Properties

Label 177.3.h.a.5.9
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.9
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.869361 + 2.58017i) q^{2} +(2.78047 + 1.12649i) q^{3} +(-2.71713 - 2.06551i) q^{4} +(3.05628 + 1.21773i) q^{5} +(-5.32377 + 6.19477i) q^{6} +(9.38908 - 4.34385i) q^{7} +(-1.32265 + 0.896782i) q^{8} +(6.46204 + 6.26435i) q^{9} +O(q^{10})\) \(q+(-0.869361 + 2.58017i) q^{2} +(2.78047 + 1.12649i) q^{3} +(-2.71713 - 2.06551i) q^{4} +(3.05628 + 1.21773i) q^{5} +(-5.32377 + 6.19477i) q^{6} +(9.38908 - 4.34385i) q^{7} +(-1.32265 + 0.896782i) q^{8} +(6.46204 + 6.26435i) q^{9} +(-5.79898 + 6.82709i) q^{10} +(1.49552 + 0.415228i) q^{11} +(-5.22812 - 8.80390i) q^{12} +(0.591291 - 1.11529i) q^{13} +(3.04538 + 28.0018i) q^{14} +(7.12614 + 6.82875i) q^{15} +(-4.81637 - 17.3470i) q^{16} +(-1.27613 + 2.75830i) q^{17} +(-21.7809 + 11.2272i) q^{18} +(-8.93462 + 1.96666i) q^{19} +(-5.78908 - 9.62152i) q^{20} +(30.9994 - 1.50125i) q^{21} +(-2.37150 + 3.49770i) q^{22} +(-11.6324 - 1.90703i) q^{23} +(-4.68782 + 1.00352i) q^{24} +(-10.2919 - 9.74900i) q^{25} +(2.36360 + 2.49523i) q^{26} +(10.9108 + 24.6973i) q^{27} +(-34.4836 - 7.59042i) q^{28} +(-15.6030 - 46.3080i) q^{29} +(-23.8145 + 12.4500i) q^{30} +(-28.5689 - 6.28848i) q^{31} +(42.5627 + 2.30768i) q^{32} +(3.69049 + 2.83921i) q^{33} +(-6.00747 - 5.69058i) q^{34} +(33.9854 - 1.84263i) q^{35} +(-4.61914 - 30.3684i) q^{36} +(-20.1495 + 29.7183i) q^{37} +(2.69309 - 24.7626i) q^{38} +(2.90044 - 2.43496i) q^{39} +(-5.13445 + 1.13018i) q^{40} +(-47.6813 + 7.81695i) q^{41} +(-23.0762 + 81.2889i) q^{42} +(13.6358 + 49.1119i) q^{43} +(-3.20585 - 4.21723i) q^{44} +(12.1215 + 27.0147i) q^{45} +(15.0332 - 28.3556i) q^{46} +(40.7721 - 16.2451i) q^{47} +(6.14944 - 53.6584i) q^{48} +(37.5639 - 44.2237i) q^{49} +(34.1015 - 18.0795i) q^{50} +(-6.65543 + 6.23183i) q^{51} +(-3.91026 + 1.80908i) q^{52} +(55.3419 - 47.0079i) q^{53} +(-73.2086 + 6.68089i) q^{54} +(4.06508 + 3.09020i) q^{55} +(-8.52302 + 14.1654i) q^{56} +(-27.0579 - 4.59652i) q^{57} +133.047 q^{58} +(58.9149 - 3.16753i) q^{59} +(-5.25781 - 33.2737i) q^{60} +(49.7296 + 16.7559i) q^{61} +(41.0620 - 68.2456i) q^{62} +(87.8840 + 30.7463i) q^{63} +(-16.3019 + 40.9147i) q^{64} +(3.16529 - 2.68862i) q^{65} +(-10.5340 + 7.05379i) q^{66} +(-39.0788 - 57.6369i) q^{67} +(9.16468 - 4.85881i) q^{68} +(-30.1952 - 18.4062i) q^{69} +(-24.7913 + 89.2900i) q^{70} +(28.4913 - 11.3520i) q^{71} +(-14.1648 - 2.49052i) q^{72} +(61.5669 - 6.69581i) q^{73} +(-59.1610 - 77.8250i) q^{74} +(-17.6342 - 38.7005i) q^{75} +(28.3386 + 13.1109i) q^{76} +(15.8452 - 2.59769i) q^{77} +(3.76109 + 9.60048i) q^{78} +(7.60023 - 4.57291i) q^{79} +(6.40385 - 58.8824i) q^{80} +(2.51594 + 80.9609i) q^{81} +(21.2832 - 129.822i) q^{82} +(-138.852 + 7.52833i) q^{83} +(-87.3301 - 59.9504i) q^{84} +(-7.25908 + 6.87616i) q^{85} +(-138.572 - 7.51313i) q^{86} +(8.78186 - 146.335i) q^{87} +(-2.35042 + 0.791948i) q^{88} +(35.6052 + 105.672i) q^{89} +(-80.2405 + 7.79010i) q^{90} +(0.707012 - 13.0401i) q^{91} +(27.6676 + 29.2084i) q^{92} +(-72.3510 - 49.6675i) q^{93} +(6.46944 + 119.322i) q^{94} +(-29.7016 - 4.86933i) q^{95} +(115.745 + 54.3629i) q^{96} +(-2.06475 - 0.224556i) q^{97} +(81.4480 + 135.368i) q^{98} +(7.06295 + 12.0516i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.869361 + 2.58017i −0.434681 + 1.29009i 0.476897 + 0.878959i \(0.341761\pi\)
−0.911578 + 0.411127i \(0.865135\pi\)
\(3\) 2.78047 + 1.12649i 0.926824 + 0.375497i
\(4\) −2.71713 2.06551i −0.679282 0.516377i
\(5\) 3.05628 + 1.21773i 0.611257 + 0.243547i 0.655162 0.755489i \(-0.272601\pi\)
−0.0439048 + 0.999036i \(0.513980\pi\)
\(6\) −5.32377 + 6.19477i −0.887295 + 1.03246i
\(7\) 9.38908 4.34385i 1.34130 0.620550i 0.387742 0.921768i \(-0.373255\pi\)
0.953555 + 0.301217i \(0.0973930\pi\)
\(8\) −1.32265 + 0.896782i −0.165332 + 0.112098i
\(9\) 6.46204 + 6.26435i 0.718005 + 0.696038i
\(10\) −5.79898 + 6.82709i −0.579898 + 0.682709i
\(11\) 1.49552 + 0.415228i 0.135956 + 0.0377480i 0.334840 0.942275i \(-0.391318\pi\)
−0.198884 + 0.980023i \(0.563732\pi\)
\(12\) −5.22812 8.80390i −0.435677 0.733658i
\(13\) 0.591291 1.11529i 0.0454840 0.0857918i −0.859728 0.510752i \(-0.829367\pi\)
0.905212 + 0.424960i \(0.139712\pi\)
\(14\) 3.04538 + 28.0018i 0.217527 + 2.00013i
\(15\) 7.12614 + 6.82875i 0.475076 + 0.455250i
\(16\) −4.81637 17.3470i −0.301023 1.08419i
\(17\) −1.27613 + 2.75830i −0.0750662 + 0.162253i −0.941475 0.337082i \(-0.890560\pi\)
0.866409 + 0.499335i \(0.166422\pi\)
\(18\) −21.7809 + 11.2272i −1.21005 + 0.623733i
\(19\) −8.93462 + 1.96666i −0.470243 + 0.103508i −0.443769 0.896141i \(-0.646359\pi\)
−0.0264739 + 0.999650i \(0.508428\pi\)
\(20\) −5.78908 9.62152i −0.289454 0.481076i
\(21\) 30.9994 1.50125i 1.47616 0.0714880i
\(22\) −2.37150 + 3.49770i −0.107796 + 0.158987i
\(23\) −11.6324 1.90703i −0.505755 0.0829143i −0.0964973 0.995333i \(-0.530764\pi\)
−0.409257 + 0.912419i \(0.634212\pi\)
\(24\) −4.68782 + 1.00352i −0.195326 + 0.0418133i
\(25\) −10.2919 9.74900i −0.411676 0.389960i
\(26\) 2.36360 + 2.49523i 0.0909079 + 0.0959703i
\(27\) 10.9108 + 24.6973i 0.404104 + 0.914713i
\(28\) −34.4836 7.59042i −1.23156 0.271086i
\(29\) −15.6030 46.3080i −0.538034 1.59683i −0.779489 0.626416i \(-0.784521\pi\)
0.241455 0.970412i \(-0.422375\pi\)
\(30\) −23.8145 + 12.4500i −0.793818 + 0.415001i
\(31\) −28.5689 6.28848i −0.921576 0.202854i −0.271250 0.962509i \(-0.587437\pi\)
−0.650327 + 0.759655i \(0.725368\pi\)
\(32\) 42.5627 + 2.30768i 1.33009 + 0.0721151i
\(33\) 3.69049 + 2.83921i 0.111833 + 0.0860367i
\(34\) −6.00747 5.69058i −0.176690 0.167370i
\(35\) 33.9854 1.84263i 0.971011 0.0526467i
\(36\) −4.61914 30.3684i −0.128310 0.843567i
\(37\) −20.1495 + 29.7183i −0.544580 + 0.803196i −0.996022 0.0891045i \(-0.971599\pi\)
0.451442 + 0.892301i \(0.350910\pi\)
\(38\) 2.69309 24.7626i 0.0708709 0.651647i
\(39\) 2.90044 2.43496i 0.0743702 0.0624348i
\(40\) −5.13445 + 1.13018i −0.128361 + 0.0282544i
\(41\) −47.6813 + 7.81695i −1.16296 + 0.190657i −0.712192 0.701985i \(-0.752297\pi\)
−0.450766 + 0.892642i \(0.648849\pi\)
\(42\) −23.0762 + 81.2889i −0.549433 + 1.93545i
\(43\) 13.6358 + 49.1119i 0.317113 + 1.14214i 0.934643 + 0.355589i \(0.115720\pi\)
−0.617530 + 0.786547i \(0.711867\pi\)
\(44\) −3.20585 4.21723i −0.0728603 0.0958460i
\(45\) 12.1215 + 27.0147i 0.269367 + 0.600326i
\(46\) 15.0332 28.3556i 0.326808 0.616426i
\(47\) 40.7721 16.2451i 0.867491 0.345640i 0.106430 0.994320i \(-0.466058\pi\)
0.761061 + 0.648680i \(0.224679\pi\)
\(48\) 6.14944 53.6584i 0.128113 1.11788i
\(49\) 37.5639 44.2237i 0.766610 0.902524i
\(50\) 34.1015 18.0795i 0.682029 0.361589i
\(51\) −6.65543 + 6.23183i −0.130499 + 0.122193i
\(52\) −3.91026 + 1.80908i −0.0751974 + 0.0347900i
\(53\) 55.3419 47.0079i 1.04419 0.886941i 0.0504549 0.998726i \(-0.483933\pi\)
0.993732 + 0.111786i \(0.0356570\pi\)
\(54\) −73.2086 + 6.68089i −1.35571 + 0.123720i
\(55\) 4.06508 + 3.09020i 0.0739106 + 0.0561854i
\(56\) −8.52302 + 14.1654i −0.152197 + 0.252953i
\(57\) −27.0579 4.59652i −0.474699 0.0806407i
\(58\) 133.047 2.29392
\(59\) 58.9149 3.16753i 0.998558 0.0536869i
\(60\) −5.25781 33.2737i −0.0876302 0.554562i
\(61\) 49.7296 + 16.7559i 0.815240 + 0.274686i 0.695874 0.718164i \(-0.255017\pi\)
0.119366 + 0.992850i \(0.461914\pi\)
\(62\) 41.0620 68.2456i 0.662291 1.10074i
\(63\) 87.8840 + 30.7463i 1.39498 + 0.488037i
\(64\) −16.3019 + 40.9147i −0.254718 + 0.639293i
\(65\) 3.16529 2.68862i 0.0486967 0.0413634i
\(66\) −10.5340 + 7.05379i −0.159606 + 0.106876i
\(67\) −39.0788 57.6369i −0.583266 0.860253i 0.415517 0.909586i \(-0.363601\pi\)
−0.998782 + 0.0493328i \(0.984290\pi\)
\(68\) 9.16468 4.85881i 0.134775 0.0714530i
\(69\) −30.1952 18.4062i −0.437611 0.266756i
\(70\) −24.7913 + 89.2900i −0.354161 + 1.27557i
\(71\) 28.4913 11.3520i 0.401286 0.159887i −0.160759 0.986994i \(-0.551394\pi\)
0.562045 + 0.827107i \(0.310015\pi\)
\(72\) −14.1648 2.49052i −0.196733 0.0345906i
\(73\) 61.5669 6.69581i 0.843383 0.0917234i 0.323781 0.946132i \(-0.395046\pi\)
0.519602 + 0.854409i \(0.326080\pi\)
\(74\) −59.1610 77.8250i −0.799474 1.05169i
\(75\) −17.6342 38.7005i −0.235122 0.516007i
\(76\) 28.3386 + 13.1109i 0.372877 + 0.172511i
\(77\) 15.8452 2.59769i 0.205782 0.0337362i
\(78\) 3.76109 + 9.60048i 0.0482191 + 0.123083i
\(79\) 7.60023 4.57291i 0.0962055 0.0578849i −0.466638 0.884448i \(-0.654535\pi\)
0.562844 + 0.826563i \(0.309707\pi\)
\(80\) 6.40385 58.8824i 0.0800481 0.736030i
\(81\) 2.51594 + 80.9609i 0.0310610 + 0.999517i
\(82\) 21.2832 129.822i 0.259551 1.58319i
\(83\) −138.852 + 7.52833i −1.67291 + 0.0907028i −0.866025 0.500000i \(-0.833333\pi\)
−0.806889 + 0.590703i \(0.798850\pi\)
\(84\) −87.3301 59.9504i −1.03964 0.713695i
\(85\) −7.25908 + 6.87616i −0.0854009 + 0.0808960i
\(86\) −138.572 7.51313i −1.61130 0.0873620i
\(87\) 8.78186 146.335i 0.100941 1.68201i
\(88\) −2.35042 + 0.791948i −0.0267093 + 0.00899941i
\(89\) 35.6052 + 105.672i 0.400058 + 1.18733i 0.938682 + 0.344784i \(0.112048\pi\)
−0.538624 + 0.842546i \(0.681056\pi\)
\(90\) −80.2405 + 7.79010i −0.891561 + 0.0865567i
\(91\) 0.707012 13.0401i 0.00776936 0.143297i
\(92\) 27.6676 + 29.2084i 0.300735 + 0.317482i
\(93\) −72.3510 49.6675i −0.777968 0.534059i
\(94\) 6.46944 + 119.322i 0.0688239 + 1.26938i
\(95\) −29.7016 4.86933i −0.312648 0.0512561i
\(96\) 115.745 + 54.3629i 1.20568 + 0.566281i
\(97\) −2.06475 0.224556i −0.0212861 0.00231501i 0.0974698 0.995238i \(-0.468925\pi\)
−0.118756 + 0.992923i \(0.537891\pi\)
\(98\) 81.4480 + 135.368i 0.831102 + 1.38130i
\(99\) 7.06295 + 12.0516i 0.0713429 + 0.121734i
\(100\) 7.82777 + 47.7473i 0.0782777 + 0.477473i
\(101\) −52.0810 + 112.571i −0.515653 + 1.11457i 0.458504 + 0.888693i \(0.348386\pi\)
−0.974157 + 0.225873i \(0.927476\pi\)
\(102\) −10.2932 22.5899i −0.100914 0.221469i
\(103\) −42.1348 + 32.0300i −0.409075 + 0.310971i −0.789397 0.613883i \(-0.789606\pi\)
0.380321 + 0.924854i \(0.375813\pi\)
\(104\) 0.218101 + 2.00541i 0.00209713 + 0.0192828i
\(105\) 96.5710 + 33.1608i 0.919724 + 0.315817i
\(106\) 73.1762 + 183.659i 0.690342 + 1.73263i
\(107\) 49.8116 + 13.8301i 0.465529 + 0.129254i 0.492370 0.870386i \(-0.336131\pi\)
−0.0268404 + 0.999640i \(0.508545\pi\)
\(108\) 21.3663 89.6420i 0.197836 0.830018i
\(109\) −69.8663 131.782i −0.640975 1.20901i −0.964824 0.262898i \(-0.915322\pi\)
0.323849 0.946109i \(-0.395023\pi\)
\(110\) −11.5073 + 7.80212i −0.104611 + 0.0709283i
\(111\) −89.5023 + 59.9326i −0.806327 + 0.539933i
\(112\) −120.574 141.951i −1.07655 1.26742i
\(113\) 91.2623 + 36.3622i 0.807631 + 0.321790i 0.737155 0.675724i \(-0.236169\pi\)
0.0704763 + 0.997513i \(0.477548\pi\)
\(114\) 35.3829 65.8179i 0.310376 0.577350i
\(115\) −33.2295 19.9935i −0.288952 0.173857i
\(116\) −53.2542 + 158.053i −0.459088 + 1.36252i
\(117\) 10.8075 3.50302i 0.0923721 0.0299403i
\(118\) −43.0456 + 154.764i −0.364793 + 1.31156i
\(119\) 31.4412i 0.264212i
\(120\) −15.5493 2.64148i −0.129578 0.0220123i
\(121\) −101.616 61.1401i −0.839798 0.505290i
\(122\) −86.4661 + 113.744i −0.708738 + 0.932329i
\(123\) −141.382 31.9777i −1.14945 0.259981i
\(124\) 64.6364 + 76.0958i 0.521261 + 0.613676i
\(125\) −54.1186 116.975i −0.432949 0.935803i
\(126\) −155.734 + 200.026i −1.23598 + 1.58751i
\(127\) −74.1148 139.795i −0.583581 1.10075i −0.982935 0.183954i \(-0.941110\pi\)
0.399354 0.916797i \(-0.369234\pi\)
\(128\) 38.5546 + 32.7485i 0.301208 + 0.255848i
\(129\) −17.4100 + 151.915i −0.134961 + 1.17763i
\(130\) 4.18532 + 10.5044i 0.0321948 + 0.0808028i
\(131\) −101.971 54.0616i −0.778405 0.412684i 0.0313086 0.999510i \(-0.490033\pi\)
−0.809713 + 0.586826i \(0.800377\pi\)
\(132\) −4.16312 15.3372i −0.0315388 0.116191i
\(133\) −75.3450 + 57.2758i −0.566504 + 0.430645i
\(134\) 182.687 50.7228i 1.36333 0.378528i
\(135\) 3.27178 + 88.7683i 0.0242354 + 0.657543i
\(136\) −0.785720 4.79268i −0.00577735 0.0352403i
\(137\) −10.4508 47.4785i −0.0762833 0.346559i 0.922984 0.384839i \(-0.125743\pi\)
−0.999267 + 0.0382804i \(0.987812\pi\)
\(138\) 73.7416 61.9072i 0.534360 0.448603i
\(139\) 186.929 + 20.3297i 1.34481 + 0.146257i 0.752042 0.659116i \(-0.229069\pi\)
0.592769 + 0.805373i \(0.298035\pi\)
\(140\) −96.1486 65.1904i −0.686776 0.465645i
\(141\) 131.666 + 0.760358i 0.933798 + 0.00539261i
\(142\) 4.52081 + 83.3815i 0.0318367 + 0.587193i
\(143\) 1.34739 1.42242i 0.00942228 0.00994698i
\(144\) 77.5440 142.268i 0.538500 0.987975i
\(145\) 8.70372 160.531i 0.0600257 1.10711i
\(146\) −36.2476 + 164.674i −0.248271 + 1.12791i
\(147\) 154.263 80.6472i 1.04941 0.548621i
\(148\) 116.132 39.1294i 0.784676 0.264388i
\(149\) 13.0992 59.5103i 0.0879141 0.399398i −0.912028 0.410127i \(-0.865484\pi\)
0.999942 + 0.0107295i \(0.00341536\pi\)
\(150\) 115.184 11.8544i 0.767897 0.0790296i
\(151\) −1.42957 + 1.35416i −0.00946736 + 0.00896796i −0.692419 0.721496i \(-0.743455\pi\)
0.682951 + 0.730464i \(0.260696\pi\)
\(152\) 10.0537 10.6136i 0.0661430 0.0698264i
\(153\) −25.5253 + 9.83015i −0.166832 + 0.0642494i
\(154\) −7.07272 + 43.1417i −0.0459268 + 0.280141i
\(155\) −79.6569 54.0087i −0.513915 0.348443i
\(156\) −12.9103 + 0.625224i −0.0827582 + 0.00400784i
\(157\) −90.0228 + 54.1650i −0.573394 + 0.345000i −0.772536 0.634971i \(-0.781012\pi\)
0.199142 + 0.979971i \(0.436184\pi\)
\(158\) 5.19154 + 23.5854i 0.0328579 + 0.149275i
\(159\) 206.831 68.3619i 1.30082 0.429949i
\(160\) 127.274 + 58.8831i 0.795460 + 0.368019i
\(161\) −117.501 + 32.6240i −0.729820 + 0.202634i
\(162\) −211.080 63.8927i −1.30297 0.394400i
\(163\) 132.938 14.4578i 0.815568 0.0886984i 0.309180 0.951004i \(-0.399946\pi\)
0.506389 + 0.862305i \(0.330980\pi\)
\(164\) 145.702 + 77.2464i 0.888427 + 0.471014i
\(165\) 7.82177 + 13.1715i 0.0474047 + 0.0798271i
\(166\) 101.288 364.807i 0.610169 2.19763i
\(167\) −200.253 170.097i −1.19912 1.01854i −0.999250 0.0387200i \(-0.987672\pi\)
−0.199871 0.979822i \(-0.564052\pi\)
\(168\) −39.6552 + 29.7853i −0.236043 + 0.177293i
\(169\) 93.9464 + 138.561i 0.555896 + 0.819885i
\(170\) −11.4309 24.7075i −0.0672407 0.145338i
\(171\) −70.0557 43.2609i −0.409682 0.252988i
\(172\) 64.3906 161.608i 0.374364 0.939582i
\(173\) 147.207 193.647i 0.850906 1.11935i −0.140700 0.990052i \(-0.544935\pi\)
0.991606 0.129296i \(-0.0412717\pi\)
\(174\) 369.934 + 149.876i 2.12606 + 0.861359i
\(175\) −138.980 46.8277i −0.794169 0.267587i
\(176\) 27.9426i 0.158765i
\(177\) 167.379 + 57.5598i 0.945646 + 0.325197i
\(178\) −303.607 −1.70566
\(179\) −42.4596 + 126.016i −0.237205 + 0.703998i 0.761252 + 0.648456i \(0.224585\pi\)
−0.998456 + 0.0555417i \(0.982311\pi\)
\(180\) 22.8633 98.4394i 0.127018 0.546886i
\(181\) 122.476 + 93.1039i 0.676663 + 0.514386i 0.886134 0.463429i \(-0.153381\pi\)
−0.209471 + 0.977815i \(0.567174\pi\)
\(182\) 33.0310 + 13.1607i 0.181489 + 0.0723118i
\(183\) 119.397 + 102.609i 0.652440 + 0.560706i
\(184\) 17.0958 7.90934i 0.0929118 0.0429856i
\(185\) −97.7715 + 66.2907i −0.528494 + 0.358328i
\(186\) 191.050 143.499i 1.02715 0.771500i
\(187\) −3.05379 + 3.59520i −0.0163304 + 0.0192256i
\(188\) −144.337 40.0751i −0.767752 0.213165i
\(189\) 209.724 + 184.490i 1.10965 + 0.976136i
\(190\) 38.3851 72.4020i 0.202027 0.381063i
\(191\) 40.1024 + 368.736i 0.209960 + 1.93055i 0.342785 + 0.939414i \(0.388630\pi\)
−0.132825 + 0.991140i \(0.542405\pi\)
\(192\) −91.4171 + 95.3983i −0.476131 + 0.496866i
\(193\) 50.6840 + 182.547i 0.262612 + 0.945841i 0.970814 + 0.239832i \(0.0770925\pi\)
−0.708203 + 0.706009i \(0.750494\pi\)
\(194\) 2.37441 5.13220i 0.0122392 0.0264546i
\(195\) 11.8297 3.90996i 0.0606651 0.0200511i
\(196\) −193.410 + 42.5728i −0.986787 + 0.217208i
\(197\) 164.082 + 272.706i 0.832902 + 1.38429i 0.921562 + 0.388231i \(0.126914\pi\)
−0.0886603 + 0.996062i \(0.528259\pi\)
\(198\) −37.2356 + 7.74640i −0.188058 + 0.0391232i
\(199\) −105.404 + 155.459i −0.529667 + 0.781201i −0.994560 0.104166i \(-0.966783\pi\)
0.464893 + 0.885367i \(0.346093\pi\)
\(200\) 22.3553 + 3.66497i 0.111777 + 0.0183249i
\(201\) −43.7301 204.280i −0.217563 1.01632i
\(202\) −245.176 232.243i −1.21374 1.14972i
\(203\) −347.653 367.013i −1.71258 1.80794i
\(204\) 30.9555 3.18585i 0.151743 0.0156169i
\(205\) −155.246 34.1723i −0.757300 0.166694i
\(206\) −46.0126 136.561i −0.223362 0.662915i
\(207\) −63.2225 85.1924i −0.305423 0.411557i
\(208\) −22.1949 4.88546i −0.106706 0.0234878i
\(209\) −14.1785 0.768734i −0.0678396 0.00367815i
\(210\) −169.516 + 220.341i −0.807218 + 1.04924i
\(211\) −154.044 145.918i −0.730066 0.691555i 0.229415 0.973329i \(-0.426319\pi\)
−0.959481 + 0.281774i \(0.909077\pi\)
\(212\) −247.466 + 13.4172i −1.16729 + 0.0632888i
\(213\) 92.0071 + 0.531334i 0.431958 + 0.00249452i
\(214\) −78.9885 + 116.499i −0.369105 + 0.544389i
\(215\) −18.1302 + 166.705i −0.0843266 + 0.775370i
\(216\) −36.5792 22.8813i −0.169348 0.105932i
\(217\) −295.552 + 65.0559i −1.36199 + 0.299797i
\(218\) 400.759 65.7011i 1.83834 0.301381i
\(219\) 178.728 + 50.7370i 0.816109 + 0.231676i
\(220\) −4.66253 16.7929i −0.0211933 0.0763314i
\(221\) 2.32175 + 3.05421i 0.0105057 + 0.0138200i
\(222\) −76.8265 283.035i −0.346065 1.27493i
\(223\) 152.075 286.843i 0.681949 1.28629i −0.264795 0.964305i \(-0.585304\pi\)
0.946744 0.321987i \(-0.104351\pi\)
\(224\) 409.649 163.219i 1.82879 0.728657i
\(225\) −5.43553 127.470i −0.0241579 0.566535i
\(226\) −173.161 + 203.861i −0.766198 + 0.902038i
\(227\) −390.023 + 206.777i −1.71816 + 0.910912i −0.749690 + 0.661789i \(0.769798\pi\)
−0.968472 + 0.249123i \(0.919858\pi\)
\(228\) 64.0255 + 68.3776i 0.280814 + 0.299902i
\(229\) 410.042 189.705i 1.79057 0.828408i 0.826426 0.563045i \(-0.190370\pi\)
0.964149 0.265363i \(-0.0854917\pi\)
\(230\) 80.4753 68.3563i 0.349892 0.297201i
\(231\) 46.9834 + 10.6267i 0.203391 + 0.0460029i
\(232\) 62.1655 + 47.2570i 0.267955 + 0.203694i
\(233\) 88.2978 146.752i 0.378961 0.629838i −0.607408 0.794390i \(-0.707791\pi\)
0.986368 + 0.164553i \(0.0526181\pi\)
\(234\) −0.357256 + 30.9307i −0.00152674 + 0.132182i
\(235\) 144.393 0.614440
\(236\) −166.622 113.083i −0.706025 0.479164i
\(237\) 26.2836 4.15325i 0.110901 0.0175243i
\(238\) −81.1237 27.3338i −0.340856 0.114848i
\(239\) −108.950 + 181.076i −0.455856 + 0.757639i −0.996498 0.0836137i \(-0.973354\pi\)
0.540642 + 0.841253i \(0.318181\pi\)
\(240\) 84.1361 156.507i 0.350567 0.652112i
\(241\) −26.1208 + 65.5583i −0.108385 + 0.272026i −0.973158 0.230136i \(-0.926083\pi\)
0.864773 + 0.502162i \(0.167462\pi\)
\(242\) 246.093 209.033i 1.01691 0.863772i
\(243\) −84.2062 + 227.944i −0.346527 + 0.938040i
\(244\) −100.512 148.245i −0.411936 0.607561i
\(245\) 168.659 89.4172i 0.688403 0.364968i
\(246\) 205.420 336.990i 0.835041 1.36988i
\(247\) −3.08956 + 11.1276i −0.0125083 + 0.0450510i
\(248\) 43.4261 17.3025i 0.175105 0.0697683i
\(249\) −394.554 135.483i −1.58456 0.544108i
\(250\) 348.865 37.9414i 1.39546 0.151766i
\(251\) −153.454 201.865i −0.611371 0.804245i 0.381382 0.924418i \(-0.375448\pi\)
−0.992753 + 0.120173i \(0.961655\pi\)
\(252\) −175.285 265.067i −0.695577 1.05185i
\(253\) −16.6045 7.68207i −0.0656305 0.0303639i
\(254\) 425.129 69.6963i 1.67373 0.274395i
\(255\) −27.9296 + 10.9417i −0.109528 + 0.0429086i
\(256\) −268.968 + 161.833i −1.05066 + 0.632160i
\(257\) −8.91496 + 81.9717i −0.0346886 + 0.318956i 0.963919 + 0.266197i \(0.0857671\pi\)
−0.998607 + 0.0527592i \(0.983198\pi\)
\(258\) −376.831 176.989i −1.46058 0.686006i
\(259\) −60.0934 + 366.554i −0.232021 + 1.41526i
\(260\) −14.1539 + 0.767400i −0.0544379 + 0.00295154i
\(261\) 189.262 396.987i 0.725143 1.52102i
\(262\) 228.138 216.104i 0.870755 0.824823i
\(263\) −72.2788 3.91884i −0.274824 0.0149005i −0.0837883 0.996484i \(-0.526702\pi\)
−0.191036 + 0.981583i \(0.561185\pi\)
\(264\) −7.42739 0.445734i −0.0281341 0.00168838i
\(265\) 226.384 76.2776i 0.854278 0.287840i
\(266\) −82.2793 244.196i −0.309321 0.918032i
\(267\) −20.0397 + 333.928i −0.0750551 + 1.25067i
\(268\) −12.8674 + 237.325i −0.0480125 + 0.885539i
\(269\) 2.16986 + 2.29069i 0.00806639 + 0.00851558i 0.730016 0.683430i \(-0.239512\pi\)
−0.721950 + 0.691945i \(0.756754\pi\)
\(270\) −231.882 68.7300i −0.858822 0.254555i
\(271\) 12.2831 + 226.548i 0.0453251 + 0.835972i 0.929501 + 0.368818i \(0.120238\pi\)
−0.884176 + 0.467153i \(0.845280\pi\)
\(272\) 53.9945 + 8.85194i 0.198509 + 0.0325439i
\(273\) 16.6553 35.4611i 0.0610086 0.129894i
\(274\) 131.588 + 14.3111i 0.480249 + 0.0522303i
\(275\) −11.3436 18.8533i −0.0412496 0.0685573i
\(276\) 44.0261 + 112.380i 0.159515 + 0.407175i
\(277\) 42.3722 + 258.459i 0.152968 + 0.933065i 0.946067 + 0.323972i \(0.105018\pi\)
−0.793098 + 0.609093i \(0.791533\pi\)
\(278\) −214.963 + 464.634i −0.773247 + 1.67135i
\(279\) −145.220 219.602i −0.520502 0.787103i
\(280\) −43.2984 + 32.9146i −0.154637 + 0.117552i
\(281\) 2.41308 + 22.1879i 0.00858747 + 0.0789605i 0.997647 0.0685535i \(-0.0218384\pi\)
−0.989060 + 0.147514i \(0.952873\pi\)
\(282\) −116.427 + 339.059i −0.412861 + 1.20234i
\(283\) −134.406 337.333i −0.474932 1.19199i −0.950058 0.312072i \(-0.898977\pi\)
0.475126 0.879918i \(-0.342402\pi\)
\(284\) −100.862 28.0042i −0.355148 0.0986065i
\(285\) −77.0992 46.9976i −0.270523 0.164904i
\(286\) 2.49872 + 4.71308i 0.00873678 + 0.0164793i
\(287\) −413.728 + 280.514i −1.44156 + 0.977402i
\(288\) 260.586 + 281.540i 0.904812 + 0.977570i
\(289\) 181.115 + 213.225i 0.626695 + 0.737803i
\(290\) 406.630 + 162.016i 1.40217 + 0.558677i
\(291\) −5.48803 2.95029i −0.0188592 0.0101385i
\(292\) −181.116 108.974i −0.620259 0.373197i
\(293\) −135.199 + 401.255i −0.461429 + 1.36947i 0.424406 + 0.905472i \(0.360483\pi\)
−0.885835 + 0.464001i \(0.846414\pi\)
\(294\) 73.9736 + 468.136i 0.251611 + 1.59230i
\(295\) 183.918 + 62.0619i 0.623451 + 0.210379i
\(296\) 57.3766i 0.193840i
\(297\) 6.06227 + 41.4656i 0.0204117 + 0.139615i
\(298\) 142.159 + 85.5341i 0.477043 + 0.287027i
\(299\) −9.00501 + 11.8459i −0.0301171 + 0.0396184i
\(300\) −32.0219 + 141.578i −0.106740 + 0.471926i
\(301\) 341.363 + 401.883i 1.13410 + 1.33516i
\(302\) −2.25116 4.86580i −0.00745416 0.0161119i
\(303\) −271.620 + 254.332i −0.896435 + 0.839380i
\(304\) 77.1480 + 145.517i 0.253776 + 0.478673i
\(305\) 131.584 + 111.768i 0.431422 + 0.366453i
\(306\) −3.17277 74.4057i −0.0103685 0.243156i
\(307\) −96.5265 242.263i −0.314419 0.789131i −0.998230 0.0594723i \(-0.981058\pi\)
0.683811 0.729659i \(-0.260321\pi\)
\(308\) −48.4190 25.6701i −0.157205 0.0833446i
\(309\) −153.236 + 41.5941i −0.495909 + 0.134609i
\(310\) 208.602 158.575i 0.672911 0.511533i
\(311\) 118.917 33.0172i 0.382370 0.106164i −0.0710243 0.997475i \(-0.522627\pi\)
0.453394 + 0.891310i \(0.350213\pi\)
\(312\) −1.65265 + 5.82166i −0.00529694 + 0.0186592i
\(313\) −57.1516 348.609i −0.182593 1.11377i −0.905979 0.423324i \(-0.860863\pi\)
0.723386 0.690444i \(-0.242585\pi\)
\(314\) −61.4925 279.363i −0.195836 0.889692i
\(315\) 231.158 + 200.989i 0.733834 + 0.638060i
\(316\) −30.0962 3.27316i −0.0952411 0.0103581i
\(317\) 144.119 + 97.7149i 0.454633 + 0.308249i 0.766924 0.641738i \(-0.221786\pi\)
−0.312291 + 0.949986i \(0.601096\pi\)
\(318\) −3.42504 + 593.090i −0.0107706 + 1.86506i
\(319\) −4.10613 75.7331i −0.0128719 0.237408i
\(320\) −99.6466 + 105.196i −0.311396 + 0.328736i
\(321\) 122.920 + 94.5666i 0.382929 + 0.294600i
\(322\) 17.9753 331.535i 0.0558239 1.02961i
\(323\) 5.97706 27.1540i 0.0185048 0.0840682i
\(324\) 160.389 225.178i 0.495029 0.694994i
\(325\) −16.9585 + 5.71399i −0.0521800 + 0.0175815i
\(326\) −78.2671 + 355.571i −0.240083 + 1.09071i
\(327\) −45.8103 445.119i −0.140093 1.36122i
\(328\) 56.0557 53.0988i 0.170902 0.161887i
\(329\) 312.246 329.634i 0.949077 1.00193i
\(330\) −40.7846 + 8.73075i −0.123590 + 0.0264568i
\(331\) −91.9580 + 560.919i −0.277819 + 1.69462i 0.366950 + 0.930241i \(0.380402\pi\)
−0.644769 + 0.764378i \(0.723046\pi\)
\(332\) 392.828 + 266.344i 1.18322 + 0.802241i
\(333\) −316.372 + 65.8173i −0.950066 + 0.197649i
\(334\) 612.971 368.812i 1.83524 1.10423i
\(335\) −49.2494 223.742i −0.147013 0.667888i
\(336\) −175.347 530.515i −0.521865 1.57892i
\(337\) −300.088 138.835i −0.890469 0.411975i −0.0793436 0.996847i \(-0.525282\pi\)
−0.811125 + 0.584873i \(0.801145\pi\)
\(338\) −439.183 + 121.939i −1.29936 + 0.360765i
\(339\) 212.791 + 203.910i 0.627701 + 0.601505i
\(340\) 33.9266 3.68974i 0.0997842 0.0108522i
\(341\) −40.1140 21.2671i −0.117636 0.0623669i
\(342\) 172.524 143.146i 0.504457 0.418557i
\(343\) 24.9751 89.9521i 0.0728137 0.262251i
\(344\) −62.0781 52.7296i −0.180460 0.153284i
\(345\) −69.8712 93.0242i −0.202525 0.269635i
\(346\) 371.667 + 548.168i 1.07418 + 1.58430i
\(347\) −160.664 347.269i −0.463008 1.00078i −0.988673 0.150084i \(-0.952046\pi\)
0.525665 0.850691i \(-0.323816\pi\)
\(348\) −326.117 + 379.471i −0.937117 + 1.09043i
\(349\) −37.1502 + 93.2400i −0.106448 + 0.267163i −0.972546 0.232710i \(-0.925241\pi\)
0.866099 + 0.499873i \(0.166620\pi\)
\(350\) 241.647 317.881i 0.690420 0.908232i
\(351\) 33.9962 + 2.43453i 0.0968552 + 0.00693599i
\(352\) 62.6950 + 21.1244i 0.178111 + 0.0600125i
\(353\) 381.369i 1.08036i 0.841548 + 0.540182i \(0.181645\pi\)
−0.841548 + 0.540182i \(0.818355\pi\)
\(354\) −294.027 + 381.827i −0.830586 + 1.07861i
\(355\) 100.901 0.284229
\(356\) 121.523 360.668i 0.341357 1.01311i
\(357\) −35.4182 + 87.4214i −0.0992106 + 0.244878i
\(358\) −288.229 219.106i −0.805110 0.612029i
\(359\) 211.555 + 84.2911i 0.589289 + 0.234794i 0.645672 0.763615i \(-0.276577\pi\)
−0.0563828 + 0.998409i \(0.517957\pi\)
\(360\) −40.2588 24.8607i −0.111830 0.0690575i
\(361\) −251.675 + 116.437i −0.697161 + 0.322541i
\(362\) −346.700 + 235.068i −0.957735 + 0.649360i
\(363\) −213.665 284.467i −0.588610 0.783656i
\(364\) −28.8554 + 33.9712i −0.0792731 + 0.0933275i
\(365\) 196.320 + 54.5079i 0.537862 + 0.149337i
\(366\) −368.548 + 218.859i −1.00696 + 0.597976i
\(367\) −184.011 + 347.082i −0.501393 + 0.945728i 0.495623 + 0.868538i \(0.334940\pi\)
−0.997016 + 0.0771906i \(0.975405\pi\)
\(368\) 22.9445 + 210.971i 0.0623492 + 0.573292i
\(369\) −357.086 248.179i −0.967714 0.672571i
\(370\) −86.0427 309.898i −0.232548 0.837562i
\(371\) 315.415 681.758i 0.850175 1.83762i
\(372\) 93.9984 + 284.394i 0.252684 + 0.764501i
\(373\) 167.292 36.8237i 0.448503 0.0987231i 0.0150252 0.999887i \(-0.495217\pi\)
0.433478 + 0.901164i \(0.357286\pi\)
\(374\) −6.62138 11.0048i −0.0177042 0.0294247i
\(375\) −18.7035 386.211i −0.0498761 1.02990i
\(376\) −39.3591 + 58.0503i −0.104678 + 0.154389i
\(377\) −60.8730 9.97961i −0.161467 0.0264711i
\(378\) −658.341 + 380.735i −1.74164 + 1.00724i
\(379\) 121.127 + 114.738i 0.319596 + 0.302738i 0.830632 0.556822i \(-0.187979\pi\)
−0.511036 + 0.859559i \(0.670738\pi\)
\(380\) 70.6454 + 74.5795i 0.185909 + 0.196262i
\(381\) −48.5960 472.186i −0.127549 1.23933i
\(382\) −986.265 217.093i −2.58185 0.568307i
\(383\) −66.9159 198.599i −0.174715 0.518536i 0.824139 0.566387i \(-0.191659\pi\)
−0.998854 + 0.0478509i \(0.984763\pi\)
\(384\) 70.3090 + 134.488i 0.183096 + 0.350228i
\(385\) 51.5908 + 11.3560i 0.134002 + 0.0294961i
\(386\) −515.067 27.9261i −1.33437 0.0723474i
\(387\) −219.538 + 402.782i −0.567282 + 1.04078i
\(388\) 5.14638 + 4.87491i 0.0132639 + 0.0125642i
\(389\) 673.591 36.5210i 1.73160 0.0938844i 0.838827 0.544398i \(-0.183242\pi\)
0.892769 + 0.450514i \(0.148759\pi\)
\(390\) −0.195896 + 33.9218i −0.000502297 + 0.0869790i
\(391\) 20.1045 29.6519i 0.0514181 0.0758361i
\(392\) −10.0251 + 92.1792i −0.0255742 + 0.235151i
\(393\) −222.628 265.186i −0.566482 0.674774i
\(394\) −846.274 + 186.279i −2.14790 + 0.472789i
\(395\) 28.7971 4.72104i 0.0729040 0.0119520i
\(396\) 5.70182 47.3344i 0.0143985 0.119531i
\(397\) 62.5316 + 225.218i 0.157510 + 0.567301i 0.999609 + 0.0279766i \(0.00890638\pi\)
−0.842098 + 0.539324i \(0.818680\pi\)
\(398\) −309.477 407.110i −0.777580 1.02289i
\(399\) −274.015 + 74.3783i −0.686755 + 0.186412i
\(400\) −119.546 + 225.488i −0.298866 + 0.563720i
\(401\) −77.3781 + 30.8303i −0.192963 + 0.0768834i −0.464618 0.885511i \(-0.653808\pi\)
0.271655 + 0.962395i \(0.412429\pi\)
\(402\) 565.094 + 64.7617i 1.40571 + 0.161099i
\(403\) −23.9060 + 28.1444i −0.0593202 + 0.0698371i
\(404\) 374.027 198.297i 0.925810 0.490833i
\(405\) −90.8995 + 250.503i −0.224443 + 0.618527i
\(406\) 1249.19 577.938i 3.07683 1.42349i
\(407\) −42.4737 + 36.0775i −0.104358 + 0.0886425i
\(408\) 3.21423 14.2110i 0.00787802 0.0348309i
\(409\) −164.899 125.353i −0.403176 0.306486i 0.383863 0.923390i \(-0.374594\pi\)
−0.787038 + 0.616904i \(0.788387\pi\)
\(410\) 223.136 370.855i 0.544234 0.904523i
\(411\) 24.4259 143.785i 0.0594304 0.349843i
\(412\) 180.644 0.438456
\(413\) 539.398 285.658i 1.30605 0.691666i
\(414\) 274.774 89.0619i 0.663706 0.215125i
\(415\) −433.538 146.076i −1.04467 0.351991i
\(416\) 27.7407 46.1054i 0.0666844 0.110830i
\(417\) 496.849 + 267.099i 1.19148 + 0.640526i
\(418\) 14.3097 35.9146i 0.0342337 0.0859201i
\(419\) −164.347 + 139.598i −0.392237 + 0.333169i −0.821705 0.569913i \(-0.806977\pi\)
0.429468 + 0.903082i \(0.358701\pi\)
\(420\) −193.902 289.570i −0.461672 0.689453i
\(421\) −279.176 411.754i −0.663126 0.978037i −0.999343 0.0362528i \(-0.988458\pi\)
0.336217 0.941785i \(-0.390853\pi\)
\(422\) 510.414 270.604i 1.20951 0.641242i
\(423\) 365.236 + 150.434i 0.863441 + 0.355636i
\(424\) −31.0424 + 111.805i −0.0732133 + 0.263690i
\(425\) 40.0244 15.9472i 0.0941750 0.0375228i
\(426\) −81.3584 + 236.932i −0.190982 + 0.556179i
\(427\) 539.701 58.6960i 1.26394 0.137461i
\(428\) −106.778 140.465i −0.249482 0.328188i
\(429\) 5.34871 2.43718i 0.0124679 0.00568106i
\(430\) −414.365 191.706i −0.963639 0.445827i
\(431\) −643.262 + 105.457i −1.49249 + 0.244681i −0.852103 0.523374i \(-0.824673\pi\)
−0.640384 + 0.768055i \(0.721225\pi\)
\(432\) 375.873 308.221i 0.870076 0.713474i
\(433\) 55.2108 33.2192i 0.127508 0.0767188i −0.450371 0.892841i \(-0.648708\pi\)
0.577879 + 0.816123i \(0.303881\pi\)
\(434\) 89.0859 819.131i 0.205267 1.88740i
\(435\) 205.037 436.546i 0.471349 1.00356i
\(436\) −82.3606 + 502.377i −0.188900 + 1.15224i
\(437\) 107.681 5.83830i 0.246410 0.0133600i
\(438\) −286.289 + 417.040i −0.653629 + 0.952146i
\(439\) −79.2946 + 75.1119i −0.180626 + 0.171098i −0.772670 0.634807i \(-0.781079\pi\)
0.592045 + 0.805905i \(0.298321\pi\)
\(440\) −8.14793 0.441768i −0.0185180 0.00100402i
\(441\) 519.772 50.4617i 1.17862 0.114426i
\(442\) −9.89884 + 3.33531i −0.0223956 + 0.00754594i
\(443\) −103.099 305.988i −0.232730 0.690717i −0.998847 0.0480158i \(-0.984710\pi\)
0.766117 0.642701i \(-0.222186\pi\)
\(444\) 366.981 + 22.0233i 0.826533 + 0.0496020i
\(445\) −19.8614 + 366.322i −0.0446324 + 0.823196i
\(446\) 607.897 + 641.749i 1.36300 + 1.43890i
\(447\) 103.460 150.710i 0.231453 0.337160i
\(448\) 24.6675 + 454.965i 0.0550614 + 1.01555i
\(449\) 295.741 + 48.4843i 0.658666 + 0.107983i 0.481840 0.876259i \(-0.339969\pi\)
0.176826 + 0.984242i \(0.443417\pi\)
\(450\) 333.621 + 96.7932i 0.741380 + 0.215096i
\(451\) −74.5539 8.10822i −0.165308 0.0179783i
\(452\) −172.865 287.304i −0.382445 0.635628i
\(453\) −5.50033 + 2.15481i −0.0121420 + 0.00475676i
\(454\) −194.450 1186.09i −0.428303 2.61253i
\(455\) 18.0402 38.9932i 0.0396487 0.0856994i
\(456\) 39.9103 18.1854i 0.0875225 0.0398802i
\(457\) 650.634 494.599i 1.42371 1.08227i 0.440916 0.897548i \(-0.354654\pi\)
0.982790 0.184725i \(-0.0591395\pi\)
\(458\) 132.998 + 1222.90i 0.290390 + 2.67009i
\(459\) −82.0460 1.42155i −0.178749 0.00309706i
\(460\) 48.9921 + 122.961i 0.106505 + 0.267306i
\(461\) 662.258 + 183.875i 1.43657 + 0.398861i 0.896607 0.442828i \(-0.146025\pi\)
0.539962 + 0.841689i \(0.318439\pi\)
\(462\) −68.2642 + 111.987i −0.147758 + 0.242396i
\(463\) −85.7427 161.728i −0.185189 0.349304i 0.773483 0.633817i \(-0.218513\pi\)
−0.958672 + 0.284513i \(0.908168\pi\)
\(464\) −728.155 + 493.701i −1.56930 + 1.06401i
\(465\) −160.643 239.902i −0.345470 0.515919i
\(466\) 301.883 + 355.404i 0.647818 + 0.762670i
\(467\) −359.365 143.184i −0.769518 0.306604i −0.0478605 0.998854i \(-0.515240\pi\)
−0.721658 + 0.692250i \(0.756620\pi\)
\(468\) −36.6010 12.8049i −0.0782072 0.0273609i
\(469\) −617.281 371.405i −1.31616 0.791909i
\(470\) −125.530 + 372.560i −0.267085 + 0.792680i
\(471\) −311.322 + 49.1943i −0.660981 + 0.104446i
\(472\) −75.0835 + 57.0233i −0.159075 + 0.120812i
\(473\) 79.1095i 0.167251i
\(474\) −12.1338 + 71.4268i −0.0255987 + 0.150689i
\(475\) 111.127 + 66.8629i 0.233952 + 0.140764i
\(476\) 64.9420 85.4298i 0.136433 0.179474i
\(477\) 652.095 + 42.9143i 1.36708 + 0.0899671i
\(478\) −372.490 438.529i −0.779268 0.917425i
\(479\) −61.6943 133.350i −0.128798 0.278393i 0.832438 0.554117i \(-0.186944\pi\)
−0.961237 + 0.275725i \(0.911082\pi\)
\(480\) 287.550 + 307.095i 0.599062 + 0.639782i
\(481\) 21.2304 + 40.0447i 0.0441380 + 0.0832531i
\(482\) −146.443 124.390i −0.303824 0.258070i
\(483\) −363.459 41.6536i −0.752503 0.0862394i
\(484\) 149.817 + 376.013i 0.309540 + 0.776887i
\(485\) −6.03703 3.20063i −0.0124475 0.00659923i
\(486\) −514.928 415.432i −1.05952 0.854798i
\(487\) −124.831 + 94.8942i −0.256327 + 0.194855i −0.725444 0.688281i \(-0.758365\pi\)
0.469117 + 0.883136i \(0.344572\pi\)
\(488\) −80.8015 + 22.4344i −0.165577 + 0.0459722i
\(489\) 385.916 + 109.553i 0.789194 + 0.224035i
\(490\) 84.0864 + 512.904i 0.171605 + 1.04674i
\(491\) −210.095 954.471i −0.427892 1.94393i −0.309178 0.951004i \(-0.600054\pi\)
−0.118714 0.992929i \(-0.537877\pi\)
\(492\) 318.103 + 378.913i 0.646551 + 0.770149i
\(493\) 147.643 + 16.0571i 0.299478 + 0.0325702i
\(494\) −26.0252 17.6455i −0.0526825 0.0357196i
\(495\) 6.91068 + 45.4341i 0.0139610 + 0.0917860i
\(496\) 28.5119 + 525.871i 0.0574837 + 1.06022i
\(497\) 218.196 230.347i 0.439026 0.463474i
\(498\) 692.580 900.234i 1.39072 1.80770i
\(499\) 0.630649 11.6316i 0.00126383 0.0233099i −0.997833 0.0657902i \(-0.979043\pi\)
0.999097 + 0.0424803i \(0.0135260\pi\)
\(500\) −94.5664 + 429.619i −0.189133 + 0.859239i
\(501\) −365.186 698.532i −0.728914 1.39428i
\(502\) 654.255 220.444i 1.30330 0.439132i
\(503\) −102.302 + 464.762i −0.203383 + 0.923980i 0.758746 + 0.651387i \(0.225812\pi\)
−0.962129 + 0.272593i \(0.912119\pi\)
\(504\) −143.813 + 38.1460i −0.285343 + 0.0756866i
\(505\) −296.256 + 280.629i −0.586646 + 0.555700i
\(506\) 34.2564 36.1640i 0.0677004 0.0714704i
\(507\) 105.128 + 491.093i 0.207353 + 0.968626i
\(508\) −87.3689 + 532.926i −0.171986 + 1.04907i
\(509\) 400.075 + 271.258i 0.786003 + 0.532923i 0.886893 0.461974i \(-0.152859\pi\)
−0.100890 + 0.994898i \(0.532169\pi\)
\(510\) −3.95056 81.5754i −0.00774620 0.159952i
\(511\) 548.972 330.305i 1.07431 0.646390i
\(512\) −140.228 637.063i −0.273883 1.24426i
\(513\) −146.055 199.203i −0.284707 0.388309i
\(514\) −203.751 94.2652i −0.396402 0.183395i
\(515\) −167.780 + 46.5838i −0.325786 + 0.0904541i
\(516\) 361.086 376.811i 0.699779 0.730255i
\(517\) 67.7207 7.36507i 0.130988 0.0142458i
\(518\) −893.528 473.719i −1.72496 0.914515i
\(519\) 627.446 372.604i 1.20895 0.717926i
\(520\) −1.77547 + 6.39468i −0.00341437 + 0.0122975i
\(521\) 174.443 + 148.173i 0.334824 + 0.284402i 0.798988 0.601347i \(-0.205369\pi\)
−0.464164 + 0.885749i \(0.653645\pi\)
\(522\) 859.757 + 833.454i 1.64704 + 1.59666i
\(523\) −165.615 244.263i −0.316663 0.467042i 0.635732 0.771910i \(-0.280698\pi\)
−0.952395 + 0.304867i \(0.901388\pi\)
\(524\) 165.404 + 357.514i 0.315656 + 0.682279i
\(525\) −333.678 286.762i −0.635577 0.546214i
\(526\) 72.9477 183.085i 0.138684 0.348070i
\(527\) 53.8030 70.7766i 0.102093 0.134301i
\(528\) 31.4770 77.6935i 0.0596156 0.147147i
\(529\) −369.634 124.544i −0.698740 0.235433i
\(530\) 650.422i 1.22721i
\(531\) 400.553 + 348.595i 0.754337 + 0.656487i
\(532\) 323.026 0.607191
\(533\) −19.4753 + 57.8007i −0.0365391 + 0.108444i
\(534\) −844.169 342.010i −1.58084 0.640468i
\(535\) 135.397 + 102.926i 0.253079 + 0.192385i
\(536\) 103.375 + 41.1886i 0.192865 + 0.0768443i
\(537\) −260.013 + 302.553i −0.484196 + 0.563413i
\(538\) −7.79677 + 3.60717i −0.0144921 + 0.00670478i
\(539\) 74.5403 50.5396i 0.138294 0.0937654i
\(540\) 174.462 247.953i 0.323077 0.459172i
\(541\) −309.493 + 364.363i −0.572075 + 0.673499i −0.969771 0.244018i \(-0.921534\pi\)
0.397695 + 0.917518i \(0.369810\pi\)
\(542\) −595.212 165.260i −1.09818 0.304907i
\(543\) 235.661 + 396.841i 0.433997 + 0.730830i
\(544\) −60.6807 + 114.456i −0.111545 + 0.210397i
\(545\) −53.0559 487.841i −0.0973503 0.895121i
\(546\) 77.0162 + 73.8021i 0.141055 + 0.135169i
\(547\) −251.042 904.172i −0.458944 1.65297i −0.724804 0.688955i \(-0.758070\pi\)
0.265861 0.964011i \(-0.414344\pi\)
\(548\) −69.6710 + 150.591i −0.127137 + 0.274802i
\(549\) 216.390 + 419.801i 0.394154 + 0.764664i
\(550\) 58.5064 12.8782i 0.106375 0.0234150i
\(551\) 230.479 + 383.059i 0.418292 + 0.695206i
\(552\) 56.4441 2.73349i 0.102254 0.00495198i
\(553\) 51.4952 75.9497i 0.0931197 0.137341i
\(554\) −703.706 115.367i −1.27023 0.208243i
\(555\) −346.527 + 74.1808i −0.624372 + 0.133659i
\(556\) −465.918 441.341i −0.837982 0.793779i
\(557\) 364.239 + 384.523i 0.653930 + 0.690346i 0.965655 0.259827i \(-0.0836654\pi\)
−0.311725 + 0.950172i \(0.600907\pi\)
\(558\) 692.859 183.779i 1.24168 0.329354i
\(559\) 62.8369 + 13.8314i 0.112409 + 0.0247432i
\(560\) −195.650 580.669i −0.349375 1.03691i
\(561\) −12.5409 + 6.55628i −0.0223546 + 0.0116868i
\(562\) −59.3465 13.0631i −0.105599 0.0232440i
\(563\) 306.475 + 16.6166i 0.544360 + 0.0295144i 0.324269 0.945965i \(-0.394882\pi\)
0.220091 + 0.975479i \(0.429364\pi\)
\(564\) −356.182 274.022i −0.631528 0.485855i
\(565\) 234.644 + 222.267i 0.415299 + 0.393392i
\(566\) 987.225 53.5258i 1.74421 0.0945685i
\(567\) 375.305 + 749.220i 0.661913 + 1.32138i
\(568\) −27.5039 + 40.5652i −0.0484224 + 0.0714176i
\(569\) −46.4792 + 427.369i −0.0816858 + 0.751088i 0.879634 + 0.475652i \(0.157788\pi\)
−0.961319 + 0.275436i \(0.911178\pi\)
\(570\) 188.289 158.071i 0.330331 0.277318i
\(571\) 270.594 59.5623i 0.473896 0.104312i 0.0284004 0.999597i \(-0.490959\pi\)
0.445495 + 0.895284i \(0.353028\pi\)
\(572\) −6.59904 + 1.08186i −0.0115368 + 0.00189136i
\(573\) −303.873 + 1070.43i −0.530320 + 1.86812i
\(574\) −364.097 1311.36i −0.634315 2.28459i
\(575\) 101.127 + 133.031i 0.175874 + 0.231358i
\(576\) −361.648 + 162.272i −0.627861 + 0.281722i
\(577\) −323.286 + 609.783i −0.560289 + 1.05682i 0.427936 + 0.903809i \(0.359241\pi\)
−0.988225 + 0.153007i \(0.951104\pi\)
\(578\) −707.611 + 281.938i −1.22424 + 0.487782i
\(579\) −64.7123 + 564.663i −0.111766 + 0.975238i
\(580\) −355.227 + 418.205i −0.612460 + 0.721043i
\(581\) −1270.99 + 673.836i −2.18759 + 1.15979i
\(582\) 12.3833 11.5952i 0.0212772 0.0199230i
\(583\) 102.284 47.3215i 0.175444 0.0811689i
\(584\) −75.4271 + 64.0683i −0.129156 + 0.109706i
\(585\) 37.2967 + 2.45449i 0.0637550 + 0.00419570i
\(586\) −917.772 697.672i −1.56616 1.19057i
\(587\) 166.399 276.558i 0.283474 0.471138i −0.682102 0.731257i \(-0.738934\pi\)
0.965577 + 0.260119i \(0.0837617\pi\)
\(588\) −585.729 99.5022i −0.996139 0.169221i
\(589\) 267.619 0.454362
\(590\) −320.021 + 420.586i −0.542409 + 0.712857i
\(591\) 149.024 + 943.087i 0.252156 + 1.59575i
\(592\) 612.570 + 206.399i 1.03475 + 0.348646i
\(593\) 217.764 361.927i 0.367225 0.610332i −0.617061 0.786915i \(-0.711677\pi\)
0.984286 + 0.176583i \(0.0565045\pi\)
\(594\) −112.259 20.4069i −0.188988 0.0343550i
\(595\) −38.2870 + 96.0932i −0.0643480 + 0.161501i
\(596\) −158.511 + 134.641i −0.265958 + 0.225907i
\(597\) −468.195 + 313.513i −0.784247 + 0.525147i
\(598\) −22.7358 33.5328i −0.0380198 0.0560750i
\(599\) 852.870 452.163i 1.42382 0.754863i 0.434510 0.900667i \(-0.356922\pi\)
0.989314 + 0.145804i \(0.0465768\pi\)
\(600\) 58.0298 + 35.3734i 0.0967163 + 0.0589557i
\(601\) 217.226 782.378i 0.361441 1.30179i −0.529746 0.848157i \(-0.677713\pi\)
0.891187 0.453637i \(-0.149874\pi\)
\(602\) −1333.70 + 531.393i −2.21544 + 0.882712i
\(603\) 108.529 617.255i 0.179981 1.02364i
\(604\) 6.68136 0.726642i 0.0110619 0.00120305i
\(605\) −236.114 310.602i −0.390271 0.513392i
\(606\) −420.085 921.933i −0.693210 1.52134i
\(607\) 315.622 + 146.022i 0.519970 + 0.240564i 0.662277 0.749259i \(-0.269590\pi\)
−0.142307 + 0.989823i \(0.545452\pi\)
\(608\) −384.820 + 63.0881i −0.632928 + 0.103763i
\(609\) −553.203 1412.10i −0.908379 2.31871i
\(610\) −402.775 + 242.342i −0.660287 + 0.397281i
\(611\) 5.99014 55.0784i 0.00980383 0.0901447i
\(612\) 89.6598 + 26.0129i 0.146503 + 0.0425048i
\(613\) −64.1687 + 391.412i −0.104680 + 0.638518i 0.881416 + 0.472341i \(0.156591\pi\)
−0.986096 + 0.166178i \(0.946857\pi\)
\(614\) 708.997 38.4407i 1.15472 0.0626070i
\(615\) −393.164 269.899i −0.639290 0.438860i
\(616\) −18.6282 + 17.6455i −0.0302405 + 0.0286453i
\(617\) −415.497 22.5276i −0.673414 0.0365115i −0.285739 0.958307i \(-0.592239\pi\)
−0.387675 + 0.921796i \(0.626722\pi\)
\(618\) 25.8974 431.536i 0.0419051 0.698278i
\(619\) −498.344 + 167.912i −0.805079 + 0.271263i −0.691603 0.722278i \(-0.743095\pi\)
−0.113476 + 0.993541i \(0.536199\pi\)
\(620\) 104.883 + 311.280i 0.169165 + 0.502065i
\(621\) −79.8199 308.094i −0.128534 0.496126i
\(622\) −18.1919 + 335.530i −0.0292475 + 0.539438i
\(623\) 793.325 + 837.503i 1.27339 + 1.34431i
\(624\) −56.2088 38.5862i −0.0900782 0.0618368i
\(625\) −3.76957 69.5256i −0.00603131 0.111241i
\(626\) 949.158 + 155.606i 1.51623 + 0.248573i
\(627\) −38.5568 18.1093i −0.0614942 0.0288825i
\(628\) 356.482 + 38.7697i 0.567646 + 0.0617352i
\(629\) −56.2586 93.5025i −0.0894413 0.148653i
\(630\) −719.546 + 421.695i −1.14214 + 0.669357i
\(631\) 171.317 + 1044.99i 0.271500 + 1.65608i 0.672571 + 0.740032i \(0.265190\pi\)
−0.401071 + 0.916047i \(0.631362\pi\)
\(632\) −5.95158 + 12.8641i −0.00941705 + 0.0203546i
\(633\) −263.939 579.250i −0.416966 0.915087i
\(634\) −377.413 + 286.902i −0.595288 + 0.452526i
\(635\) −56.2822 517.506i −0.0886334 0.814971i
\(636\) −703.187 241.462i −1.10564 0.379657i
\(637\) −27.1112 68.0439i −0.0425607 0.106819i
\(638\) 198.974 + 55.2449i 0.311872 + 0.0865908i
\(639\) 255.225 + 105.122i 0.399413 + 0.164511i
\(640\) 77.9547 + 147.038i 0.121804 + 0.229747i
\(641\) −946.096 + 641.469i −1.47597 + 1.00073i −0.483888 + 0.875130i \(0.660776\pi\)
−0.992081 + 0.125602i \(0.959914\pi\)
\(642\) −350.860 + 234.943i −0.546511 + 0.365955i
\(643\) 269.455 + 317.227i 0.419060 + 0.493355i 0.930669 0.365863i \(-0.119226\pi\)
−0.511609 + 0.859218i \(0.670950\pi\)
\(644\) 386.650 + 154.056i 0.600389 + 0.239217i
\(645\) −238.202 + 443.094i −0.369305 + 0.686967i
\(646\) 64.8659 + 39.0285i 0.100412 + 0.0604157i
\(647\) −0.835989 + 2.48113i −0.00129210 + 0.00383482i −0.948297 0.317383i \(-0.897196\pi\)
0.947005 + 0.321218i \(0.104092\pi\)
\(648\) −75.9320 104.827i −0.117179 0.161770i
\(649\) 89.4234 + 19.7260i 0.137786 + 0.0303945i
\(650\) 48.7234i 0.0749591i
\(651\) −895.058 152.050i −1.37490 0.233564i
\(652\) −391.071 235.300i −0.599803 0.360889i
\(653\) −131.188 + 172.575i −0.200900 + 0.264280i −0.885500 0.464639i \(-0.846184\pi\)
0.684600 + 0.728919i \(0.259977\pi\)
\(654\) 1188.31 + 268.771i 1.81699 + 0.410965i
\(655\) −245.820 289.401i −0.375297 0.441834i
\(656\) 365.251 + 789.477i 0.556785 + 1.20347i
\(657\) 439.793 + 342.408i 0.669396 + 0.521169i
\(658\) 579.059 + 1092.22i 0.880028 + 1.65991i
\(659\) −307.297 261.020i −0.466308 0.396085i 0.383197 0.923667i \(-0.374823\pi\)
−0.849504 + 0.527581i \(0.823099\pi\)
\(660\) 5.95302 51.9445i 0.00901973 0.0787038i
\(661\) 185.413 + 465.353i 0.280504 + 0.704013i 0.999955 + 0.00946951i \(0.00301428\pi\)
−0.719451 + 0.694543i \(0.755606\pi\)
\(662\) −1367.32 724.908i −2.06544 1.09503i
\(663\) 3.01503 + 11.1076i 0.00454755 + 0.0167535i
\(664\) 176.902 134.477i 0.266418 0.202526i
\(665\) −300.022 + 83.3008i −0.451161 + 0.125264i
\(666\) 105.222 873.514i 0.157991 1.31158i
\(667\) 93.1888 + 568.427i 0.139713 + 0.852214i
\(668\) 192.778 + 875.799i 0.288590 + 1.31108i
\(669\) 745.965 626.249i 1.11504 0.936096i
\(670\) 620.110 + 67.4410i 0.925537 + 0.100658i
\(671\) 67.4139 + 45.7078i 0.100468 + 0.0681189i
\(672\) 1322.88 + 7.63954i 1.96858 + 0.0113684i
\(673\) −43.9108 809.887i −0.0652464 1.20340i −0.829509 0.558494i \(-0.811380\pi\)
0.764262 0.644905i \(-0.223103\pi\)
\(674\) 619.104 653.581i 0.918553 0.969704i
\(675\) 128.481 360.551i 0.190342 0.534149i
\(676\) 30.9334 570.534i 0.0457595 0.843985i
\(677\) −35.2934 + 160.339i −0.0521320 + 0.236838i −0.995481 0.0949652i \(-0.969726\pi\)
0.943349 + 0.331803i \(0.107657\pi\)
\(678\) −711.116 + 371.765i −1.04884 + 0.548326i
\(679\) −20.3616 + 6.86062i −0.0299876 + 0.0101040i
\(680\) 3.43483 15.6046i 0.00505122 0.0229479i
\(681\) −1317.38 + 135.581i −1.93448 + 0.199091i
\(682\) 89.7464 85.0123i 0.131593 0.124651i
\(683\) 7.02680 7.41810i 0.0102881 0.0108611i −0.720831 0.693111i \(-0.756240\pi\)
0.731119 + 0.682250i \(0.238998\pi\)
\(684\) 100.995 + 262.246i 0.147653 + 0.383401i
\(685\) 25.8756 157.834i 0.0377746 0.230415i
\(686\) 210.380 + 142.641i 0.306676 + 0.207931i
\(687\) 1353.81 65.5628i 1.97061 0.0954335i
\(688\) 786.268 473.082i 1.14283 0.687619i
\(689\) −19.7044 89.5178i −0.0285985 0.129924i
\(690\) 300.762 99.4082i 0.435887 0.144070i
\(691\) 1014.43 + 469.324i 1.46806 + 0.679196i 0.980970 0.194157i \(-0.0621973\pi\)
0.487087 + 0.873353i \(0.338059\pi\)
\(692\) −799.960 + 222.108i −1.15601 + 0.320965i
\(693\) 118.665 + 82.4735i 0.171234 + 0.119009i
\(694\) 1035.69 112.638i 1.49235 0.162303i
\(695\) 546.551 + 289.763i 0.786404 + 0.416925i
\(696\) 119.615 + 201.426i 0.171860 + 0.289405i
\(697\) 39.2858 141.495i 0.0563641 0.203005i
\(698\) −208.278 176.913i −0.298393 0.253457i
\(699\) 410.824 308.573i 0.587732 0.441450i
\(700\) 280.903 + 414.300i 0.401289 + 0.591858i
\(701\) −314.455 679.683i −0.448580 0.969590i −0.991536 0.129829i \(-0.958557\pi\)
0.542956 0.839761i \(-0.317305\pi\)
\(702\) −35.8365 + 85.5995i −0.0510491 + 0.121937i
\(703\) 121.582 305.148i 0.172948 0.434066i
\(704\) −41.3687 + 54.4196i −0.0587624 + 0.0773006i
\(705\) 401.481 + 162.658i 0.569477 + 0.230720i
\(706\) −983.997 331.547i −1.39376 0.469614i
\(707\) 1283.17i 1.81495i
\(708\) −335.901 502.121i −0.474437 0.709210i
\(709\) 299.562 0.422513 0.211257 0.977431i \(-0.432244\pi\)
0.211257 + 0.977431i \(0.432244\pi\)
\(710\) −87.7196 + 260.343i −0.123549 + 0.366680i
\(711\) 77.7593 + 18.0602i 0.109366 + 0.0254011i
\(712\) −141.858 107.838i −0.199239 0.151458i
\(713\) 320.331 + 127.631i 0.449272 + 0.179006i
\(714\) −194.771 167.386i −0.272788 0.234434i
\(715\) 5.85012 2.70656i 0.00818199 0.00378539i
\(716\) 375.654 254.700i 0.524657 0.355726i
\(717\) −506.911 + 380.745i −0.706990 + 0.531025i
\(718\) −401.403 + 472.568i −0.559057 + 0.658173i
\(719\) 309.020 + 85.7990i 0.429791 + 0.119331i 0.475686 0.879615i \(-0.342200\pi\)
−0.0458943 + 0.998946i \(0.514614\pi\)
\(720\) 410.242 340.385i 0.569780 0.472756i
\(721\) −256.473 + 483.760i −0.355719 + 0.670956i
\(722\) −81.6317 750.591i −0.113063 1.03960i
\(723\) −146.479 + 152.858i −0.202599 + 0.211422i
\(724\) −140.476 505.950i −0.194028 0.698826i
\(725\) −290.872 + 628.711i −0.401203 + 0.867187i
\(726\) 919.727 303.989i 1.26684 0.418718i
\(727\) 1276.37 280.951i 1.75567 0.386452i 0.783622 0.621238i \(-0.213370\pi\)
0.972047 + 0.234786i \(0.0754389\pi\)
\(728\) 10.7590 + 17.8815i 0.0147788 + 0.0245625i
\(729\) −490.909 + 538.933i −0.673401 + 0.739278i
\(730\) −311.313 + 459.152i −0.426456 + 0.628975i
\(731\) −152.866 25.0611i −0.209119 0.0342834i
\(732\) −112.476 525.417i −0.153655 0.717782i
\(733\) −687.848 651.564i −0.938401 0.888901i 0.0555800 0.998454i \(-0.482299\pi\)
−0.993981 + 0.109554i \(0.965058\pi\)
\(734\) −735.560 776.521i −1.00213 1.05793i
\(735\) 569.678 58.6296i 0.775072 0.0797681i
\(736\) −490.704 108.012i −0.666717 0.146756i
\(737\) −34.5105 102.424i −0.0468257 0.138974i
\(738\) 950.780 705.588i 1.28832 0.956081i
\(739\) −463.551 102.035i −0.627268 0.138072i −0.110050 0.993926i \(-0.535101\pi\)
−0.517217 + 0.855854i \(0.673032\pi\)
\(740\) 402.582 + 21.8273i 0.544029 + 0.0294964i
\(741\) −21.1256 + 27.4596i −0.0285095 + 0.0370575i
\(742\) 1484.84 + 1406.52i 2.00114 + 1.89558i
\(743\) −550.890 + 29.8684i −0.741440 + 0.0401997i −0.420990 0.907065i \(-0.638317\pi\)
−0.320451 + 0.947265i \(0.603834\pi\)
\(744\) 140.236 + 0.809852i 0.188490 + 0.00108851i
\(745\) 112.503 165.929i 0.151010 0.222723i
\(746\) −50.4255 + 463.655i −0.0675945 + 0.621521i
\(747\) −944.427 821.168i −1.26429 1.09929i
\(748\) 15.7234 3.46099i 0.0210206 0.00462699i
\(749\) 527.762 86.5222i 0.704622 0.115517i
\(750\) 1012.75 + 287.498i 1.35033 + 0.383331i
\(751\) 154.474 + 556.364i 0.205691 + 0.740831i 0.992351 + 0.123445i \(0.0393944\pi\)
−0.786661 + 0.617386i \(0.788192\pi\)
\(752\) −478.177 629.031i −0.635873 0.836477i
\(753\) −199.275 734.146i −0.264642 0.974961i
\(754\) 78.6697 148.387i 0.104336 0.196799i
\(755\) −6.01819 + 2.39787i −0.00797111 + 0.00317598i
\(756\) −188.781 934.468i −0.249710 1.23607i
\(757\) 377.428 444.343i 0.498584 0.586978i −0.454096 0.890953i \(-0.650038\pi\)
0.952680 + 0.303974i \(0.0983137\pi\)
\(758\) −401.346 + 212.780i −0.529480 + 0.280712i
\(759\) −37.5146 40.0646i −0.0494264 0.0527860i
\(760\) 43.6516 20.1954i 0.0574364 0.0265729i
\(761\) −839.047 + 712.693i −1.10256 + 0.936521i −0.998315 0.0580307i \(-0.981518\pi\)
−0.104243 + 0.994552i \(0.533242\pi\)
\(762\) 1260.57 + 285.115i 1.65429 + 0.374166i
\(763\) −1228.42 933.821i −1.60999 1.22388i
\(764\) 652.663 1084.73i 0.854271 1.41981i
\(765\) −89.9831 1.03932i −0.117625 0.00135859i
\(766\) 570.595 0.744902
\(767\) 31.3032 67.5804i 0.0408125 0.0881100i
\(768\) −930.162 + 146.982i −1.21115 + 0.191382i
\(769\) 868.881 + 292.760i 1.12988 + 0.380702i 0.821301 0.570495i \(-0.193249\pi\)
0.308583 + 0.951197i \(0.400145\pi\)
\(770\) −74.1514 + 123.241i −0.0963005 + 0.160053i
\(771\) −117.128 + 217.877i −0.151917 + 0.282591i
\(772\) 239.338 600.693i 0.310023 0.778100i
\(773\) 994.027 844.334i 1.28593 1.09228i 0.295348 0.955390i \(-0.404564\pi\)