Newspace parameters
Level: | \( N \) | \(=\) | \( 177 = 3 \cdot 59 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 177.d (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(10.4433380710\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
176.1 | −5.56568 | −1.93387 | − | 4.82288i | 22.9768 | − | 10.3188i | 10.7633 | + | 26.8426i | −5.13468 | −83.3558 | −19.5203 | + | 18.6536i | 57.4309i | |||||||||||
176.2 | −5.56568 | −1.93387 | + | 4.82288i | 22.9768 | 10.3188i | 10.7633 | − | 26.8426i | −5.13468 | −83.3558 | −19.5203 | − | 18.6536i | − | 57.4309i | |||||||||||
176.3 | −5.02351 | 4.35259 | − | 2.83813i | 17.2357 | 15.7890i | −21.8653 | + | 14.2574i | −18.9623 | −46.3956 | 10.8900 | − | 24.7064i | − | 79.3161i | |||||||||||
176.4 | −5.02351 | 4.35259 | + | 2.83813i | 17.2357 | − | 15.7890i | −21.8653 | − | 14.2574i | −18.9623 | −46.3956 | 10.8900 | + | 24.7064i | 79.3161i | |||||||||||
176.5 | −4.72011 | −4.94573 | − | 1.59367i | 14.2794 | 15.2708i | 23.3444 | + | 7.52230i | 9.03916 | −29.6395 | 21.9204 | + | 15.7637i | − | 72.0799i | |||||||||||
176.6 | −4.72011 | −4.94573 | + | 1.59367i | 14.2794 | − | 15.2708i | 23.3444 | − | 7.52230i | 9.03916 | −29.6395 | 21.9204 | − | 15.7637i | 72.0799i | |||||||||||
176.7 | −4.62765 | 4.25578 | − | 2.98133i | 13.4152 | − | 5.89622i | −19.6943 | + | 13.7966i | 10.0941 | −25.0596 | 9.22335 | − | 25.3758i | 27.2857i | |||||||||||
176.8 | −4.62765 | 4.25578 | + | 2.98133i | 13.4152 | 5.89622i | −19.6943 | − | 13.7966i | 10.0941 | −25.0596 | 9.22335 | + | 25.3758i | − | 27.2857i | |||||||||||
176.9 | −4.28707 | 0.191639 | − | 5.19262i | 10.3790 | 4.91692i | −0.821572 | + | 22.2611i | 31.8159 | −10.1988 | −26.9265 | − | 1.99022i | − | 21.0792i | |||||||||||
176.10 | −4.28707 | 0.191639 | + | 5.19262i | 10.3790 | − | 4.91692i | −0.821572 | − | 22.2611i | 31.8159 | −10.1988 | −26.9265 | + | 1.99022i | 21.0792i | |||||||||||
176.11 | −3.85434 | −4.18856 | − | 3.07505i | 6.85594 | − | 0.146910i | 16.1441 | + | 11.8523i | −24.4419 | 4.40959 | 8.08809 | + | 25.7601i | 0.566243i | |||||||||||
176.12 | −3.85434 | −4.18856 | + | 3.07505i | 6.85594 | 0.146910i | 16.1441 | − | 11.8523i | −24.4419 | 4.40959 | 8.08809 | − | 25.7601i | − | 0.566243i | |||||||||||
176.13 | −3.37014 | 1.51919 | − | 4.96911i | 3.35783 | − | 10.3951i | −5.11987 | + | 16.7466i | −22.3857 | 15.6447 | −22.3841 | − | 15.0980i | 35.0329i | |||||||||||
176.14 | −3.37014 | 1.51919 | + | 4.96911i | 3.35783 | 10.3951i | −5.11987 | − | 16.7466i | −22.3857 | 15.6447 | −22.3841 | + | 15.0980i | − | 35.0329i | |||||||||||
176.15 | −2.68371 | −3.19645 | − | 4.09667i | −0.797724 | − | 15.8157i | 8.57832 | + | 10.9943i | 25.4256 | 23.6105 | −6.56545 | + | 26.1896i | 42.4446i | |||||||||||
176.16 | −2.68371 | −3.19645 | + | 4.09667i | −0.797724 | 15.8157i | 8.57832 | − | 10.9943i | 25.4256 | 23.6105 | −6.56545 | − | 26.1896i | − | 42.4446i | |||||||||||
176.17 | −2.62059 | 5.14935 | − | 0.695815i | −1.13250 | − | 14.1294i | −13.4944 | + | 1.82345i | 10.3672 | 23.9326 | 26.0317 | − | 7.16599i | 37.0275i | |||||||||||
176.18 | −2.62059 | 5.14935 | + | 0.695815i | −1.13250 | 14.1294i | −13.4944 | − | 1.82345i | 10.3672 | 23.9326 | 26.0317 | + | 7.16599i | − | 37.0275i | |||||||||||
176.19 | −2.52893 | 0.100502 | − | 5.19518i | −1.60453 | 17.9211i | −0.254162 | + | 13.1382i | −4.91298 | 24.2892 | −26.9798 | − | 1.04425i | − | 45.3212i | |||||||||||
176.20 | −2.52893 | 0.100502 | + | 5.19518i | −1.60453 | − | 17.9211i | −0.254162 | − | 13.1382i | −4.91298 | 24.2892 | −26.9798 | + | 1.04425i | 45.3212i | |||||||||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
59.b | odd | 2 | 1 | inner |
177.d | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 177.4.d.c | ✓ | 52 |
3.b | odd | 2 | 1 | inner | 177.4.d.c | ✓ | 52 |
59.b | odd | 2 | 1 | inner | 177.4.d.c | ✓ | 52 |
177.d | even | 2 | 1 | inner | 177.4.d.c | ✓ | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
177.4.d.c | ✓ | 52 | 1.a | even | 1 | 1 | trivial |
177.4.d.c | ✓ | 52 | 3.b | odd | 2 | 1 | inner |
177.4.d.c | ✓ | 52 | 59.b | odd | 2 | 1 | inner |
177.4.d.c | ✓ | 52 | 177.d | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(177, [\chi])\):
\(11\!\cdots\!22\)\( T_{2}^{8} + \)\(34\!\cdots\!96\)\( T_{2}^{6} - \)\(61\!\cdots\!48\)\( T_{2}^{4} + \)\(59\!\cdots\!64\)\( T_{2}^{2} - \)\(23\!\cdots\!52\)\( \)">\(T_{2}^{26} - \cdots\) |
\(18\!\cdots\!91\)\( T_{5}^{16} + \)\(19\!\cdots\!20\)\( T_{5}^{14} + \)\(14\!\cdots\!35\)\( T_{5}^{12} + \)\(66\!\cdots\!19\)\( T_{5}^{10} + \)\(19\!\cdots\!97\)\( T_{5}^{8} + \)\(33\!\cdots\!10\)\( T_{5}^{6} + \)\(30\!\cdots\!54\)\( T_{5}^{4} + \)\(10\!\cdots\!96\)\( T_{5}^{2} + \)\(21\!\cdots\!92\)\( \)">\(T_{5}^{26} + \cdots\) |