Properties

Label 177.3.h.a.5.6
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.6
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.964344 + 2.86207i) q^{2} +(-0.263179 + 2.98843i) q^{3} +(-4.07712 - 3.09934i) q^{4} +(5.65262 + 2.25221i) q^{5} +(-8.29931 - 3.63511i) q^{6} +(-4.32408 + 2.00053i) q^{7} +(2.80324 - 1.90065i) q^{8} +(-8.86147 - 1.57299i) q^{9} +O(q^{10})\) \(q+(-0.964344 + 2.86207i) q^{2} +(-0.263179 + 2.98843i) q^{3} +(-4.07712 - 3.09934i) q^{4} +(5.65262 + 2.25221i) q^{5} +(-8.29931 - 3.63511i) q^{6} +(-4.32408 + 2.00053i) q^{7} +(2.80324 - 1.90065i) q^{8} +(-8.86147 - 1.57299i) q^{9} +(-11.8970 + 14.0063i) q^{10} +(-2.34660 - 0.651529i) q^{11} +(10.3352 - 11.3685i) q^{12} +(-2.95997 + 5.58310i) q^{13} +(-1.55576 - 14.3050i) q^{14} +(-8.21822 + 16.2997i) q^{15} +(-2.74399 - 9.88296i) q^{16} +(-6.05826 + 13.0947i) q^{17} +(13.0475 - 23.8453i) q^{18} +(28.6449 - 6.30521i) q^{19} +(-16.0660 - 26.7019i) q^{20} +(-4.84045 - 13.4487i) q^{21} +(4.12765 - 6.08783i) q^{22} +(-6.93017 - 1.13614i) q^{23} +(4.94220 + 8.87752i) q^{24} +(8.72974 + 8.26925i) q^{25} +(-13.1248 - 13.8557i) q^{26} +(7.03292 - 26.0680i) q^{27} +(23.8301 + 5.24540i) q^{28} +(0.360463 + 1.06982i) q^{29} +(-38.7258 - 39.2397i) q^{30} +(36.9353 + 8.13007i) q^{31} +(44.4594 + 2.41052i) q^{32} +(2.56463 - 6.84118i) q^{33} +(-31.6357 - 29.9670i) q^{34} +(-28.9480 + 1.56951i) q^{35} +(31.2540 + 33.8780i) q^{36} +(-16.2526 + 23.9708i) q^{37} +(-9.57753 + 88.0640i) q^{38} +(-15.9057 - 10.3150i) q^{39} +(20.1263 - 4.43014i) q^{40} +(-11.9036 + 1.95149i) q^{41} +(43.1590 - 0.884520i) q^{42} +(10.8669 + 39.1391i) q^{43} +(7.54803 + 9.92927i) q^{44} +(-46.5478 - 28.8494i) q^{45} +(9.93479 - 18.7390i) q^{46} +(43.7238 - 17.4212i) q^{47} +(30.2567 - 5.59925i) q^{48} +(-17.0264 + 20.0450i) q^{49} +(-32.0856 + 17.0107i) q^{50} +(-37.5383 - 21.5509i) q^{51} +(29.3721 - 13.5890i) q^{52} +(-74.5041 + 63.2843i) q^{53} +(67.8262 + 45.2672i) q^{54} +(-11.7970 - 8.96787i) q^{55} +(-8.31914 + 13.8265i) q^{56} +(11.3040 + 87.2626i) q^{57} -3.40950 q^{58} +(-58.1992 + 9.68783i) q^{59} +(84.0251 - 40.9848i) q^{60} +(-75.0392 - 25.2837i) q^{61} +(-58.8872 + 97.8712i) q^{62} +(41.4645 - 10.9259i) q^{63} +(-34.5874 + 86.8078i) q^{64} +(-29.3059 + 24.8926i) q^{65} +(17.1068 + 13.9374i) q^{66} +(43.1197 + 63.5969i) q^{67} +(65.2852 - 34.6120i) q^{68} +(5.21917 - 20.4114i) q^{69} +(23.4237 - 84.3646i) q^{70} +(41.8317 - 16.6673i) q^{71} +(-27.8306 + 12.4331i) q^{72} +(104.680 - 11.3847i) q^{73} +(-52.9329 - 69.6320i) q^{74} +(-27.0096 + 23.9120i) q^{75} +(-136.330 - 63.0731i) q^{76} +(11.4503 - 1.87718i) q^{77} +(44.8609 - 35.5760i) q^{78} +(74.3936 - 44.7611i) q^{79} +(6.74776 - 62.0446i) q^{80} +(76.0514 + 27.8779i) q^{81} +(5.89383 - 35.9508i) q^{82} +(80.1931 - 4.34794i) q^{83} +(-21.9471 + 69.8342i) q^{84} +(-63.7370 + 60.3749i) q^{85} +(-122.498 - 6.64167i) q^{86} +(-3.29194 + 0.795667i) q^{87} +(-7.81641 + 2.63366i) q^{88} +(17.0410 + 50.5759i) q^{89} +(127.457 - 105.402i) q^{90} +(1.62998 - 30.0632i) q^{91} +(24.7338 + 26.1112i) q^{92} +(-34.0168 + 108.239i) q^{93} +(7.69580 + 141.941i) q^{94} +(176.119 + 28.8732i) q^{95} +(-18.9044 + 132.229i) q^{96} +(-16.9024 - 1.83824i) q^{97} +(-40.9510 - 68.0611i) q^{98} +(19.7695 + 9.46467i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.964344 + 2.86207i −0.482172 + 1.43104i 0.380268 + 0.924876i \(0.375832\pi\)
−0.862440 + 0.506159i \(0.831065\pi\)
\(3\) −0.263179 + 2.98843i −0.0877263 + 0.996145i
\(4\) −4.07712 3.09934i −1.01928 0.774836i
\(5\) 5.65262 + 2.25221i 1.13052 + 0.450442i 0.858992 0.511988i \(-0.171091\pi\)
0.271531 + 0.962430i \(0.412470\pi\)
\(6\) −8.29931 3.63511i −1.38322 0.605852i
\(7\) −4.32408 + 2.00053i −0.617725 + 0.285790i −0.703689 0.710508i \(-0.748465\pi\)
0.0859637 + 0.996298i \(0.472603\pi\)
\(8\) 2.80324 1.90065i 0.350406 0.237581i
\(9\) −8.86147 1.57299i −0.984608 0.174776i
\(10\) −11.8970 + 14.0063i −1.18970 + 1.40063i
\(11\) −2.34660 0.651529i −0.213327 0.0592299i 0.159221 0.987243i \(-0.449102\pi\)
−0.372548 + 0.928013i \(0.621516\pi\)
\(12\) 10.3352 11.3685i 0.861266 0.947376i
\(13\) −2.95997 + 5.58310i −0.227690 + 0.429469i −0.970865 0.239629i \(-0.922974\pi\)
0.743175 + 0.669097i \(0.233319\pi\)
\(14\) −1.55576 14.3050i −0.111126 1.02179i
\(15\) −8.21822 + 16.2997i −0.547882 + 1.08665i
\(16\) −2.74399 9.88296i −0.171499 0.617685i
\(17\) −6.05826 + 13.0947i −0.356368 + 0.770277i 0.643620 + 0.765345i \(0.277432\pi\)
−0.999988 + 0.00493143i \(0.998430\pi\)
\(18\) 13.0475 23.8453i 0.724861 1.32474i
\(19\) 28.6449 6.30521i 1.50762 0.331853i 0.617135 0.786858i \(-0.288293\pi\)
0.890489 + 0.455005i \(0.150362\pi\)
\(20\) −16.0660 26.7019i −0.803300 1.33510i
\(21\) −4.84045 13.4487i −0.230498 0.640415i
\(22\) 4.12765 6.08783i 0.187620 0.276719i
\(23\) −6.93017 1.13614i −0.301312 0.0493976i 0.00922961 0.999957i \(-0.497062\pi\)
−0.310541 + 0.950560i \(0.600510\pi\)
\(24\) 4.94220 + 8.87752i 0.205925 + 0.369897i
\(25\) 8.72974 + 8.26925i 0.349190 + 0.330770i
\(26\) −13.1248 13.8557i −0.504799 0.532910i
\(27\) 7.03292 26.0680i 0.260478 0.965480i
\(28\) 23.8301 + 5.24540i 0.851075 + 0.187336i
\(29\) 0.360463 + 1.06982i 0.0124298 + 0.0368902i 0.953689 0.300796i \(-0.0972523\pi\)
−0.941259 + 0.337686i \(0.890356\pi\)
\(30\) −38.7258 39.2397i −1.29086 1.30799i
\(31\) 36.9353 + 8.13007i 1.19146 + 0.262260i 0.766075 0.642751i \(-0.222207\pi\)
0.425386 + 0.905012i \(0.360138\pi\)
\(32\) 44.4594 + 2.41052i 1.38935 + 0.0753286i
\(33\) 2.56463 6.84118i 0.0777160 0.207308i
\(34\) −31.6357 29.9670i −0.930463 0.881381i
\(35\) −28.9480 + 1.56951i −0.827085 + 0.0448432i
\(36\) 31.2540 + 33.8780i 0.868168 + 0.941055i
\(37\) −16.2526 + 23.9708i −0.439259 + 0.647858i −0.981298 0.192495i \(-0.938342\pi\)
0.542039 + 0.840353i \(0.317652\pi\)
\(38\) −9.57753 + 88.0640i −0.252040 + 2.31747i
\(39\) −15.9057 10.3150i −0.407839 0.264488i
\(40\) 20.1263 4.43014i 0.503158 0.110753i
\(41\) −11.9036 + 1.95149i −0.290331 + 0.0475974i −0.305188 0.952292i \(-0.598719\pi\)
0.0148564 + 0.999890i \(0.495271\pi\)
\(42\) 43.1590 0.884520i 1.02760 0.0210600i
\(43\) 10.8669 + 39.1391i 0.252719 + 0.910212i 0.975658 + 0.219300i \(0.0703773\pi\)
−0.722938 + 0.690913i \(0.757209\pi\)
\(44\) 7.54803 + 9.92927i 0.171546 + 0.225665i
\(45\) −46.5478 28.8494i −1.03440 0.641097i
\(46\) 9.93479 18.7390i 0.215974 0.407370i
\(47\) 43.7238 17.4212i 0.930294 0.370663i 0.144750 0.989468i \(-0.453762\pi\)
0.785544 + 0.618805i \(0.212383\pi\)
\(48\) 30.2567 5.59925i 0.630349 0.116651i
\(49\) −17.0264 + 20.0450i −0.347478 + 0.409082i
\(50\) −32.0856 + 17.0107i −0.641713 + 0.340215i
\(51\) −37.5383 21.5509i −0.736044 0.422568i
\(52\) 29.3721 13.5890i 0.564847 0.261326i
\(53\) −74.5041 + 63.2843i −1.40574 + 1.19404i −0.452521 + 0.891754i \(0.649475\pi\)
−0.953216 + 0.302290i \(0.902249\pi\)
\(54\) 67.8262 + 45.2672i 1.25604 + 0.838281i
\(55\) −11.7970 8.96787i −0.214491 0.163052i
\(56\) −8.31914 + 13.8265i −0.148556 + 0.246902i
\(57\) 11.3040 + 87.2626i 0.198315 + 1.53092i
\(58\) −3.40950 −0.0587845
\(59\) −58.1992 + 9.68783i −0.986427 + 0.164201i
\(60\) 84.0251 40.9848i 1.40042 0.683080i
\(61\) −75.0392 25.2837i −1.23015 0.414486i −0.372169 0.928165i \(-0.621386\pi\)
−0.857983 + 0.513679i \(0.828282\pi\)
\(62\) −58.8872 + 97.8712i −0.949793 + 1.57857i
\(63\) 41.4645 10.9259i 0.658167 0.173428i
\(64\) −34.5874 + 86.8078i −0.540428 + 1.35637i
\(65\) −29.3059 + 24.8926i −0.450859 + 0.382963i
\(66\) 17.1068 + 13.9374i 0.259193 + 0.211173i
\(67\) 43.1197 + 63.5969i 0.643578 + 0.949207i 0.999890 + 0.0148397i \(0.00472380\pi\)
−0.356312 + 0.934367i \(0.615966\pi\)
\(68\) 65.2852 34.6120i 0.960076 0.509000i
\(69\) 5.21917 20.4114i 0.0756401 0.295817i
\(70\) 23.4237 84.3646i 0.334625 1.20521i
\(71\) 41.8317 16.6673i 0.589178 0.234750i −0.0564456 0.998406i \(-0.517977\pi\)
0.645624 + 0.763656i \(0.276597\pi\)
\(72\) −27.8306 + 12.4331i −0.386536 + 0.172682i
\(73\) 104.680 11.3847i 1.43398 0.155955i 0.642094 0.766626i \(-0.278066\pi\)
0.791884 + 0.610671i \(0.209100\pi\)
\(74\) −52.9329 69.6320i −0.715310 0.940974i
\(75\) −27.0096 + 23.9120i −0.360128 + 0.318826i
\(76\) −136.330 63.0731i −1.79382 0.829910i
\(77\) 11.4503 1.87718i 0.148705 0.0243789i
\(78\) 44.8609 35.5760i 0.575140 0.456103i
\(79\) 74.3936 44.7611i 0.941691 0.566596i 0.0401042 0.999196i \(-0.487231\pi\)
0.901586 + 0.432599i \(0.142403\pi\)
\(80\) 6.74776 62.0446i 0.0843470 0.775558i
\(81\) 76.0514 + 27.8779i 0.938907 + 0.344172i
\(82\) 5.89383 35.9508i 0.0718760 0.438424i
\(83\) 80.1931 4.34794i 0.966182 0.0523848i 0.435710 0.900087i \(-0.356497\pi\)
0.530472 + 0.847702i \(0.322015\pi\)
\(84\) −21.9471 + 69.8342i −0.261275 + 0.831359i
\(85\) −63.7370 + 60.3749i −0.749847 + 0.710293i
\(86\) −122.498 6.64167i −1.42440 0.0772287i
\(87\) −3.29194 + 0.795667i −0.0378384 + 0.00914560i
\(88\) −7.81641 + 2.63366i −0.0888228 + 0.0299279i
\(89\) 17.0410 + 50.5759i 0.191472 + 0.568268i 0.999790 0.0204774i \(-0.00651861\pi\)
−0.808319 + 0.588745i \(0.799622\pi\)
\(90\) 127.457 105.402i 1.41619 1.17114i
\(91\) 1.62998 30.0632i 0.0179119 0.330365i
\(92\) 24.7338 + 26.1112i 0.268846 + 0.283817i
\(93\) −34.0168 + 108.239i −0.365772 + 1.16386i
\(94\) 7.69580 + 141.941i 0.0818702 + 1.51001i
\(95\) 176.119 + 28.8732i 1.85388 + 0.303929i
\(96\) −18.9044 + 132.229i −0.196921 + 1.37739i
\(97\) −16.9024 1.83824i −0.174251 0.0189510i 0.0205774 0.999788i \(-0.493450\pi\)
−0.194829 + 0.980837i \(0.562415\pi\)
\(98\) −40.9510 68.0611i −0.417867 0.694501i
\(99\) 19.7695 + 9.46467i 0.199691 + 0.0956027i
\(100\) −9.96292 60.7711i −0.0996292 0.607711i
\(101\) 68.8039 148.717i 0.681227 1.47245i −0.190111 0.981763i \(-0.560885\pi\)
0.871337 0.490684i \(-0.163253\pi\)
\(102\) 97.8801 86.6546i 0.959609 0.849555i
\(103\) −117.646 + 89.4318i −1.14219 + 0.868270i −0.992714 0.120495i \(-0.961552\pi\)
−0.149476 + 0.988765i \(0.547759\pi\)
\(104\) 2.31397 + 21.2766i 0.0222497 + 0.204583i
\(105\) 2.92811 86.9221i 0.0278867 0.827830i
\(106\) −109.277 274.264i −1.03091 2.58739i
\(107\) −86.0664 23.8962i −0.804359 0.223329i −0.159069 0.987267i \(-0.550849\pi\)
−0.645289 + 0.763938i \(0.723263\pi\)
\(108\) −109.468 + 84.4846i −1.01359 + 0.782265i
\(109\) 43.6516 + 82.3357i 0.400474 + 0.755374i 0.998952 0.0457652i \(-0.0145726\pi\)
−0.598478 + 0.801139i \(0.704228\pi\)
\(110\) 37.0431 25.1158i 0.336755 0.228326i
\(111\) −67.3577 54.8783i −0.606826 0.494399i
\(112\) 31.6364 + 37.2453i 0.282468 + 0.332547i
\(113\) −11.9597 4.76517i −0.105838 0.0421696i 0.316618 0.948553i \(-0.397453\pi\)
−0.422456 + 0.906383i \(0.638832\pi\)
\(114\) −260.653 51.7984i −2.28643 0.454372i
\(115\) −36.6148 22.0304i −0.318389 0.191568i
\(116\) 1.84608 5.47897i 0.0159145 0.0472325i
\(117\) 35.0118 44.8185i 0.299246 0.383064i
\(118\) 28.3968 175.913i 0.240651 1.49078i
\(119\) 68.7422i 0.577666i
\(120\) 7.94235 + 61.3121i 0.0661863 + 0.510934i
\(121\) −98.5977 59.3243i −0.814857 0.490283i
\(122\) 144.727 190.385i 1.18629 1.56054i
\(123\) −2.69914 36.0866i −0.0219442 0.293387i
\(124\) −125.392 147.622i −1.01122 1.19050i
\(125\) −33.1515 71.6558i −0.265212 0.573246i
\(126\) −8.71522 + 129.211i −0.0691684 + 1.02548i
\(127\) 83.6774 + 157.832i 0.658877 + 1.24277i 0.957508 + 0.288405i \(0.0931250\pi\)
−0.298632 + 0.954368i \(0.596530\pi\)
\(128\) −79.3560 67.4056i −0.619968 0.526606i
\(129\) −119.825 + 22.1745i −0.928873 + 0.171895i
\(130\) −42.9835 107.880i −0.330642 0.829850i
\(131\) 138.872 + 73.6254i 1.06009 + 0.562026i 0.904797 0.425842i \(-0.140022\pi\)
0.155296 + 0.987868i \(0.450367\pi\)
\(132\) −31.6594 + 19.9436i −0.239844 + 0.151088i
\(133\) −111.249 + 84.5691i −0.836457 + 0.635858i
\(134\) −223.601 + 62.0825i −1.66866 + 0.463302i
\(135\) 98.4648 131.513i 0.729369 0.974167i
\(136\) 7.90564 + 48.2223i 0.0581297 + 0.354575i
\(137\) −45.8662 208.372i −0.334789 1.52096i −0.780139 0.625607i \(-0.784851\pi\)
0.445349 0.895357i \(-0.353080\pi\)
\(138\) 53.3857 + 34.6212i 0.386853 + 0.250878i
\(139\) 39.1827 + 4.26137i 0.281890 + 0.0306574i 0.247972 0.968767i \(-0.420236\pi\)
0.0339180 + 0.999425i \(0.489201\pi\)
\(140\) 122.889 + 83.3206i 0.877776 + 0.595147i
\(141\) 40.5548 + 135.251i 0.287623 + 0.959224i
\(142\) 7.36276 + 135.798i 0.0518504 + 0.956325i
\(143\) 10.5834 11.1728i 0.0740098 0.0781312i
\(144\) 8.77005 + 91.8939i 0.0609031 + 0.638152i
\(145\) −0.371890 + 6.85910i −0.00256476 + 0.0473042i
\(146\) −68.3642 + 310.582i −0.468248 + 2.12727i
\(147\) −55.4223 56.1577i −0.377022 0.382025i
\(148\) 140.557 47.3592i 0.949711 0.319995i
\(149\) −43.1540 + 196.051i −0.289624 + 1.31578i 0.576971 + 0.816764i \(0.304234\pi\)
−0.866595 + 0.499011i \(0.833697\pi\)
\(150\) −42.3912 100.363i −0.282608 0.669084i
\(151\) 145.421 137.750i 0.963052 0.912251i −0.0331391 0.999451i \(-0.510550\pi\)
0.996191 + 0.0871997i \(0.0277918\pi\)
\(152\) 68.3145 72.1188i 0.449438 0.474466i
\(153\) 74.2829 106.509i 0.485509 0.696136i
\(154\) −5.66939 + 34.5817i −0.0368142 + 0.224557i
\(155\) 190.470 + 129.142i 1.22884 + 0.833175i
\(156\) 32.8796 + 91.3528i 0.210767 + 0.585595i
\(157\) 120.892 72.7381i 0.770011 0.463300i −0.0755749 0.997140i \(-0.524079\pi\)
0.845585 + 0.533840i \(0.179252\pi\)
\(158\) 56.3685 + 256.085i 0.356763 + 1.62079i
\(159\) −169.513 239.306i −1.06612 1.50507i
\(160\) 245.883 + 113.757i 1.53677 + 0.710984i
\(161\) 32.2395 8.95125i 0.200245 0.0555978i
\(162\) −153.128 + 190.781i −0.945237 + 1.17766i
\(163\) −22.4176 + 2.43806i −0.137531 + 0.0149574i −0.176626 0.984278i \(-0.556518\pi\)
0.0390944 + 0.999236i \(0.487553\pi\)
\(164\) 54.5806 + 28.9368i 0.332809 + 0.176444i
\(165\) 29.9046 32.8945i 0.181240 0.199361i
\(166\) −64.8896 + 233.711i −0.390901 + 1.40790i
\(167\) 129.928 + 110.361i 0.778009 + 0.660847i 0.945718 0.324990i \(-0.105361\pi\)
−0.167708 + 0.985837i \(0.553637\pi\)
\(168\) −39.1302 28.5001i −0.232918 0.169643i
\(169\) 72.4311 + 106.828i 0.428586 + 0.632117i
\(170\) −111.333 240.642i −0.654899 1.41554i
\(171\) −263.754 + 10.8155i −1.54242 + 0.0632486i
\(172\) 76.9999 193.255i 0.447674 1.12358i
\(173\) 170.470 224.249i 0.985376 1.29624i 0.0304058 0.999538i \(-0.490320\pi\)
0.954970 0.296702i \(-0.0958868\pi\)
\(174\) 0.897309 10.1891i 0.00515695 0.0585579i
\(175\) −54.2909 18.2927i −0.310234 0.104530i
\(176\) 24.9791i 0.141927i
\(177\) −13.6346 176.474i −0.0770319 0.997029i
\(178\) −161.185 −0.905534
\(179\) −36.9014 + 109.520i −0.206153 + 0.611841i 0.793840 + 0.608127i \(0.208079\pi\)
−0.999993 + 0.00371424i \(0.998818\pi\)
\(180\) 100.367 + 261.890i 0.557593 + 1.45494i
\(181\) 30.9520 + 23.5291i 0.171006 + 0.129995i 0.687176 0.726491i \(-0.258850\pi\)
−0.516171 + 0.856486i \(0.672643\pi\)
\(182\) 84.4713 + 33.6564i 0.464128 + 0.184925i
\(183\) 95.3073 217.596i 0.520805 1.18905i
\(184\) −21.5864 + 9.98692i −0.117317 + 0.0542767i
\(185\) −145.857 + 98.8933i −0.788414 + 0.534558i
\(186\) −276.984 201.738i −1.48916 1.08461i
\(187\) 22.7479 26.7809i 0.121646 0.143213i
\(188\) −232.261 64.4870i −1.23543 0.343016i
\(189\) 21.7389 + 126.789i 0.115021 + 0.670843i
\(190\) −252.476 + 476.221i −1.32882 + 2.50643i
\(191\) −12.3523 113.577i −0.0646715 0.594644i −0.980971 0.194152i \(-0.937805\pi\)
0.916300 0.400493i \(-0.131161\pi\)
\(192\) −250.317 126.208i −1.30373 0.657334i
\(193\) 25.4588 + 91.6945i 0.131911 + 0.475101i 0.999764 0.0217202i \(-0.00691431\pi\)
−0.867853 + 0.496821i \(0.834501\pi\)
\(194\) 21.5609 46.6031i 0.111138 0.240222i
\(195\) −66.6773 94.1298i −0.341935 0.482717i
\(196\) 131.545 28.9553i 0.671148 0.147731i
\(197\) 5.96351 + 9.91144i 0.0302716 + 0.0503119i 0.871624 0.490176i \(-0.163067\pi\)
−0.841352 + 0.540488i \(0.818240\pi\)
\(198\) −46.1531 + 47.4544i −0.233097 + 0.239669i
\(199\) −95.6062 + 141.009i −0.480433 + 0.708586i −0.988244 0.152883i \(-0.951144\pi\)
0.507811 + 0.861468i \(0.330455\pi\)
\(200\) 40.1885 + 6.58857i 0.200943 + 0.0329429i
\(201\) −201.403 + 112.123i −1.00201 + 0.557827i
\(202\) 359.288 + 340.336i 1.77866 + 1.68483i
\(203\) −3.69887 3.90485i −0.0182211 0.0192357i
\(204\) 86.2540 + 204.210i 0.422814 + 1.00103i
\(205\) −71.6815 15.7783i −0.349666 0.0769673i
\(206\) −142.509 422.953i −0.691793 2.05317i
\(207\) 59.6244 + 20.9690i 0.288041 + 0.101299i
\(208\) 63.2997 + 13.9333i 0.304325 + 0.0669871i
\(209\) −71.3259 3.86718i −0.341272 0.0185033i
\(210\) 245.954 + 92.2033i 1.17121 + 0.439063i
\(211\) −149.311 141.435i −0.707636 0.670308i 0.246684 0.969096i \(-0.420659\pi\)
−0.954320 + 0.298788i \(0.903418\pi\)
\(212\) 499.901 27.1039i 2.35803 0.127848i
\(213\) 38.7998 + 129.398i 0.182159 + 0.607500i
\(214\) 151.390 223.284i 0.707431 1.04338i
\(215\) −26.7229 + 245.713i −0.124293 + 1.14285i
\(216\) −29.8310 86.4419i −0.138106 0.400194i
\(217\) −175.976 + 38.7351i −0.810947 + 0.178503i
\(218\) −277.746 + 45.5341i −1.27406 + 0.208872i
\(219\) 6.47269 + 315.827i 0.0295557 + 1.44213i
\(220\) 20.3034 + 73.1261i 0.0922880 + 0.332391i
\(221\) −55.1767 72.5837i −0.249668 0.328433i
\(222\) 222.022 139.861i 1.00010 0.630004i
\(223\) 197.323 372.190i 0.884855 1.66901i 0.152270 0.988339i \(-0.451342\pi\)
0.732585 0.680675i \(-0.238314\pi\)
\(224\) −197.068 + 78.5191i −0.879768 + 0.350532i
\(225\) −64.3509 87.0095i −0.286004 0.386709i
\(226\) 25.1715 29.6341i 0.111378 0.131125i
\(227\) 106.661 56.5482i 0.469873 0.249111i −0.216608 0.976259i \(-0.569499\pi\)
0.686481 + 0.727148i \(0.259154\pi\)
\(228\) 224.369 390.815i 0.984075 1.71410i
\(229\) 102.823 47.5710i 0.449009 0.207734i −0.182335 0.983236i \(-0.558366\pi\)
0.631344 + 0.775503i \(0.282503\pi\)
\(230\) 98.3617 83.5492i 0.427660 0.363257i
\(231\) 2.59635 + 34.7124i 0.0112396 + 0.150270i
\(232\) 3.04381 + 2.31384i 0.0131199 + 0.00997347i
\(233\) 209.229 347.742i 0.897980 1.49245i 0.0278610 0.999612i \(-0.491130\pi\)
0.870119 0.492842i \(-0.164042\pi\)
\(234\) 94.5102 + 143.427i 0.403890 + 0.612935i
\(235\) 286.390 1.21868
\(236\) 267.311 + 140.881i 1.13267 + 0.596953i
\(237\) 114.187 + 234.100i 0.481801 + 0.987765i
\(238\) 196.745 + 66.2912i 0.826660 + 0.278534i
\(239\) 28.6394 47.5990i 0.119830 0.199159i −0.791136 0.611640i \(-0.790510\pi\)
0.910966 + 0.412481i \(0.135338\pi\)
\(240\) 183.640 + 36.4941i 0.765168 + 0.152059i
\(241\) 94.9688 238.354i 0.394062 0.989020i −0.589390 0.807849i \(-0.700632\pi\)
0.983452 0.181171i \(-0.0579888\pi\)
\(242\) 264.872 224.985i 1.09451 0.929688i
\(243\) −103.327 + 219.938i −0.425212 + 0.905094i
\(244\) 227.581 + 335.657i 0.932709 + 1.37564i
\(245\) −141.389 + 74.9599i −0.577099 + 0.305959i
\(246\) 105.885 + 27.0748i 0.430428 + 0.110060i
\(247\) −49.5853 + 178.590i −0.200750 + 0.723037i
\(248\) 118.991 47.4104i 0.479803 0.191171i
\(249\) −8.11159 + 240.796i −0.0325767 + 0.967052i
\(250\) 237.053 25.7811i 0.948213 0.103124i
\(251\) 152.939 + 201.188i 0.609318 + 0.801544i 0.992515 0.122122i \(-0.0389700\pi\)
−0.383197 + 0.923667i \(0.625177\pi\)
\(252\) −202.919 83.9664i −0.805233 0.333200i
\(253\) 15.5221 + 7.18128i 0.0613521 + 0.0283845i
\(254\) −532.421 + 87.2860i −2.09614 + 0.343646i
\(255\) −163.652 206.363i −0.641773 0.809267i
\(256\) −50.8287 + 30.5826i −0.198550 + 0.119463i
\(257\) 27.5655 253.461i 0.107259 0.986228i −0.809591 0.586995i \(-0.800311\pi\)
0.916849 0.399233i \(-0.130724\pi\)
\(258\) 52.0872 364.330i 0.201888 1.41213i
\(259\) 22.3231 136.165i 0.0861897 0.525734i
\(260\) 196.634 10.6612i 0.756285 0.0410046i
\(261\) −1.51143 10.0472i −0.00579092 0.0384949i
\(262\) −344.641 + 326.462i −1.31543 + 1.24604i
\(263\) −413.459 22.4171i −1.57209 0.0852360i −0.752656 0.658414i \(-0.771227\pi\)
−0.819431 + 0.573178i \(0.805710\pi\)
\(264\) −5.81339 24.0519i −0.0220204 0.0911059i
\(265\) −563.672 + 189.923i −2.12707 + 0.716692i
\(266\) −134.761 399.956i −0.506619 1.50359i
\(267\) −155.627 + 37.6154i −0.582874 + 0.140882i
\(268\) 21.3043 392.935i 0.0794936 1.46617i
\(269\) 163.483 + 172.587i 0.607745 + 0.641588i 0.955148 0.296127i \(-0.0956953\pi\)
−0.347404 + 0.937716i \(0.612937\pi\)
\(270\) 281.444 + 408.637i 1.04239 + 1.51347i
\(271\) −14.4695 266.873i −0.0533928 0.984773i −0.895388 0.445287i \(-0.853102\pi\)
0.841995 0.539485i \(-0.181381\pi\)
\(272\) 146.038 + 23.9418i 0.536905 + 0.0880212i
\(273\) 89.4130 + 12.7831i 0.327520 + 0.0468246i
\(274\) 640.606 + 69.6701i 2.33798 + 0.254271i
\(275\) −15.0975 25.0923i −0.0549001 0.0912446i
\(276\) −84.5409 + 67.0435i −0.306308 + 0.242911i
\(277\) −14.9325 91.0843i −0.0539080 0.328824i −0.999988 0.00489122i \(-0.998443\pi\)
0.946080 0.323933i \(-0.105005\pi\)
\(278\) −49.9819 + 108.034i −0.179791 + 0.388612i
\(279\) −314.513 130.143i −1.12729 0.466463i
\(280\) −78.1651 + 59.4196i −0.279161 + 0.212213i
\(281\) 18.3012 + 168.277i 0.0651289 + 0.598850i 0.980539 + 0.196327i \(0.0629013\pi\)
−0.915410 + 0.402523i \(0.868133\pi\)
\(282\) −426.206 14.3574i −1.51137 0.0509128i
\(283\) −205.905 516.781i −0.727578 1.82608i −0.535117 0.844778i \(-0.679733\pi\)
−0.192460 0.981305i \(-0.561647\pi\)
\(284\) −222.210 61.6963i −0.782430 0.217241i
\(285\) −132.637 + 518.721i −0.465391 + 1.82007i
\(286\) 21.7712 + 41.0648i 0.0761231 + 0.143583i
\(287\) 47.5680 32.2519i 0.165742 0.112376i
\(288\) −390.184 91.2946i −1.35480 0.316995i
\(289\) 52.3258 + 61.6027i 0.181058 + 0.213158i
\(290\) −19.2726 7.67891i −0.0664573 0.0264790i
\(291\) 9.94181 50.0278i 0.0341643 0.171917i
\(292\) −462.079 278.024i −1.58246 0.952137i
\(293\) −80.6081 + 239.236i −0.275113 + 0.816506i 0.717649 + 0.696405i \(0.245218\pi\)
−0.992762 + 0.120101i \(0.961678\pi\)
\(294\) 214.174 104.467i 0.728481 0.355330i
\(295\) −350.797 76.3151i −1.18914 0.258695i
\(296\) 98.0863i 0.331373i
\(297\) −33.4874 + 56.5888i −0.112752 + 0.190535i
\(298\) −519.495 312.570i −1.74327 1.04889i
\(299\) 26.8563 35.3289i 0.0898204 0.118157i
\(300\) 184.233 13.7799i 0.614108 0.0459328i
\(301\) −125.288 147.501i −0.416241 0.490036i
\(302\) 254.014 + 549.043i 0.841107 + 1.81802i
\(303\) 426.324 + 244.755i 1.40701 + 0.807773i
\(304\) −140.915 265.795i −0.463537 0.874324i
\(305\) −367.224 311.923i −1.20401 1.02270i
\(306\) 233.202 + 315.314i 0.762097 + 1.03044i
\(307\) −171.324 429.992i −0.558060 1.40062i −0.889408 0.457115i \(-0.848883\pi\)
0.331348 0.943509i \(-0.392497\pi\)
\(308\) −52.5021 27.8348i −0.170461 0.0903729i
\(309\) −236.299 375.112i −0.764722 1.21396i
\(310\) −553.293 + 420.602i −1.78482 + 1.35678i
\(311\) 414.978 115.218i 1.33433 0.370476i 0.474142 0.880448i \(-0.342758\pi\)
0.860191 + 0.509973i \(0.170344\pi\)
\(312\) −64.1928 + 1.31560i −0.205746 + 0.00421665i
\(313\) 56.1431 + 342.458i 0.179371 + 1.09411i 0.910999 + 0.412409i \(0.135313\pi\)
−0.731628 + 0.681704i \(0.761239\pi\)
\(314\) 91.6004 + 416.145i 0.291721 + 1.32530i
\(315\) 258.990 + 31.6265i 0.822192 + 0.100402i
\(316\) −442.041 48.0749i −1.39886 0.152136i
\(317\) 146.545 + 99.3603i 0.462289 + 0.313439i 0.770004 0.638039i \(-0.220254\pi\)
−0.307715 + 0.951478i \(0.599564\pi\)
\(318\) 848.378 254.386i 2.66786 0.799955i
\(319\) −0.148845 2.74528i −0.000466598 0.00860590i
\(320\) −391.019 + 412.793i −1.22193 + 1.28998i
\(321\) 94.0631 250.915i 0.293031 0.781666i
\(322\) −5.47084 + 100.904i −0.0169902 + 0.313366i
\(323\) −90.9730 + 413.294i −0.281650 + 1.27955i
\(324\) −223.667 349.371i −0.690331 1.07831i
\(325\) −72.0077 + 24.2622i −0.221562 + 0.0746530i
\(326\) 14.6404 66.5119i 0.0449092 0.204024i
\(327\) −257.543 + 108.781i −0.787594 + 0.332664i
\(328\) −29.6595 + 28.0950i −0.0904254 + 0.0856555i
\(329\) −154.214 + 162.801i −0.468734 + 0.494837i
\(330\) 65.3080 + 117.311i 0.197903 + 0.355487i
\(331\) 59.2430 361.366i 0.178982 1.09174i −0.732611 0.680648i \(-0.761699\pi\)
0.911593 0.411094i \(-0.134853\pi\)
\(332\) −340.432 230.819i −1.02540 0.695237i
\(333\) 181.727 186.851i 0.545728 0.561114i
\(334\) −441.157 + 265.435i −1.32083 + 0.794717i
\(335\) 100.506 + 456.603i 0.300018 + 1.36299i
\(336\) −119.631 + 84.7411i −0.356045 + 0.252206i
\(337\) 164.262 + 75.9959i 0.487425 + 0.225507i 0.648180 0.761487i \(-0.275531\pi\)
−0.160754 + 0.986994i \(0.551393\pi\)
\(338\) −375.597 + 104.284i −1.11123 + 0.308533i
\(339\) 17.3879 34.4866i 0.0512918 0.101730i
\(340\) 446.986 48.6126i 1.31466 0.142978i
\(341\) −81.3752 43.1424i −0.238637 0.126517i
\(342\) 223.394 765.311i 0.653200 2.23775i
\(343\) 95.9791 345.686i 0.279823 1.00783i
\(344\) 104.852 + 89.0624i 0.304803 + 0.258902i
\(345\) 75.4726 103.623i 0.218761 0.300356i
\(346\) 477.426 + 704.151i 1.37984 + 2.03512i
\(347\) −213.259 460.953i −0.614581 1.32839i −0.925785 0.378051i \(-0.876594\pi\)
0.311204 0.950343i \(-0.399268\pi\)
\(348\) 15.8877 + 6.95883i 0.0456543 + 0.0199966i
\(349\) −168.559 + 423.050i −0.482976 + 1.21218i 0.462539 + 0.886599i \(0.346938\pi\)
−0.945515 + 0.325579i \(0.894441\pi\)
\(350\) 104.710 137.744i 0.299172 0.393554i
\(351\) 124.723 + 116.426i 0.355335 + 0.331697i
\(352\) −102.758 34.6231i −0.291925 0.0983610i
\(353\) 110.697i 0.313590i 0.987631 + 0.156795i \(0.0501162\pi\)
−0.987631 + 0.156795i \(0.949884\pi\)
\(354\) 518.230 + 131.158i 1.46393 + 0.370504i
\(355\) 273.996 0.771821
\(356\) 87.2738 259.019i 0.245151 0.727583i
\(357\) 205.432 + 18.0915i 0.575439 + 0.0506765i
\(358\) −277.867 211.229i −0.776165 0.590025i
\(359\) −109.102 43.4703i −0.303906 0.121087i 0.213200 0.977009i \(-0.431611\pi\)
−0.517106 + 0.855921i \(0.672991\pi\)
\(360\) −185.317 + 7.59914i −0.514770 + 0.0211087i
\(361\) 453.137 209.644i 1.25523 0.580730i
\(362\) −97.1904 + 65.8967i −0.268482 + 0.182035i
\(363\) 203.235 279.040i 0.559877 0.768705i
\(364\) −99.8219 + 117.519i −0.274236 + 0.322856i
\(365\) 617.359 + 171.409i 1.69139 + 0.469613i
\(366\) 530.865 + 482.613i 1.45045 + 1.31862i
\(367\) −87.4525 + 164.953i −0.238290 + 0.449463i −0.973598 0.228271i \(-0.926693\pi\)
0.735308 + 0.677734i \(0.237038\pi\)
\(368\) 7.78786 + 71.6082i 0.0211627 + 0.194588i
\(369\) 108.553 + 1.43105i 0.294181 + 0.00387820i
\(370\) −142.384 512.819i −0.384820 1.38600i
\(371\) 195.559 422.694i 0.527113 1.13934i
\(372\) 474.160 335.873i 1.27462 0.902885i
\(373\) −373.905 + 82.3028i −1.00243 + 0.220651i −0.685715 0.727870i \(-0.740510\pi\)
−0.316713 + 0.948521i \(0.602579\pi\)
\(374\) 54.7119 + 90.9319i 0.146289 + 0.243134i
\(375\) 222.863 80.2128i 0.594302 0.213901i
\(376\) 89.4571 131.939i 0.237918 0.350902i
\(377\) −7.03985 1.15412i −0.0186733 0.00306134i
\(378\) −383.844 60.0504i −1.01546 0.158863i
\(379\) −72.5623 68.7346i −0.191457 0.181358i 0.585966 0.810335i \(-0.300715\pi\)
−0.777423 + 0.628978i \(0.783474\pi\)
\(380\) −628.569 663.573i −1.65413 1.74624i
\(381\) −493.693 + 208.526i −1.29578 + 0.547313i
\(382\) 336.977 + 74.1743i 0.882140 + 0.194174i
\(383\) −59.2744 175.920i −0.154763 0.459322i 0.842022 0.539444i \(-0.181365\pi\)
−0.996785 + 0.0801222i \(0.974469\pi\)
\(384\) 222.322 219.410i 0.578963 0.571381i
\(385\) 68.9518 + 15.1774i 0.179095 + 0.0394219i
\(386\) −286.987 15.5600i −0.743490 0.0403109i
\(387\) −34.7317 363.924i −0.0897460 0.940372i
\(388\) 63.2155 + 59.8809i 0.162927 + 0.154332i
\(389\) −462.926 + 25.0991i −1.19004 + 0.0645222i −0.638498 0.769624i \(-0.720444\pi\)
−0.551544 + 0.834146i \(0.685961\pi\)
\(390\) 333.706 100.062i 0.855657 0.256568i
\(391\) 56.8622 83.8655i 0.145428 0.214490i
\(392\) −9.63065 + 88.5523i −0.0245680 + 0.225899i
\(393\) −256.573 + 395.634i −0.652857 + 1.00670i
\(394\) −34.1181 + 7.50996i −0.0865942 + 0.0190608i
\(395\) 521.330 85.4676i 1.31982 0.216374i
\(396\) −51.2681 99.8609i −0.129465 0.252174i
\(397\) 130.540 + 470.161i 0.328815 + 1.18429i 0.924536 + 0.381094i \(0.124453\pi\)
−0.595721 + 0.803191i \(0.703134\pi\)
\(398\) −311.379 409.612i −0.782360 1.02918i
\(399\) −223.451 354.716i −0.560027 0.889014i
\(400\) 57.7703 108.966i 0.144426 0.272416i
\(401\) −254.640 + 101.458i −0.635013 + 0.253012i −0.665355 0.746527i \(-0.731720\pi\)
0.0303417 + 0.999540i \(0.490340\pi\)
\(402\) −126.682 684.555i −0.315130 1.70287i
\(403\) −154.718 + 182.148i −0.383916 + 0.451981i
\(404\) −741.447 + 393.090i −1.83526 + 0.972996i
\(405\) 367.103 + 328.867i 0.906426 + 0.812017i
\(406\) 14.7429 6.82081i 0.0363127 0.0168000i
\(407\) 53.7559 45.6607i 0.132078 0.112188i
\(408\) −146.190 + 10.9344i −0.358308 + 0.0268000i
\(409\) 313.229 + 238.110i 0.765840 + 0.582177i 0.913489 0.406863i \(-0.133377\pi\)
−0.147649 + 0.989040i \(0.547171\pi\)
\(410\) 114.284 189.942i 0.278742 0.463273i
\(411\) 634.777 82.2288i 1.54447 0.200070i
\(412\) 756.834 1.83698
\(413\) 232.277 158.320i 0.562414 0.383342i
\(414\) −117.513 + 150.428i −0.283848 + 0.363353i
\(415\) 463.093 + 156.034i 1.11589 + 0.375986i
\(416\) −145.056 + 241.086i −0.348693 + 0.579533i
\(417\) −23.0469 + 115.973i −0.0552683 + 0.278113i
\(418\) 79.8509 200.411i 0.191031 0.479451i
\(419\) 132.258 112.341i 0.315653 0.268118i −0.475528 0.879701i \(-0.657743\pi\)
0.791180 + 0.611583i \(0.209467\pi\)
\(420\) −281.340 + 345.316i −0.669856 + 0.822182i
\(421\) 49.7275 + 73.3426i 0.118118 + 0.174211i 0.882152 0.470965i \(-0.156094\pi\)
−0.764034 + 0.645176i \(0.776784\pi\)
\(422\) 548.784 290.947i 1.30044 0.689448i
\(423\) −414.861 + 85.6002i −0.980758 + 0.202365i
\(424\) −88.5719 + 319.007i −0.208896 + 0.752376i
\(425\) −161.170 + 64.2161i −0.379224 + 0.151097i
\(426\) −407.761 13.7361i −0.957186 0.0322443i
\(427\) 375.056 40.7898i 0.878352 0.0955265i
\(428\) 276.840 + 364.177i 0.646822 + 0.850880i
\(429\) 30.6037 + 34.5682i 0.0713374 + 0.0805786i
\(430\) −677.478 313.435i −1.57553 0.728918i
\(431\) 28.5756 4.68474i 0.0663008 0.0108695i −0.128540 0.991704i \(-0.541029\pi\)
0.194841 + 0.980835i \(0.437581\pi\)
\(432\) −276.927 + 2.02418i −0.641034 + 0.00468561i
\(433\) 105.979 63.7653i 0.244755 0.147264i −0.387891 0.921705i \(-0.626796\pi\)
0.632646 + 0.774441i \(0.281969\pi\)
\(434\) 58.8382 541.008i 0.135572 1.24656i
\(435\) −20.4001 2.91654i −0.0468968 0.00670469i
\(436\) 77.2139 470.984i 0.177096 1.08024i
\(437\) −205.677 + 11.1515i −0.470658 + 0.0255183i
\(438\) −910.160 286.040i −2.07799 0.653060i
\(439\) −248.136 + 235.047i −0.565230 + 0.535414i −0.916068 0.401022i \(-0.868655\pi\)
0.350839 + 0.936436i \(0.385897\pi\)
\(440\) −50.1147 2.71714i −0.113897 0.00617532i
\(441\) 182.410 150.846i 0.413627 0.342055i
\(442\) 260.949 87.9240i 0.590383 0.198923i
\(443\) 49.2867 + 146.278i 0.111257 + 0.330198i 0.988789 0.149319i \(-0.0477082\pi\)
−0.877532 + 0.479518i \(0.840812\pi\)
\(444\) 104.538 + 432.510i 0.235446 + 0.974121i
\(445\) −17.5812 + 324.266i −0.0395083 + 0.728687i
\(446\) 874.948 + 923.671i 1.96177 + 2.07101i
\(447\) −574.527 180.559i −1.28530 0.403936i
\(448\) −24.1032 444.557i −0.0538017 0.992314i
\(449\) 661.003 + 108.366i 1.47217 + 0.241349i 0.843838 0.536599i \(-0.180291\pi\)
0.628329 + 0.777948i \(0.283739\pi\)
\(450\) 311.084 100.270i 0.691297 0.222822i
\(451\) 29.2043 + 3.17616i 0.0647546 + 0.00704249i
\(452\) 33.9921 + 56.4952i 0.0752037 + 0.124989i
\(453\) 373.385 + 470.833i 0.824249 + 1.03937i
\(454\) 58.9869 + 359.804i 0.129927 + 0.792520i
\(455\) 76.9223 166.265i 0.169060 0.365417i
\(456\) 197.543 + 223.134i 0.433209 + 0.489328i
\(457\) 490.183 372.627i 1.07261 0.815377i 0.0890626 0.996026i \(-0.471613\pi\)
0.983548 + 0.180649i \(0.0578198\pi\)
\(458\) 36.9948 + 340.162i 0.0807747 + 0.742711i
\(459\) 298.745 + 250.020i 0.650860 + 0.544706i
\(460\) 81.0030 + 203.302i 0.176093 + 0.441961i
\(461\) −257.800 71.5779i −0.559220 0.155267i −0.0235934 0.999722i \(-0.507511\pi\)
−0.535626 + 0.844455i \(0.679924\pi\)
\(462\) −101.853 26.0438i −0.220461 0.0563718i
\(463\) 232.744 + 439.002i 0.502688 + 0.948170i 0.996889 + 0.0788219i \(0.0251158\pi\)
−0.494201 + 0.869348i \(0.664539\pi\)
\(464\) 9.58385 6.49801i 0.0206549 0.0140043i
\(465\) −436.061 + 535.221i −0.937765 + 1.15101i
\(466\) 793.492 + 934.172i 1.70277 + 2.00466i
\(467\) −42.5459 16.9518i −0.0911047 0.0362994i 0.324141 0.946009i \(-0.394925\pi\)
−0.415245 + 0.909710i \(0.636304\pi\)
\(468\) −281.655 + 74.2164i −0.601827 + 0.158582i
\(469\) −313.681 188.735i −0.668829 0.402421i
\(470\) −276.178 + 819.668i −0.587614 + 1.74398i
\(471\) 185.557 + 380.420i 0.393964 + 0.807685i
\(472\) −144.733 + 137.773i −0.306639 + 0.291893i
\(473\) 98.9239i 0.209141i
\(474\) −780.127 + 101.057i −1.64584 + 0.213201i
\(475\) 302.201 + 181.829i 0.636213 + 0.382797i
\(476\) −213.056 + 280.270i −0.447596 + 0.588803i
\(477\) 759.761 443.599i 1.59279 0.929976i
\(478\) 108.614 + 127.870i 0.227225 + 0.267510i
\(479\) −175.373 379.063i −0.366124 0.791363i −0.999842 0.0177992i \(-0.994334\pi\)
0.633718 0.773564i \(-0.281528\pi\)
\(480\) −404.668 + 704.865i −0.843058 + 1.46847i
\(481\) −85.7239 161.692i −0.178220 0.336159i
\(482\) 590.603 + 501.662i 1.22532 + 1.04079i
\(483\) 18.2655 + 98.7014i 0.0378167 + 0.204351i
\(484\) 218.128 + 547.460i 0.450678 + 1.13112i
\(485\) −91.4025 48.4585i −0.188459 0.0999145i
\(486\) −529.835 507.823i −1.09020 1.04490i
\(487\) −587.927 + 446.930i −1.20724 + 0.917722i −0.998187 0.0601822i \(-0.980832\pi\)
−0.209055 + 0.977904i \(0.567039\pi\)
\(488\) −258.409 + 71.7468i −0.529526 + 0.147022i
\(489\) −1.38615 67.6352i −0.00283465 0.138313i
\(490\) −78.1925 476.953i −0.159577 0.973374i
\(491\) −15.7427 71.5200i −0.0320626 0.145662i 0.957870 0.287203i \(-0.0927254\pi\)
−0.989932 + 0.141541i \(0.954794\pi\)
\(492\) −100.840 + 155.495i −0.204960 + 0.316047i
\(493\) −16.1927 1.76106i −0.0328453 0.00357214i
\(494\) −463.320 314.139i −0.937895 0.635909i
\(495\) 90.4327 + 98.0251i 0.182692 + 0.198030i
\(496\) −21.0009 387.339i −0.0423405 0.780925i
\(497\) −147.540 + 155.756i −0.296861 + 0.313392i
\(498\) −681.353 255.426i −1.36818 0.512904i
\(499\) −9.15370 + 168.830i −0.0183441 + 0.338337i 0.974927 + 0.222525i \(0.0714298\pi\)
−0.993271 + 0.115812i \(0.963053\pi\)
\(500\) −86.9234 + 394.897i −0.173847 + 0.789794i
\(501\) −364.002 + 359.235i −0.726551 + 0.717036i
\(502\) −723.299 + 243.708i −1.44083 + 0.485474i
\(503\) −82.4171 + 374.425i −0.163851 + 0.744383i 0.820993 + 0.570939i \(0.193421\pi\)
−0.984844 + 0.173444i \(0.944510\pi\)
\(504\) 95.4688 109.437i 0.189422 0.217138i
\(505\) 723.864 685.680i 1.43339 1.35778i
\(506\) −35.5220 + 37.5001i −0.0702015 + 0.0741108i
\(507\) −338.310 + 188.341i −0.667279 + 0.371481i
\(508\) 148.014 902.845i 0.291366 1.77725i
\(509\) 141.516 + 95.9499i 0.278027 + 0.188507i 0.692229 0.721678i \(-0.256629\pi\)
−0.414202 + 0.910185i \(0.635939\pi\)
\(510\) 748.443 269.379i 1.46754 0.528194i
\(511\) −429.871 + 258.645i −0.841235 + 0.506154i
\(512\) −128.044 581.709i −0.250085 1.13615i
\(513\) 37.0930 791.057i 0.0723060 1.54202i
\(514\) 698.840 + 323.318i 1.35961 + 0.629023i
\(515\) −866.424 + 240.561i −1.68238 + 0.467110i
\(516\) 557.265 + 280.970i 1.07997 + 0.544515i
\(517\) −113.953 + 12.3931i −0.220411 + 0.0239712i
\(518\) 368.187 + 195.200i 0.710786 + 0.376835i
\(519\) 625.291 + 568.456i 1.20480 + 1.09529i
\(520\) −34.8394 + 125.480i −0.0669989 + 0.241308i
\(521\) −548.039 465.508i −1.05190 0.893490i −0.0574109 0.998351i \(-0.518285\pi\)
−0.994487 + 0.104861i \(0.966560\pi\)
\(522\) 30.2132 + 5.36310i 0.0578797 + 0.0102741i
\(523\) 356.744 + 526.157i 0.682110 + 1.00604i 0.998354 + 0.0573591i \(0.0182680\pi\)
−0.316244 + 0.948678i \(0.602422\pi\)
\(524\) −338.008 730.592i −0.645053 1.39426i
\(525\) 68.9549 157.431i 0.131343 0.299868i
\(526\) 462.876 1161.73i 0.879992 2.20861i
\(527\) −330.224 + 434.403i −0.626612 + 0.824294i
\(528\) −74.6484 6.57398i −0.141380 0.0124507i
\(529\) −454.572 153.163i −0.859304 0.289533i
\(530\) 1796.42i 3.38947i
\(531\) 530.969 + 5.69803i 0.999942 + 0.0107308i
\(532\) 715.683 1.34527
\(533\) 24.3389 72.2352i 0.0456639 0.135526i
\(534\) 42.4205 481.691i 0.0794391 0.902043i
\(535\) −432.681 328.915i −0.808749 0.614795i
\(536\) 241.750 + 96.3221i 0.451027 + 0.179705i
\(537\) −317.580 139.101i −0.591397 0.259033i
\(538\) −651.611 + 301.467i −1.21117 + 0.560348i
\(539\) 53.0140 35.9444i 0.0983563 0.0666872i
\(540\) −809.055 + 231.016i −1.49825 + 0.427807i
\(541\) 29.6031 34.8515i 0.0547193 0.0644205i −0.734121 0.679018i \(-0.762406\pi\)
0.788841 + 0.614598i \(0.210682\pi\)
\(542\) 777.764 + 215.945i 1.43499 + 0.398423i
\(543\) −78.4611 + 86.3057i −0.144496 + 0.158942i
\(544\) −300.911 + 567.579i −0.553145 + 1.04334i
\(545\) 61.3088 + 563.725i 0.112493 + 1.03436i
\(546\) −122.811 + 243.579i −0.224929 + 0.446116i
\(547\) −4.19366 15.1042i −0.00766665 0.0276128i 0.959618 0.281307i \(-0.0907680\pi\)
−0.967284 + 0.253694i \(0.918354\pi\)
\(548\) −458.815 + 991.712i −0.837253 + 1.80969i
\(549\) 625.187 + 342.086i 1.13877 + 0.623108i
\(550\) 86.3750 19.0126i 0.157045 0.0345683i
\(551\) 17.0708 + 28.3720i 0.0309816 + 0.0514917i
\(552\) −24.1642 67.1378i −0.0437757 0.121626i
\(553\) −232.137 + 342.377i −0.419778 + 0.619127i
\(554\) 275.090 + 45.0987i 0.496552 + 0.0814055i
\(555\) −257.150 461.910i −0.463333 0.832270i
\(556\) −146.545 138.815i −0.263570 0.249667i
\(557\) −349.086 368.526i −0.626725 0.661626i 0.332882 0.942968i \(-0.391979\pi\)
−0.959607 + 0.281343i \(0.909220\pi\)
\(558\) 675.777 774.655i 1.21107 1.38827i
\(559\) −250.683 55.1796i −0.448449 0.0987112i
\(560\) 94.9444 + 281.785i 0.169544 + 0.503187i
\(561\) 74.0461 + 75.0286i 0.131989 + 0.133741i
\(562\) −499.269 109.897i −0.888379 0.195547i
\(563\) 870.235 + 47.1828i 1.54571 + 0.0838060i 0.807136 0.590365i \(-0.201016\pi\)
0.738575 + 0.674171i \(0.235499\pi\)
\(564\) 253.841 677.126i 0.450073 1.20058i
\(565\) −56.8713 53.8713i −0.100657 0.0953475i
\(566\) 1677.63 90.9583i 2.96401 0.160704i
\(567\) −384.623 + 31.5969i −0.678347 + 0.0557265i
\(568\) 85.5858 126.230i 0.150679 0.222235i
\(569\) 96.0304 882.985i 0.168770 1.55182i −0.537125 0.843502i \(-0.680490\pi\)
0.705896 0.708316i \(-0.250545\pi\)
\(570\) −1356.71 879.841i −2.38019 1.54358i
\(571\) −236.207 + 51.9931i −0.413673 + 0.0910563i −0.416930 0.908938i \(-0.636894\pi\)
0.00325753 + 0.999995i \(0.498963\pi\)
\(572\) −77.7780 + 12.7511i −0.135976 + 0.0222921i
\(573\) 342.668 7.02280i 0.598025 0.0122562i
\(574\) 46.4353 + 167.245i 0.0808977 + 0.291367i
\(575\) −51.1035 67.2255i −0.0888757 0.116914i
\(576\) 443.043 714.840i 0.769171 1.24104i
\(577\) −311.021 + 586.648i −0.539031 + 1.01672i 0.453093 + 0.891463i \(0.350321\pi\)
−0.992124 + 0.125258i \(0.960024\pi\)
\(578\) −226.771 + 90.3539i −0.392338 + 0.156322i
\(579\) −280.723 + 51.9500i −0.484841 + 0.0897237i
\(580\) 22.7749 26.8127i 0.0392672 0.0462289i
\(581\) −338.063 + 179.230i −0.581864 + 0.308485i
\(582\) 133.596 + 76.6982i 0.229546 + 0.131784i
\(583\) 216.063 99.9612i 0.370605 0.171460i
\(584\) 271.807 230.875i 0.465422 0.395333i
\(585\) 298.849 174.488i 0.510853 0.298269i
\(586\) −606.977 461.412i −1.03580 0.787393i
\(587\) −58.1009 + 96.5644i −0.0989793 + 0.164505i −0.902390 0.430921i \(-0.858189\pi\)
0.803411 + 0.595425i \(0.203016\pi\)
\(588\) 51.9110 + 400.734i 0.0882840 + 0.681521i
\(589\) 1109.27 1.88331
\(590\) 556.708 930.411i 0.943573 1.57697i
\(591\) −31.1891 + 15.2131i −0.0527735 + 0.0257413i
\(592\) 281.499 + 94.8480i 0.475505 + 0.160216i
\(593\) 9.53092 15.8405i 0.0160724 0.0267125i −0.848717 0.528847i \(-0.822624\pi\)
0.864789 + 0.502135i \(0.167452\pi\)
\(594\) −129.668 150.415i −0.218296 0.253223i
\(595\) 154.822 388.573i 0.260205 0.653065i
\(596\) 783.572 665.572i 1.31472 1.11673i
\(597\) −396.233 322.823i −0.663707 0.540742i
\(598\) 75.2150 + 110.934i 0.125778 + 0.185508i
\(599\) −24.0567 + 12.7541i −0.0401614 + 0.0212922i −0.488368 0.872638i \(-0.662408\pi\)
0.448207 + 0.893930i \(0.352063\pi\)
\(600\) −30.2663 + 118.367i −0.0504438 + 0.197278i
\(601\) −248.039 + 893.354i −0.412710 + 1.48645i 0.406873 + 0.913485i \(0.366619\pi\)
−0.819583 + 0.572961i \(0.805795\pi\)
\(602\) 542.979 216.343i 0.901959 0.359373i
\(603\) −282.068 631.389i −0.467774 1.04708i
\(604\) −1019.83 + 110.913i −1.68846 + 0.183631i
\(605\) −423.724 557.400i −0.700371 0.921322i
\(606\) −1111.63 + 984.140i −1.83437 + 1.62399i
\(607\) −1034.46 478.594i −1.70423 0.788459i −0.996647 0.0818237i \(-0.973926\pi\)
−0.707578 0.706635i \(-0.750212\pi\)
\(608\) 1288.73 211.277i 2.11962 0.347494i
\(609\) 12.6429 10.0262i 0.0207600 0.0164633i
\(610\) 1246.88 750.220i 2.04406 1.22987i
\(611\) −32.1572 + 295.680i −0.0526304 + 0.483929i
\(612\) −632.967 + 204.021i −1.03426 + 0.333367i
\(613\) −31.6493 + 193.052i −0.0516302 + 0.314930i −0.999997 0.00224384i \(-0.999286\pi\)
0.948367 + 0.317174i \(0.102734\pi\)
\(614\) 1395.88 75.6825i 2.27342 0.123261i
\(615\) 66.0175 210.063i 0.107345 0.341566i
\(616\) 28.5301 27.0251i 0.0463150 0.0438719i
\(617\) −937.397 50.8242i −1.51928 0.0823730i −0.724503 0.689272i \(-0.757930\pi\)
−0.794779 + 0.606899i \(0.792413\pi\)
\(618\) 1301.47 314.568i 2.10594 0.509009i
\(619\) −48.8352 + 16.4545i −0.0788937 + 0.0265824i −0.358472 0.933541i \(-0.616702\pi\)
0.279578 + 0.960123i \(0.409805\pi\)
\(620\) −376.314 1116.86i −0.606958 1.80139i
\(621\) −78.3563 + 172.665i −0.126178 + 0.278043i
\(622\) −70.4191 + 1298.80i −0.113214 + 2.08811i
\(623\) −174.865 184.603i −0.280682 0.296313i
\(624\) −58.2979 + 185.500i −0.0934261 + 0.297275i
\(625\) −42.2838 779.878i −0.0676541 1.24781i
\(626\) −1034.28 169.561i −1.65220 0.270865i
\(627\) 30.3283 212.135i 0.0483705 0.338333i
\(628\) −718.330 78.1231i −1.14384 0.124400i
\(629\) −215.428 358.044i −0.342492 0.569227i
\(630\) −340.273 + 710.750i −0.540116 + 1.12817i
\(631\) −89.1006 543.489i −0.141205 0.861314i −0.958500 0.285094i \(-0.907975\pi\)
0.817294 0.576220i \(-0.195473\pi\)
\(632\) 123.468 266.872i 0.195361 0.422266i
\(633\) 461.965 408.984i 0.729802 0.646104i
\(634\) −425.696 + 323.606i −0.671445 + 0.510420i
\(635\) 117.525 + 1080.62i 0.185079 + 1.70177i
\(636\) −50.5654 + 1501.06i −0.0795053 + 2.36015i
\(637\) −61.5157 154.393i −0.0965710 0.242375i
\(638\) 8.00073 + 2.22139i 0.0125403 + 0.00348180i
\(639\) −396.907 + 81.8958i −0.621138 + 0.128163i
\(640\) −296.757 559.744i −0.463683 0.874600i
\(641\) −455.499 + 308.836i −0.710606 + 0.481803i −0.862154 0.506647i \(-0.830885\pi\)
0.151547 + 0.988450i \(0.451574\pi\)
\(642\) 627.426 + 511.183i 0.977299 + 0.796235i
\(643\) 504.693 + 594.171i 0.784904 + 0.924061i 0.998603 0.0528389i \(-0.0168270\pi\)
−0.213699 + 0.976900i \(0.568551\pi\)
\(644\) −159.187 63.4260i −0.247185 0.0984875i
\(645\) −727.264 144.526i −1.12754 0.224071i
\(646\) −1095.15 658.929i −1.69528 1.02001i
\(647\) −314.723 + 934.063i −0.486434 + 1.44368i 0.370779 + 0.928721i \(0.379091\pi\)
−0.857213 + 0.514963i \(0.827806\pi\)
\(648\) 266.177 66.3982i 0.410767 0.102466i
\(649\) 142.882 + 15.1851i 0.220157 + 0.0233976i
\(650\) 229.488i 0.353059i
\(651\) −69.4444 536.085i −0.106673 0.823480i
\(652\) 98.9556 + 59.5396i 0.151772 + 0.0913184i
\(653\) 453.376 596.407i 0.694298 0.913333i −0.304940 0.952372i \(-0.598636\pi\)
0.999238 + 0.0390385i \(0.0124295\pi\)
\(654\) −62.9789 842.009i −0.0962980 1.28748i
\(655\) 619.171 + 728.945i 0.945300 + 1.11289i
\(656\) 51.9498 + 112.288i 0.0791918 + 0.171170i
\(657\) −945.531 63.7757i −1.43916 0.0970711i
\(658\) −317.234 598.367i −0.482118 0.909372i
\(659\) 836.576 + 710.594i 1.26946 + 1.07829i 0.993104 + 0.117237i \(0.0374036\pi\)
0.276359 + 0.961055i \(0.410872\pi\)
\(660\) −223.876 + 41.4300i −0.339206 + 0.0627727i
\(661\) −375.075 941.368i −0.567436 1.42416i −0.880327 0.474368i \(-0.842677\pi\)
0.312890 0.949789i \(-0.398703\pi\)
\(662\) 977.126 + 518.039i 1.47602 + 0.782537i
\(663\) 231.433 145.789i 0.349069 0.219894i
\(664\) 216.537 164.607i 0.326110 0.247902i
\(665\) −819.314 + 227.481i −1.23205 + 0.342077i
\(666\) 359.533 + 700.305i 0.539840 + 1.05151i
\(667\) −1.28261 7.82355i −0.00192295 0.0117295i
\(668\) −187.682 852.647i −0.280961 1.27642i
\(669\) 1060.33 + 687.639i 1.58495 + 1.02786i
\(670\) −1403.75 152.667i −2.09515 0.227862i
\(671\) 159.614 + 108.221i 0.237874 + 0.161283i
\(672\) −182.785 609.589i −0.272001 0.907127i
\(673\) 42.8549 + 790.412i 0.0636774 + 1.17446i 0.839446 + 0.543443i \(0.182880\pi\)
−0.775769 + 0.631017i \(0.782638\pi\)
\(674\) −375.911 + 396.844i −0.557731 + 0.588790i
\(675\) 276.958 169.409i 0.410308 0.250977i
\(676\) 35.7862 660.038i 0.0529382 0.976388i
\(677\) −98.5043 + 447.510i −0.145501 + 0.661019i 0.846244 + 0.532795i \(0.178858\pi\)
−0.991745 + 0.128223i \(0.959073\pi\)
\(678\) 81.9351 + 83.0224i 0.120848 + 0.122452i
\(679\) 76.7646 25.8650i 0.113055 0.0380928i
\(680\) −63.9190 + 290.387i −0.0939986 + 0.427040i
\(681\) 140.920 + 333.632i 0.206930 + 0.489916i
\(682\) 201.950 191.298i 0.296115 0.280495i
\(683\) 584.296 616.834i 0.855485 0.903125i −0.140730 0.990048i \(-0.544945\pi\)
0.996215 + 0.0869234i \(0.0277035\pi\)
\(684\) 1108.87 + 773.367i 1.62116 + 1.13065i
\(685\) 210.033 1281.15i 0.306618 1.87029i
\(686\) 896.820 + 608.059i 1.30732 + 0.886383i
\(687\) 115.102 + 319.800i 0.167543 + 0.465502i
\(688\) 356.992 214.795i 0.518883 0.312202i
\(689\) −132.793 603.283i −0.192732 0.875592i
\(690\) 223.795 + 315.936i 0.324340 + 0.457878i
\(691\) −403.018 186.456i −0.583239 0.269835i 0.106004 0.994366i \(-0.466194\pi\)
−0.689242 + 0.724531i \(0.742057\pi\)
\(692\) −1390.05 + 385.946i −2.00875 + 0.557726i
\(693\) −104.419 1.37656i −0.150677 0.00198637i
\(694\) 1524.93 165.847i 2.19731 0.238972i
\(695\) 211.887 + 112.335i 0.304874 + 0.161634i
\(696\) −7.71584 + 8.48727i −0.0110860 + 0.0121944i
\(697\) 46.5607 167.696i 0.0668016 0.240598i
\(698\) −1048.25 890.392i −1.50179 1.27563i
\(699\) 984.139 + 716.786i 1.40792 + 1.02545i
\(700\) 164.655 + 242.848i 0.235221 + 0.346926i
\(701\) 142.143 + 307.237i 0.202771 + 0.438283i 0.982107 0.188323i \(-0.0603053\pi\)
−0.779336 + 0.626607i \(0.784443\pi\)
\(702\) −453.494 + 244.690i −0.646003 + 0.348562i
\(703\) −314.412 + 789.114i −0.447243 + 1.12250i
\(704\) 137.721 181.168i 0.195626 0.257341i
\(705\) −75.3718 + 855.858i −0.106910 + 1.21398i
\(706\) −316.824 106.750i −0.448759 0.151204i
\(707\) 780.709i 1.10426i
\(708\) −491.364 + 761.764i −0.694016 + 1.07594i
\(709\) 45.5017 0.0641772 0.0320886 0.999485i \(-0.489784\pi\)
0.0320886 + 0.999485i \(0.489784\pi\)
\(710\) −264.227 + 784.197i −0.372150 + 1.10450i
\(711\) −729.645 + 279.629i −1.02622 + 0.393290i
\(712\) 143.897 + 109.388i 0.202102 + 0.153634i
\(713\) −246.731 98.3066i −0.346046 0.137877i
\(714\) −249.886 + 570.513i −0.349980 + 0.799038i
\(715\) 84.9873 39.3193i 0.118863 0.0549920i
\(716\) 489.890 332.154i 0.684204 0.463902i
\(717\) 134.709 + 98.1140i 0.187879 + 0.136840i
\(718\) 229.627 270.338i 0.319815 0.376516i
\(719\) −781.388 216.951i −1.08677 0.301740i −0.322456 0.946584i \(-0.604508\pi\)
−0.764314 + 0.644844i \(0.776922\pi\)
\(720\) −157.390 + 539.193i −0.218598 + 0.748879i
\(721\) 329.797 622.064i 0.457416 0.862779i
\(722\) 163.035 + 1499.08i 0.225810 + 2.07629i
\(723\) 687.311 + 346.538i 0.950637 + 0.479305i
\(724\) −53.2702 191.862i −0.0735776 0.265003i
\(725\) −5.69983 + 12.3200i −0.00786183 + 0.0169931i
\(726\) 602.643 + 850.765i 0.830086 + 1.17185i
\(727\) −1324.95 + 291.644i −1.82249 + 0.401160i −0.988575 0.150732i \(-0.951837\pi\)
−0.833915 + 0.551892i \(0.813906\pi\)
\(728\) −52.5704 87.3726i −0.0722121 0.120017i
\(729\) −630.076 366.667i −0.864302 0.502973i
\(730\) −1085.93 + 1601.63i −1.48758 + 2.19401i
\(731\) −578.350 94.8157i −0.791176 0.129707i
\(732\) −1062.98 + 591.773i −1.45216 + 0.808433i
\(733\) −602.151 570.387i −0.821488 0.778155i 0.156309 0.987708i \(-0.450040\pi\)
−0.977797 + 0.209554i \(0.932799\pi\)
\(734\) −387.772 409.366i −0.528300 0.557720i
\(735\) −186.802 442.261i −0.254152 0.601715i
\(736\) −305.372 67.2175i −0.414908 0.0913282i
\(737\) −59.7494 177.330i −0.0810711 0.240611i
\(738\) −108.778 + 309.306i −0.147396 + 0.419114i
\(739\) 1079.96 + 237.718i 1.46139 + 0.321676i 0.873324 0.487140i \(-0.161960\pi\)
0.588063 + 0.808815i \(0.299891\pi\)
\(740\) 901.179 + 48.8605i 1.21781 + 0.0660277i
\(741\) −520.655 195.184i −0.702638 0.263406i
\(742\) 1021.19 + 967.326i 1.37627 + 1.30367i
\(743\) 674.678 36.5800i 0.908045 0.0492328i 0.405804 0.913960i \(-0.366992\pi\)
0.502241 + 0.864727i \(0.332509\pi\)
\(744\) 110.367 + 368.074i 0.148342 + 0.494724i
\(745\) −685.480 + 1011.01i −0.920107 + 1.35706i
\(746\) 125.017 1149.51i 0.167583 1.54090i
\(747\) −717.468 87.6134i −0.960466 0.117287i
\(748\) −175.749 + 38.6852i −0.234958 + 0.0517182i
\(749\) 419.963 68.8494i 0.560698 0.0919217i
\(750\) 14.6577 + 715.203i 0.0195436 + 0.953604i
\(751\) 80.2938 + 289.192i 0.106916 + 0.385076i 0.997575 0.0695949i \(-0.0221707\pi\)
−0.890659 + 0.454671i \(0.849757\pi\)
\(752\) −292.150 384.317i −0.388498 0.511060i
\(753\) −641.486 + 404.099i −0.851907 + 0.536653i
\(754\) 10.0920 19.0356i 0.0133846 0.0252461i
\(755\) 1132.25 451.129i 1.49967 0.597522i
\(756\) 304.332 584.311i 0.402555 0.772899i
\(757\) 731.646 861.361i 0.966508 1.13786i −0.0239043 0.999714i \(-0.507610\pi\)
0.990412 0.138146i \(-0.0441145\pi\)
\(758\) 266.698 141.394i 0.351845 0.186536i
\(759\) −25.5459 + 44.4968i −0.0336573 + 0.0586255i
\(760\) 548.582 253.801i 0.721819 0.333949i
\(761\) 909.879 772.858i 1.19564 1.01558i 0.196250 0.980554i \(-0.437124\pi\)
0.999386 0.0350286i \(-0.0111522\pi\)
\(762\) −120.726 1614.08i −0.158434 2.11821i
\(763\) −353.468 268.700i −0.463261 0.352162i
\(764\) −301.653 + 501.351i −0.394833 + 0.656218i
\(765\) 659.772 434.753i 0.862448 0.568305i
\(766\) 560.657 0.731928
\(767\) 118.180 353.607i 0.154081 0.461026i
\(768\) −78.0170 159.947i −0.101585 0.208264i
\(769\) −372.060 125.362i −0.483823 0.163019i 0.0668113 0.997766i \(-0.478717\pi\)
−0.550634 + 0.834747i \(0.685614\pi\)
\(770\) −109.932 + 182.709i −0.142769 + 0.237284i
\(771\) 750.196 + 149.083i 0.973017 + 0.193363i
\(772\) 180.394 452.755i 0.233671 0.586470i
\(773\) −694.871 + 590.229i −0.898927 + 0.763556i −0.972297 0.233749i \(-0.924901\pi\)
0.0733696 + 0.997305i \(0.476625\pi\)