Properties

Label 177.4.d.c.176.14
Level $177$
Weight $4$
Character 177.176
Analytic conductor $10.443$
Analytic rank $0$
Dimension $52$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 177.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(10.4433380710\)
Analytic rank: \(0\)
Dimension: \(52\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 176.14
Character \(\chi\) \(=\) 177.176
Dual form 177.4.d.c.176.13

$q$-expansion

\(f(q)\) \(=\) \(q-3.37014 q^{2} +(1.51919 + 4.96911i) q^{3} +3.35783 q^{4} +10.3951i q^{5} +(-5.11987 - 16.7466i) q^{6} -22.3857 q^{7} +15.6447 q^{8} +(-22.3841 + 15.0980i) q^{9} +O(q^{10})\) \(q-3.37014 q^{2} +(1.51919 + 4.96911i) q^{3} +3.35783 q^{4} +10.3951i q^{5} +(-5.11987 - 16.7466i) q^{6} -22.3857 q^{7} +15.6447 q^{8} +(-22.3841 + 15.0980i) q^{9} -35.0329i q^{10} -29.3191 q^{11} +(5.10117 + 16.6854i) q^{12} +2.60330i q^{13} +75.4429 q^{14} +(-51.6543 + 15.7921i) q^{15} -79.5876 q^{16} +37.1200i q^{17} +(75.4377 - 50.8824i) q^{18} +116.745 q^{19} +34.9049i q^{20} +(-34.0081 - 111.237i) q^{21} +98.8095 q^{22} -70.3128 q^{23} +(23.7673 + 77.7405i) q^{24} +16.9423 q^{25} -8.77349i q^{26} +(-109.029 - 88.2926i) q^{27} -75.1674 q^{28} +82.7478i q^{29} +(174.082 - 53.2214i) q^{30} -269.641i q^{31} +143.063 q^{32} +(-44.5412 - 145.690i) q^{33} -125.099i q^{34} -232.701i q^{35} +(-75.1622 + 50.6966i) q^{36} -248.510i q^{37} -393.446 q^{38} +(-12.9361 + 3.95490i) q^{39} +162.628i q^{40} -129.586i q^{41} +(114.612 + 374.884i) q^{42} -161.471i q^{43} -98.4487 q^{44} +(-156.945 - 232.685i) q^{45} +236.964 q^{46} -349.870 q^{47} +(-120.908 - 395.480i) q^{48} +158.120 q^{49} -57.0980 q^{50} +(-184.453 + 56.3922i) q^{51} +8.74145i q^{52} -264.779i q^{53} +(367.444 + 297.558i) q^{54} -304.775i q^{55} -350.219 q^{56} +(177.357 + 580.117i) q^{57} -278.872i q^{58} +(404.169 + 205.003i) q^{59} +(-173.447 + 53.0271i) q^{60} +623.548i q^{61} +908.727i q^{62} +(501.085 - 337.980i) q^{63} +154.558 q^{64} -27.0615 q^{65} +(150.110 + 490.995i) q^{66} -11.5921i q^{67} +124.643i q^{68} +(-106.818 - 349.392i) q^{69} +784.235i q^{70} -97.1804i q^{71} +(-350.194 + 236.205i) q^{72} +562.273i q^{73} +837.513i q^{74} +(25.7386 + 84.1883i) q^{75} +392.009 q^{76} +656.329 q^{77} +(43.5964 - 13.3286i) q^{78} -599.822 q^{79} -827.320i q^{80} +(273.100 - 675.912i) q^{81} +436.722i q^{82} -499.474 q^{83} +(-114.193 - 373.515i) q^{84} -385.865 q^{85} +544.180i q^{86} +(-411.183 + 125.709i) q^{87} -458.690 q^{88} -530.960 q^{89} +(528.927 + 784.180i) q^{90} -58.2768i q^{91} -236.099 q^{92} +(1339.88 - 409.635i) q^{93} +1179.11 q^{94} +1213.57i q^{95} +(217.340 + 710.898i) q^{96} +1527.88i q^{97} -532.886 q^{98} +(656.283 - 442.661i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52q - 8q^{3} + 268q^{4} - 16q^{7} - 4q^{9} + O(q^{10}) \) \( 52q - 8q^{3} + 268q^{4} - 16q^{7} - 4q^{9} + 28q^{12} + 114q^{15} + 484q^{16} - 184q^{19} - 758q^{21} - 60q^{22} + 36q^{25} + 742q^{27} - 4q^{28} - 888q^{36} + 1402q^{45} - 660q^{46} - 488q^{48} - 924q^{49} - 1772q^{51} - 630q^{57} - 1880q^{60} - 212q^{63} + 7648q^{64} + 1316q^{66} - 1556q^{75} - 5680q^{76} + 3224q^{78} - 1504q^{79} - 276q^{81} + 1228q^{84} - 848q^{85} + 3598q^{87} + 5760q^{88} + 888q^{94} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.37014 −1.19152 −0.595762 0.803161i \(-0.703150\pi\)
−0.595762 + 0.803161i \(0.703150\pi\)
\(3\) 1.51919 + 4.96911i 0.292368 + 0.956306i
\(4\) 3.35783 0.419729
\(5\) 10.3951i 0.929764i 0.885373 + 0.464882i \(0.153903\pi\)
−0.885373 + 0.464882i \(0.846097\pi\)
\(6\) −5.11987 16.7466i −0.348363 1.13946i
\(7\) −22.3857 −1.20871 −0.604357 0.796713i \(-0.706570\pi\)
−0.604357 + 0.796713i \(0.706570\pi\)
\(8\) 15.6447 0.691407
\(9\) −22.3841 + 15.0980i −0.829042 + 0.559186i
\(10\) 35.0329i 1.10784i
\(11\) −29.3191 −0.803641 −0.401820 0.915719i \(-0.631622\pi\)
−0.401820 + 0.915719i \(0.631622\pi\)
\(12\) 5.10117 + 16.6854i 0.122715 + 0.401389i
\(13\) 2.60330i 0.0555405i 0.999614 + 0.0277702i \(0.00884068\pi\)
−0.999614 + 0.0277702i \(0.991159\pi\)
\(14\) 75.4429 1.44021
\(15\) −51.6543 + 15.7921i −0.889139 + 0.271833i
\(16\) −79.5876 −1.24356
\(17\) 37.1200i 0.529584i 0.964306 + 0.264792i \(0.0853032\pi\)
−0.964306 + 0.264792i \(0.914697\pi\)
\(18\) 75.4377 50.8824i 0.987824 0.666283i
\(19\) 116.745 1.40964 0.704818 0.709389i \(-0.251029\pi\)
0.704818 + 0.709389i \(0.251029\pi\)
\(20\) 34.9049i 0.390249i
\(21\) −34.0081 111.237i −0.353389 1.15590i
\(22\) 98.8095 0.957557
\(23\) −70.3128 −0.637445 −0.318723 0.947848i \(-0.603254\pi\)
−0.318723 + 0.947848i \(0.603254\pi\)
\(24\) 23.7673 + 77.7405i 0.202145 + 0.661196i
\(25\) 16.9423 0.135539
\(26\) 8.77349i 0.0661778i
\(27\) −109.029 88.2926i −0.777138 0.629330i
\(28\) −75.1674 −0.507333
\(29\) 82.7478i 0.529858i 0.964268 + 0.264929i \(0.0853485\pi\)
−0.964268 + 0.264929i \(0.914651\pi\)
\(30\) 174.082 53.2214i 1.05943 0.323895i
\(31\) 269.641i 1.56222i −0.624392 0.781112i \(-0.714653\pi\)
0.624392 0.781112i \(-0.285347\pi\)
\(32\) 143.063 0.790321
\(33\) −44.5412 145.690i −0.234959 0.768526i
\(34\) 125.099i 0.631011i
\(35\) 232.701i 1.12382i
\(36\) −75.1622 + 50.6966i −0.347973 + 0.234706i
\(37\) 248.510i 1.10418i −0.833783 0.552092i \(-0.813830\pi\)
0.833783 0.552092i \(-0.186170\pi\)
\(38\) −393.446 −1.67961
\(39\) −12.9361 + 3.95490i −0.0531137 + 0.0162382i
\(40\) 162.628i 0.642845i
\(41\) 129.586i 0.493608i −0.969065 0.246804i \(-0.920620\pi\)
0.969065 0.246804i \(-0.0793803\pi\)
\(42\) 114.612 + 374.884i 0.421071 + 1.37728i
\(43\) 161.471i 0.572654i −0.958132 0.286327i \(-0.907566\pi\)
0.958132 0.286327i \(-0.0924343\pi\)
\(44\) −98.4487 −0.337311
\(45\) −156.945 232.685i −0.519911 0.770814i
\(46\) 236.964 0.759531
\(47\) −349.870 −1.08583 −0.542913 0.839789i \(-0.682678\pi\)
−0.542913 + 0.839789i \(0.682678\pi\)
\(48\) −120.908 395.480i −0.363576 1.18922i
\(49\) 158.120 0.460991
\(50\) −57.0980 −0.161497
\(51\) −184.453 + 56.3922i −0.506444 + 0.154833i
\(52\) 8.74145i 0.0233119i
\(53\) 264.779i 0.686230i −0.939293 0.343115i \(-0.888518\pi\)
0.939293 0.343115i \(-0.111482\pi\)
\(54\) 367.444 + 297.558i 0.925978 + 0.749862i
\(55\) 304.775i 0.747196i
\(56\) −350.219 −0.835713
\(57\) 177.357 + 580.117i 0.412132 + 1.34804i
\(58\) 278.872i 0.631339i
\(59\) 404.169 + 205.003i 0.891836 + 0.452358i
\(60\) −173.447 + 53.0271i −0.373197 + 0.114096i
\(61\) 623.548i 1.30881i 0.756146 + 0.654403i \(0.227080\pi\)
−0.756146 + 0.654403i \(0.772920\pi\)
\(62\) 908.727i 1.86143i
\(63\) 501.085 337.980i 1.00208 0.675896i
\(64\) 154.558 0.301871
\(65\) −27.0615 −0.0516395
\(66\) 150.110 + 490.995i 0.279959 + 0.915718i
\(67\) 11.5921i 0.0211373i −0.999944 0.0105687i \(-0.996636\pi\)
0.999944 0.0105687i \(-0.00336417\pi\)
\(68\) 124.643i 0.222282i
\(69\) −106.818 349.392i −0.186368 0.609593i
\(70\) 784.235i 1.33906i
\(71\) 97.1804i 0.162439i −0.996696 0.0812196i \(-0.974118\pi\)
0.996696 0.0812196i \(-0.0258815\pi\)
\(72\) −350.194 + 236.205i −0.573205 + 0.386625i
\(73\) 562.273i 0.901495i 0.892652 + 0.450747i \(0.148843\pi\)
−0.892652 + 0.450747i \(0.851157\pi\)
\(74\) 837.513i 1.31566i
\(75\) 25.7386 + 84.1883i 0.0396271 + 0.129616i
\(76\) 392.009 0.591665
\(77\) 656.329 0.971372
\(78\) 43.5964 13.3286i 0.0632862 0.0193482i
\(79\) −599.822 −0.854244 −0.427122 0.904194i \(-0.640472\pi\)
−0.427122 + 0.904194i \(0.640472\pi\)
\(80\) 827.320i 1.15621i
\(81\) 273.100 675.912i 0.374623 0.927177i
\(82\) 436.722i 0.588145i
\(83\) −499.474 −0.660534 −0.330267 0.943887i \(-0.607139\pi\)
−0.330267 + 0.943887i \(0.607139\pi\)
\(84\) −114.193 373.515i −0.148328 0.485165i
\(85\) −385.865 −0.492388
\(86\) 544.180i 0.682331i
\(87\) −411.183 + 125.709i −0.506707 + 0.154913i
\(88\) −458.690 −0.555643
\(89\) −530.960 −0.632378 −0.316189 0.948696i \(-0.602403\pi\)
−0.316189 + 0.948696i \(0.602403\pi\)
\(90\) 528.927 + 784.180i 0.619486 + 0.918443i
\(91\) 58.2768i 0.0671326i
\(92\) −236.099 −0.267554
\(93\) 1339.88 409.635i 1.49396 0.456743i
\(94\) 1179.11 1.29379
\(95\) 1213.57i 1.31063i
\(96\) 217.340 + 710.898i 0.231064 + 0.755788i
\(97\) 1527.88i 1.59930i 0.600464 + 0.799652i \(0.294983\pi\)
−0.600464 + 0.799652i \(0.705017\pi\)
\(98\) −532.886 −0.549282
\(99\) 656.283 442.661i 0.666252 0.449384i
\(100\) 56.8895 0.0568895
\(101\) −257.690 −0.253872 −0.126936 0.991911i \(-0.540514\pi\)
−0.126936 + 0.991911i \(0.540514\pi\)
\(102\) 621.633 190.049i 0.603440 0.184487i
\(103\) 1232.61i 1.17916i 0.807712 + 0.589578i \(0.200706\pi\)
−0.807712 + 0.589578i \(0.799294\pi\)
\(104\) 40.7280i 0.0384011i
\(105\) 1156.32 353.517i 1.07472 0.328568i
\(106\) 892.342i 0.817660i
\(107\) 1418.59i 1.28168i −0.767673 0.640842i \(-0.778586\pi\)
0.767673 0.640842i \(-0.221414\pi\)
\(108\) −366.102 296.472i −0.326187 0.264148i
\(109\) 2213.07i 1.94471i −0.233498 0.972357i \(-0.575017\pi\)
0.233498 0.972357i \(-0.424983\pi\)
\(110\) 1027.13i 0.890302i
\(111\) 1234.87 377.533i 1.05594 0.322828i
\(112\) 1781.63 1.50310
\(113\) −2305.55 −1.91936 −0.959682 0.281088i \(-0.909305\pi\)
−0.959682 + 0.281088i \(0.909305\pi\)
\(114\) −597.717 1955.08i −0.491065 1.60622i
\(115\) 730.907i 0.592674i
\(116\) 277.853i 0.222397i
\(117\) −39.3047 58.2727i −0.0310574 0.0460454i
\(118\) −1362.11 690.889i −1.06264 0.538996i
\(119\) 830.957i 0.640115i
\(120\) −808.119 + 247.063i −0.614757 + 0.187947i
\(121\) −471.389 −0.354162
\(122\) 2101.44i 1.55947i
\(123\) 643.927 196.865i 0.472040 0.144315i
\(124\) 905.408i 0.655710i
\(125\) 1475.50i 1.05578i
\(126\) −1688.73 + 1139.04i −1.19400 + 0.805346i
\(127\) −587.658 −0.410600 −0.205300 0.978699i \(-0.565817\pi\)
−0.205300 + 0.978699i \(0.565817\pi\)
\(128\) −1665.39 −1.15001
\(129\) 802.368 245.305i 0.547632 0.167425i
\(130\) 91.2011 0.0615297
\(131\) 830.179 0.553688 0.276844 0.960915i \(-0.410711\pi\)
0.276844 + 0.960915i \(0.410711\pi\)
\(132\) −149.562 489.203i −0.0986189 0.322573i
\(133\) −2613.41 −1.70385
\(134\) 39.0670i 0.0251856i
\(135\) 917.809 1133.37i 0.585129 0.722555i
\(136\) 580.733i 0.366158i
\(137\) 513.844i 0.320443i 0.987081 + 0.160221i \(0.0512208\pi\)
−0.987081 + 0.160221i \(0.948779\pi\)
\(138\) 359.992 + 1177.50i 0.222062 + 0.726344i
\(139\) −1894.55 −1.15607 −0.578033 0.816013i \(-0.696180\pi\)
−0.578033 + 0.816013i \(0.696180\pi\)
\(140\) 781.372i 0.471700i
\(141\) −531.518 1738.54i −0.317460 1.03838i
\(142\) 327.511i 0.193550i
\(143\) 76.3265i 0.0446346i
\(144\) 1781.50 1201.62i 1.03096 0.695379i
\(145\) −860.170 −0.492643
\(146\) 1894.94i 1.07415i
\(147\) 240.214 + 785.715i 0.134779 + 0.440848i
\(148\) 834.455i 0.463458i
\(149\) −2830.23 −1.55612 −0.778058 0.628193i \(-0.783795\pi\)
−0.778058 + 0.628193i \(0.783795\pi\)
\(150\) −86.7425 283.726i −0.0472166 0.154441i
\(151\) 2008.00i 1.08218i −0.840965 0.541089i \(-0.818012\pi\)
0.840965 0.541089i \(-0.181988\pi\)
\(152\) 1826.44 0.974631
\(153\) −560.438 830.899i −0.296136 0.439047i
\(154\) −2211.92 −1.15741
\(155\) 2802.94 1.45250
\(156\) −43.4373 + 13.2799i −0.0222934 + 0.00681566i
\(157\) 1331.26i 0.676726i −0.941016 0.338363i \(-0.890127\pi\)
0.941016 0.338363i \(-0.109873\pi\)
\(158\) 2021.48 1.01785
\(159\) 1315.72 402.249i 0.656246 0.200631i
\(160\) 1487.15i 0.734812i
\(161\) 1574.00 0.770489
\(162\) −920.384 + 2277.92i −0.446372 + 1.10475i
\(163\) 462.931 0.222451 0.111226 0.993795i \(-0.464522\pi\)
0.111226 + 0.993795i \(0.464522\pi\)
\(164\) 435.127i 0.207181i
\(165\) 1514.46 463.009i 0.714548 0.218456i
\(166\) 1683.30 0.787042
\(167\) 3421.98i 1.58563i 0.609460 + 0.792817i \(0.291386\pi\)
−0.609460 + 0.792817i \(0.708614\pi\)
\(168\) −532.048 1740.28i −0.244335 0.799198i
\(169\) 2190.22 0.996915
\(170\) 1300.42 0.586692
\(171\) −2613.23 + 1762.61i −1.16865 + 0.788248i
\(172\) 542.193i 0.240359i
\(173\) −1531.18 −0.672910 −0.336455 0.941699i \(-0.609228\pi\)
−0.336455 + 0.941699i \(0.609228\pi\)
\(174\) 1385.74 423.658i 0.603753 0.184583i
\(175\) −379.266 −0.163828
\(176\) 2333.44 0.999373
\(177\) −404.675 + 2319.80i −0.171849 + 0.985123i
\(178\) 1789.41 0.753494
\(179\) 2200.21 0.918723 0.459362 0.888249i \(-0.348078\pi\)
0.459362 + 0.888249i \(0.348078\pi\)
\(180\) −526.995 781.317i −0.218222 0.323533i
\(181\) −2254.70 −0.925913 −0.462956 0.886381i \(-0.653211\pi\)
−0.462956 + 0.886381i \(0.653211\pi\)
\(182\) 196.401i 0.0799901i
\(183\) −3098.48 + 947.285i −1.25162 + 0.382652i
\(184\) −1100.03 −0.440734
\(185\) 2583.28 1.02663
\(186\) −4515.56 + 1380.53i −1.78009 + 0.544221i
\(187\) 1088.33i 0.425595i
\(188\) −1174.80 −0.455752
\(189\) 2440.70 + 1976.49i 0.939338 + 0.760681i
\(190\) 4089.90i 1.56164i
\(191\) 2228.16 0.844104 0.422052 0.906572i \(-0.361310\pi\)
0.422052 + 0.906572i \(0.361310\pi\)
\(192\) 234.802 + 768.015i 0.0882572 + 0.288681i
\(193\) 2575.61 0.960603 0.480301 0.877104i \(-0.340527\pi\)
0.480301 + 0.877104i \(0.340527\pi\)
\(194\) 5149.16i 1.90561i
\(195\) −41.1115 134.472i −0.0150977 0.0493832i
\(196\) 530.940 0.193491
\(197\) 4723.13i 1.70817i 0.520136 + 0.854083i \(0.325881\pi\)
−0.520136 + 0.854083i \(0.674119\pi\)
\(198\) −2211.77 + 1491.83i −0.793855 + 0.535452i
\(199\) 425.662 0.151630 0.0758151 0.997122i \(-0.475844\pi\)
0.0758151 + 0.997122i \(0.475844\pi\)
\(200\) 265.058 0.0937123
\(201\) 57.6025 17.6106i 0.0202138 0.00617987i
\(202\) 868.450 0.302495
\(203\) 1852.37i 0.640447i
\(204\) −619.363 + 189.355i −0.212569 + 0.0649879i
\(205\) 1347.06 0.458939
\(206\) 4154.08i 1.40499i
\(207\) 1573.89 1061.58i 0.528469 0.356450i
\(208\) 207.191i 0.0690677i
\(209\) −3422.85 −1.13284
\(210\) −3896.95 + 1191.40i −1.28055 + 0.391497i
\(211\) 436.103i 0.142287i −0.997466 0.0711435i \(-0.977335\pi\)
0.997466 0.0711435i \(-0.0226648\pi\)
\(212\) 889.084i 0.288031i
\(213\) 482.900 147.635i 0.155342 0.0474920i
\(214\) 4780.84i 1.52716i
\(215\) 1678.50 0.532433
\(216\) −1705.74 1381.32i −0.537318 0.435123i
\(217\) 6036.10i 1.88828i
\(218\) 7458.36i 2.31717i
\(219\) −2794.00 + 854.198i −0.862105 + 0.263568i
\(220\) 1023.38i 0.313620i
\(221\) −96.6345 −0.0294133
\(222\) −4161.70 + 1272.34i −1.25817 + 0.384657i
\(223\) −3186.19 −0.956785 −0.478392 0.878146i \(-0.658780\pi\)
−0.478392 + 0.878146i \(0.658780\pi\)
\(224\) −3202.57 −0.955272
\(225\) −379.240 + 255.796i −0.112367 + 0.0757913i
\(226\) 7770.03 2.28697
\(227\) −2499.16 −0.730727 −0.365364 0.930865i \(-0.619055\pi\)
−0.365364 + 0.930865i \(0.619055\pi\)
\(228\) 595.535 + 1947.94i 0.172984 + 0.565813i
\(229\) 1010.52i 0.291602i 0.989314 + 0.145801i \(0.0465759\pi\)
−0.989314 + 0.145801i \(0.953424\pi\)
\(230\) 2463.26i 0.706185i
\(231\) 997.087 + 3261.37i 0.283998 + 0.928929i
\(232\) 1294.57i 0.366347i
\(233\) −5588.38 −1.57128 −0.785638 0.618687i \(-0.787665\pi\)
−0.785638 + 0.618687i \(0.787665\pi\)
\(234\) 132.462 + 196.387i 0.0370057 + 0.0548642i
\(235\) 3636.93i 1.00956i
\(236\) 1357.13 + 688.366i 0.374330 + 0.189868i
\(237\) −911.242 2980.58i −0.249753 0.816918i
\(238\) 2800.44i 0.762713i
\(239\) 6666.77i 1.80434i −0.431379 0.902171i \(-0.641973\pi\)
0.431379 0.902171i \(-0.358027\pi\)
\(240\) 4111.04 1256.85i 1.10569 0.338040i
\(241\) −3807.75 −1.01775 −0.508877 0.860839i \(-0.669939\pi\)
−0.508877 + 0.860839i \(0.669939\pi\)
\(242\) 1588.65 0.421992
\(243\) 3773.57 + 330.227i 0.996193 + 0.0871772i
\(244\) 2093.77i 0.549344i
\(245\) 1643.67i 0.428613i
\(246\) −2170.12 + 663.462i −0.562447 + 0.171955i
\(247\) 303.922i 0.0782918i
\(248\) 4218.46i 1.08013i
\(249\) −758.794 2481.94i −0.193119 0.631673i
\(250\) 4972.64i 1.25799i
\(251\) 2293.16i 0.576666i −0.957530 0.288333i \(-0.906899\pi\)
0.957530 0.288333i \(-0.0931009\pi\)
\(252\) 1682.56 1134.88i 0.420600 0.283693i
\(253\) 2061.51 0.512277
\(254\) 1980.49 0.489240
\(255\) −586.201 1917.41i −0.143958 0.470873i
\(256\) 4376.12 1.06839
\(257\) 4853.05i 1.17792i 0.808163 + 0.588959i \(0.200462\pi\)
−0.808163 + 0.588959i \(0.799538\pi\)
\(258\) −2704.09 + 826.711i −0.652517 + 0.199491i
\(259\) 5563.07i 1.33464i
\(260\) −90.8681 −0.0216746
\(261\) −1249.33 1852.24i −0.296289 0.439275i
\(262\) −2797.82 −0.659732
\(263\) 1427.79i 0.334759i −0.985893 0.167379i \(-0.946470\pi\)
0.985893 0.167379i \(-0.0535305\pi\)
\(264\) −696.836 2279.28i −0.162452 0.531364i
\(265\) 2752.40 0.638032
\(266\) 8807.56 2.03017
\(267\) −806.628 2638.40i −0.184887 0.604747i
\(268\) 38.9243i 0.00887195i
\(269\) −1987.25 −0.450426 −0.225213 0.974310i \(-0.572308\pi\)
−0.225213 + 0.974310i \(0.572308\pi\)
\(270\) −3093.14 + 3819.61i −0.697195 + 0.860941i
\(271\) 6430.82 1.44149 0.720746 0.693199i \(-0.243799\pi\)
0.720746 + 0.693199i \(0.243799\pi\)
\(272\) 2954.29i 0.658567i
\(273\) 289.584 88.5333i 0.0641993 0.0196274i
\(274\) 1731.73i 0.381815i
\(275\) −496.734 −0.108924
\(276\) −358.678 1173.20i −0.0782242 0.255864i
\(277\) 2442.33 0.529766 0.264883 0.964281i \(-0.414667\pi\)
0.264883 + 0.964281i \(0.414667\pi\)
\(278\) 6384.88 1.37748
\(279\) 4071.04 + 6035.68i 0.873573 + 1.29515i
\(280\) 3640.55i 0.777016i
\(281\) 8202.30i 1.74131i −0.491894 0.870655i \(-0.663695\pi\)
0.491894 0.870655i \(-0.336305\pi\)
\(282\) 1791.29 + 5859.13i 0.378261 + 1.23726i
\(283\) 4649.58i 0.976639i −0.872665 0.488320i \(-0.837610\pi\)
0.872665 0.488320i \(-0.162390\pi\)
\(284\) 326.315i 0.0681805i
\(285\) −6030.37 + 1843.64i −1.25336 + 0.383185i
\(286\) 257.231i 0.0531832i
\(287\) 2900.87i 0.596631i
\(288\) −3202.35 + 2159.97i −0.655209 + 0.441936i
\(289\) 3535.11 0.719541
\(290\) 2898.89 0.586996
\(291\) −7592.20 + 2321.13i −1.52942 + 0.467585i
\(292\) 1888.02i 0.378384i
\(293\) 3469.71i 0.691817i −0.938268 0.345909i \(-0.887571\pi\)
0.938268 0.345909i \(-0.112429\pi\)
\(294\) −809.553 2647.97i −0.160592 0.525281i
\(295\) −2131.02 + 4201.37i −0.420587 + 0.829197i
\(296\) 3887.88i 0.763440i
\(297\) 3196.65 + 2588.66i 0.624540 + 0.505756i
\(298\) 9538.26 1.85415
\(299\) 183.046i 0.0354040i
\(300\) 86.4258 + 282.690i 0.0166326 + 0.0544038i
\(301\) 3614.64i 0.692175i
\(302\) 6767.24i 1.28944i
\(303\) −391.479 1280.49i −0.0742240 0.242780i
\(304\) −9291.43 −1.75296
\(305\) −6481.83 −1.21688
\(306\) 1888.75 + 2800.25i 0.352853 + 0.523135i
\(307\) 307.080 0.0570879 0.0285439 0.999593i \(-0.490913\pi\)
0.0285439 + 0.999593i \(0.490913\pi\)
\(308\) 2203.84 0.407713
\(309\) −6125.00 + 1872.57i −1.12763 + 0.344747i
\(310\) −9446.29 −1.73069
\(311\) 3479.56i 0.634430i −0.948354 0.317215i \(-0.897252\pi\)
0.948354 0.317215i \(-0.102748\pi\)
\(312\) −202.382 + 61.8734i −0.0367232 + 0.0112272i
\(313\) 7489.91i 1.35257i 0.736640 + 0.676285i \(0.236411\pi\)
−0.736640 + 0.676285i \(0.763589\pi\)
\(314\) 4486.52i 0.806335i
\(315\) 3513.33 + 5208.82i 0.628424 + 0.931694i
\(316\) −2014.10 −0.358551
\(317\) 1313.10i 0.232654i 0.993211 + 0.116327i \(0.0371120\pi\)
−0.993211 + 0.116327i \(0.962888\pi\)
\(318\) −4434.15 + 1355.63i −0.781933 + 0.239057i
\(319\) 2426.09i 0.425816i
\(320\) 1606.64i 0.280669i
\(321\) 7049.12 2155.10i 1.22568 0.374723i
\(322\) −5304.60 −0.918056
\(323\) 4333.56i 0.746520i
\(324\) 917.023 2269.60i 0.157240 0.389163i
\(325\) 44.1060i 0.00752788i
\(326\) −1560.14 −0.265056
\(327\) 10997.0 3362.07i 1.85974 0.568571i
\(328\) 2027.34i 0.341284i
\(329\) 7832.09 1.31245
\(330\) −5103.94 + 1560.41i −0.851401 + 0.260296i
\(331\) −9986.34 −1.65830 −0.829152 0.559023i \(-0.811176\pi\)
−0.829152 + 0.559023i \(0.811176\pi\)
\(332\) −1677.15 −0.277245
\(333\) 3752.01 + 5562.68i 0.617444 + 0.915415i
\(334\) 11532.6i 1.88932i
\(335\) 120.501 0.0196527
\(336\) 2706.62 + 8853.09i 0.439459 + 1.43743i
\(337\) 3454.99i 0.558473i −0.960222 0.279236i \(-0.909919\pi\)
0.960222 0.279236i \(-0.0900813\pi\)
\(338\) −7381.35 −1.18785
\(339\) −3502.56 11456.5i −0.561160 1.83550i
\(340\) −1295.67 −0.206669
\(341\) 7905.63i 1.25547i
\(342\) 8806.95 5940.25i 1.39247 0.939216i
\(343\) 4138.67 0.651508
\(344\) 2526.17i 0.395937i
\(345\) 3631.96 1110.38i 0.566777 0.173279i
\(346\) 5160.29 0.801789
\(347\) −3191.72 −0.493776 −0.246888 0.969044i \(-0.579408\pi\)
−0.246888 + 0.969044i \(0.579408\pi\)
\(348\) −1380.68 + 422.111i −0.212679 + 0.0650216i
\(349\) 285.854i 0.0438435i 0.999760 + 0.0219218i \(0.00697848\pi\)
−0.999760 + 0.0219218i \(0.993022\pi\)
\(350\) 1278.18 0.195204
\(351\) 229.852 283.837i 0.0349533 0.0431626i
\(352\) −4194.49 −0.635134
\(353\) 1417.10 0.213668 0.106834 0.994277i \(-0.465929\pi\)
0.106834 + 0.994277i \(0.465929\pi\)
\(354\) 1363.81 7818.05i 0.204762 1.17380i
\(355\) 1010.20 0.151030
\(356\) −1782.88 −0.265428
\(357\) 4129.12 1262.38i 0.612146 0.187149i
\(358\) −7415.01 −1.09468
\(359\) 1416.48i 0.208242i −0.994565 0.104121i \(-0.966797\pi\)
0.994565 0.104121i \(-0.0332029\pi\)
\(360\) −2455.37 3640.30i −0.359470 0.532946i
\(361\) 6770.32 0.987071
\(362\) 7598.64 1.10325
\(363\) −716.128 2342.38i −0.103545 0.338687i
\(364\) 195.684i 0.0281775i
\(365\) −5844.88 −0.838178
\(366\) 10442.3 3192.48i 1.49133 0.455939i
\(367\) 12370.0i 1.75943i −0.475503 0.879714i \(-0.657734\pi\)
0.475503 0.879714i \(-0.342266\pi\)
\(368\) 5596.03 0.792699
\(369\) 1956.49 + 2900.67i 0.276018 + 0.409222i
\(370\) −8706.02 −1.22325
\(371\) 5927.27i 0.829456i
\(372\) 4499.08 1375.48i 0.627060 0.191708i
\(373\) 7175.24 0.996031 0.498016 0.867168i \(-0.334062\pi\)
0.498016 + 0.867168i \(0.334062\pi\)
\(374\) 3667.81i 0.507106i
\(375\) −7331.93 + 2241.56i −1.00965 + 0.308677i
\(376\) −5473.63 −0.750747
\(377\) −215.418 −0.0294286
\(378\) −8225.50 6661.05i −1.11924 0.906369i
\(379\) −7996.12 −1.08373 −0.541864 0.840466i \(-0.682281\pi\)
−0.541864 + 0.840466i \(0.682281\pi\)
\(380\) 4074.97i 0.550109i
\(381\) −892.762 2920.14i −0.120046 0.392660i
\(382\) −7509.20 −1.00577
\(383\) 4584.32i 0.611613i 0.952094 + 0.305807i \(0.0989261\pi\)
−0.952094 + 0.305807i \(0.901074\pi\)
\(384\) −2530.03 8275.50i −0.336225 1.09976i
\(385\) 6822.59i 0.903147i
\(386\) −8680.15 −1.14458
\(387\) 2437.89 + 3614.39i 0.320220 + 0.474754i
\(388\) 5130.36i 0.671274i
\(389\) 10782.3i 1.40536i −0.711504 0.702682i \(-0.751986\pi\)
0.711504 0.702682i \(-0.248014\pi\)
\(390\) 138.551 + 453.188i 0.0179893 + 0.0588413i
\(391\) 2610.01i 0.337580i
\(392\) 2473.75 0.318732
\(393\) 1261.20 + 4125.25i 0.161880 + 0.529495i
\(394\) 15917.6i 2.03532i
\(395\) 6235.20i 0.794245i
\(396\) 2203.69 1486.38i 0.279645 0.188620i
\(397\) 14023.6i 1.77285i 0.462869 + 0.886426i \(0.346820\pi\)
−0.462869 + 0.886426i \(0.653180\pi\)
\(398\) −1434.54 −0.180671
\(399\) −3970.26 12986.3i −0.498149 1.62940i
\(400\) −1348.40 −0.168550
\(401\) 11372.8 1.41629 0.708143 0.706069i \(-0.249533\pi\)
0.708143 + 0.706069i \(0.249533\pi\)
\(402\) −194.128 + 59.3501i −0.0240852 + 0.00736346i
\(403\) 701.956 0.0867666
\(404\) −865.279 −0.106558
\(405\) 7026.16 + 2838.89i 0.862056 + 0.348311i
\(406\) 6242.74i 0.763108i
\(407\) 7286.10i 0.887367i
\(408\) −2885.73 + 882.242i −0.350159 + 0.107053i
\(409\) 12028.5i 1.45421i 0.686527 + 0.727104i \(0.259134\pi\)
−0.686527 + 0.727104i \(0.740866\pi\)
\(410\) −4539.76 −0.546836
\(411\) −2553.35 + 780.625i −0.306441 + 0.0936871i
\(412\) 4138.91i 0.494926i
\(413\) −9047.61 4589.14i −1.07798 0.546772i
\(414\) −5304.23 + 3577.69i −0.629683 + 0.424719i
\(415\) 5192.07i 0.614141i
\(416\) 372.437i 0.0438948i
\(417\) −2878.17 9414.21i −0.337996 1.10555i
\(418\) 11535.5 1.34981
\(419\) 6467.36 0.754060 0.377030 0.926201i \(-0.376945\pi\)
0.377030 + 0.926201i \(0.376945\pi\)
\(420\) 3882.72 1187.05i 0.451089 0.137910i
\(421\) 11696.5i 1.35404i 0.735964 + 0.677021i \(0.236729\pi\)
−0.735964 + 0.677021i \(0.763271\pi\)
\(422\) 1469.73i 0.169538i
\(423\) 7831.54 5282.34i 0.900195 0.607178i
\(424\) 4142.40i 0.474464i
\(425\) 628.899i 0.0717790i
\(426\) −1627.44 + 497.551i −0.185093 + 0.0565878i
\(427\) 13958.6i 1.58197i
\(428\) 4763.38i 0.537960i
\(429\) 379.275 115.954i 0.0426843 0.0130497i
\(430\) −5656.79 −0.634407
\(431\) −15276.2 −1.70726 −0.853630 0.520880i \(-0.825604\pi\)
−0.853630 + 0.520880i \(0.825604\pi\)
\(432\) 8677.39 + 7027.00i 0.966415 + 0.782608i
\(433\) 8311.84 0.922497 0.461249 0.887271i \(-0.347402\pi\)
0.461249 + 0.887271i \(0.347402\pi\)
\(434\) 20342.5i 2.24993i
\(435\) −1306.76 4274.28i −0.144033 0.471118i
\(436\) 7431.12i 0.816253i
\(437\) −8208.65 −0.898565
\(438\) 9416.17 2878.77i 1.02722 0.314047i
\(439\) −11860.1 −1.28941 −0.644705 0.764431i \(-0.723020\pi\)
−0.644705 + 0.764431i \(0.723020\pi\)
\(440\) 4768.12i 0.516617i
\(441\) −3539.38 + 2387.30i −0.382181 + 0.257779i
\(442\) 325.672 0.0350467
\(443\) −4519.87 −0.484753 −0.242376 0.970182i \(-0.577927\pi\)
−0.242376 + 0.970182i \(0.577927\pi\)
\(444\) 4146.50 1267.69i 0.443208 0.135500i
\(445\) 5519.37i 0.587963i
\(446\) 10737.9 1.14003
\(447\) −4299.64 14063.7i −0.454958 1.48812i
\(448\) −3459.89 −0.364876
\(449\) 7370.48i 0.774687i 0.921935 + 0.387344i \(0.126607\pi\)
−0.921935 + 0.387344i \(0.873393\pi\)
\(450\) 1278.09 862.066i 0.133888 0.0903071i
\(451\) 3799.34i 0.396683i
\(452\) −7741.66 −0.805613
\(453\) 9977.99 3050.53i 1.03489 0.316394i
\(454\) 8422.52 0.870679
\(455\) 605.792 0.0624175
\(456\) 2774.70 + 9075.79i 0.284951 + 0.932046i
\(457\) 8543.74i 0.874528i 0.899333 + 0.437264i \(0.144052\pi\)
−0.899333 + 0.437264i \(0.855948\pi\)
\(458\) 3405.58i 0.347451i
\(459\) 3277.42 4047.17i 0.333283 0.411559i
\(460\) 2454.26i 0.248762i
\(461\) 2030.35i 0.205125i −0.994727 0.102563i \(-0.967296\pi\)
0.994727 0.102563i \(-0.0327042\pi\)
\(462\) −3360.32 10991.3i −0.338390 1.10684i
\(463\) 6633.07i 0.665799i −0.942962 0.332899i \(-0.891973\pi\)
0.942962 0.332899i \(-0.108027\pi\)
\(464\) 6585.70i 0.658909i
\(465\) 4258.18 + 13928.1i 0.424664 + 1.38903i
\(466\) 18833.6 1.87221
\(467\) 477.556 0.0473204 0.0236602 0.999720i \(-0.492468\pi\)
0.0236602 + 0.999720i \(0.492468\pi\)
\(468\) −131.979 195.670i −0.0130357 0.0193266i
\(469\) 259.497i 0.0255490i
\(470\) 12256.9i 1.20292i
\(471\) 6615.17 2022.43i 0.647157 0.197853i
\(472\) 6323.12 + 3207.22i 0.616622 + 0.312764i
\(473\) 4734.19i 0.460208i
\(474\) 3071.01 + 10045.0i 0.297587 + 0.973378i
\(475\) 1977.93 0.191060
\(476\) 2790.21i 0.268675i
\(477\) 3997.64 + 5926.85i 0.383730 + 0.568914i
\(478\) 22467.9i 2.14992i
\(479\) 4268.57i 0.407173i 0.979057 + 0.203587i \(0.0652599\pi\)
−0.979057 + 0.203587i \(0.934740\pi\)
\(480\) −7389.84 + 2259.26i −0.702705 + 0.214835i
\(481\) 646.947 0.0613269
\(482\) 12832.7 1.21268
\(483\) 2391.20 + 7821.39i 0.225266 + 0.736823i
\(484\) −1582.85 −0.148652
\(485\) −15882.4 −1.48698
\(486\) −12717.5 1112.91i −1.18699 0.103874i
\(487\) −8039.94 −0.748100 −0.374050 0.927409i \(-0.622031\pi\)
−0.374050 + 0.927409i \(0.622031\pi\)
\(488\) 9755.25i 0.904917i
\(489\) 703.279 + 2300.36i 0.0650376 + 0.212732i
\(490\) 5539.39i 0.510702i
\(491\) 13575.7i 1.24778i 0.781511 + 0.623892i \(0.214449\pi\)
−0.781511 + 0.623892i \(0.785551\pi\)
\(492\) 2162.20 661.040i 0.198129 0.0605731i
\(493\) −3071.60 −0.280604
\(494\) 1024.26i 0.0932865i
\(495\) 4601.49 + 6822.12i 0.417822 + 0.619457i
\(496\) 21460.1i 1.94271i
\(497\) 2175.45i 0.196343i
\(498\) 2557.24 + 8364.48i 0.230106 + 0.752653i
\(499\) 2461.10 0.220789 0.110395 0.993888i \(-0.464788\pi\)
0.110395 + 0.993888i \(0.464788\pi\)
\(500\) 4954.49i 0.443143i
\(501\) −17004.2 + 5198.63i −1.51635 + 0.463588i
\(502\) 7728.27i 0.687111i
\(503\) −10940.9 −0.969841 −0.484920 0.874558i \(-0.661151\pi\)
−0.484920 + 0.874558i \(0.661151\pi\)
\(504\) 7839.35 5287.61i 0.692842 0.467319i
\(505\) 2678.71i 0.236041i
\(506\) −6947.57 −0.610390
\(507\) 3327.36 + 10883.5i 0.291466 + 0.953356i
\(508\) −1973.26 −0.172341
\(509\) 6598.10 0.574569 0.287284 0.957845i \(-0.407248\pi\)
0.287284 + 0.957845i \(0.407248\pi\)
\(510\) 1975.58 + 6461.93i 0.171530 + 0.561057i
\(511\) 12586.9i 1.08965i
\(512\) −1425.04 −0.123005
\(513\) −12728.6 10307.7i −1.09548 0.887126i
\(514\) 16355.5i 1.40352i
\(515\) −12813.1 −1.09634
\(516\) 2694.22 823.692i 0.229857 0.0702733i
\(517\) 10257.9 0.872613
\(518\) 18748.3i 1.59026i
\(519\) −2326.15 7608.61i −0.196737 0.643508i
\(520\) −423.371 −0.0357039
\(521\) 14069.4i 1.18310i 0.806270 + 0.591548i \(0.201483\pi\)
−0.806270 + 0.591548i \(0.798517\pi\)
\(522\) 4210.41 + 6242.30i 0.353036 + 0.523406i
\(523\) 8391.38 0.701586 0.350793 0.936453i \(-0.385912\pi\)
0.350793 + 0.936453i \(0.385912\pi\)
\(524\) 2787.60 0.232399
\(525\) −576.176 1884.62i −0.0478979 0.156669i
\(526\) 4811.87i 0.398873i
\(527\) 10009.1 0.827328
\(528\) 3544.93 + 11595.1i 0.292184 + 0.955706i
\(529\) −7223.11 −0.593664
\(530\) −9275.97 −0.760231
\(531\) −12142.1 + 1513.33i −0.992322 + 0.123678i
\(532\) −8775.40 −0.715154
\(533\) 337.351 0.0274152
\(534\) 2718.45 + 8891.77i 0.220297 + 0.720571i
\(535\) 14746.3 1.19166
\(536\) 181.356i 0.0146145i
\(537\) 3342.53 + 10933.1i 0.268605 + 0.878581i
\(538\) 6697.29 0.536693
\(539\) −4635.94 −0.370471
\(540\) 3081.85 3805.66i 0.245596 0.303277i
\(541\) 22826.0i 1.81398i −0.421150 0.906991i \(-0.638373\pi\)
0.421150 0.906991i \(-0.361627\pi\)
\(542\) −21672.7 −1.71757
\(543\) −3425.30 11203.8i −0.270707 0.885456i
\(544\) 5310.51i 0.418541i
\(545\) 23005.1 1.80813
\(546\) −975.937 + 298.369i −0.0764950 + 0.0233865i
\(547\) −12977.5 −1.01440 −0.507201 0.861828i \(-0.669320\pi\)
−0.507201 + 0.861828i \(0.669320\pi\)
\(548\) 1725.40i 0.134499i
\(549\) −9414.33 13957.6i −0.731865 1.08505i
\(550\) 1674.06 0.129786
\(551\) 9660.37i 0.746907i
\(552\) −1671.15 5466.15i −0.128856 0.421476i
\(553\) 13427.4 1.03254
\(554\) −8230.97 −0.631228
\(555\) 3924.49 + 12836.6i 0.300153 + 0.981773i
\(556\) −6361.57 −0.485235
\(557\) 22118.7i 1.68258i 0.540582 + 0.841291i \(0.318204\pi\)
−0.540582 + 0.841291i \(0.681796\pi\)
\(558\) −13720.0 20341.1i −1.04088 1.54320i
\(559\) 420.358 0.0318055
\(560\) 18520.1i 1.39753i
\(561\) 5408.01 1653.37i 0.406999 0.124430i
\(562\) 27642.9i 2.07481i
\(563\) 1124.63 0.0841877 0.0420939 0.999114i \(-0.486597\pi\)
0.0420939 + 0.999114i \(0.486597\pi\)
\(564\) −1784.75 5837.74i −0.133247 0.435839i
\(565\) 23966.4i 1.78456i
\(566\) 15669.7i 1.16369i
\(567\) −6113.53 + 15130.8i −0.452812 + 1.12069i
\(568\) 1520.36i 0.112312i
\(569\) −5453.65 −0.401808 −0.200904 0.979611i \(-0.564388\pi\)
−0.200904 + 0.979611i \(0.564388\pi\)
\(570\) 20323.2 6213.32i 1.49341 0.456574i
\(571\) 1714.66i 0.125668i 0.998024 + 0.0628340i \(0.0200139\pi\)
−0.998024 + 0.0628340i \(0.979986\pi\)
\(572\) 256.292i 0.0187344i
\(573\) 3384.99 + 11072.0i 0.246789 + 0.807222i
\(574\) 9776.33i 0.710900i
\(575\) −1191.26 −0.0863984
\(576\) −3459.65 + 2333.52i −0.250264 + 0.168802i
\(577\) 6334.02 0.456999 0.228500 0.973544i \(-0.426618\pi\)
0.228500 + 0.973544i \(0.426618\pi\)
\(578\) −11913.8 −0.857351
\(579\) 3912.83 + 12798.5i 0.280849 + 0.918630i
\(580\) −2888.31 −0.206777
\(581\) 11181.1 0.798397
\(582\) 25586.7 7822.53i 1.82235 0.557138i
\(583\) 7763.09i 0.551482i
\(584\) 8796.63i 0.623300i
\(585\) 605.749 408.575i 0.0428114 0.0288761i
\(586\) 11693.4i 0.824316i
\(587\) −303.276 −0.0213246 −0.0106623 0.999943i \(-0.503394\pi\)
−0.0106623 + 0.999943i \(0.503394\pi\)
\(588\) 806.597 + 2638.30i 0.0565706 + 0.185037i
\(589\) 31479.1i 2.20216i
\(590\) 7181.85 14159.2i 0.501139 0.988008i
\(591\) −23469.7 + 7175.31i −1.63353 + 0.499413i
\(592\) 19778.3i 1.37311i
\(593\) 607.929i 0.0420989i 0.999778 + 0.0210495i \(0.00670075\pi\)
−0.999778 + 0.0210495i \(0.993299\pi\)
\(594\) −10773.1 8724.15i −0.744154 0.602620i
\(595\) 8637.87 0.595156
\(596\) −9503.43 −0.653147
\(597\) 646.661 + 2115.16i 0.0443318 + 0.145005i
\(598\) 616.889i 0.0421847i
\(599\) 24611.8i 1.67882i −0.543499 0.839410i \(-0.682901\pi\)
0.543499 0.839410i \(-0.317099\pi\)
\(600\) 402.673 + 1317.11i 0.0273984 + 0.0896176i
\(601\) 11034.3i 0.748915i 0.927244 + 0.374458i \(0.122171\pi\)
−0.927244 + 0.374458i \(0.877829\pi\)
\(602\) 12181.9i 0.824743i
\(603\) 175.018 + 259.479i 0.0118197 + 0.0175237i
\(604\) 6742.53i 0.454222i
\(605\) 4900.13i 0.329287i
\(606\) 1319.34 + 4315.43i 0.0884397 + 0.289278i
\(607\) −25937.9 −1.73441 −0.867204 0.497953i \(-0.834085\pi\)
−0.867204 + 0.497953i \(0.834085\pi\)
\(608\) 16701.9 1.11406
\(609\) 9204.63 2814.09i 0.612464 0.187246i
\(610\) 21844.7 1.44994
\(611\) 910.817i 0.0603072i
\(612\) −1881.86 2790.02i −0.124297 0.184281i
\(613\) 25833.1i 1.70211i 0.525081 + 0.851053i \(0.324035\pi\)
−0.525081 + 0.851053i \(0.675965\pi\)
\(614\) −1034.90 −0.0680216
\(615\) 2046.43 + 6693.67i 0.134179 + 0.438886i
\(616\) 10268.1 0.671613
\(617\) 2140.04i 0.139635i −0.997560 0.0698174i \(-0.977758\pi\)
0.997560 0.0698174i \(-0.0222417\pi\)
\(618\) 20642.1 6310.82i 1.34360 0.410774i
\(619\) 24476.2 1.58931 0.794655 0.607061i \(-0.207652\pi\)
0.794655 + 0.607061i \(0.207652\pi\)
\(620\) 9411.79 0.609656
\(621\) 7666.17 + 6208.10i 0.495383 + 0.401164i
\(622\) 11726.6i 0.755938i
\(623\) 11885.9 0.764365
\(624\) 1029.55 314.761i 0.0660499 0.0201932i
\(625\) −13220.2 −0.846091
\(626\) 25242.0i 1.61162i
\(627\) −5199.95 17008.5i −0.331206 1.08334i
\(628\) 4470.14i 0.284041i
\(629\) 9224.69 0.584757
\(630\) −11840.4 17554.4i −0.748782 1.11014i
\(631\) 24399.6 1.53936 0.769678 0.638432i \(-0.220417\pi\)
0.769678 + 0.638432i \(0.220417\pi\)
\(632\) −9384.07 −0.590630
\(633\) 2167.04 662.521i 0.136070 0.0416001i
\(634\) 4425.34i 0.277212i
\(635\) 6108.75i 0.381761i
\(636\) 4417.96 1350.68i 0.275445 0.0842108i
\(637\) 411.634i 0.0256036i
\(638\) 8176.27i 0.507369i
\(639\) 1467.23 + 2175.30i 0.0908337 + 0.134669i
\(640\) 17311.8i 1.06924i
\(641\) 30992.3i 1.90971i −0.297075 0.954854i \(-0.596011\pi\)
0.297075 0.954854i \(-0.403989\pi\)
\(642\) −23756.5 + 7262.99i −1.46043 + 0.446491i
\(643\) −12100.0 −0.742111 −0.371056 0.928611i \(-0.621004\pi\)
−0.371056 + 0.928611i \(0.621004\pi\)
\(644\) 5285.23 0.323397
\(645\) 2549.96 + 8340.68i 0.155666 + 0.509169i
\(646\) 14604.7i 0.889496i
\(647\) 7277.03i 0.442179i −0.975254 0.221089i \(-0.929039\pi\)
0.975254 0.221089i \(-0.0709612\pi\)
\(648\) 4272.58 10574.5i 0.259017 0.641057i
\(649\) −11849.9 6010.51i −0.716716 0.363534i
\(650\) 148.643i 0.00896965i
\(651\) −29994.1 + 9169.96i −1.80578 + 0.552072i
\(652\) 1554.45 0.0933693
\(653\) 22976.1i 1.37691i −0.725277 0.688457i \(-0.758288\pi\)
0.725277 0.688457i \(-0.241712\pi\)
\(654\) −37061.4 + 11330.6i −2.21593 + 0.677466i
\(655\) 8629.78i 0.514799i
\(656\) 10313.4i 0.613829i
\(657\) −8489.21 12586.0i −0.504103 0.747377i
\(658\) −26395.2 −1.56382
\(659\) 28281.7 1.67177 0.835886 0.548904i \(-0.184955\pi\)
0.835886 + 0.548904i \(0.184955\pi\)
\(660\) 5085.30 1554.71i 0.299917 0.0916923i
\(661\) −4139.77 −0.243598 −0.121799 0.992555i \(-0.538866\pi\)
−0.121799 + 0.992555i \(0.538866\pi\)
\(662\) 33655.3 1.97591
\(663\) −146.806 480.188i −0.00859950 0.0281281i
\(664\) −7814.14 −0.456698
\(665\) 27166.6i 1.58418i
\(666\) −12644.8 18747.0i −0.735699 1.09074i
\(667\) 5818.23i 0.337755i
\(668\) 11490.4i 0.665537i
\(669\) −4840.41 15832.5i −0.279733 0.914979i
\(670\) −406.105 −0.0234167
\(671\) 18281.9i 1.05181i
\(672\) −4865.31 15913.9i −0.279291 0.913532i
\(673\) 20873.4i 1.19556i 0.801662 + 0.597778i \(0.203950\pi\)
−0.801662 + 0.597778i \(0.796050\pi\)
\(674\) 11643.8i 0.665433i
\(675\) −1847.21 1495.88i −0.105332 0.0852986i
\(676\) 7354.40 0.418434
\(677\) 16752.5i 0.951035i 0.879706 + 0.475518i \(0.157739\pi\)
−0.879706 + 0.475518i \(0.842261\pi\)
\(678\) 11804.1 + 38610.2i 0.668635 + 2.18704i
\(679\) 34202.6i 1.93310i
\(680\) −6036.76 −0.340440
\(681\) −3796.69 12418.6i −0.213641 0.698799i
\(682\) 26643.1i 1.49592i
\(683\) 2366.97 0.132605 0.0663027 0.997800i \(-0.478880\pi\)
0.0663027 + 0.997800i \(0.478880\pi\)
\(684\) −8774.79 + 5918.56i −0.490515 + 0.330851i
\(685\) −5341.45 −0.297936
\(686\) −13947.9 −0.776288
\(687\) −5021.37 + 1535.16i −0.278861 + 0.0852549i
\(688\) 12851.1i 0.712127i
\(689\) 689.300 0.0381135
\(690\) −12240.2 + 3742.15i −0.675329 + 0.206466i
\(691\) 1808.80i 0.0995804i −0.998760 0.0497902i \(-0.984145\pi\)
0.998760 0.0497902i \(-0.0158553\pi\)
\(692\) −5141.45 −0.282440
\(693\) −14691.4 + 9909.27i −0.805309 + 0.543178i
\(694\) 10756.5 0.588346
\(695\) 19693.9i 1.07487i
\(696\) −6432.86 + 1966.69i −0.350340 + 0.107108i
\(697\) 4810.22 0.261406
\(698\) 963.366i 0.0522406i
\(699\) −8489.80 27769.3i −0.459390 1.50262i
\(700\) −1273.51 −0.0687632
\(701\) −28316.6 −1.52568 −0.762841 0.646587i \(-0.776196\pi\)
−0.762841 + 0.646587i \(0.776196\pi\)
\(702\) −774.634 + 956.568i −0.0416477 + 0.0514293i
\(703\) 29012.2i 1.55650i
\(704\) −4531.50 −0.242596
\(705\) 18072.3 5525.17i 0.965449 0.295163i
\(706\) −4775.83 −0.254590
\(707\) 5768.57 0.306859
\(708\) −1358.83 + 7789.50i −0.0721300 + 0.413485i
\(709\) −12039.6 −0.637737 −0.318869 0.947799i \(-0.603303\pi\)
−0.318869 + 0.947799i \(0.603303\pi\)
\(710\) −3404.51 −0.179956
\(711\) 13426.5 9056.12i 0.708204 0.477681i
\(712\) −8306.74 −0.437231
\(713\) 18959.2i 0.995831i
\(714\) −13915.7 + 4254.39i −0.729387 + 0.222992i
\(715\) 793.420 0.0414996
\(716\) 7387.94 0.385615
\(717\) 33127.9 10128.1i 1.72550 0.527531i
\(718\) 4773.73i 0.248125i
\(719\) 19566.3 1.01488 0.507442 0.861686i \(-0.330591\pi\)
0.507442 + 0.861686i \(0.330591\pi\)
\(720\) 12490.9 + 18518.8i 0.646539 + 0.958551i
\(721\) 27592.9i 1.42526i
\(722\) −22816.9 −1.17612
\(723\) −5784.69 18921.1i −0.297559 0.973285i
\(724\) −7570.89 −0.388632
\(725\) 1401.94i 0.0718162i
\(726\) 2413.45 + 7894.16i 0.123377 + 0.403553i
\(727\) −12878.8 −0.657014 −0.328507 0.944502i \(-0.606545\pi\)
−0.328507 + 0.944502i \(0.606545\pi\)
\(728\) 911.725i 0.0464159i
\(729\) 4091.83 + 19253.0i 0.207886 + 0.978153i
\(730\) 19698.0 0.998709
\(731\) 5993.81 0.303268
\(732\) −10404.2 + 3180.83i −0.525340 + 0.160610i
\(733\) −31693.2 −1.59702 −0.798509 0.601983i \(-0.794377\pi\)
−0.798509 + 0.601983i \(0.794377\pi\)
\(734\) 41688.7i 2.09640i
\(735\) −8167.57 + 2497.04i −0.409885 + 0.125312i
\(736\) −10059.2 −0.503786
\(737\) 339.870i 0.0169868i
\(738\) −6593.64 9775.65i −0.328882 0.487597i
\(739\) 22257.6i 1.10793i 0.832541 + 0.553963i \(0.186885\pi\)
−0.832541 + 0.553963i \(0.813115\pi\)
\(740\) 8674.23 0.430907
\(741\) −1510.22 + 461.714i −0.0748709 + 0.0228900i
\(742\) 19975.7i 0.988317i
\(743\) 18899.0i 0.933158i 0.884480 + 0.466579i \(0.154514\pi\)
−0.884480 + 0.466579i \(0.845486\pi\)
\(744\) 20962.0 6408.63i 1.03294 0.315795i
\(745\) 29420.4i 1.44682i
\(746\) −24181.5 −1.18680
\(747\) 11180.3 7541.06i 0.547611 0.369361i
\(748\) 3654.41i 0.178635i
\(749\) 31756.1i 1.54919i
\(750\) 24709.6 7554.38i 1.20302 0.367796i
\(751\) 11556.3i 0.561514i 0.959779 + 0.280757i \(0.0905855\pi\)
−0.959779 + 0.280757i \(0.909415\pi\)
\(752\) 27845.3 1.35028
\(753\) 11395.0 3483.74i 0.551469 0.168598i
\(754\) 725.987 0.0350648
\(755\) 20873.3 1.00617
\(756\) 8195.46 + 6636.73i 0.394267 + 0.319280i
\(757\) −3877.16 −0.186153 −0.0930766 0.995659i \(-0.529670\pi\)
−0.0930766 + 0.995659i \(0.529670\pi\)
\(758\) 26948.0 1.29129
\(759\) 3131.82 + 10243.9i 0.149773 + 0.489893i
\(760\) 18986.0i 0.906177i
\(761\) 12811.7i 0.610280i −0.952307 0.305140i \(-0.901297\pi\)
0.952307 0.305140i \(-0.0987033\pi\)
\(762\) 3008.73 + 9841.27i 0.143038 + 0.467863i
\(763\) 49541.2i 2.35060i
\(764\) 7481.78 0.354295
\(765\) 8637.26 5825.80i 0.408210 0.275336i
\(766\) 15449.8i 0.728752i
\(767\) −533.685 + 1052.17i −0.0251242 + 0.0495330i
\(768\) 6648.15 + 21745.5i 0.312363 + 1.02171i
\(769\) 26411.6i 1.23853i 0.785183 + 0.619264i \(0.212569\pi\)
−0.785183 + 0.619264i \(0.787431\pi\)
\(770\) 22993.1i 1.07612i
\(771\) −24115.4 + 7372.69i −1.12645 + 0.344385i
\(772\) 8648.46 0.403193
\(773\) −3435.09 −0.159834 −0.0799170 0.996802i \(-0.525466\pi\)
−0.0799170 + 0.996802i \(0.525466\pi\)
\(774\) −8216.04 12181.0i −0.381550 0.565681i
\(775\) 4568.34i 0.211742i
\(776\) 23903.3i 1.10577i
\(777\) −27643.5 + 8451.34i −1.27633 + 0.390206i
\(778\) 36338.0i 1.67452i
\(779\) 15128.5i 0.695806i
\(780\) −138.046 451.534i −0.00633695 0.0207276i
\(781\) 2849.24i 0.130543i
\(782\) 8796.10i 0.402235i
\(783\) 7306.02 9021.95i 0.333456 0.41177