Properties

Label 177.3.h.a.5.7
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.7
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.912087 + 2.70698i) q^{2} +(2.96240 - 0.473468i) q^{3} +(-3.31146 - 2.51731i) q^{4} +(-6.32194 - 2.51889i) q^{5} +(-1.42030 + 8.45101i) q^{6} +(-6.08665 + 2.81599i) q^{7} +(0.377434 - 0.255907i) q^{8} +(8.55166 - 2.80521i) q^{9} +O(q^{10})\) \(q+(-0.912087 + 2.70698i) q^{2} +(2.96240 - 0.473468i) q^{3} +(-3.31146 - 2.51731i) q^{4} +(-6.32194 - 2.51889i) q^{5} +(-1.42030 + 8.45101i) q^{6} +(-6.08665 + 2.81599i) q^{7} +(0.377434 - 0.255907i) q^{8} +(8.55166 - 2.80521i) q^{9} +(12.5848 - 14.8159i) q^{10} +(-16.9551 - 4.70755i) q^{11} +(-11.0017 - 5.88940i) q^{12} +(-4.39226 + 8.28469i) q^{13} +(-2.07125 - 19.0449i) q^{14} +(-19.9208 - 4.46873i) q^{15} +(-4.10280 - 14.7770i) q^{16} +(-11.2799 + 24.3812i) q^{17} +(-0.206226 + 25.7077i) q^{18} +(2.20764 - 0.485937i) q^{19} +(14.5940 + 24.2555i) q^{20} +(-16.6978 + 11.2239i) q^{21} +(28.2077 - 41.6033i) q^{22} +(20.8915 + 3.42499i) q^{23} +(0.996948 - 0.936802i) q^{24} +(15.4722 + 14.6561i) q^{25} +(-18.4204 - 19.4461i) q^{26} +(24.0053 - 12.3591i) q^{27} +(27.2444 + 5.99695i) q^{28} +(1.66237 + 4.93373i) q^{29} +(30.2662 - 49.8492i) q^{30} +(-20.0376 - 4.41061i) q^{31} +(45.5644 + 2.47043i) q^{32} +(-52.4566 - 5.91797i) q^{33} +(-55.7111 - 52.7724i) q^{34} +(45.5726 - 2.47088i) q^{35} +(-35.3800 - 12.2378i) q^{36} +(19.4432 - 28.6765i) q^{37} +(-0.698134 + 6.41924i) q^{38} +(-9.08912 + 26.6222i) q^{39} +(-3.03072 + 0.667111i) q^{40} +(63.9370 - 10.4819i) q^{41} +(-15.1530 - 55.4379i) q^{42} +(8.90734 + 32.0814i) q^{43} +(44.2956 + 58.2699i) q^{44} +(-61.1291 - 3.80635i) q^{45} +(-28.3263 + 53.4290i) q^{46} +(-24.4046 + 9.72369i) q^{47} +(-19.1506 - 41.8328i) q^{48} +(-2.60435 + 3.06608i) q^{49} +(-53.7858 + 28.5154i) q^{50} +(-21.8720 + 77.5676i) q^{51} +(35.3999 - 16.3777i) q^{52} +(-73.6978 + 62.5994i) q^{53} +(11.5609 + 76.2543i) q^{54} +(95.3311 + 72.4688i) q^{55} +(-1.57668 + 2.62046i) q^{56} +(6.30983 - 2.48479i) q^{57} -14.8717 q^{58} +(4.27320 - 58.8450i) q^{59} +(54.7176 + 64.9447i) q^{60} +(-28.7790 - 9.69677i) q^{61} +(30.2155 - 50.2185i) q^{62} +(-44.1515 + 41.1557i) q^{63} +(-25.5404 + 64.1017i) q^{64} +(48.6359 - 41.3117i) q^{65} +(63.8648 - 136.601i) q^{66} +(-0.0239895 - 0.0353818i) q^{67} +(98.7280 - 52.3423i) q^{68} +(63.5107 + 0.254735i) q^{69} +(-34.8776 + 125.618i) q^{70} +(-72.5290 + 28.8982i) q^{71} +(2.50982 - 3.24721i) q^{72} +(-111.664 + 12.1441i) q^{73} +(59.8928 + 78.7877i) q^{74} +(52.7742 + 36.0916i) q^{75} +(-8.53375 - 3.94813i) q^{76} +(116.456 - 19.0920i) q^{77} +(-63.7756 - 48.8858i) q^{78} +(-89.3220 + 53.7432i) q^{79} +(-11.2839 + 103.754i) q^{80} +(65.2616 - 47.9783i) q^{81} +(-29.9417 + 182.636i) q^{82} +(-39.6087 + 2.14752i) q^{83} +(83.5483 + 4.86602i) q^{84} +(132.725 - 125.724i) q^{85} +(-94.9678 - 5.14901i) q^{86} +(7.26057 + 13.8286i) q^{87} +(-7.60411 + 2.56212i) q^{88} +(10.4467 + 31.0046i) q^{89} +(66.0588 - 162.003i) q^{90} +(3.40462 - 62.7946i) q^{91} +(-60.5597 - 63.9321i) q^{92} +(-61.4477 - 3.57884i) q^{93} +(-4.06268 - 74.9317i) q^{94} +(-15.1806 - 2.48873i) q^{95} +(136.150 - 14.2549i) q^{96} +(58.6479 + 6.37834i) q^{97} +(-5.92442 - 9.84647i) q^{98} +(-158.199 + 7.30508i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.912087 + 2.70698i −0.456044 + 1.35349i 0.435351 + 0.900261i \(0.356624\pi\)
−0.891394 + 0.453229i \(0.850272\pi\)
\(3\) 2.96240 0.473468i 0.987467 0.157823i
\(4\) −3.31146 2.51731i −0.827865 0.629327i
\(5\) −6.32194 2.51889i −1.26439 0.503778i −0.360986 0.932571i \(-0.617560\pi\)
−0.903403 + 0.428793i \(0.858939\pi\)
\(6\) −1.42030 + 8.45101i −0.236717 + 1.40850i
\(7\) −6.08665 + 2.81599i −0.869522 + 0.402284i −0.803338 0.595524i \(-0.796945\pi\)
−0.0661842 + 0.997807i \(0.521082\pi\)
\(8\) 0.377434 0.255907i 0.0471793 0.0319883i
\(9\) 8.55166 2.80521i 0.950184 0.311689i
\(10\) 12.5848 14.8159i 1.25848 1.48159i
\(11\) −16.9551 4.70755i −1.54137 0.427959i −0.610110 0.792317i \(-0.708875\pi\)
−0.931259 + 0.364358i \(0.881288\pi\)
\(12\) −11.0017 5.88940i −0.916812 0.490784i
\(13\) −4.39226 + 8.28469i −0.337866 + 0.637284i −0.992985 0.118243i \(-0.962274\pi\)
0.655118 + 0.755526i \(0.272619\pi\)
\(14\) −2.07125 19.0449i −0.147947 1.36035i
\(15\) −19.9208 4.46873i −1.32805 0.297916i
\(16\) −4.10280 14.7770i −0.256425 0.923560i
\(17\) −11.2799 + 24.3812i −0.663526 + 1.43419i 0.224536 + 0.974466i \(0.427913\pi\)
−0.888063 + 0.459723i \(0.847949\pi\)
\(18\) −0.206226 + 25.7077i −0.0114570 + 1.42821i
\(19\) 2.20764 0.485937i 0.116191 0.0255756i −0.156494 0.987679i \(-0.550019\pi\)
0.272685 + 0.962103i \(0.412088\pi\)
\(20\) 14.5940 + 24.2555i 0.729702 + 1.21277i
\(21\) −16.6978 + 11.2239i −0.795135 + 0.534472i
\(22\) 28.2077 41.6033i 1.28217 1.89106i
\(23\) 20.8915 + 3.42499i 0.908327 + 0.148913i 0.597794 0.801650i \(-0.296044\pi\)
0.310533 + 0.950563i \(0.399492\pi\)
\(24\) 0.996948 0.936802i 0.0415395 0.0390334i
\(25\) 15.4722 + 14.6561i 0.618890 + 0.586244i
\(26\) −18.4204 19.4461i −0.708475 0.747928i
\(27\) 24.0053 12.3591i 0.889084 0.457744i
\(28\) 27.2444 + 5.99695i 0.973014 + 0.214177i
\(29\) 1.66237 + 4.93373i 0.0573230 + 0.170129i 0.972489 0.232948i \(-0.0748373\pi\)
−0.915166 + 0.403077i \(0.867941\pi\)
\(30\) 30.2662 49.8492i 1.00887 1.66164i
\(31\) −20.0376 4.41061i −0.646374 0.142278i −0.120329 0.992734i \(-0.538395\pi\)
−0.526046 + 0.850456i \(0.676326\pi\)
\(32\) 45.5644 + 2.47043i 1.42389 + 0.0772010i
\(33\) −52.4566 5.91797i −1.58959 0.179333i
\(34\) −55.7111 52.7724i −1.63856 1.55213i
\(35\) 45.5726 2.47088i 1.30208 0.0705965i
\(36\) −35.3800 12.2378i −0.982778 0.339939i
\(37\) 19.4432 28.6765i 0.525491 0.775041i −0.468621 0.883399i \(-0.655249\pi\)
0.994112 + 0.108359i \(0.0345594\pi\)
\(38\) −0.698134 + 6.41924i −0.0183720 + 0.168927i
\(39\) −9.08912 + 26.6222i −0.233054 + 0.682620i
\(40\) −3.03072 + 0.667111i −0.0757679 + 0.0166778i
\(41\) 63.9370 10.4819i 1.55944 0.255657i 0.680556 0.732696i \(-0.261738\pi\)
0.878882 + 0.477039i \(0.158290\pi\)
\(42\) −15.1530 55.4379i −0.360786 1.31995i
\(43\) 8.90734 + 32.0814i 0.207148 + 0.746078i 0.991983 + 0.126373i \(0.0403338\pi\)
−0.784835 + 0.619705i \(0.787252\pi\)
\(44\) 44.2956 + 58.2699i 1.00672 + 1.32432i
\(45\) −61.1291 3.80635i −1.35842 0.0845856i
\(46\) −28.3263 + 53.4290i −0.615789 + 1.16150i
\(47\) −24.4046 + 9.72369i −0.519247 + 0.206887i −0.615013 0.788517i \(-0.710849\pi\)
0.0957659 + 0.995404i \(0.469470\pi\)
\(48\) −19.1506 41.8328i −0.398970 0.871516i
\(49\) −2.60435 + 3.06608i −0.0531501 + 0.0625731i
\(50\) −53.7858 + 28.5154i −1.07572 + 0.570308i
\(51\) −21.8720 + 77.5676i −0.428863 + 1.52093i
\(52\) 35.3999 16.3777i 0.680767 0.314957i
\(53\) −73.6978 + 62.5994i −1.39052 + 1.18112i −0.430032 + 0.902814i \(0.641498\pi\)
−0.960492 + 0.278308i \(0.910227\pi\)
\(54\) 11.5609 + 76.2543i 0.214090 + 1.41212i
\(55\) 95.3311 + 72.4688i 1.73329 + 1.31761i
\(56\) −1.57668 + 2.62046i −0.0281550 + 0.0467940i
\(57\) 6.30983 2.48479i 0.110699 0.0435927i
\(58\) −14.8717 −0.256409
\(59\) 4.27320 58.8450i 0.0724271 0.997374i
\(60\) 54.7176 + 64.9447i 0.911960 + 1.08241i
\(61\) −28.7790 9.69677i −0.471787 0.158964i 0.0733575 0.997306i \(-0.476629\pi\)
−0.545144 + 0.838342i \(0.683525\pi\)
\(62\) 30.2155 50.2185i 0.487346 0.809976i
\(63\) −44.1515 + 41.1557i −0.700818 + 0.653264i
\(64\) −25.5404 + 64.1017i −0.399069 + 1.00159i
\(65\) 48.6359 41.3117i 0.748244 0.635564i
\(66\) 63.8648 136.601i 0.967649 2.06971i
\(67\) −0.0239895 0.0353818i −0.000358052 0.000528087i 0.827510 0.561451i \(-0.189757\pi\)
−0.827868 + 0.560923i \(0.810446\pi\)
\(68\) 98.7280 52.3423i 1.45188 0.769740i
\(69\) 63.5107 + 0.254735i 0.920445 + 0.00369182i
\(70\) −34.8776 + 125.618i −0.498252 + 1.79454i
\(71\) −72.5290 + 28.8982i −1.02153 + 0.407017i −0.819938 0.572452i \(-0.805992\pi\)
−0.201596 + 0.979469i \(0.564613\pi\)
\(72\) 2.50982 3.24721i 0.0348586 0.0451001i
\(73\) −111.664 + 12.1441i −1.52964 + 0.166358i −0.833891 0.551929i \(-0.813892\pi\)
−0.695747 + 0.718287i \(0.744927\pi\)
\(74\) 59.8928 + 78.7877i 0.809363 + 1.06470i
\(75\) 52.7742 + 36.0916i 0.703656 + 0.481222i
\(76\) −8.53375 3.94813i −0.112286 0.0519491i
\(77\) 116.456 19.0920i 1.51241 0.247948i
\(78\) −63.7756 48.8858i −0.817636 0.626741i
\(79\) −89.3220 + 53.7432i −1.13066 + 0.680294i −0.952751 0.303753i \(-0.901760\pi\)
−0.177907 + 0.984047i \(0.556933\pi\)
\(80\) −11.2839 + 103.754i −0.141049 + 1.29692i
\(81\) 65.2616 47.9783i 0.805699 0.592325i
\(82\) −29.9417 + 182.636i −0.365143 + 2.22727i
\(83\) −39.6087 + 2.14752i −0.477213 + 0.0258738i −0.291177 0.956669i \(-0.594047\pi\)
−0.186036 + 0.982543i \(0.559564\pi\)
\(84\) 83.5483 + 4.86602i 0.994622 + 0.0579288i
\(85\) 132.725 125.724i 1.56147 1.47910i
\(86\) −94.9678 5.14901i −1.10428 0.0598722i
\(87\) 7.26057 + 13.8286i 0.0834548 + 0.158950i
\(88\) −7.60411 + 2.56212i −0.0864103 + 0.0291150i
\(89\) 10.4467 + 31.0046i 0.117378 + 0.348366i 0.990197 0.139679i \(-0.0446069\pi\)
−0.872819 + 0.488044i \(0.837710\pi\)
\(90\) 66.0588 162.003i 0.733986 1.80004i
\(91\) 3.40462 62.7946i 0.0374134 0.690050i
\(92\) −60.5597 63.9321i −0.658257 0.694914i
\(93\) −61.4477 3.57884i −0.660728 0.0384821i
\(94\) −4.06268 74.9317i −0.0432200 0.797145i
\(95\) −15.1806 2.48873i −0.159795 0.0261971i
\(96\) 136.150 14.2549i 1.41823 0.148488i
\(97\) 58.6479 + 6.37834i 0.604618 + 0.0657561i 0.405308 0.914180i \(-0.367164\pi\)
0.199310 + 0.979936i \(0.436130\pi\)
\(98\) −5.92442 9.84647i −0.0604533 0.100474i
\(99\) −158.199 + 7.30508i −1.59797 + 0.0737887i
\(100\) −14.3419 87.4814i −0.143419 0.874814i
\(101\) 10.7841 23.3095i 0.106773 0.230787i −0.846823 0.531875i \(-0.821488\pi\)
0.953596 + 0.301088i \(0.0973497\pi\)
\(102\) −190.025 129.956i −1.86299 1.27407i
\(103\) −23.1067 + 17.5652i −0.224337 + 0.170536i −0.711305 0.702883i \(-0.751896\pi\)
0.486969 + 0.873419i \(0.338103\pi\)
\(104\) 0.462317 + 4.25093i 0.00444536 + 0.0408744i
\(105\) 133.835 28.8969i 1.27462 0.275209i
\(106\) −102.237 256.594i −0.964496 2.42070i
\(107\) 179.199 + 49.7543i 1.67476 + 0.464994i 0.969728 0.244187i \(-0.0785210\pi\)
0.705027 + 0.709180i \(0.250935\pi\)
\(108\) −110.604 19.5020i −1.02411 0.180574i
\(109\) −95.8588 180.809i −0.879439 1.65880i −0.744172 0.667988i \(-0.767156\pi\)
−0.135267 0.990809i \(-0.543189\pi\)
\(110\) −283.122 + 191.961i −2.57383 + 1.74510i
\(111\) 44.0210 94.1571i 0.396586 0.848262i
\(112\) 66.5841 + 78.3888i 0.594501 + 0.699900i
\(113\) −145.910 58.1360i −1.29124 0.514477i −0.379481 0.925200i \(-0.623897\pi\)
−0.911760 + 0.410722i \(0.865277\pi\)
\(114\) 0.971150 + 19.3469i 0.00851886 + 0.169710i
\(115\) −123.448 74.2761i −1.07346 0.645879i
\(116\) 6.91485 20.5225i 0.0596108 0.176918i
\(117\) −14.3209 + 83.1690i −0.122401 + 0.710846i
\(118\) 155.395 + 65.2393i 1.31690 + 0.552875i
\(119\) 180.164i 1.51398i
\(120\) −8.66235 + 3.41120i −0.0721863 + 0.0284267i
\(121\) 161.633 + 97.2514i 1.33581 + 0.803731i
\(122\) 52.4979 69.0598i 0.430311 0.566064i
\(123\) 184.444 61.3238i 1.49955 0.498568i
\(124\) 55.2509 + 65.0463i 0.445571 + 0.524567i
\(125\) 10.5390 + 22.7797i 0.0843119 + 0.182237i
\(126\) −71.1374 157.055i −0.564583 1.24647i
\(127\) 12.2015 + 23.0145i 0.0960747 + 0.181216i 0.926891 0.375331i \(-0.122471\pi\)
−0.830816 + 0.556547i \(0.812126\pi\)
\(128\) −11.1128 9.43934i −0.0868191 0.0737448i
\(129\) 41.5766 + 90.8205i 0.322299 + 0.704035i
\(130\) 67.4697 + 169.336i 0.518998 + 1.30259i
\(131\) −44.1582 23.4112i −0.337086 0.178712i 0.291264 0.956643i \(-0.405924\pi\)
−0.628349 + 0.777931i \(0.716269\pi\)
\(132\) 158.810 + 151.646i 1.20311 + 1.14884i
\(133\) −12.0687 + 9.17440i −0.0907423 + 0.0689805i
\(134\) 0.117658 0.0326677i 0.000878047 0.000243788i
\(135\) −182.891 + 17.6667i −1.35475 + 0.130865i
\(136\) 1.98188 + 12.0889i 0.0145726 + 0.0888891i
\(137\) 3.72237 + 16.9109i 0.0271706 + 0.123437i 0.988254 0.152822i \(-0.0488362\pi\)
−0.961083 + 0.276259i \(0.910905\pi\)
\(138\) −58.6169 + 171.690i −0.424760 + 1.24413i
\(139\) 254.415 + 27.6693i 1.83032 + 0.199060i 0.957394 0.288786i \(-0.0932515\pi\)
0.872930 + 0.487845i \(0.162217\pi\)
\(140\) −157.132 106.538i −1.12237 0.760986i
\(141\) −67.6925 + 40.3603i −0.480088 + 0.286243i
\(142\) −12.0740 222.692i −0.0850282 1.56825i
\(143\) 113.472 119.791i 0.793508 0.837696i
\(144\) −76.5382 114.858i −0.531515 0.797627i
\(145\) 1.91814 35.3781i 0.0132286 0.243987i
\(146\) 68.9730 313.348i 0.472418 2.14622i
\(147\) −6.26345 + 10.3160i −0.0426085 + 0.0701772i
\(148\) −136.573 + 46.0167i −0.922789 + 0.310924i
\(149\) −44.9234 + 204.089i −0.301500 + 1.36973i 0.545490 + 0.838117i \(0.316343\pi\)
−0.846990 + 0.531609i \(0.821588\pi\)
\(150\) −145.834 + 109.940i −0.972226 + 0.732933i
\(151\) −61.9073 + 58.6417i −0.409982 + 0.388356i −0.864707 0.502276i \(-0.832496\pi\)
0.454725 + 0.890632i \(0.349737\pi\)
\(152\) 0.708882 0.748358i 0.00466370 0.00492341i
\(153\) −28.0679 + 240.142i −0.183451 + 1.56956i
\(154\) −54.5364 + 332.657i −0.354132 + 2.16011i
\(155\) 115.567 + 78.3562i 0.745592 + 0.505524i
\(156\) 97.1144 65.2782i 0.622528 0.418450i
\(157\) −32.3835 + 19.4845i −0.206264 + 0.124105i −0.614938 0.788575i \(-0.710819\pi\)
0.408674 + 0.912681i \(0.365991\pi\)
\(158\) −64.0124 290.811i −0.405142 1.84058i
\(159\) −188.684 + 220.338i −1.18669 + 1.38578i
\(160\) −281.833 130.390i −1.76146 0.814936i
\(161\) −136.804 + 37.9835i −0.849715 + 0.235922i
\(162\) 70.3519 + 220.422i 0.434271 + 1.36063i
\(163\) 217.894 23.6974i 1.33677 0.145383i 0.588352 0.808605i \(-0.299777\pi\)
0.748423 + 0.663222i \(0.230811\pi\)
\(164\) −238.111 126.238i −1.45190 0.769746i
\(165\) 316.721 + 169.546i 1.91952 + 1.02755i
\(166\) 30.3133 109.179i 0.182610 0.657703i
\(167\) −155.409 132.006i −0.930595 0.790455i 0.0474442 0.998874i \(-0.484892\pi\)
−0.978040 + 0.208419i \(0.933168\pi\)
\(168\) −3.43006 + 8.50938i −0.0204170 + 0.0506511i
\(169\) 45.4965 + 67.1023i 0.269210 + 0.397055i
\(170\) 219.275 + 473.954i 1.28985 + 2.78797i
\(171\) 17.5158 10.3484i 0.102431 0.0605172i
\(172\) 51.2623 128.659i 0.298037 0.748015i
\(173\) −39.6365 + 52.1410i −0.229113 + 0.301393i −0.896256 0.443536i \(-0.853724\pi\)
0.667143 + 0.744929i \(0.267517\pi\)
\(174\) −44.0561 + 7.04129i −0.253196 + 0.0404672i
\(175\) −135.446 45.6369i −0.773974 0.260782i
\(176\) 269.858i 1.53329i
\(177\) −15.2023 176.346i −0.0858888 0.996305i
\(178\) −93.4570 −0.525039
\(179\) 66.0282 195.965i 0.368873 1.09478i −0.589135 0.808034i \(-0.700531\pi\)
0.958008 0.286741i \(-0.0925720\pi\)
\(180\) 192.845 + 166.485i 1.07136 + 0.924918i
\(181\) 6.55963 + 4.98650i 0.0362411 + 0.0275497i 0.623138 0.782112i \(-0.285858\pi\)
−0.586897 + 0.809662i \(0.699651\pi\)
\(182\) 166.878 + 66.4904i 0.916914 + 0.365332i
\(183\) −89.8461 15.0998i −0.490962 0.0825126i
\(184\) 8.76165 4.05357i 0.0476177 0.0220303i
\(185\) −195.151 + 132.316i −1.05487 + 0.715222i
\(186\) 65.7335 163.073i 0.353406 0.876739i
\(187\) 306.028 360.284i 1.63651 1.92665i
\(188\) 105.292 + 29.2343i 0.560066 + 0.155502i
\(189\) −111.309 + 142.824i −0.588935 + 0.755682i
\(190\) 20.5829 38.8235i 0.108331 0.204334i
\(191\) 3.72595 + 34.2595i 0.0195076 + 0.179369i 0.999838 0.0179935i \(-0.00572782\pi\)
−0.980331 + 0.197363i \(0.936762\pi\)
\(192\) −45.3110 + 201.987i −0.235995 + 1.05202i
\(193\) 2.69529 + 9.70757i 0.0139652 + 0.0502983i 0.970204 0.242288i \(-0.0778979\pi\)
−0.956239 + 0.292586i \(0.905484\pi\)
\(194\) −70.7581 + 152.941i −0.364732 + 0.788356i
\(195\) 124.519 145.409i 0.638560 0.745689i
\(196\) 16.3425 3.59725i 0.0833800 0.0183533i
\(197\) −28.9672 48.1438i −0.147041 0.244385i 0.774579 0.632477i \(-0.217962\pi\)
−0.921621 + 0.388092i \(0.873134\pi\)
\(198\) 124.517 434.905i 0.628874 2.19649i
\(199\) −7.77057 + 11.4607i −0.0390481 + 0.0575917i −0.846712 0.532052i \(-0.821421\pi\)
0.807664 + 0.589643i \(0.200732\pi\)
\(200\) 9.59034 + 1.57226i 0.0479517 + 0.00786129i
\(201\) −0.0878186 0.0934569i −0.000436908 0.000464960i
\(202\) 53.2623 + 50.4527i 0.263675 + 0.249766i
\(203\) −24.0116 25.3487i −0.118284 0.124871i
\(204\) 267.690 201.804i 1.31220 0.989233i
\(205\) −430.609 94.7841i −2.10053 0.462362i
\(206\) −26.4734 78.5704i −0.128512 0.381409i
\(207\) 188.265 29.3157i 0.909492 0.141622i
\(208\) 140.443 + 30.9139i 0.675208 + 0.148624i
\(209\) −39.7182 2.15346i −0.190039 0.0103036i
\(210\) −43.8455 + 388.644i −0.208788 + 1.85069i
\(211\) −53.8563 51.0154i −0.255243 0.241779i 0.549369 0.835580i \(-0.314868\pi\)
−0.804612 + 0.593801i \(0.797627\pi\)
\(212\) 401.629 21.7757i 1.89448 0.102716i
\(213\) −201.178 + 119.948i −0.944496 + 0.563137i
\(214\) −298.129 + 439.707i −1.39313 + 2.05471i
\(215\) 24.4977 225.253i 0.113943 1.04769i
\(216\) 5.89764 10.8078i 0.0273039 0.0500363i
\(217\) 134.382 29.5797i 0.619273 0.136312i
\(218\) 576.878 94.5743i 2.64623 0.433827i
\(219\) −325.043 + 88.8450i −1.48421 + 0.405685i
\(220\) −133.259 479.955i −0.605722 2.18161i
\(221\) −152.446 200.540i −0.689802 0.907419i
\(222\) 214.730 + 205.043i 0.967253 + 0.923619i
\(223\) −73.6346 + 138.890i −0.330200 + 0.622823i −0.991911 0.126936i \(-0.959486\pi\)
0.661711 + 0.749759i \(0.269831\pi\)
\(224\) −284.291 + 113.272i −1.26916 + 0.505679i
\(225\) 173.427 + 81.9310i 0.770785 + 0.364138i
\(226\) 290.456 341.951i 1.28520 1.51306i
\(227\) 36.9051 19.5658i 0.162577 0.0861931i −0.385133 0.922861i \(-0.625844\pi\)
0.547710 + 0.836668i \(0.315500\pi\)
\(228\) −27.1497 7.65550i −0.119078 0.0335768i
\(229\) −205.562 + 95.1030i −0.897649 + 0.415297i −0.813775 0.581180i \(-0.802591\pi\)
−0.0838741 + 0.996476i \(0.526729\pi\)
\(230\) 313.659 266.424i 1.36373 1.15837i
\(231\) 335.950 111.696i 1.45433 0.483534i
\(232\) 1.89001 + 1.43675i 0.00814659 + 0.00619288i
\(233\) 19.2451 31.9856i 0.0825971 0.137277i −0.812805 0.582536i \(-0.802061\pi\)
0.895402 + 0.445258i \(0.146888\pi\)
\(234\) −212.075 114.624i −0.906303 0.489845i
\(235\) 178.778 0.760755
\(236\) −162.282 + 184.106i −0.687634 + 0.780110i
\(237\) −239.162 + 201.500i −1.00912 + 0.850212i
\(238\) 487.700 + 164.325i 2.04916 + 0.690443i
\(239\) 173.732 288.744i 0.726911 1.20814i −0.244250 0.969712i \(-0.578542\pi\)
0.971161 0.238423i \(-0.0766306\pi\)
\(240\) 15.6966 + 312.703i 0.0654025 + 1.30293i
\(241\) −103.218 + 259.057i −0.428289 + 1.07493i 0.543570 + 0.839364i \(0.317072\pi\)
−0.971859 + 0.235561i \(0.924307\pi\)
\(242\) −410.681 + 348.836i −1.69703 + 1.44147i
\(243\) 170.615 173.030i 0.702120 0.712059i
\(244\) 70.8907 + 104.556i 0.290536 + 0.428508i
\(245\) 24.1877 12.8235i 0.0987253 0.0523409i
\(246\) −2.22693 + 555.219i −0.00905256 + 2.25699i
\(247\) −5.67068 + 20.4239i −0.0229582 + 0.0826880i
\(248\) −8.69158 + 3.46304i −0.0350467 + 0.0139639i
\(249\) −116.320 + 25.1153i −0.467149 + 0.100865i
\(250\) −71.2765 + 7.75179i −0.285106 + 0.0310072i
\(251\) −277.872 365.534i −1.10706 1.45631i −0.875328 0.483529i \(-0.839355\pi\)
−0.231730 0.972780i \(-0.574439\pi\)
\(252\) 249.807 25.1423i 0.991299 0.0997711i
\(253\) −338.094 156.419i −1.33634 0.618256i
\(254\) −73.4285 + 12.0380i −0.289088 + 0.0473936i
\(255\) 333.658 435.285i 1.30846 1.70700i
\(256\) −200.813 + 120.825i −0.784426 + 0.471973i
\(257\) 26.5956 244.542i 0.103485 0.951526i −0.821161 0.570697i \(-0.806673\pi\)
0.924646 0.380829i \(-0.124361\pi\)
\(258\) −283.771 + 29.7108i −1.09989 + 0.115158i
\(259\) −37.5911 + 229.296i −0.145139 + 0.885311i
\(260\) −265.050 + 14.3706i −1.01942 + 0.0552715i
\(261\) 28.0561 + 37.5283i 0.107495 + 0.143787i
\(262\) 103.650 98.1823i 0.395610 0.374742i
\(263\) 175.155 + 9.49663i 0.665989 + 0.0361088i 0.384034 0.923319i \(-0.374535\pi\)
0.281954 + 0.959428i \(0.409017\pi\)
\(264\) −21.3133 + 11.1903i −0.0807324 + 0.0423877i
\(265\) 623.594 210.113i 2.35319 0.792880i
\(266\) −13.8272 41.0376i −0.0519819 0.154277i
\(267\) 45.6269 + 86.9018i 0.170887 + 0.325475i
\(268\) −0.00962671 + 0.177554i −3.59206e−5 + 0.000662516i
\(269\) 126.519 + 133.565i 0.470331 + 0.496522i 0.917394 0.397980i \(-0.130289\pi\)
−0.447063 + 0.894502i \(0.647530\pi\)
\(270\) 118.989 511.196i 0.440701 1.89332i
\(271\) 23.1136 + 426.305i 0.0852900 + 1.57308i 0.657805 + 0.753188i \(0.271485\pi\)
−0.572515 + 0.819894i \(0.694032\pi\)
\(272\) 406.560 + 66.6521i 1.49470 + 0.245044i
\(273\) −19.6454 187.635i −0.0719610 0.687307i
\(274\) −49.1726 5.34784i −0.179462 0.0195177i
\(275\) −193.339 321.331i −0.703049 1.16848i
\(276\) −209.672 160.719i −0.759681 0.582317i
\(277\) −24.4177 148.941i −0.0881505 0.537694i −0.993574 0.113185i \(-0.963895\pi\)
0.905423 0.424509i \(-0.139553\pi\)
\(278\) −306.949 + 663.459i −1.10413 + 2.38654i
\(279\) −183.727 + 18.4916i −0.658521 + 0.0662780i
\(280\) 16.5684 12.5949i 0.0591727 0.0449819i
\(281\) 33.5780 + 308.744i 0.119495 + 1.09873i 0.888304 + 0.459256i \(0.151884\pi\)
−0.768809 + 0.639478i \(0.779150\pi\)
\(282\) −47.5130 220.054i −0.168486 0.780334i
\(283\) 6.01772 + 15.1033i 0.0212640 + 0.0533687i 0.939225 0.343301i \(-0.111545\pi\)
−0.917961 + 0.396670i \(0.870166\pi\)
\(284\) 312.922 + 86.8824i 1.10184 + 0.305924i
\(285\) −46.1493 0.185100i −0.161927 0.000649475i
\(286\) 220.774 + 416.425i 0.771939 + 1.45603i
\(287\) −359.645 + 243.845i −1.25312 + 0.849636i
\(288\) 396.581 106.691i 1.37702 0.370456i
\(289\) −280.111 329.772i −0.969243 1.14108i
\(290\) 94.0182 + 37.4603i 0.324201 + 0.129173i
\(291\) 176.759 8.87268i 0.607418 0.0304903i
\(292\) 400.340 + 240.877i 1.37103 + 0.824920i
\(293\) −129.683 + 384.886i −0.442605 + 1.31360i 0.461821 + 0.886973i \(0.347196\pi\)
−0.904426 + 0.426631i \(0.859700\pi\)
\(294\) −22.2125 26.3642i −0.0755528 0.0896741i
\(295\) −175.239 + 361.251i −0.594031 + 1.22458i
\(296\) 15.7991i 0.0533754i
\(297\) −465.192 + 96.5430i −1.56630 + 0.325060i
\(298\) −511.491 307.754i −1.71641 1.03273i
\(299\) −120.136 + 158.036i −0.401793 + 0.528550i
\(300\) −83.9060 252.365i −0.279687 0.841216i
\(301\) −144.557 170.185i −0.480254 0.565399i
\(302\) −102.277 221.068i −0.338666 0.732014i
\(303\) 20.9106 74.1581i 0.0690119 0.244746i
\(304\) −16.2382 30.6284i −0.0534150 0.100751i
\(305\) 157.514 + 133.794i 0.516439 + 0.438668i
\(306\) −624.460 295.010i −2.04072 0.964085i
\(307\) 67.4697 + 169.336i 0.219771 + 0.551583i 0.996980 0.0776591i \(-0.0247446\pi\)
−0.777209 + 0.629242i \(0.783365\pi\)
\(308\) −433.699 229.933i −1.40812 0.746535i
\(309\) −60.1347 + 62.9756i −0.194611 + 0.203805i
\(310\) −317.515 + 241.369i −1.02424 + 0.778610i
\(311\) 229.888 63.8282i 0.739191 0.205235i 0.122531 0.992465i \(-0.460899\pi\)
0.616660 + 0.787229i \(0.288485\pi\)
\(312\) 3.38225 + 12.3741i 0.0108405 + 0.0396605i
\(313\) 69.7152 + 425.244i 0.222732 + 1.35861i 0.827169 + 0.561953i \(0.189950\pi\)
−0.604437 + 0.796653i \(0.706602\pi\)
\(314\) −23.2076 105.433i −0.0739095 0.335774i
\(315\) 382.790 148.971i 1.21521 0.472923i
\(316\) 431.074 + 46.8821i 1.36416 + 0.148361i
\(317\) −452.753 306.974i −1.42824 0.968373i −0.997837 0.0657384i \(-0.979060\pi\)
−0.430407 0.902635i \(-0.641630\pi\)
\(318\) −424.355 711.730i −1.33445 2.23815i
\(319\) −4.95976 91.4774i −0.0155478 0.286763i
\(320\) 322.930 340.913i 1.00916 1.06535i
\(321\) 554.416 + 62.5474i 1.72715 + 0.194852i
\(322\) 21.9569 404.970i 0.0681890 1.25767i
\(323\) −13.0543 + 59.3062i −0.0404157 + 0.183610i
\(324\) −336.887 5.40533i −1.03978 0.0166831i
\(325\) −189.379 + 63.8093i −0.582706 + 0.196336i
\(326\) −134.590 + 611.449i −0.412853 + 1.87561i
\(327\) −369.580 490.243i −1.13021 1.49921i
\(328\) 21.4496 20.3181i 0.0653951 0.0619455i
\(329\) 121.161 127.908i 0.368270 0.388777i
\(330\) −747.833 + 702.716i −2.26616 + 2.12944i
\(331\) 26.0469 158.879i 0.0786916 0.479998i −0.917852 0.396923i \(-0.870078\pi\)
0.996543 0.0830742i \(-0.0264738\pi\)
\(332\) 136.569 + 92.5958i 0.411351 + 0.278903i
\(333\) 85.8277 299.774i 0.257741 0.900221i
\(334\) 499.084 300.289i 1.49426 0.899069i
\(335\) 0.0625370 + 0.284109i 0.000186678 + 0.000848085i
\(336\) 234.363 + 200.694i 0.697510 + 0.597303i
\(337\) 111.080 + 51.3909i 0.329613 + 0.152495i 0.577715 0.816239i \(-0.303945\pi\)
−0.248101 + 0.968734i \(0.579807\pi\)
\(338\) −223.141 + 61.9549i −0.660182 + 0.183299i
\(339\) −459.770 103.138i −1.35625 0.304243i
\(340\) −755.997 + 82.2197i −2.22352 + 0.241823i
\(341\) 318.975 + 169.110i 0.935412 + 0.495924i
\(342\) 12.0371 + 56.8535i 0.0351961 + 0.166238i
\(343\) 95.1325 342.636i 0.277354 0.998940i
\(344\) 11.5718 + 9.82915i 0.0336389 + 0.0285731i
\(345\) −400.869 161.587i −1.16194 0.468368i
\(346\) −104.993 154.852i −0.303447 0.447550i
\(347\) −156.446 338.152i −0.450852 0.974502i −0.991115 0.133005i \(-0.957537\pi\)
0.540263 0.841496i \(-0.318325\pi\)
\(348\) 10.7678 64.0700i 0.0309420 0.184109i
\(349\) −203.135 + 509.829i −0.582047 + 1.46083i 0.282991 + 0.959123i \(0.408673\pi\)
−0.865038 + 0.501706i \(0.832706\pi\)
\(350\) 247.076 325.023i 0.705932 0.928638i
\(351\) −3.04634 + 253.161i −0.00867903 + 0.721255i
\(352\) −760.917 256.383i −2.16170 0.728361i
\(353\) 300.954i 0.852562i 0.904591 + 0.426281i \(0.140176\pi\)
−0.904591 + 0.426281i \(0.859824\pi\)
\(354\) 491.231 + 119.691i 1.38766 + 0.338109i
\(355\) 531.315 1.49666
\(356\) 43.4543 128.968i 0.122063 0.362269i
\(357\) −85.3019 533.719i −0.238941 1.49501i
\(358\) 470.249 + 357.474i 1.31355 + 0.998531i
\(359\) −88.1577 35.1252i −0.245564 0.0978418i 0.244109 0.969748i \(-0.421505\pi\)
−0.489673 + 0.871906i \(0.662884\pi\)
\(360\) −24.0463 + 14.2067i −0.0667952 + 0.0394630i
\(361\) −322.997 + 149.434i −0.894729 + 0.413946i
\(362\) −19.4813 + 13.2087i −0.0538158 + 0.0364880i
\(363\) 524.868 + 211.570i 1.44592 + 0.582837i
\(364\) −169.347 + 199.371i −0.465240 + 0.547723i
\(365\) 736.521 + 204.494i 2.01786 + 0.560257i
\(366\) 122.822 229.439i 0.335580 0.626883i
\(367\) 169.506 319.723i 0.461870 0.871180i −0.537736 0.843113i \(-0.680720\pi\)
0.999606 0.0280665i \(-0.00893501\pi\)
\(368\) −35.1028 322.765i −0.0953882 0.877080i
\(369\) 517.363 268.994i 1.40207 0.728982i
\(370\) −180.181 648.955i −0.486977 1.75393i
\(371\) 272.294 588.553i 0.733945 1.58640i
\(372\) 194.473 + 166.534i 0.522776 + 0.447672i
\(373\) 619.277 136.313i 1.66026 0.365451i 0.716889 0.697188i \(-0.245566\pi\)
0.943372 + 0.331737i \(0.107635\pi\)
\(374\) 696.156 + 1157.02i 1.86138 + 3.09364i
\(375\) 42.0062 + 62.4926i 0.112016 + 0.166647i
\(376\) −6.72278 + 9.91536i −0.0178797 + 0.0263706i
\(377\) −48.1760 7.89805i −0.127788 0.0209497i
\(378\) −285.098 431.578i −0.754228 1.14174i
\(379\) 78.6923 + 74.5413i 0.207632 + 0.196679i 0.784448 0.620195i \(-0.212947\pi\)
−0.576816 + 0.816874i \(0.695705\pi\)
\(380\) 44.0049 + 46.4555i 0.115802 + 0.122251i
\(381\) 47.0423 + 62.4011i 0.123471 + 0.163782i
\(382\) −96.1383 21.1616i −0.251671 0.0553969i
\(383\) 110.476 + 327.881i 0.288449 + 0.856087i 0.989698 + 0.143170i \(0.0457296\pi\)
−0.701249 + 0.712916i \(0.747374\pi\)
\(384\) −37.3899 22.7015i −0.0973696 0.0591186i
\(385\) −784.318 172.641i −2.03719 0.448419i
\(386\) −28.7365 1.55805i −0.0744470 0.00403640i
\(387\) 166.167 + 249.362i 0.429373 + 0.644346i
\(388\) −178.154 168.756i −0.459160 0.434939i
\(389\) −220.917 + 11.9778i −0.567909 + 0.0307911i −0.335858 0.941913i \(-0.609026\pi\)
−0.232051 + 0.972704i \(0.574544\pi\)
\(390\) 280.048 + 469.697i 0.718071 + 1.20435i
\(391\) −319.161 + 470.727i −0.816268 + 1.20390i
\(392\) −0.198341 + 1.82372i −0.000505972 + 0.00465234i
\(393\) −141.899 48.4459i −0.361066 0.123272i
\(394\) 156.745 34.5022i 0.397830 0.0875689i
\(395\) 700.062 114.769i 1.77231 0.290555i
\(396\) 542.260 + 374.046i 1.36934 + 0.944560i
\(397\) 104.863 + 377.682i 0.264138 + 0.951339i 0.970023 + 0.243013i \(0.0781357\pi\)
−0.705885 + 0.708326i \(0.749451\pi\)
\(398\) −23.9365 31.4880i −0.0601421 0.0791155i
\(399\) −31.4086 + 32.8924i −0.0787183 + 0.0824371i
\(400\) 153.093 288.764i 0.382732 0.721910i
\(401\) 345.461 137.644i 0.861499 0.343252i 0.102806 0.994701i \(-0.467218\pi\)
0.758693 + 0.651449i \(0.225839\pi\)
\(402\) 0.333084 0.152482i 0.000828567 0.000379309i
\(403\) 124.551 146.633i 0.309059 0.363853i
\(404\) −94.3883 + 50.0415i −0.233634 + 0.123865i
\(405\) −533.432 + 138.929i −1.31712 + 0.343035i
\(406\) 90.5191 41.8786i 0.222953 0.103149i
\(407\) −464.656 + 394.682i −1.14166 + 0.969735i
\(408\) 11.5948 + 34.8739i 0.0284187 + 0.0854752i
\(409\) −145.136 110.330i −0.354856 0.269755i 0.412524 0.910947i \(-0.364647\pi\)
−0.767381 + 0.641192i \(0.778440\pi\)
\(410\) 649.331 1079.20i 1.58373 2.63219i
\(411\) 19.0339 + 48.3345i 0.0463113 + 0.117602i
\(412\) 120.734 0.293044
\(413\) 139.697 + 370.203i 0.338250 + 0.896375i
\(414\) −92.3572 + 536.368i −0.223085 + 1.29557i
\(415\) 255.813 + 86.1936i 0.616418 + 0.207695i
\(416\) −220.598 + 366.636i −0.530283 + 0.881337i
\(417\) 766.780 38.4898i 1.83880 0.0923016i
\(418\) 42.0558 105.552i 0.100612 0.252517i
\(419\) −302.420 + 256.878i −0.721765 + 0.613073i −0.931097 0.364772i \(-0.881147\pi\)
0.209332 + 0.977845i \(0.432871\pi\)
\(420\) −515.930 241.212i −1.22841 0.574314i
\(421\) −11.2388 16.5760i −0.0266956 0.0393730i 0.814107 0.580715i \(-0.197227\pi\)
−0.840803 + 0.541342i \(0.817917\pi\)
\(422\) 187.219 99.2574i 0.443648 0.235207i
\(423\) −181.423 + 151.614i −0.428896 + 0.358425i
\(424\) −11.7964 + 42.4869i −0.0278218 + 0.100205i
\(425\) −531.859 + 211.912i −1.25143 + 0.498617i
\(426\) −141.206 653.987i −0.331469 1.53518i
\(427\) 202.474 22.0204i 0.474177 0.0515699i
\(428\) −468.163 615.858i −1.09384 1.43892i
\(429\) 279.432 408.593i 0.651356 0.952431i
\(430\) 587.411 + 271.765i 1.36607 + 0.632013i
\(431\) −348.444 + 57.1244i −0.808454 + 0.132539i −0.551813 0.833968i \(-0.686064\pi\)
−0.256641 + 0.966507i \(0.582616\pi\)
\(432\) −281.119 304.018i −0.650738 0.703746i
\(433\) −33.1012 + 19.9163i −0.0764461 + 0.0459961i −0.553264 0.833006i \(-0.686618\pi\)
0.476818 + 0.879002i \(0.341790\pi\)
\(434\) −42.4965 + 390.749i −0.0979182 + 0.900343i
\(435\) −11.0681 105.712i −0.0254439 0.243017i
\(436\) −137.719 + 840.047i −0.315869 + 1.92671i
\(437\) 47.7852 2.59084i 0.109348 0.00592869i
\(438\) 55.9658 960.918i 0.127776 2.19388i
\(439\) 14.2209 13.4707i 0.0323938 0.0306851i −0.671331 0.741157i \(-0.734277\pi\)
0.703725 + 0.710472i \(0.251519\pi\)
\(440\) 54.5264 + 2.95634i 0.123924 + 0.00671895i
\(441\) −13.6705 + 33.5258i −0.0309990 + 0.0760223i
\(442\) 681.901 229.759i 1.54276 0.519817i
\(443\) 75.7355 + 224.775i 0.170960 + 0.507392i 0.998544 0.0539506i \(-0.0171814\pi\)
−0.827583 + 0.561343i \(0.810285\pi\)
\(444\) −382.796 + 200.983i −0.862153 + 0.452664i
\(445\) 12.0540 222.323i 0.0270876 0.499602i
\(446\) −308.810 326.007i −0.692399 0.730957i
\(447\) −36.4516 + 625.864i −0.0815471 + 1.40014i
\(448\) −25.0536 462.086i −0.0559232 1.03144i
\(449\) 128.280 + 21.0305i 0.285702 + 0.0468385i 0.302929 0.953013i \(-0.402035\pi\)
−0.0172268 + 0.999852i \(0.505484\pi\)
\(450\) −379.966 + 394.734i −0.844368 + 0.877187i
\(451\) −1133.40 123.265i −2.51308 0.273314i
\(452\) 336.830 + 559.816i 0.745199 + 1.23853i
\(453\) −155.629 + 203.031i −0.343553 + 0.448193i
\(454\) 19.3036 + 117.747i 0.0425190 + 0.259355i
\(455\) −179.697 + 388.408i −0.394938 + 0.853644i
\(456\) 1.74567 2.55257i 0.00382823 0.00559774i
\(457\) −147.689 + 112.270i −0.323170 + 0.245668i −0.754162 0.656688i \(-0.771957\pi\)
0.430992 + 0.902356i \(0.358164\pi\)
\(458\) −69.9515 643.194i −0.152733 1.40435i
\(459\) 30.5511 + 724.687i 0.0665602 + 1.57884i
\(460\) 221.817 + 556.718i 0.482210 + 1.21026i
\(461\) 663.147 + 184.122i 1.43850 + 0.399396i 0.897271 0.441481i \(-0.145547\pi\)
0.541226 + 0.840877i \(0.317961\pi\)
\(462\) −4.05617 + 1011.29i −0.00877959 + 2.18893i
\(463\) −343.832 648.536i −0.742618 1.40073i −0.909905 0.414817i \(-0.863845\pi\)
0.167287 0.985908i \(-0.446499\pi\)
\(464\) 66.0852 44.8069i 0.142425 0.0965666i
\(465\) 379.454 + 177.405i 0.816031 + 0.381517i
\(466\) 69.0312 + 81.2699i 0.148136 + 0.174399i
\(467\) 366.903 + 146.187i 0.785659 + 0.313035i 0.728246 0.685315i \(-0.240336\pi\)
0.0574127 + 0.998351i \(0.481715\pi\)
\(468\) 256.785 239.361i 0.548686 0.511455i
\(469\) 0.245650 + 0.147803i 0.000523774 + 0.000315145i
\(470\) −163.061 + 483.947i −0.346938 + 1.02967i
\(471\) −86.7077 + 73.0535i −0.184093 + 0.155103i
\(472\) −13.4460 23.3037i −0.0284873 0.0493722i
\(473\) 585.873i 1.23863i
\(474\) −327.320 831.192i −0.690549 1.75357i
\(475\) 41.2790 + 24.8368i 0.0869032 + 0.0522879i
\(476\) −453.528 + 596.606i −0.952790 + 1.25337i
\(477\) −454.634 + 742.066i −0.953110 + 1.55569i
\(478\) 623.167 + 733.648i 1.30370 + 1.53483i
\(479\) 338.581 + 731.832i 0.706850 + 1.52783i 0.843451 + 0.537206i \(0.180520\pi\)
−0.136601 + 0.990626i \(0.543618\pi\)
\(480\) −896.638 252.828i −1.86799 0.526725i
\(481\) 152.176 + 287.035i 0.316375 + 0.596747i
\(482\) −607.118 515.691i −1.25958 1.06990i
\(483\) −387.285 + 177.295i −0.801832 + 0.367070i
\(484\) −290.430 728.924i −0.600062 1.50604i
\(485\) −354.702 188.051i −0.731345 0.387735i
\(486\) 312.774 + 619.670i 0.643567 + 1.27504i
\(487\) 141.610 107.649i 0.290781 0.221046i −0.449606 0.893227i \(-0.648436\pi\)
0.740387 + 0.672181i \(0.234642\pi\)
\(488\) −13.3436 + 3.70485i −0.0273435 + 0.00759190i
\(489\) 634.271 173.367i 1.29708 0.354534i
\(490\) 12.6517 + 77.1718i 0.0258197 + 0.157493i
\(491\) −125.893 571.937i −0.256401 1.16484i −0.912148 0.409860i \(-0.865577\pi\)
0.655748 0.754980i \(-0.272354\pi\)
\(492\) −765.150 261.231i −1.55518 0.530957i
\(493\) −139.042 15.1217i −0.282032 0.0306728i
\(494\) −50.1150 33.9788i −0.101447 0.0687831i
\(495\) 1018.53 + 352.305i 2.05763 + 0.711727i
\(496\) 17.0349 + 314.191i 0.0343446 + 0.633449i
\(497\) 360.082 380.134i 0.724511 0.764856i
\(498\) 38.1076 337.784i 0.0765213 0.678280i
\(499\) −15.5840 + 287.431i −0.0312305 + 0.576013i 0.940482 + 0.339845i \(0.110375\pi\)
−0.971712 + 0.236169i \(0.924108\pi\)
\(500\) 22.4439 101.964i 0.0448878 0.203928i
\(501\) −522.886 317.473i −1.04368 0.633679i
\(502\) 1242.94 418.794i 2.47597 0.834250i
\(503\) 63.4529 288.269i 0.126149 0.573100i −0.870562 0.492059i \(-0.836244\pi\)
0.996711 0.0810411i \(-0.0258245\pi\)
\(504\) −6.13229 + 26.8322i −0.0121673 + 0.0532385i
\(505\) −126.891 + 120.197i −0.251269 + 0.238014i
\(506\) 731.793 772.545i 1.44623 1.52677i
\(507\) 166.550 + 177.243i 0.328501 + 0.349592i
\(508\) 17.5297 106.926i 0.0345072 0.210485i
\(509\) 202.136 + 137.052i 0.397125 + 0.269257i 0.743361 0.668890i \(-0.233230\pi\)
−0.346237 + 0.938147i \(0.612541\pi\)
\(510\) 873.981 + 1300.22i 1.71369 + 2.54946i
\(511\) 645.460 388.360i 1.26313 0.760001i
\(512\) −156.450 710.759i −0.305566 1.38820i
\(513\) 46.9891 38.9494i 0.0915968 0.0759248i
\(514\) 637.713 + 295.037i 1.24069 + 0.574003i
\(515\) 190.324 52.8432i 0.369561 0.102608i
\(516\) 90.9438 405.410i 0.176248 0.785678i
\(517\) 459.556 49.9798i 0.888890 0.0966727i
\(518\) −586.412 310.896i −1.13207 0.600185i
\(519\) −92.7323 + 173.229i −0.178675 + 0.333775i
\(520\) 7.78490 28.0387i 0.0149710 0.0539206i
\(521\) −394.386 334.994i −0.756978 0.642983i 0.183429 0.983033i \(-0.441280\pi\)
−0.940407 + 0.340050i \(0.889556\pi\)
\(522\) −127.178 + 41.7183i −0.243636 + 0.0799201i
\(523\) −397.913 586.878i −0.760829 1.12214i −0.988913 0.148497i \(-0.952556\pi\)
0.228084 0.973641i \(-0.426754\pi\)
\(524\) 87.2950 + 188.685i 0.166594 + 0.360086i
\(525\) −422.852 71.0658i −0.805432 0.135363i
\(526\) −185.464 + 465.479i −0.352593 + 0.884941i
\(527\) 333.559 438.789i 0.632939 0.832617i
\(528\) 127.769 + 799.429i 0.241987 + 1.51407i
\(529\) −76.5834 25.8039i −0.144770 0.0487787i
\(530\) 1879.70i 3.54660i
\(531\) −128.530 515.210i −0.242052 0.970263i
\(532\) 63.0599 0.118534
\(533\) −193.988 + 575.737i −0.363956 + 1.08018i
\(534\) −276.857 + 44.2489i −0.518459 + 0.0828631i
\(535\) −1007.56 765.926i −1.88329 1.43164i
\(536\) −0.0181089 0.00721524i −3.37852e−5 1.34613e-5i
\(537\) 102.819 611.789i 0.191470 1.13927i
\(538\) −476.953 + 220.662i −0.886529 + 0.410152i
\(539\) 58.5907 39.7255i 0.108703 0.0737022i
\(540\) 650.109 + 401.890i 1.20391 + 0.744241i
\(541\) −333.201 + 392.275i −0.615898 + 0.725092i −0.978361 0.206907i \(-0.933660\pi\)
0.362462 + 0.931998i \(0.381936\pi\)
\(542\) −1175.08 326.260i −2.16805 0.601955i
\(543\) 21.7932 + 11.6663i 0.0401349 + 0.0214848i
\(544\) −574.196 + 1083.05i −1.05551 + 1.99090i
\(545\) 150.576 + 1384.52i 0.276286 + 2.54041i
\(546\) 525.842 + 117.960i 0.963080 + 0.216044i
\(547\) −3.16254 11.3904i −0.00578160 0.0208235i 0.960603 0.277924i \(-0.0896465\pi\)
−0.966385 + 0.257101i \(0.917233\pi\)
\(548\) 30.2434 65.3701i 0.0551887 0.119289i
\(549\) −273.310 2.19247i −0.497832 0.00399357i
\(550\) 1046.18 230.281i 1.90214 0.418693i
\(551\) 6.06739 + 10.0841i 0.0110116 + 0.0183014i
\(552\) 24.0363 16.1567i 0.0435440 0.0292693i
\(553\) 392.332 578.646i 0.709460 1.04638i
\(554\) 425.452 + 69.7493i 0.767964 + 0.125901i
\(555\) −515.470 + 484.371i −0.928775 + 0.872741i
\(556\) −772.833 732.066i −1.38999 1.31667i
\(557\) −448.590 473.571i −0.805368 0.850217i 0.185833 0.982581i \(-0.440502\pi\)
−0.991201 + 0.132365i \(0.957743\pi\)
\(558\) 117.519 514.212i 0.210608 0.921527i
\(559\) −304.907 67.1152i −0.545452 0.120063i
\(560\) −223.488 663.288i −0.399085 1.18444i
\(561\) 735.995 1212.20i 1.31193 2.16078i
\(562\) −866.390 190.707i −1.54162 0.339336i
\(563\) −386.000 20.9283i −0.685613 0.0371728i −0.291958 0.956431i \(-0.594307\pi\)
−0.393655 + 0.919258i \(0.628789\pi\)
\(564\) 325.760 + 36.7512i 0.577589 + 0.0651616i
\(565\) 775.998 + 735.064i 1.37345 + 1.30100i
\(566\) −46.3731 + 2.51428i −0.0819313 + 0.00444218i
\(567\) −262.119 + 475.803i −0.462291 + 0.839159i
\(568\) −19.9797 + 29.4678i −0.0351755 + 0.0518799i
\(569\) −99.5519 + 915.365i −0.174959 + 1.60873i 0.496738 + 0.867900i \(0.334531\pi\)
−0.671698 + 0.740825i \(0.734435\pi\)
\(570\) 42.5932 124.756i 0.0747250 0.218871i
\(571\) −506.935 + 111.585i −0.887802 + 0.195420i −0.635382 0.772198i \(-0.719157\pi\)
−0.252420 + 0.967618i \(0.581226\pi\)
\(572\) −677.306 + 111.039i −1.18410 + 0.194124i
\(573\) 27.2586 + 99.7264i 0.0475717 + 0.174043i
\(574\) −332.057 1195.96i −0.578496 2.08355i
\(575\) 273.042 + 359.180i 0.474855 + 0.624661i
\(576\) −38.5947 + 619.821i −0.0670047 + 1.07608i
\(577\) −39.8540 + 75.1727i −0.0690711 + 0.130282i −0.915643 0.401993i \(-0.868318\pi\)
0.846572 + 0.532275i \(0.178663\pi\)
\(578\) 1148.17 457.474i 1.98646 0.791478i
\(579\) 12.5808 + 27.4816i 0.0217284 + 0.0474639i
\(580\) −95.4094 + 112.325i −0.164499 + 0.193663i
\(581\) 235.037 124.609i 0.404539 0.214473i
\(582\) −137.201 + 486.575i −0.235741 + 0.836039i
\(583\) 1544.24 714.441i 2.64878 1.22546i
\(584\) −39.0379 + 33.1591i −0.0668457 + 0.0567792i
\(585\) 300.030 489.717i 0.512871 0.837123i
\(586\) −923.596 702.099i −1.57610 1.19812i
\(587\) 179.956 299.089i 0.306569 0.509521i −0.664824 0.747000i \(-0.731494\pi\)
0.971393 + 0.237479i \(0.0763211\pi\)
\(588\) 46.7098 18.3942i 0.0794385 0.0312826i
\(589\) −46.3790 −0.0787419
\(590\) −818.066 803.862i −1.38655 1.36248i
\(591\) −108.607 128.906i −0.183768 0.218116i
\(592\) −503.523 169.657i −0.850546 0.286582i
\(593\) −269.335 + 447.638i −0.454191 + 0.754871i −0.996346 0.0854075i \(-0.972781\pi\)
0.542156 + 0.840278i \(0.317608\pi\)
\(594\) 162.956 1347.32i 0.274336 2.26821i
\(595\) −453.814 + 1138.99i −0.762712 + 1.91426i
\(596\) 662.517 562.747i 1.11161 0.944207i
\(597\) −17.5933 + 37.6304i −0.0294695 + 0.0630326i
\(598\) −318.226 469.349i −0.532151 0.784864i
\(599\) 617.272 327.257i 1.03050 0.546339i 0.134746 0.990880i \(-0.456978\pi\)
0.895758 + 0.444541i \(0.146633\pi\)
\(600\) 29.1549 + 0.116937i 0.0485915 + 0.000194896i
\(601\) −134.197 + 483.333i −0.223289 + 0.804214i 0.763991 + 0.645226i \(0.223237\pi\)
−0.987280 + 0.158988i \(0.949177\pi\)
\(602\) 592.536 236.088i 0.984279 0.392172i
\(603\) −0.304403 0.235278i −0.000504814 0.000390179i
\(604\) 352.623 38.3500i 0.583812 0.0634934i
\(605\) −776.869 1021.95i −1.28408 1.68918i
\(606\) 181.672 + 124.243i 0.299789 + 0.205022i
\(607\) −186.240 86.1636i −0.306820 0.141950i 0.260437 0.965491i \(-0.416133\pi\)
−0.567257 + 0.823541i \(0.691995\pi\)
\(608\) 101.790 16.6876i 0.167418 0.0274468i
\(609\) −83.1338 63.7244i −0.136509 0.104638i
\(610\) −505.843 + 304.356i −0.829251 + 0.498944i
\(611\) 26.6338 244.894i 0.0435905 0.400808i
\(612\) 697.457 724.566i 1.13964 1.18393i
\(613\) 119.023 726.008i 0.194165 1.18435i −0.692318 0.721592i \(-0.743411\pi\)
0.886483 0.462761i \(-0.153141\pi\)
\(614\) −519.927 + 28.1896i −0.846787 + 0.0459115i
\(615\) −1320.51 76.9093i −2.14718 0.125056i
\(616\) 39.0687 37.0078i 0.0634232 0.0600776i
\(617\) −172.004 9.32578i −0.278774 0.0151147i −0.0857784 0.996314i \(-0.527338\pi\)
−0.192996 + 0.981200i \(0.561820\pi\)
\(618\) −115.626 220.223i −0.187096 0.356347i
\(619\) 1055.17 355.530i 1.70464 0.574361i 0.712748 0.701420i \(-0.247450\pi\)
0.991895 + 0.127058i \(0.0405536\pi\)
\(620\) −185.448 550.390i −0.299110 0.887726i
\(621\) 543.836 175.982i 0.875743 0.283385i
\(622\) −36.8967 + 680.520i −0.0593195 + 1.09408i
\(623\) −150.894 159.296i −0.242205 0.255692i
\(624\) 430.686 + 25.0840i 0.690202 + 0.0401987i
\(625\) −38.0923 702.571i −0.0609477 1.12411i
\(626\) −1214.71 199.142i −1.94043 0.318118i
\(627\) −118.681 + 12.4259i −0.189283 + 0.0198180i
\(628\) 156.285 + 16.9970i 0.248862 + 0.0270653i
\(629\) 479.850 + 797.517i 0.762878 + 1.26791i
\(630\) 54.1224 + 1172.08i 0.0859086 + 1.86044i
\(631\) 4.47322 + 27.2854i 0.00708909 + 0.0432415i 0.990134 0.140122i \(-0.0447496\pi\)
−0.983045 + 0.183364i \(0.941301\pi\)
\(632\) −19.9599 + 43.1426i −0.0315821 + 0.0682636i
\(633\) −183.698 125.629i −0.290203 0.198466i
\(634\) 1243.92 945.606i 1.96202 1.49149i
\(635\) −19.1662 176.230i −0.0301830 0.277528i
\(636\) 1179.48 254.667i 1.85452 0.400420i
\(637\) −13.9625 35.0433i −0.0219192 0.0550131i
\(638\) 252.151 + 70.0094i 0.395221 + 0.109733i
\(639\) −539.177 + 450.586i −0.843783 + 0.705142i
\(640\) 46.4781 + 87.6670i 0.0726220 + 0.136980i
\(641\) −427.563 + 289.895i −0.667025 + 0.452254i −0.847125 0.531394i \(-0.821668\pi\)
0.180100 + 0.983648i \(0.442358\pi\)
\(642\) −674.990 + 1443.74i −1.05139 + 2.24882i
\(643\) 608.528 + 716.414i 0.946388 + 1.11417i 0.993333 + 0.115277i \(0.0367756\pi\)
−0.0469449 + 0.998897i \(0.514949\pi\)
\(644\) 548.638 + 218.597i 0.851922 + 0.339437i
\(645\) −34.0779 678.889i −0.0528340 1.05254i
\(646\) −148.634 89.4300i −0.230083 0.138437i
\(647\) −9.94606 + 29.5189i −0.0153726 + 0.0456242i −0.955065 0.296397i \(-0.904215\pi\)
0.939692 + 0.342021i \(0.111111\pi\)
\(648\) 12.3540 34.8095i 0.0190648 0.0537184i
\(649\) −349.468 + 977.605i −0.538472 + 1.50632i
\(650\) 570.846i 0.878224i
\(651\) 384.089 151.253i 0.589998 0.232339i
\(652\) −781.202 470.034i −1.19816 0.720910i
\(653\) 39.8624 52.4381i 0.0610450 0.0803033i −0.764557 0.644556i \(-0.777042\pi\)
0.825602 + 0.564252i \(0.190836\pi\)
\(654\) 1664.17 553.300i 2.54460 0.846025i
\(655\) 220.195 + 259.234i 0.336176 + 0.395777i
\(656\) −417.212 901.789i −0.635994 1.37468i
\(657\) −920.842 + 417.092i −1.40159 + 0.634843i
\(658\) 235.735 + 444.643i 0.358259 + 0.675749i
\(659\) −177.752 150.984i −0.269730 0.229111i 0.502305 0.864690i \(-0.332485\pi\)
−0.772035 + 0.635580i \(0.780761\pi\)
\(660\) −622.010 1358.73i −0.942439 2.05868i
\(661\) −30.6700 76.9758i −0.0463994 0.116454i 0.903950 0.427637i \(-0.140654\pi\)
−0.950350 + 0.311184i \(0.899275\pi\)
\(662\) 406.326 + 215.420i 0.613785 + 0.325408i
\(663\) −546.556 521.900i −0.824368 0.787180i
\(664\) −14.4001 + 10.9467i −0.0216869 + 0.0164860i
\(665\) 99.4071 27.6002i 0.149484 0.0415041i
\(666\) 733.199 + 505.753i 1.10090 + 0.759390i
\(667\) 17.8314 + 108.767i 0.0267337 + 0.163069i
\(668\) 182.333 + 828.346i 0.272953 + 1.24004i
\(669\) −152.376 + 446.310i −0.227766 + 0.667131i
\(670\) −0.826115 0.0898454i −0.00123301 0.000134098i
\(671\) 442.301 + 299.888i 0.659168 + 0.446927i
\(672\) −788.555 + 470.160i −1.17345 + 0.699643i
\(673\) 31.7008 + 584.687i 0.0471037 + 0.868777i 0.922649 + 0.385641i \(0.126020\pi\)
−0.875545 + 0.483136i \(0.839498\pi\)
\(674\) −240.429 + 253.817i −0.356719 + 0.376584i
\(675\) 552.551 + 160.601i 0.818594 + 0.237927i
\(676\) 18.2573 336.735i 0.0270078 0.498129i
\(677\) −192.466 + 874.380i −0.284292 + 1.29155i 0.590494 + 0.807042i \(0.298933\pi\)
−0.874786 + 0.484509i \(0.838998\pi\)
\(678\) 698.544 1150.52i 1.03030 1.69693i
\(679\) −374.931 + 126.329i −0.552181 + 0.186051i
\(680\) 17.9214 81.4175i 0.0263549 0.119732i
\(681\) 100.064 75.4352i 0.146937 0.110771i
\(682\) −748.711 + 709.217i −1.09782 + 1.03991i
\(683\) −911.642 + 962.409i −1.33476 + 1.40909i −0.492207 + 0.870478i \(0.663810\pi\)
−0.842554 + 0.538612i \(0.818949\pi\)
\(684\) −84.0530 9.82415i −0.122885 0.0143628i
\(685\) 19.0641 116.286i 0.0278308 0.169761i
\(686\) 840.740 + 570.036i 1.22557 + 0.830956i
\(687\) −563.928 + 379.060i −0.820856 + 0.551762i
\(688\) 437.520 263.247i 0.635930 0.382626i
\(689\) −194.917 885.516i −0.282898 1.28522i
\(690\) 803.041 937.764i 1.16383 1.35908i
\(691\) −66.3476 30.6957i −0.0960168 0.0444221i 0.371293 0.928516i \(-0.378915\pi\)
−0.467310 + 0.884094i \(0.654777\pi\)
\(692\) 262.510 72.8854i 0.379349 0.105326i
\(693\) 942.334 489.951i 1.35979 0.707000i
\(694\) 1058.06 115.071i 1.52459 0.165809i
\(695\) −1538.70 815.768i −2.21396 1.17377i
\(696\) 6.27922 + 3.36137i 0.00902187 + 0.00482955i
\(697\) −465.643 + 1677.10i −0.668068 + 2.40616i
\(698\) −1194.82 1014.89i −1.71178 1.45400i
\(699\) 41.8676 103.866i 0.0598965 0.148593i
\(700\) 333.640 + 492.083i 0.476629 + 0.702975i
\(701\) −452.551 978.173i −0.645579 1.39540i −0.903230 0.429158i \(-0.858810\pi\)
0.257651 0.966238i \(-0.417052\pi\)
\(702\) −682.522 239.151i −0.972253 0.340671i
\(703\) 28.9884 72.7554i 0.0412353 0.103493i
\(704\) 734.801 966.614i 1.04375 1.37303i
\(705\) 529.611 84.6454i 0.751221 0.120064i
\(706\) −814.677 274.497i −1.15393 0.388805i
\(707\) 172.245i 0.243628i
\(708\) −393.575 + 622.231i −0.555897 + 0.878858i
\(709\) 35.1218 0.0495371 0.0247685 0.999693i \(-0.492115\pi\)
0.0247685 + 0.999693i \(0.492115\pi\)
\(710\) −484.606 + 1438.26i −0.682544 + 2.02572i
\(711\) −613.090 + 710.160i −0.862292 + 0.998819i
\(712\) 11.8772 + 9.02881i 0.0166815 + 0.0126809i
\(713\) −403.510 160.773i −0.565932 0.225488i
\(714\) 1522.57 + 255.887i 2.13245 + 0.358386i
\(715\) −1019.10 + 471.486i −1.42532 + 0.659421i
\(716\) −711.953 + 482.716i −0.994348 + 0.674185i
\(717\) 377.952 937.634i 0.527130 1.30772i
\(718\) 175.491 206.604i 0.244416 0.287749i
\(719\) 783.949 + 217.662i 1.09033 + 0.302729i 0.765756 0.643131i \(-0.222365\pi\)
0.324575 + 0.945860i \(0.394779\pi\)
\(720\) 194.554 + 918.919i 0.270214 + 1.27628i
\(721\) 91.1789 171.982i 0.126462 0.238532i
\(722\) −109.914 1010.64i −0.152236 1.39978i
\(723\) −183.117 + 816.301i −0.253274 + 1.12905i
\(724\) −9.16941 33.0252i −0.0126649 0.0456149i
\(725\) −46.5887 + 100.700i −0.0642602 + 0.138896i
\(726\) −1051.44 + 1227.84i −1.44826 + 1.69123i
\(727\) −776.359 + 170.890i −1.06789 + 0.235061i −0.713944 0.700203i \(-0.753093\pi\)
−0.353950 + 0.935264i \(0.615162\pi\)
\(728\) −14.7845 24.5721i −0.0203084 0.0337529i
\(729\) 423.506 593.366i 0.580941 0.813946i
\(730\) −1225.33 + 1807.23i −1.67854 + 2.47566i
\(731\) −882.656 144.704i −1.20746 0.197954i
\(732\) 259.511 + 276.173i 0.354523 + 0.377285i
\(733\) 643.052 + 609.131i 0.877288 + 0.831011i 0.986627 0.162993i \(-0.0521149\pi\)
−0.109339 + 0.994004i \(0.534873\pi\)
\(734\) 710.879 + 750.466i 0.968500 + 1.02243i
\(735\) 65.5822 49.4405i 0.0892275 0.0672660i
\(736\) 943.449 + 207.669i 1.28186 + 0.282159i
\(737\) 0.240181 + 0.712832i 0.000325890 + 0.000967207i
\(738\) 256.281 + 1645.84i 0.347265 + 2.23013i
\(739\) −152.892 33.6542i −0.206891 0.0455401i 0.110316 0.993897i \(-0.464814\pi\)
−0.317207 + 0.948356i \(0.602745\pi\)
\(740\) 979.316 + 53.0970i 1.32340 + 0.0717527i
\(741\) −7.12875 + 63.1888i −0.00962045 + 0.0852751i
\(742\) 1344.84 + 1273.90i 1.81246 + 1.71685i
\(743\) 1204.55 65.3086i 1.62119 0.0878985i 0.778982 0.627047i \(-0.215736\pi\)
0.842211 + 0.539148i \(0.181254\pi\)
\(744\) −24.1083 + 14.3741i −0.0324037 + 0.0193200i
\(745\) 798.082 1177.08i 1.07125 1.57998i
\(746\) −195.838 + 1800.70i −0.262517 + 2.41381i
\(747\) −332.696 + 129.475i −0.445376 + 0.173327i
\(748\) −1920.34 + 422.699i −2.56730 + 0.565106i
\(749\) −1230.83 + 201.784i −1.64330 + 0.269405i
\(750\) −207.480 + 56.7111i −0.276639 + 0.0756148i
\(751\) −154.199 555.376i −0.205325 0.739515i −0.992442 0.122711i \(-0.960841\pi\)
0.787117 0.616804i \(-0.211573\pi\)
\(752\) 243.814 + 320.732i 0.324221 + 0.426505i
\(753\) −996.236 951.295i −1.32302 1.26334i
\(754\) 65.3206 123.208i 0.0866321 0.163405i
\(755\) 539.086 214.792i 0.714022 0.284492i
\(756\) 728.126 192.758i 0.963130 0.254970i
\(757\) 549.688 647.143i 0.726141 0.854879i −0.267950 0.963433i \(-0.586346\pi\)
0.994091 + 0.108554i \(0.0346221\pi\)
\(758\) −273.556 + 145.030i −0.360892 + 0.191333i
\(759\) −1075.63 303.299i −1.41717 0.399603i
\(760\) −6.36655 + 2.94548i −0.00837703 + 0.00387563i
\(761\) −424.048 + 360.190i −0.557225 + 0.473311i −0.881193 0.472757i \(-0.843259\pi\)
0.323968 + 0.946068i \(0.394983\pi\)
\(762\) −211.825 + 70.4274i −0.277986 + 0.0924244i
\(763\) 1092.61 + 830.584i 1.43200 + 1.08858i
\(764\) 73.9034 122.828i 0.0967322 0.160770i
\(765\) 782.336 1447.47i 1.02266 1.89211i
\(766\) −988.331 −1.29025
\(767\) 468.744 + 293.865i 0.611139 + 0.383136i
\(768\) −537.682 + 453.011i −0.700107 + 0.589858i
\(769\) −615.275 207.310i −0.800098 0.269584i −0.110593 0.993866i \(-0.535275\pi\)
−0.689504 + 0.724281i \(0.742172\pi\)
\(770\) 1182.70 1965.67i 1.53598 2.55282i
\(771\) −36.9961 737.024i −0.0479846 0.955933i
\(772\) 15.5116 38.9311i 0.0200927 0.0504289i
\(773\) 376.899 320.141i 0.487580 0.414154i −0.369585 0.929197i \(-0.620500\pi\)