.0731155i
\(629\) −6659.60 −0.422156
\(630\) −28263.3 7085.31i −1.78736 0.448072i
\(631\) 5697.06 0.359424 0.179712 0.983719i \(-0.442483\pi\)
0.179712 + 0.983719i \(0.442483\pi\)
\(632\) −1489.49 −0.0937479
\(633\) 14977.3 11686.1i 0.940432 0.733777i
\(634\) 23582.7i 1.47727i
\(635\) 5772.98i 0.360777i
\(636\) 1531.17 1194.70i 0.0954637 0.0744859i
\(637\) 8111.17i 0.504515i
\(638\) 29187.0i 1.81117i
\(639\) −7325.03 1836.31i −0.453480 0.113683i
\(640\) 18894.9i 1.16701i
\(641\) 14951.6i 0.921296i 0.887583 + 0.460648i \(0.152383\pi\)
−0.887583 + 0.460648i \(0.847617\pi\)
\(642\) 11856.9 9251.37i 0.728899 0.568727i
\(643\) −10278.6 −0.630401 −0.315201 0.949025i \(-0.602072\pi\)
−0.315201 + 0.949025i \(0.602072\pi\)
\(644\) −3537.31 −0.216443
\(645\) −152.535 195.494i −0.00931173 0.0119342i
\(646\) 6924.32i 0.421724i
\(647\) 30130.8i 1.83086i −0.402483 0.915428i \(-0.631853\pi\)
0.402483 0.915428i \(-0.368147\pi\)
\(648\) −15176.6 8119.49i −0.920050 0.492228i
\(649\) −14405.4 25194.0i −0.871283 1.52381i
\(650\) 8976.21i 0.541655i
\(651\) 22650.5 17673.2i 1.36366 1.06400i
\(652\) 1740.54 0.104547
\(653\) 19130.6i 1.14646i −0.819394 0.573231i \(-0.805690\pi\)
0.819394 0.573231i \(-0.194310\pi\)
\(654\) 11461.6 8943.00i 0.685299 0.534708i
\(655\) 4172.33i 0.248896i
\(656\) 20972.0i 1.24820i
\(657\) −22992.0 5763.85i −1.36530 0.342267i
\(658\) 21438.9 1.27017
\(659\) −3783.93 −0.223674 −0.111837 0.993727i \(-0.535673\pi\)
−0.111837 + 0.993727i \(0.535673\pi\)
\(660\) 3309.90 2582.56i 0.195208 0.152312i
\(661\) 14846.5 0.873619 0.436809 0.899554i \(-0.356108\pi\)
0.436809 + 0.899554i \(0.356108\pi\)
\(662\) 7977.32 0.468350
\(663\) 4646.73 + 5955.40i 0.272193 + 0.348852i
\(664\) 22223.8 1.29887
\(665\) 19076.5i 1.11242i
\(666\) −8606.18 2157.48i −0.500725 0.125526i
\(667\) 29618.3i 1.71938i
\(668\) 1692.04i 0.0980044i
\(669\) −355.866 456.089i −0.0205659 0.0263579i
\(670\) −12057.9 −0.695280
\(671\) 35791.2i 2.05917i
\(672\) 2922.65 + 3745.77i 0.167773 + 0.215024i
\(673\) 25796.1i 1.47752i 0.673971 + 0.738758i \(0.264587\pi\)
−0.673971 + 0.738758i \(0.735413\pi\)
\(674\) 11813.8i 0.675150i
\(675\) −16051.9 + 7109.83i −0.915315 + 0.405419i
\(676\) −1182.69 −0.0672898
\(677\) 19445.2i 1.10390i −0.833878 0.551949i \(-0.813884\pi\)
0.833878 0.551949i \(-0.186116\pi\)
\(678\) 6291.36 + 8063.22i 0.356369 + 0.456735i
\(679\) 10998.3i 0.621614i
\(680\) −20309.3 −1.14533
\(681\) −3588.26 4598.83i −0.201912 0.258778i
\(682\) 37372.6i 2.09835i
\(683\) 16732.4 0.937404 0.468702 0.883356i \(-0.344722\pi\)
0.468702 + 0.883356i \(0.344722\pi\)
\(684\) 248.461 991.109i 0.0138891 0.0554035i
\(685\) 19269.4 1.07481
\(686\) 2697.83 0.150151
\(687\) 464.918 362.754i 0.0258191 0.0201455i
\(688\) 171.930i 0.00952728i
\(689\) −12523.3 −0.692451
\(690\) 30325.1 23661.3i 1.67313 1.30547i
\(691\) 16776.9i 0.923620i 0.886979 + 0.461810i \(0.152800\pi\)
−0.886979 + 0.461810i \(0.847200\pi\)
\(692\) 2493.35 0.136969
\(693\) −10690.0 + 42642.6i −0.585976 + 2.33746i
\(694\) −12898.6 −0.705509
\(695\) 17994.1i 0.982092i
\(696\) −16426.6 + 12816.9i −0.894611 + 0.698024i
\(697\) 20017.2 1.08782
\(698\) 24183.7i 1.31142i
\(699\) −2252.10 2886.36i −0.121863 0.156183i
\(700\) 2538.07 0.137043
\(701\) 27374.7 1.47493 0.737466 0.675385i \(-0.236022\pi\)
0.737466 + 0.675385i \(0.236022\pi\)
\(702\) 4075.61 + 9201.52i 0.219122 + 0.494714i
\(703\) 5808.81i 0.311641i
\(704\) 35372.8 1.89370
\(705\) 20357.0 15883.6i 1.08750 0.848529i
\(706\) 30322.4 1.61643
\(707\) −44957.4 −2.39151
\(708\) 712.101 1738.30i 0.0378000 0.0922731i
\(709\) −32178.8 −1.70452 −0.852258 0.523122i \(-0.824767\pi\)
−0.852258 + 0.523122i \(0.824767\pi\)
\(710\) −11871.4 −0.627503
\(711\) 414.187 1652.19i 0.0218470 0.0871478i
\(712\) −4706.42 −0.247726
\(713\) 37924.9i 1.99200i
\(714\) 15203.4 11862.5i 0.796879 0.621768i
\(715\) −27071.3 −1.41596
\(716\) 406.207 0.0212020
\(717\) 20820.9 16245.6i 1.08448 0.846170i
\(718\) 21150.1i 1.09933i
\(719\) 24046.9 1.24728 0.623641 0.781711i \(-0.285653\pi\)
0.623641 + 0.781711i \(0.285653\pi\)
\(720\) −23602.2 5916.82i −1.22167 0.306260i
\(721\) 24081.1i 1.24387i
\(722\) 12367.8 0.637511
\(723\) −12249.0 15698.7i −0.630075 0.807526i
\(724\) −362.651 −0.0186158
\(725\) 21251.6i 1.08864i
\(726\) 23761.7 + 30453.8i 1.21471 + 1.55681i
\(727\) 22341.6 1.13976 0.569878 0.821729i \(-0.306990\pi\)
0.569878 + 0.821729i \(0.306990\pi\)
\(728\) 16045.6i 0.816879i
\(729\) 13226.6 14576.6i 0.671982 0.740567i
\(730\) −37262.4 −1.88924
\(731\) 164.103 0.00830311
\(732\) −1826.49 + 1425.12i −0.0922253 + 0.0719592i
\(733\) 7788.17 0.392445 0.196223 0.980559i \(-0.437132\pi\)
0.196223 + 0.980559i \(0.437132\pi\)
\(734\) 11448.8i 0.575728i
\(735\) −19661.8 + 15341.2i −0.986718 + 0.769891i
\(736\) −6271.72 −0.314102
\(737\) 18192.5i 0.909267i
\(738\) 25868.2 + 6484.88i 1.29027 + 0.323458i
\(739\) 11705.7i 0.582680i −0.956620 0.291340i \(-0.905899\pi\)
0.956620 0.291340i \(-0.0941011\pi\)
\(740\) 1544.85 0.0767431
\(741\) −5194.57 + 4053.09i −0.257527 + 0.200936i
\(742\) 31970.3i 1.58176i
\(743\) 3213.88i 0.158689i 0.996847 + 0.0793443i \(0.0252827\pi\)
−0.996847 + 0.0793443i \(0.974717\pi\)
\(744\) 21033.5 16411.5i 1.03646 0.808703i
\(745\) 15676.7i 0.770939i
\(746\) −14455.9 −0.709477
\(747\) −6179.86 + 24651.5i −0.302690 + 1.20743i
\(748\) 2778.42i 0.135814i
\(749\) 27420.5i 1.33768i
\(750\) −23.5294 + 18.3589i −0.00114556 + 0.000893832i
\(751\) 30502.5i 1.48209i −0.671453 0.741047i \(-0.734329\pi\)
0.671453 0.741047i \(-0.265671\pi\)
\(752\) 17903.2 0.868170
\(753\) −8773.27 + 6845.39i −0.424589 + 0.331288i
\(754\) 12182.2 0.588393
\(755\) −55784.4 −2.68901
\(756\) −2601.78 + 1152.40i −0.125166 + 0.0554397i
\(757\) −12073.7 −0.579689 −0.289845 0.957074i \(-0.593604\pi\)
−0.289845 + 0.957074i \(0.593604\pi\)
\(758\) 6041.76 0.289507
\(759\) −35699.3 45753.4i −1.70725 2.18807i
\(760\) 17714.7i 0.845498i
\(761\) 1492.69i 0.0711040i −0.999368 0.0355520i \(-0.988681\pi\)
0.999368 0.0355520i \(-0.0113189\pi\)
\(762\) −3131.23 4013.09i −0.148861 0.190786i
\(763\) 26506.5i 1.25767i
\(764\) −129.762 −0.00614480
\(765\) 5647.47 22527.8i 0.266908 1.06470i
\(766\) 19240.0i 0.907530i
\(767\) −10515.5 + 6012.58i −0.495038 + 0.283053i
\(768\) 3876.38 + 4968.10i 0.182131 + 0.233425i
\(769\) 15205.3i 0.713026i −0.934290 0.356513i \(-0.883965\pi\)
0.934290 0.356513i \(-0.116035\pi\)
\(770\) 69109.4i 3.23446i
\(771\) −9132.21 + 7125.45i −0.426574 + 0.332836i
\(772\) 1706.35 0.0795503
\(773\) 19916.9 0.926727 0.463364 0.886168i \(-0.346642\pi\)
0.463364 + 0.886168i \(0.346642\pi\)
\(774\) 212.070 + 53.1636i 0.00984844 + 0.00246890i
\(775\) 27211.7i 1.26125i
\(776\) 10213.1i 0.472462i
\(777\) −12754.1 + 9951.44i −0.588868 + 0.459467i
\(778\) 6506.20i 0.299818i
\(779\) 17459.9i 0.803039i
\(780\) −1077.92 1381.50i −0.0494816 0.0634173i
\(781\) 17911.2i 0.820630i
\(782\) 25455.7i 1.16406i
\(783\) −9649.19 21785.0i −0.440401 0.994295i
\(784\) −17291.9