Properties

Label 177.3.h.a.5.5
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.5
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.999960 + 2.96778i) q^{2} +(-1.56678 - 2.55836i) q^{3} +(-4.62340 - 3.51462i) q^{4} +(4.69371 + 1.87015i) q^{5} +(9.15935 - 2.09161i) q^{6} +(-2.98209 + 1.37966i) q^{7} +(4.68548 - 3.17683i) q^{8} +(-4.09038 + 8.01678i) q^{9} +O(q^{10})\) \(q+(-0.999960 + 2.96778i) q^{2} +(-1.56678 - 2.55836i) q^{3} +(-4.62340 - 3.51462i) q^{4} +(4.69371 + 1.87015i) q^{5} +(9.15935 - 2.09161i) q^{6} +(-2.98209 + 1.37966i) q^{7} +(4.68548 - 3.17683i) q^{8} +(-4.09038 + 8.01678i) q^{9} +(-10.2437 + 12.0598i) q^{10} +(-5.12806 - 1.42380i) q^{11} +(-1.74778 + 17.3350i) q^{12} +(-7.65201 + 14.4332i) q^{13} +(-1.11256 - 10.2298i) q^{14} +(-2.56953 - 14.9383i) q^{15} +(-1.47196 - 5.30154i) q^{16} +(2.37465 - 5.13272i) q^{17} +(-19.7018 - 20.1558i) q^{18} +(-29.6004 + 6.51555i) q^{19} +(-15.1281 - 25.1430i) q^{20} +(8.20195 + 5.46762i) q^{21} +(9.35336 - 13.7952i) q^{22} +(-6.42262 - 1.05293i) q^{23} +(-15.4686 - 7.00972i) q^{24} +(0.383589 + 0.363355i) q^{25} +(-35.1829 - 37.1421i) q^{26} +(26.9185 - 2.09592i) q^{27} +(18.6364 + 4.10218i) q^{28} +(13.1216 + 38.9436i) q^{29} +(46.9029 + 7.31191i) q^{30} +(-38.3739 - 8.44674i) q^{31} +(39.8161 + 2.15877i) q^{32} +(4.39197 + 15.3502i) q^{33} +(12.8582 + 12.1799i) q^{34} +(-16.5772 + 0.898791i) q^{35} +(47.0874 - 22.6887i) q^{36} +(12.2214 - 18.0252i) q^{37} +(10.2626 - 94.3627i) q^{38} +(48.9144 - 3.03716i) q^{39} +(27.9334 - 6.14861i) q^{40} +(-12.2769 + 2.01269i) q^{41} +(-24.4283 + 18.8742i) q^{42} +(7.49855 + 27.0073i) q^{43} +(18.7049 + 24.6059i) q^{44} +(-34.1916 + 29.9789i) q^{45} +(9.54723 - 18.0080i) q^{46} +(-42.0041 + 16.7360i) q^{47} +(-11.2570 + 12.0722i) q^{48} +(-24.7325 + 29.1174i) q^{49} +(-1.46193 + 0.775066i) q^{50} +(-16.8519 + 1.96666i) q^{51} +(86.1056 - 39.8367i) q^{52} +(8.72926 - 7.41470i) q^{53} +(-20.6972 + 81.9840i) q^{54} +(-21.4069 - 16.2731i) q^{55} +(-9.58956 + 15.9380i) q^{56} +(63.0465 + 65.5200i) q^{57} -128.697 q^{58} +(38.0637 + 45.0795i) q^{59} +(-40.6224 + 78.0966i) q^{60} +(46.0786 + 15.5257i) q^{61} +(63.4404 - 105.439i) q^{62} +(1.13743 - 29.5501i) q^{63} +(-38.0752 + 95.5615i) q^{64} +(-62.9086 + 53.4350i) q^{65} +(-49.9477 - 2.31518i) q^{66} +(-31.2284 - 46.0585i) q^{67} +(-29.0185 + 15.3846i) q^{68} +(7.36907 + 18.0811i) q^{69} +(13.9092 - 50.0962i) q^{70} +(75.0351 - 29.8967i) q^{71} +(6.30260 + 50.5569i) q^{72} +(28.1527 - 3.06179i) q^{73} +(41.2738 + 54.2947i) q^{74} +(0.328590 - 1.55066i) q^{75} +(159.754 + 73.9102i) q^{76} +(17.2567 - 2.82909i) q^{77} +(-39.8988 + 148.204i) q^{78} +(-14.6892 + 8.83819i) q^{79} +(3.00567 - 27.6367i) q^{80} +(-47.5376 - 65.5834i) q^{81} +(6.30317 - 38.4476i) q^{82} +(144.486 - 7.83379i) q^{83} +(-18.7043 - 54.1057i) q^{84} +(20.7448 - 19.6506i) q^{85} +(-87.6500 - 4.75224i) q^{86} +(79.0728 - 94.5859i) q^{87} +(-28.5506 + 9.61981i) q^{88} +(28.9065 + 85.7915i) q^{89} +(-54.7803 - 131.451i) q^{90} +(2.90602 - 53.5983i) q^{91} +(25.9937 + 27.4412i) q^{92} +(38.5139 + 111.408i) q^{93} +(-7.66616 - 141.394i) q^{94} +(-151.121 - 24.7750i) q^{95} +(-56.8604 - 105.246i) q^{96} +(132.380 + 14.3972i) q^{97} +(-61.6824 - 102.517i) q^{98} +(32.3900 - 35.2866i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.999960 + 2.96778i −0.499980 + 1.48389i 0.339557 + 0.940585i \(0.389723\pi\)
−0.839537 + 0.543302i \(0.817174\pi\)
\(3\) −1.56678 2.55836i −0.522261 0.852786i
\(4\) −4.62340 3.51462i −1.15585 0.878654i
\(5\) 4.69371 + 1.87015i 0.938742 + 0.374029i 0.788789 0.614664i \(-0.210708\pi\)
0.149953 + 0.988693i \(0.452088\pi\)
\(6\) 9.15935 2.09161i 1.52656 0.348601i
\(7\) −2.98209 + 1.37966i −0.426013 + 0.197094i −0.621167 0.783678i \(-0.713341\pi\)
0.195155 + 0.980773i \(0.437479\pi\)
\(8\) 4.68548 3.17683i 0.585685 0.397104i
\(9\) −4.09038 + 8.01678i −0.454486 + 0.890754i
\(10\) −10.2437 + 12.0598i −1.02437 + 1.20598i
\(11\) −5.12806 1.42380i −0.466187 0.129436i 0.0264889 0.999649i \(-0.491567\pi\)
−0.492676 + 0.870213i \(0.663981\pi\)
\(12\) −1.74778 + 17.3350i −0.145648 + 1.44458i
\(13\) −7.65201 + 14.4332i −0.588616 + 1.11025i 0.393028 + 0.919527i \(0.371428\pi\)
−0.981644 + 0.190722i \(0.938917\pi\)
\(14\) −1.11256 10.2298i −0.0794682 0.730698i
\(15\) −2.56953 14.9383i −0.171302 0.995887i
\(16\) −1.47196 5.30154i −0.0919978 0.331346i
\(17\) 2.37465 5.13272i 0.139685 0.301925i −0.825090 0.565002i \(-0.808875\pi\)
0.964775 + 0.263077i \(0.0847374\pi\)
\(18\) −19.7018 20.1558i −1.09454 1.11977i
\(19\) −29.6004 + 6.51555i −1.55792 + 0.342923i −0.908624 0.417615i \(-0.862866\pi\)
−0.649293 + 0.760538i \(0.724935\pi\)
\(20\) −15.1281 25.1430i −0.756403 1.25715i
\(21\) 8.20195 + 5.46762i 0.390569 + 0.260363i
\(22\) 9.35336 13.7952i 0.425153 0.627054i
\(23\) −6.42262 1.05293i −0.279244 0.0457798i 0.0205324 0.999789i \(-0.493464\pi\)
−0.299777 + 0.954009i \(0.596912\pi\)
\(24\) −15.4686 7.00972i −0.644525 0.292072i
\(25\) 0.383589 + 0.363355i 0.0153436 + 0.0145342i
\(26\) −35.1829 37.1421i −1.35319 1.42854i
\(27\) 26.9185 2.09592i 0.996983 0.0776265i
\(28\) 18.6364 + 4.10218i 0.665585 + 0.146506i
\(29\) 13.1216 + 38.9436i 0.452469 + 1.34288i 0.894975 + 0.446116i \(0.147193\pi\)
−0.442506 + 0.896766i \(0.645910\pi\)
\(30\) 46.9029 + 7.31191i 1.56343 + 0.243730i
\(31\) −38.3739 8.44674i −1.23787 0.272475i −0.452646 0.891690i \(-0.649520\pi\)
−0.785222 + 0.619215i \(0.787451\pi\)
\(32\) 39.8161 + 2.15877i 1.24425 + 0.0674615i
\(33\) 4.39197 + 15.3502i 0.133090 + 0.465157i
\(34\) 12.8582 + 12.1799i 0.378183 + 0.358234i
\(35\) −16.5772 + 0.898791i −0.473635 + 0.0256797i
\(36\) 47.0874 22.6887i 1.30798 0.630241i
\(37\) 12.2214 18.0252i 0.330307 0.487167i −0.625881 0.779918i \(-0.715261\pi\)
0.956189 + 0.292752i \(0.0945709\pi\)
\(38\) 10.2626 94.3627i 0.270067 2.48323i
\(39\) 48.9144 3.03716i 1.25422 0.0778760i
\(40\) 27.9334 6.14861i 0.698336 0.153715i
\(41\) −12.2769 + 2.01269i −0.299436 + 0.0490900i −0.309627 0.950858i \(-0.600204\pi\)
0.0101913 + 0.999948i \(0.496756\pi\)
\(42\) −24.4283 + 18.8742i −0.581626 + 0.449385i
\(43\) 7.49855 + 27.0073i 0.174385 + 0.628078i 0.998131 + 0.0611182i \(0.0194667\pi\)
−0.823746 + 0.566960i \(0.808120\pi\)
\(44\) 18.7049 + 24.6059i 0.425112 + 0.559226i
\(45\) −34.1916 + 29.9789i −0.759813 + 0.666197i
\(46\) 9.54723 18.0080i 0.207549 0.391478i
\(47\) −42.0041 + 16.7360i −0.893704 + 0.356084i −0.771357 0.636403i \(-0.780421\pi\)
−0.122347 + 0.992487i \(0.539042\pi\)
\(48\) −11.2570 + 12.0722i −0.234520 + 0.251503i
\(49\) −24.7325 + 29.1174i −0.504746 + 0.594233i
\(50\) −1.46193 + 0.775066i −0.0292386 + 0.0155013i
\(51\) −16.8519 + 1.96666i −0.330429 + 0.0385620i
\(52\) 86.1056 39.8367i 1.65588 0.766090i
\(53\) 8.72926 7.41470i 0.164703 0.139900i −0.561245 0.827650i \(-0.689677\pi\)
0.725948 + 0.687750i \(0.241401\pi\)
\(54\) −20.6972 + 81.9840i −0.383282 + 1.51822i
\(55\) −21.4069 16.2731i −0.389216 0.295875i
\(56\) −9.58956 + 15.9380i −0.171242 + 0.284607i
\(57\) 63.0465 + 65.5200i 1.10608 + 1.14947i
\(58\) −128.697 −2.21891
\(59\) 38.0637 + 45.0795i 0.645147 + 0.764059i
\(60\) −40.6224 + 78.0966i −0.677041 + 1.30161i
\(61\) 46.0786 + 15.5257i 0.755387 + 0.254520i 0.670539 0.741874i \(-0.266063\pi\)
0.0848482 + 0.996394i \(0.472959\pi\)
\(62\) 63.4404 105.439i 1.02323 1.70063i
\(63\) 1.13743 29.5501i 0.0180544 0.469049i
\(64\) −38.0752 + 95.5615i −0.594924 + 1.49315i
\(65\) −62.9086 + 53.4350i −0.967824 + 0.822077i
\(66\) −49.9477 2.31518i −0.756783 0.0350785i
\(67\) −31.2284 46.0585i −0.466096 0.687440i 0.519897 0.854229i \(-0.325970\pi\)
−0.985993 + 0.166789i \(0.946660\pi\)
\(68\) −29.0185 + 15.3846i −0.426743 + 0.226245i
\(69\) 7.36907 + 18.0811i 0.106798 + 0.262044i
\(70\) 13.9092 50.0962i 0.198702 0.715661i
\(71\) 75.0351 29.8967i 1.05683 0.421081i 0.223991 0.974591i \(-0.428091\pi\)
0.832842 + 0.553511i \(0.186712\pi\)
\(72\) 6.30260 + 50.5569i 0.0875362 + 0.702180i
\(73\) 28.1527 3.06179i 0.385653 0.0419423i 0.0867609 0.996229i \(-0.472348\pi\)
0.298892 + 0.954287i \(0.403383\pi\)
\(74\) 41.2738 + 54.2947i 0.557754 + 0.733713i
\(75\) 0.328590 1.55066i 0.00438120 0.0206754i
\(76\) 159.754 + 73.9102i 2.10203 + 0.972502i
\(77\) 17.2567 2.82909i 0.224113 0.0367414i
\(78\) −39.8988 + 148.204i −0.511523 + 1.90005i
\(79\) −14.6892 + 8.83819i −0.185939 + 0.111876i −0.605480 0.795861i \(-0.707019\pi\)
0.419541 + 0.907737i \(0.362191\pi\)
\(80\) 3.00567 27.6367i 0.0375708 0.345458i
\(81\) −47.5376 65.5834i −0.586884 0.809671i
\(82\) 6.30317 38.4476i 0.0768679 0.468873i
\(83\) 144.486 7.83379i 1.74079 0.0943830i 0.843863 0.536558i \(-0.180276\pi\)
0.896929 + 0.442175i \(0.145793\pi\)
\(84\) −18.7043 54.1057i −0.222671 0.644116i
\(85\) 20.7448 19.6506i 0.244057 0.231183i
\(86\) −87.6500 4.75224i −1.01919 0.0552587i
\(87\) 79.0728 94.5859i 0.908883 1.08719i
\(88\) −28.5506 + 9.61981i −0.324438 + 0.109316i
\(89\) 28.9065 + 85.7915i 0.324792 + 0.963950i 0.978329 + 0.207055i \(0.0663879\pi\)
−0.653537 + 0.756895i \(0.726716\pi\)
\(90\) −54.7803 131.451i −0.608670 1.46056i
\(91\) 2.90602 53.5983i 0.0319343 0.588993i
\(92\) 25.9937 + 27.4412i 0.282540 + 0.298274i
\(93\) 38.5139 + 111.408i 0.414127 + 1.19794i
\(94\) −7.66616 141.394i −0.0815549 1.50419i
\(95\) −151.121 24.7750i −1.59075 0.260790i
\(96\) −56.8604 105.246i −0.592296 1.09631i
\(97\) 132.380 + 14.3972i 1.36474 + 0.148424i 0.760998 0.648755i \(-0.224710\pi\)
0.603743 + 0.797179i \(0.293675\pi\)
\(98\) −61.6824 102.517i −0.629412 1.04609i
\(99\) 32.3900 35.2866i 0.327171 0.356431i
\(100\) −0.496432 3.02810i −0.00496432 0.0302810i
\(101\) −27.0739 + 58.5192i −0.268058 + 0.579398i −0.994127 0.108224i \(-0.965484\pi\)
0.726068 + 0.687623i \(0.241346\pi\)
\(102\) 11.0146 51.9792i 0.107986 0.509600i
\(103\) 144.159 109.587i 1.39960 1.06395i 0.411287 0.911506i \(-0.365080\pi\)
0.988313 0.152441i \(-0.0487135\pi\)
\(104\) 9.99862 + 91.9358i 0.0961406 + 0.883998i
\(105\) 28.2724 + 41.0023i 0.269261 + 0.390498i
\(106\) 13.2763 + 33.3209i 0.125248 + 0.314348i
\(107\) −51.2007 14.2158i −0.478511 0.132858i 0.0198943 0.999802i \(-0.493667\pi\)
−0.498405 + 0.866944i \(0.666081\pi\)
\(108\) −131.821 84.9181i −1.22057 0.786278i
\(109\) −7.62691 14.3859i −0.0699716 0.131981i 0.846058 0.533090i \(-0.178969\pi\)
−0.916030 + 0.401110i \(0.868625\pi\)
\(110\) 69.7010 47.2584i 0.633645 0.429622i
\(111\) −65.2631 3.02508i −0.587956 0.0272530i
\(112\) 11.7038 + 13.7788i 0.104499 + 0.123025i
\(113\) −125.523 50.0129i −1.11082 0.442592i −0.258713 0.965954i \(-0.583298\pi\)
−0.852111 + 0.523362i \(0.824678\pi\)
\(114\) −257.493 + 121.591i −2.25871 + 1.06658i
\(115\) −28.1768 16.9534i −0.245015 0.147421i
\(116\) 76.2052 226.169i 0.656942 1.94973i
\(117\) −84.4084 120.382i −0.721439 1.02891i
\(118\) −171.848 + 67.8867i −1.45634 + 0.575311i
\(119\) 18.5824i 0.156155i
\(120\) −59.4960 61.8301i −0.495800 0.515251i
\(121\) −79.4100 47.7794i −0.656281 0.394871i
\(122\) −92.1536 + 121.226i −0.755357 + 0.993655i
\(123\) 24.3844 + 28.2552i 0.198247 + 0.229717i
\(124\) 147.731 + 173.922i 1.19138 + 1.40260i
\(125\) −51.9169 112.217i −0.415336 0.897733i
\(126\) 86.5607 + 32.9245i 0.686989 + 0.261306i
\(127\) 68.1391 + 128.524i 0.536529 + 1.01200i 0.992528 + 0.122020i \(0.0389373\pi\)
−0.455999 + 0.889980i \(0.650718\pi\)
\(128\) −123.968 105.299i −0.968497 0.822649i
\(129\) 57.3458 61.4986i 0.444541 0.476734i
\(130\) −95.6771 240.131i −0.735978 1.84716i
\(131\) 47.8339 + 25.3599i 0.365144 + 0.193587i 0.640871 0.767649i \(-0.278573\pi\)
−0.275726 + 0.961236i \(0.588918\pi\)
\(132\) 33.6442 86.4061i 0.254880 0.654592i
\(133\) 79.2818 60.2685i 0.596104 0.453146i
\(134\) 167.918 46.6223i 1.25312 0.347928i
\(135\) 130.267 + 40.5039i 0.964944 + 0.300029i
\(136\) −5.17943 31.5931i −0.0380840 0.232302i
\(137\) 55.2346 + 250.933i 0.403172 + 1.83163i 0.540806 + 0.841147i \(0.318119\pi\)
−0.137634 + 0.990483i \(0.543950\pi\)
\(138\) −61.0293 + 3.78940i −0.442241 + 0.0274594i
\(139\) −258.835 28.1501i −1.86213 0.202518i −0.893164 0.449731i \(-0.851520\pi\)
−0.968961 + 0.247212i \(0.920485\pi\)
\(140\) 79.8021 + 54.1071i 0.570015 + 0.386480i
\(141\) 108.628 + 81.2398i 0.770410 + 0.576169i
\(142\) 13.6947 + 252.583i 0.0964412 + 1.77875i
\(143\) 59.7899 63.1195i 0.418111 0.441395i
\(144\) 48.5221 + 9.88487i 0.336959 + 0.0686449i
\(145\) −11.2411 + 207.329i −0.0775245 + 1.42986i
\(146\) −19.0649 + 86.6125i −0.130581 + 0.593237i
\(147\) 113.243 + 17.6540i 0.770362 + 0.120095i
\(148\) −119.856 + 40.3842i −0.809837 + 0.272866i
\(149\) −13.4429 + 61.0716i −0.0902206 + 0.409876i −0.999986 0.00524598i \(-0.998330\pi\)
0.909766 + 0.415122i \(0.136261\pi\)
\(150\) 4.27342 + 2.52578i 0.0284895 + 0.0168385i
\(151\) −65.7849 + 62.3148i −0.435662 + 0.412681i −0.873845 0.486205i \(-0.838381\pi\)
0.438183 + 0.898886i \(0.355622\pi\)
\(152\) −117.993 + 124.564i −0.776272 + 0.819501i
\(153\) 31.4347 + 40.0318i 0.205455 + 0.261646i
\(154\) −8.85989 + 54.0429i −0.0575317 + 0.350928i
\(155\) −164.319 111.411i −1.06013 0.718783i
\(156\) −236.825 157.873i −1.51811 1.01201i
\(157\) 181.669 109.307i 1.15713 0.696220i 0.198281 0.980145i \(-0.436464\pi\)
0.958847 + 0.283925i \(0.0916366\pi\)
\(158\) −11.5412 52.4320i −0.0730453 0.331848i
\(159\) −32.6463 10.7153i −0.205323 0.0673920i
\(160\) 182.848 + 84.5946i 1.14280 + 0.528716i
\(161\) 20.6055 5.72109i 0.127985 0.0355347i
\(162\) 242.172 75.5002i 1.49489 0.466051i
\(163\) −301.686 + 32.8103i −1.85083 + 0.201290i −0.964917 0.262557i \(-0.915434\pi\)
−0.885915 + 0.463847i \(0.846469\pi\)
\(164\) 63.8347 + 33.8430i 0.389236 + 0.206360i
\(165\) −8.09242 + 80.2629i −0.0490450 + 0.486442i
\(166\) −121.231 + 436.635i −0.730307 + 2.63033i
\(167\) −99.7994 84.7704i −0.597601 0.507607i 0.296760 0.954952i \(-0.404094\pi\)
−0.894362 + 0.447345i \(0.852370\pi\)
\(168\) 55.7998 0.437838i 0.332142 0.00260618i
\(169\) −54.9241 81.0071i −0.324995 0.479332i
\(170\) 37.5744 + 81.2158i 0.221026 + 0.477740i
\(171\) 68.8432 263.951i 0.402592 1.54357i
\(172\) 60.2517 151.220i 0.350300 0.879188i
\(173\) −56.1834 + 73.9080i −0.324759 + 0.427214i −0.929280 0.369376i \(-0.879572\pi\)
0.604521 + 0.796589i \(0.293365\pi\)
\(174\) 201.640 + 329.252i 1.15885 + 1.89226i
\(175\) −1.64520 0.554333i −0.00940116 0.00316762i
\(176\) 29.2823i 0.166377i
\(177\) 55.6918 168.010i 0.314643 0.949210i
\(178\) −283.515 −1.59278
\(179\) −1.21641 + 3.61016i −0.00679556 + 0.0201685i −0.950997 0.309199i \(-0.899939\pi\)
0.944202 + 0.329368i \(0.106836\pi\)
\(180\) 263.446 18.4339i 1.46359 0.102410i
\(181\) −239.854 182.333i −1.32516 1.00736i −0.998053 0.0623761i \(-0.980132\pi\)
−0.327110 0.944986i \(-0.606075\pi\)
\(182\) 156.162 + 62.2206i 0.858033 + 0.341872i
\(183\) −32.4750 142.211i −0.177459 0.777109i
\(184\) −33.4380 + 15.4701i −0.181729 + 0.0840766i
\(185\) 91.0733 61.7492i 0.492288 0.333780i
\(186\) −369.147 + 2.89655i −1.98466 + 0.0155728i
\(187\) −19.4853 + 22.9399i −0.104199 + 0.122673i
\(188\) 253.022 + 70.2512i 1.34586 + 0.373677i
\(189\) −77.3818 + 43.3887i −0.409427 + 0.229570i
\(190\) 224.641 423.719i 1.18232 2.23010i
\(191\) 6.06415 + 55.7590i 0.0317495 + 0.291932i 0.999238 + 0.0390187i \(0.0124232\pi\)
−0.967489 + 0.252913i \(0.918611\pi\)
\(192\) 304.136 52.3143i 1.58404 0.272470i
\(193\) −18.5902 66.9557i −0.0963221 0.346921i 0.899647 0.436618i \(-0.143824\pi\)
−0.995969 + 0.0896972i \(0.971410\pi\)
\(194\) −175.102 + 378.477i −0.902588 + 1.95091i
\(195\) 235.270 + 77.2214i 1.20651 + 0.396007i
\(196\) 216.685 47.6960i 1.10554 0.243347i
\(197\) −127.062 211.178i −0.644983 1.07197i −0.991015 0.133748i \(-0.957299\pi\)
0.346032 0.938223i \(-0.387529\pi\)
\(198\) 72.3341 + 131.411i 0.365324 + 0.663694i
\(199\) −110.501 + 162.977i −0.555281 + 0.818978i −0.996937 0.0782064i \(-0.975081\pi\)
0.441656 + 0.897184i \(0.354391\pi\)
\(200\) 2.95162 + 0.483893i 0.0147581 + 0.00241947i
\(201\) −68.9058 + 152.057i −0.342815 + 0.756503i
\(202\) −146.599 138.866i −0.725739 0.687456i
\(203\) −92.8587 98.0298i −0.457432 0.482905i
\(204\) 84.8251 + 50.1353i 0.415809 + 0.245761i
\(205\) −61.3881 13.5125i −0.299454 0.0659148i
\(206\) 181.075 + 537.413i 0.879007 + 2.60880i
\(207\) 34.7121 47.1818i 0.167691 0.227932i
\(208\) 87.7818 + 19.3222i 0.422028 + 0.0928953i
\(209\) 161.069 + 8.73293i 0.770667 + 0.0417844i
\(210\) −149.957 + 42.9054i −0.714080 + 0.204311i
\(211\) 180.529 + 171.007i 0.855590 + 0.810457i 0.983421 0.181338i \(-0.0580430\pi\)
−0.127831 + 0.991796i \(0.540802\pi\)
\(212\) −66.4187 + 3.60112i −0.313296 + 0.0169864i
\(213\) −194.050 145.125i −0.911034 0.681338i
\(214\) 93.3879 137.737i 0.436392 0.643630i
\(215\) −15.3116 + 140.788i −0.0712169 + 0.654828i
\(216\) 119.468 95.3361i 0.553092 0.441371i
\(217\) 126.088 27.7541i 0.581051 0.127899i
\(218\) 50.3207 8.24965i 0.230829 0.0378424i
\(219\) −51.9423 67.2275i −0.237180 0.306975i
\(220\) 41.7789 + 150.474i 0.189904 + 0.683973i
\(221\) 55.9109 + 73.5495i 0.252990 + 0.332803i
\(222\) 74.2382 190.661i 0.334406 0.858834i
\(223\) 52.8889 99.7590i 0.237170 0.447350i −0.736145 0.676824i \(-0.763356\pi\)
0.973315 + 0.229474i \(0.0737006\pi\)
\(224\) −121.714 + 48.4951i −0.543364 + 0.216496i
\(225\) −4.48196 + 1.58889i −0.0199198 + 0.00706174i
\(226\) 273.945 322.513i 1.21215 1.42705i
\(227\) 163.972 86.9327i 0.722346 0.382963i −0.0663096 0.997799i \(-0.521122\pi\)
0.788655 + 0.614836i \(0.210778\pi\)
\(228\) −61.2117 524.510i −0.268472 2.30048i
\(229\) −14.8233 + 6.85800i −0.0647307 + 0.0299476i −0.451987 0.892024i \(-0.649285\pi\)
0.387257 + 0.921972i \(0.373423\pi\)
\(230\) 78.4895 66.6696i 0.341259 0.289868i
\(231\) −34.2753 39.7162i −0.148378 0.171931i
\(232\) 185.198 + 140.784i 0.798269 + 0.606828i
\(233\) −51.5725 + 85.7142i −0.221341 + 0.367872i −0.947553 0.319599i \(-0.896452\pi\)
0.726211 + 0.687471i \(0.241279\pi\)
\(234\) 441.671 130.128i 1.88749 0.556103i
\(235\) −228.454 −0.972143
\(236\) −17.5464 342.200i −0.0743493 1.45000i
\(237\) 45.6260 + 23.7326i 0.192515 + 0.100138i
\(238\) −55.1485 18.5817i −0.231716 0.0780743i
\(239\) 51.5949 85.7514i 0.215878 0.358793i −0.729928 0.683524i \(-0.760446\pi\)
0.945806 + 0.324732i \(0.105274\pi\)
\(240\) −75.4137 + 35.6111i −0.314224 + 0.148380i
\(241\) −60.0809 + 150.792i −0.249298 + 0.625692i −0.999364 0.0356721i \(-0.988643\pi\)
0.750065 + 0.661364i \(0.230022\pi\)
\(242\) 221.205 187.893i 0.914072 0.776419i
\(243\) −93.3045 + 224.373i −0.383969 + 0.923346i
\(244\) −158.473 233.730i −0.649480 0.957911i
\(245\) −170.541 + 90.4152i −0.696086 + 0.369042i
\(246\) −108.238 + 44.1133i −0.439993 + 0.179322i
\(247\) 132.462 477.087i 0.536285 1.93152i
\(248\) −206.634 + 82.3306i −0.833202 + 0.331978i
\(249\) −246.419 357.372i −0.989636 1.43523i
\(250\) 384.949 41.8657i 1.53979 0.167463i
\(251\) 131.796 + 173.374i 0.525082 + 0.690734i 0.979818 0.199893i \(-0.0640593\pi\)
−0.454736 + 0.890627i \(0.650266\pi\)
\(252\) −109.116 + 132.624i −0.433000 + 0.526287i
\(253\) 31.4364 + 14.5440i 0.124254 + 0.0574862i
\(254\) −449.567 + 73.7028i −1.76995 + 0.290168i
\(255\) −82.7758 22.2845i −0.324611 0.0873903i
\(256\) 83.8958 50.4784i 0.327718 0.197181i
\(257\) −45.7784 + 420.926i −0.178126 + 1.63784i 0.474566 + 0.880220i \(0.342605\pi\)
−0.652692 + 0.757623i \(0.726361\pi\)
\(258\) 125.171 + 231.686i 0.485158 + 0.898007i
\(259\) −11.5766 + 70.6140i −0.0446972 + 0.272641i
\(260\) 478.655 25.9519i 1.84098 0.0998151i
\(261\) −365.874 54.1008i −1.40182 0.207283i
\(262\) −123.095 + 116.601i −0.469827 + 0.445044i
\(263\) 389.077 + 21.0951i 1.47938 + 0.0802096i 0.776058 0.630662i \(-0.217216\pi\)
0.703322 + 0.710871i \(0.251699\pi\)
\(264\) 69.3435 + 57.9704i 0.262665 + 0.219585i
\(265\) 54.8392 18.4775i 0.206940 0.0697263i
\(266\) 99.5847 + 295.557i 0.374378 + 1.11112i
\(267\) 174.195 208.370i 0.652416 0.780412i
\(268\) −17.4964 + 322.703i −0.0652852 + 1.20411i
\(269\) −218.327 230.485i −0.811625 0.856822i 0.180305 0.983611i \(-0.442292\pi\)
−0.991930 + 0.126789i \(0.959533\pi\)
\(270\) −250.469 + 346.102i −0.927662 + 1.28186i
\(271\) 14.0786 + 259.664i 0.0519505 + 0.958170i 0.902073 + 0.431584i \(0.142045\pi\)
−0.850122 + 0.526585i \(0.823472\pi\)
\(272\) −30.7067 5.03411i −0.112892 0.0185077i
\(273\) −141.677 + 76.5424i −0.518963 + 0.280375i
\(274\) −799.946 86.9994i −2.91951 0.317516i
\(275\) −1.44972 2.40946i −0.00527172 0.00876166i
\(276\) 29.4779 109.495i 0.106804 0.396723i
\(277\) 67.3911 + 411.067i 0.243289 + 1.48400i 0.772232 + 0.635341i \(0.219140\pi\)
−0.528943 + 0.848657i \(0.677411\pi\)
\(278\) 342.368 740.017i 1.23154 2.66193i
\(279\) 224.679 273.085i 0.805303 0.978799i
\(280\) −74.8170 + 56.8744i −0.267203 + 0.203123i
\(281\) 27.6770 + 254.486i 0.0984946 + 0.905643i 0.934269 + 0.356570i \(0.116054\pi\)
−0.835774 + 0.549074i \(0.814981\pi\)
\(282\) −349.725 + 241.146i −1.24016 + 0.855129i
\(283\) 152.134 + 381.827i 0.537575 + 1.34921i 0.907462 + 0.420135i \(0.138017\pi\)
−0.369887 + 0.929077i \(0.620603\pi\)
\(284\) −451.993 125.495i −1.59152 0.441885i
\(285\) 173.390 + 425.438i 0.608387 + 1.49277i
\(286\) 127.537 + 240.560i 0.445933 + 0.841119i
\(287\) 33.8339 22.9399i 0.117888 0.0799301i
\(288\) −180.169 + 310.367i −0.625588 + 1.07766i
\(289\) 166.389 + 195.888i 0.575740 + 0.677813i
\(290\) −604.066 240.682i −2.08299 0.829937i
\(291\) −170.577 361.232i −0.586177 1.24135i
\(292\) −140.922 84.7901i −0.482610 0.290377i
\(293\) 106.688 316.637i 0.364121 1.08067i −0.596452 0.802648i \(-0.703424\pi\)
0.960574 0.278025i \(-0.0896799\pi\)
\(294\) −165.632 + 318.427i −0.563374 + 1.08309i
\(295\) 94.3546 + 282.775i 0.319846 + 0.958558i
\(296\) 123.282i 0.416493i
\(297\) −141.024 27.5786i −0.474828 0.0928571i
\(298\) −167.804 100.965i −0.563102 0.338807i
\(299\) 64.3432 84.6420i 0.215195 0.283084i
\(300\) −6.96917 + 6.01443i −0.0232306 + 0.0200481i
\(301\) −59.6223 70.1928i −0.198081 0.233199i
\(302\) −119.154 257.547i −0.394550 0.852805i
\(303\) 192.132 22.4223i 0.634099 0.0740011i
\(304\) 78.1132 + 147.337i 0.256951 + 0.484661i
\(305\) 187.244 + 159.047i 0.613916 + 0.521465i
\(306\) −150.239 + 53.2609i −0.490977 + 0.174055i
\(307\) −189.507 475.627i −0.617287 1.54927i −0.821416 0.570330i \(-0.806815\pi\)
0.204129 0.978944i \(-0.434564\pi\)
\(308\) −89.7277 47.5706i −0.291324 0.154450i
\(309\) −506.227 197.111i −1.63828 0.637899i
\(310\) 494.957 376.256i 1.59663 1.21373i
\(311\) −353.231 + 98.0742i −1.13579 + 0.315351i −0.784021 0.620735i \(-0.786834\pi\)
−0.351771 + 0.936086i \(0.614421\pi\)
\(312\) 219.539 169.624i 0.703650 0.543665i
\(313\) 58.5910 + 357.389i 0.187192 + 1.14182i 0.898511 + 0.438950i \(0.144650\pi\)
−0.711320 + 0.702869i \(0.751902\pi\)
\(314\) 142.736 + 648.455i 0.454572 + 2.06514i
\(315\) 60.6017 136.572i 0.192386 0.433563i
\(316\) 98.9768 + 10.7644i 0.313218 + 0.0340645i
\(317\) −42.0242 28.4931i −0.132568 0.0898836i 0.493100 0.869972i \(-0.335864\pi\)
−0.625669 + 0.780089i \(0.715174\pi\)
\(318\) 64.4457 86.1720i 0.202659 0.270981i
\(319\) −11.8406 218.387i −0.0371179 0.684600i
\(320\) −357.428 + 377.332i −1.11696 + 1.17916i
\(321\) 43.8513 + 153.263i 0.136608 + 0.477454i
\(322\) −3.62577 + 66.8734i −0.0112602 + 0.207681i
\(323\) −36.8481 + 167.403i −0.114081 + 0.518275i
\(324\) −10.7150 + 470.295i −0.0330710 + 1.45153i
\(325\) −8.17961 + 2.75603i −0.0251680 + 0.00848010i
\(326\) 204.300 928.144i 0.626687 2.84707i
\(327\) −24.8545 + 42.0519i −0.0760076 + 0.128599i
\(328\) −51.1291 + 48.4320i −0.155881 + 0.147659i
\(329\) 102.170 107.859i 0.310547 0.327840i
\(330\) −230.110 104.276i −0.697304 0.315988i
\(331\) 44.4240 270.974i 0.134211 0.818653i −0.830824 0.556535i \(-0.812131\pi\)
0.965036 0.262118i \(-0.0844211\pi\)
\(332\) −695.548 471.593i −2.09502 1.42046i
\(333\) 94.5139 + 171.706i 0.283825 + 0.515633i
\(334\) 351.375 211.415i 1.05202 0.632980i
\(335\) −60.4411 274.587i −0.180421 0.819662i
\(336\) 16.9138 51.5311i 0.0503386 0.153366i
\(337\) −300.133 138.857i −0.890604 0.412037i −0.0794286 0.996841i \(-0.525310\pi\)
−0.811175 + 0.584803i \(0.801172\pi\)
\(338\) 295.333 81.9987i 0.873765 0.242600i
\(339\) 68.7165 + 399.492i 0.202703 + 1.17844i
\(340\) −164.976 + 17.9422i −0.485223 + 0.0527712i
\(341\) 184.757 + 97.9520i 0.541810 + 0.287249i
\(342\) 714.507 + 468.252i 2.08920 + 1.36916i
\(343\) 76.6553 276.088i 0.223485 0.804920i
\(344\) 120.932 + 102.721i 0.351547 + 0.298607i
\(345\) 0.774055 + 98.6485i 0.00224364 + 0.285938i
\(346\) −163.161 240.645i −0.471564 0.695505i
\(347\) −69.1009 149.359i −0.199138 0.430430i 0.782120 0.623128i \(-0.214138\pi\)
−0.981258 + 0.192698i \(0.938276\pi\)
\(348\) −698.018 + 159.398i −2.00580 + 0.458040i
\(349\) 85.6053 214.853i 0.245288 0.615625i −0.753854 0.657041i \(-0.771808\pi\)
0.999142 + 0.0414162i \(0.0131870\pi\)
\(350\) 3.29027 4.32828i 0.00940078 0.0123665i
\(351\) −175.730 + 404.559i −0.500656 + 1.15259i
\(352\) −201.106 67.7604i −0.571323 0.192501i
\(353\) 474.482i 1.34414i −0.740487 0.672071i \(-0.765405\pi\)
0.740487 0.672071i \(-0.234595\pi\)
\(354\) 442.927 + 333.284i 1.25121 + 0.941481i
\(355\) 408.104 1.14959
\(356\) 167.878 498.244i 0.471567 1.39956i
\(357\) 47.5405 29.1147i 0.133167 0.0815537i
\(358\) −9.49780 7.22004i −0.0265302 0.0201677i
\(359\) −546.213 217.631i −1.52149 0.606215i −0.548310 0.836275i \(-0.684728\pi\)
−0.973176 + 0.230060i \(0.926108\pi\)
\(360\) −64.9662 + 249.086i −0.180462 + 0.691907i
\(361\) 506.098 234.146i 1.40193 0.648603i
\(362\) 780.967 529.509i 2.15737 1.46273i
\(363\) 2.18150 + 278.019i 0.00600965 + 0.765893i
\(364\) −201.813 + 237.593i −0.554432 + 0.652728i
\(365\) 137.867 + 38.2785i 0.377717 + 0.104873i
\(366\) 454.524 + 45.8269i 1.24187 + 0.125210i
\(367\) 123.409 232.773i 0.336263 0.634259i −0.656503 0.754323i \(-0.727965\pi\)
0.992766 + 0.120064i \(0.0383100\pi\)
\(368\) 3.87169 + 35.5996i 0.0105209 + 0.0967381i
\(369\) 34.0817 106.654i 0.0923624 0.289034i
\(370\) 92.1882 + 332.032i 0.249157 + 0.897383i
\(371\) −15.8017 + 34.1547i −0.0425921 + 0.0920612i
\(372\) 213.493 650.447i 0.573906 1.74851i
\(373\) −317.909 + 69.9770i −0.852302 + 0.187606i −0.619576 0.784936i \(-0.712696\pi\)
−0.232726 + 0.972542i \(0.574765\pi\)
\(374\) −48.5958 80.7669i −0.129935 0.215954i
\(375\) −205.748 + 308.641i −0.548660 + 0.823043i
\(376\) −143.642 + 211.856i −0.382026 + 0.563447i
\(377\) −662.488 108.609i −1.75726 0.288089i
\(378\) −51.3891 273.039i −0.135950 0.722325i
\(379\) 241.489 + 228.750i 0.637173 + 0.603563i 0.936534 0.350578i \(-0.114015\pi\)
−0.299360 + 0.954140i \(0.596773\pi\)
\(380\) 611.617 + 645.677i 1.60952 + 1.69915i
\(381\) 222.051 375.694i 0.582811 0.986073i
\(382\) −171.544 37.7597i −0.449068 0.0988474i
\(383\) 56.2264 + 166.874i 0.146805 + 0.435702i 0.995676 0.0928987i \(-0.0296133\pi\)
−0.848870 + 0.528601i \(0.822717\pi\)
\(384\) −75.1621 + 482.134i −0.195735 + 1.25556i
\(385\) 86.2886 + 18.9936i 0.224126 + 0.0493339i
\(386\) 217.299 + 11.7816i 0.562951 + 0.0305223i
\(387\) −247.184 50.3560i −0.638718 0.130119i
\(388\) −561.444 531.828i −1.44702 1.37069i
\(389\) 460.349 24.9594i 1.18342 0.0641629i 0.548098 0.836414i \(-0.315352\pi\)
0.635317 + 0.772251i \(0.280869\pi\)
\(390\) −464.436 + 621.010i −1.19086 + 1.59233i
\(391\) −20.6559 + 30.4651i −0.0528283 + 0.0779160i
\(392\) −23.3827 + 215.000i −0.0596497 + 0.548470i
\(393\) −10.0656 162.110i −0.0256123 0.412493i
\(394\) 753.786 165.921i 1.91316 0.421119i
\(395\) −85.4755 + 14.0130i −0.216394 + 0.0354759i
\(396\) −273.771 + 49.3059i −0.691340 + 0.124510i
\(397\) 118.593 + 427.134i 0.298724 + 1.07590i 0.948759 + 0.316001i \(0.102340\pi\)
−0.650035 + 0.759904i \(0.725246\pi\)
\(398\) −373.182 490.912i −0.937642 1.23345i
\(399\) −278.406 108.404i −0.697759 0.271688i
\(400\) 1.36171 2.56846i 0.00340427 0.00642114i
\(401\) −448.965 + 178.884i −1.11961 + 0.446094i −0.855191 0.518313i \(-0.826560\pi\)
−0.264421 + 0.964407i \(0.585181\pi\)
\(402\) −382.368 356.548i −0.951165 0.886935i
\(403\) 415.551 489.225i 1.03114 1.21396i
\(404\) 330.846 175.404i 0.818926 0.434167i
\(405\) −100.477 396.731i −0.248092 0.979584i
\(406\) 383.785 177.558i 0.945284 0.437335i
\(407\) −88.3361 + 75.0333i −0.217042 + 0.184357i
\(408\) −72.7114 + 62.7504i −0.178214 + 0.153800i
\(409\) 132.357 + 100.615i 0.323610 + 0.246002i 0.754348 0.656475i \(-0.227953\pi\)
−0.430737 + 0.902477i \(0.641746\pi\)
\(410\) 101.488 168.674i 0.247531 0.411400i
\(411\) 555.436 534.468i 1.35143 1.30041i
\(412\) −1051.66 −2.55257
\(413\) −175.704 81.9160i −0.425432 0.198344i
\(414\) 105.314 + 150.198i 0.254383 + 0.362796i
\(415\) 692.824 + 233.440i 1.66946 + 0.562505i
\(416\) −335.832 + 558.157i −0.807288 + 1.34172i
\(417\) 333.521 + 706.298i 0.799811 + 1.69376i
\(418\) −186.980 + 469.285i −0.447321 + 1.12269i
\(419\) −314.783 + 267.379i −0.751272 + 0.638136i −0.938934 0.344098i \(-0.888185\pi\)
0.187662 + 0.982234i \(0.439909\pi\)
\(420\) 13.3928 288.936i 0.0318876 0.687944i
\(421\) −356.990 526.520i −0.847956 1.25064i −0.966235 0.257662i \(-0.917048\pi\)
0.118279 0.992980i \(-0.462262\pi\)
\(422\) −688.031 + 364.771i −1.63041 + 0.864386i
\(423\) 37.6441 405.194i 0.0889931 0.957905i
\(424\) 17.3455 62.4729i 0.0409092 0.147342i
\(425\) 2.77589 1.10601i 0.00653150 0.00260239i
\(426\) 624.741 430.779i 1.46653 1.01122i
\(427\) −158.831 + 17.2739i −0.371969 + 0.0404541i
\(428\) 186.758 + 245.676i 0.436351 + 0.574009i
\(429\) −255.160 54.0694i −0.594779 0.126036i
\(430\) −402.516 186.224i −0.936085 0.433079i
\(431\) −329.819 + 54.0711i −0.765242 + 0.125455i −0.531747 0.846903i \(-0.678464\pi\)
−0.233494 + 0.972358i \(0.575016\pi\)
\(432\) −50.7347 139.624i −0.117441 0.323205i
\(433\) −286.823 + 172.576i −0.662409 + 0.398558i −0.806687 0.590979i \(-0.798742\pi\)
0.144278 + 0.989537i \(0.453914\pi\)
\(434\) −43.7151 + 401.954i −0.100726 + 0.926161i
\(435\) 548.034 296.081i 1.25985 0.680646i
\(436\) −15.2986 + 93.3173i −0.0350885 + 0.214031i
\(437\) 196.973 10.6795i 0.450738 0.0244383i
\(438\) 251.456 86.9284i 0.574101 0.198467i
\(439\) −214.146 + 202.850i −0.487804 + 0.462072i −0.891631 0.452763i \(-0.850438\pi\)
0.403827 + 0.914835i \(0.367680\pi\)
\(440\) −151.999 8.24112i −0.345451 0.0187298i
\(441\) −132.262 317.377i −0.299915 0.719675i
\(442\) −274.187 + 92.3844i −0.620333 + 0.209014i
\(443\) −197.821 587.111i −0.446548 1.32531i −0.900723 0.434395i \(-0.856962\pi\)
0.454174 0.890913i \(-0.349934\pi\)
\(444\) 291.105 + 243.361i 0.655643 + 0.548110i
\(445\) −24.7637 + 456.740i −0.0556488 + 1.02638i
\(446\) 243.176 + 256.717i 0.545237 + 0.575600i
\(447\) 177.305 61.2943i 0.396655 0.137124i
\(448\) −18.2989 337.504i −0.0408458 0.753356i
\(449\) 104.863 + 17.1914i 0.233548 + 0.0382882i 0.277419 0.960749i \(-0.410521\pi\)
−0.0438713 + 0.999037i \(0.513969\pi\)
\(450\) −0.233690 14.8903i −0.000519312 0.0330895i
\(451\) 65.8221 + 7.15859i 0.145947 + 0.0158727i
\(452\) 404.567 + 672.395i 0.895059 + 1.48760i
\(453\) 262.494 + 70.6675i 0.579458 + 0.155999i
\(454\) 94.0308 + 573.563i 0.207116 + 1.26335i
\(455\) 113.877 246.140i 0.250278 0.540968i
\(456\) 503.550 + 106.704i 1.10428 + 0.234000i
\(457\) 78.0417 59.3257i 0.170770 0.129816i −0.516299 0.856409i \(-0.672691\pi\)
0.687068 + 0.726593i \(0.258897\pi\)
\(458\) −5.53027 50.8500i −0.0120748 0.111026i
\(459\) 53.1643 143.142i 0.115826 0.311857i
\(460\) 70.6878 + 177.413i 0.153669 + 0.385680i
\(461\) 723.528 + 200.887i 1.56948 + 0.435763i 0.939977 0.341238i \(-0.110846\pi\)
0.629499 + 0.777001i \(0.283260\pi\)
\(462\) 152.143 62.0068i 0.329313 0.134214i
\(463\) −18.3423 34.5972i −0.0396161 0.0747239i 0.862914 0.505351i \(-0.168637\pi\)
−0.902530 + 0.430627i \(0.858292\pi\)
\(464\) 187.146 126.888i 0.403332 0.273466i
\(465\) −27.5770 + 594.945i −0.0593053 + 1.27945i
\(466\) −202.810 238.767i −0.435215 0.512375i
\(467\) 830.570 + 330.929i 1.77852 + 0.708628i 0.996330 + 0.0855912i \(0.0272779\pi\)
0.782192 + 0.623037i \(0.214101\pi\)
\(468\) −32.8424 + 853.237i −0.0701760 + 1.82316i
\(469\) 156.671 + 94.2658i 0.334053 + 0.200993i
\(470\) 228.445 677.999i 0.486052 1.44255i
\(471\) −564.281 293.514i −1.19805 0.623173i
\(472\) 321.557 + 90.2970i 0.681264 + 0.191307i
\(473\) 149.172i 0.315373i
\(474\) −116.057 + 111.676i −0.244847 + 0.235603i
\(475\) −13.7218 8.25616i −0.0288881 0.0173814i
\(476\) 65.3101 85.9140i 0.137206 0.180492i
\(477\) 23.7361 + 100.310i 0.0497611 + 0.210292i
\(478\) 202.898 + 238.870i 0.424473 + 0.499728i
\(479\) 161.489 + 349.053i 0.337138 + 0.728712i 0.999796 0.0202106i \(-0.00643367\pi\)
−0.662658 + 0.748922i \(0.730572\pi\)
\(480\) −70.0604 600.332i −0.145959 1.25069i
\(481\) 166.643 + 314.323i 0.346452 + 0.653478i
\(482\) −387.437 329.092i −0.803812 0.682764i
\(483\) −46.9210 43.7525i −0.0971448 0.0905849i
\(484\) 199.218 + 499.999i 0.411607 + 1.03306i
\(485\) 594.428 + 315.146i 1.22562 + 0.649785i
\(486\) −572.588 501.271i −1.17817 1.03142i
\(487\) −476.636 + 362.329i −0.978719 + 0.744003i −0.966697 0.255925i \(-0.917620\pi\)
−0.0120222 + 0.999928i \(0.503827\pi\)
\(488\) 265.223 73.6388i 0.543490 0.150899i
\(489\) 556.616 + 720.413i 1.13828 + 1.47324i
\(490\) −97.7977 596.539i −0.199587 1.21743i
\(491\) 133.828 + 607.985i 0.272561 + 1.23826i 0.891573 + 0.452877i \(0.149602\pi\)
−0.619012 + 0.785382i \(0.712467\pi\)
\(492\) −13.4327 216.337i −0.0273021 0.439709i
\(493\) 231.046 + 25.1277i 0.468652 + 0.0509690i
\(494\) 1283.43 + 870.186i 2.59803 + 1.76151i
\(495\) 218.020 105.051i 0.440445 0.212225i
\(496\) 11.7043 + 215.874i 0.0235975 + 0.435230i
\(497\) −182.514 + 192.678i −0.367232 + 0.387682i
\(498\) 1307.01 373.960i 2.62452 0.750923i
\(499\) 17.5992 324.599i 0.0352690 0.650499i −0.926443 0.376436i \(-0.877150\pi\)
0.961712 0.274063i \(-0.0883677\pi\)
\(500\) −154.366 + 701.291i −0.308731 + 1.40258i
\(501\) −60.5088 + 388.139i −0.120776 + 0.774729i
\(502\) −646.326 + 217.773i −1.28750 + 0.433810i
\(503\) −125.783 + 571.438i −0.250066 + 1.13606i 0.669404 + 0.742899i \(0.266550\pi\)
−0.919469 + 0.393161i \(0.871381\pi\)
\(504\) −88.5464 142.070i −0.175687 0.281885i
\(505\) −236.516 + 224.040i −0.468349 + 0.443644i
\(506\) −74.5985 + 78.7527i −0.147428 + 0.155638i
\(507\) −121.191 + 267.436i −0.239035 + 0.527487i
\(508\) 136.678 833.701i 0.269052 1.64114i
\(509\) −445.577 302.109i −0.875397 0.593534i 0.0386000 0.999255i \(-0.487710\pi\)
−0.913997 + 0.405721i \(0.867021\pi\)
\(510\) 148.908 223.376i 0.291977 0.437993i
\(511\) −79.7296 + 47.9717i −0.156027 + 0.0938781i
\(512\) −73.9458 335.939i −0.144425 0.656131i
\(513\) −783.144 + 237.429i −1.52660 + 0.462824i
\(514\) −1203.44 556.769i −2.34132 1.08321i
\(515\) 881.582 244.770i 1.71181 0.475282i
\(516\) −481.277 + 82.7842i −0.932707 + 0.160435i
\(517\) 239.228 26.0176i 0.462723 0.0503242i
\(518\) −197.990 104.968i −0.382221 0.202641i
\(519\) 277.110 + 27.9393i 0.533931 + 0.0538330i
\(520\) −125.003 + 450.219i −0.240390 + 0.865806i
\(521\) −117.386 99.7088i −0.225310 0.191380i 0.527621 0.849480i \(-0.323084\pi\)
−0.752930 + 0.658101i \(0.771360\pi\)
\(522\) 526.419 1031.73i 1.00847 1.97650i
\(523\) 117.121 + 172.740i 0.223940 + 0.330287i 0.923017 0.384760i \(-0.125716\pi\)
−0.699077 + 0.715047i \(0.746405\pi\)
\(524\) −132.025 285.367i −0.251956 0.544594i
\(525\) 1.15949 + 5.07754i 0.00220856 + 0.00967150i
\(526\) −451.667 + 1133.60i −0.858682 + 2.15513i
\(527\) −134.479 + 176.904i −0.255179 + 0.335682i
\(528\) 74.9147 45.8791i 0.141884 0.0868922i
\(529\) −461.167 155.385i −0.871772 0.293734i
\(530\) 181.227i 0.341938i
\(531\) −517.087 + 120.756i −0.973799 + 0.227412i
\(532\) −578.372 −1.08717
\(533\) 64.8931 192.596i 0.121751 0.361343i
\(534\) 444.207 + 725.334i 0.831849 + 1.35830i
\(535\) −213.736 162.478i −0.399506 0.303696i
\(536\) −292.640 116.599i −0.545971 0.217535i
\(537\) 11.1419 2.54434i 0.0207485 0.00473807i
\(538\) 902.346 417.470i 1.67722 0.775966i
\(539\) 168.287 114.101i 0.312221 0.211691i
\(540\) −459.923 645.106i −0.851709 1.19464i
\(541\) 639.160 752.477i 1.18144 1.39090i 0.278887 0.960324i \(-0.410034\pi\)
0.902554 0.430576i \(-0.141690\pi\)
\(542\) −784.702 217.872i −1.44779 0.401977i
\(543\) −90.6719 + 899.309i −0.166983 + 1.65619i
\(544\) 105.630 199.239i 0.194172 0.366248i
\(545\) −8.89482 81.7866i −0.0163208 0.150067i
\(546\) −85.4895 497.004i −0.156574 0.910264i
\(547\) −22.3176 80.3808i −0.0408001 0.146949i 0.940345 0.340224i \(-0.110503\pi\)
−0.981145 + 0.193275i \(0.938089\pi\)
\(548\) 626.563 1354.29i 1.14336 2.47134i
\(549\) −312.945 + 305.896i −0.570028 + 0.557188i
\(550\) 8.60039 1.89309i 0.0156371 0.00344198i
\(551\) −642.144 1067.25i −1.16542 1.93694i
\(552\) 91.9682 + 61.3082i 0.166609 + 0.111066i
\(553\) 31.6107 46.6223i 0.0571623 0.0843080i
\(554\) −1287.34 211.049i −2.32373 0.380956i
\(555\) −300.669 136.250i −0.541745 0.245496i
\(556\) 1097.76 + 1039.86i 1.97439 + 1.87025i
\(557\) 29.4298 + 31.0686i 0.0528362 + 0.0557785i 0.751878 0.659303i \(-0.229148\pi\)
−0.699041 + 0.715081i \(0.746390\pi\)
\(558\) 585.784 + 939.872i 1.04979 + 1.68436i
\(559\) −447.182 98.4322i −0.799968 0.176086i
\(560\) 29.1661 + 86.5618i 0.0520822 + 0.154575i
\(561\) 89.2175 + 13.9085i 0.159033 + 0.0247924i
\(562\) −782.933 172.336i −1.39312 0.306649i
\(563\) 652.449 + 35.3748i 1.15888 + 0.0628326i 0.623531 0.781799i \(-0.285697\pi\)
0.535349 + 0.844631i \(0.320180\pi\)
\(564\) −216.703 757.389i −0.384225 1.34289i
\(565\) −495.637 469.493i −0.877234 0.830960i
\(566\) −1285.30 + 69.6872i −2.27086 + 0.123122i
\(567\) 232.244 + 129.990i 0.409602 + 0.229259i
\(568\) 256.599 378.455i 0.451758 0.666294i
\(569\) −86.9800 + 799.768i −0.152865 + 1.40557i 0.626707 + 0.779255i \(0.284402\pi\)
−0.779572 + 0.626313i \(0.784563\pi\)
\(570\) −1435.99 + 89.1626i −2.51928 + 0.156426i
\(571\) −544.764 + 119.912i −0.954053 + 0.210003i −0.664608 0.747192i \(-0.731402\pi\)
−0.289444 + 0.957195i \(0.593471\pi\)
\(572\) −498.274 + 81.6878i −0.871108 + 0.142811i
\(573\) 133.150 102.877i 0.232374 0.179540i
\(574\) 34.2481 + 123.350i 0.0596656 + 0.214896i
\(575\) −2.08106 2.73758i −0.00361923 0.00476101i
\(576\) −610.354 696.123i −1.05964 1.20855i
\(577\) −279.531 + 527.252i −0.484456 + 0.913781i 0.513976 + 0.857805i \(0.328172\pi\)
−0.998432 + 0.0559767i \(0.982173\pi\)
\(578\) −747.734 + 297.924i −1.29366 + 0.515440i
\(579\) −142.170 + 152.465i −0.245544 + 0.263325i
\(580\) 780.654 919.057i 1.34596 1.58458i
\(581\) −420.061 + 222.702i −0.722997 + 0.383309i
\(582\) 1242.63 145.018i 2.13510 0.249172i
\(583\) −55.3212 + 25.5943i −0.0948905 + 0.0439010i
\(584\) 122.182 103.782i 0.209216 0.177710i
\(585\) −171.057 722.894i −0.292405 1.23572i
\(586\) 833.025 + 633.249i 1.42155 + 1.08063i
\(587\) −295.273 + 490.748i −0.503021 + 0.836027i −0.999487 0.0320292i \(-0.989803\pi\)
0.496466 + 0.868056i \(0.334631\pi\)
\(588\) −461.522 479.628i −0.784901 0.815694i
\(589\) 1190.92 2.02193
\(590\) −933.562 2.73985i −1.58231 0.00464382i
\(591\) −341.191 + 655.940i −0.577311 + 1.10988i
\(592\) −113.551 38.2596i −0.191808 0.0646277i
\(593\) 449.780 747.540i 0.758482 1.26061i −0.201208 0.979549i \(-0.564487\pi\)
0.959690 0.281059i \(-0.0906857\pi\)
\(594\) 222.865 390.950i 0.375194 0.658165i
\(595\) −34.7519 + 87.2206i −0.0584065 + 0.146589i
\(596\) 276.795 235.112i 0.464421 0.394483i
\(597\) 590.083 + 27.3516i 0.988414 + 0.0458151i
\(598\) 186.858 + 275.595i 0.312471 + 0.460861i
\(599\) −337.984 + 179.188i −0.564246 + 0.299144i −0.726009 0.687685i \(-0.758627\pi\)
0.161763 + 0.986830i \(0.448282\pi\)
\(600\) −3.38657 8.30944i −0.00564429 0.0138491i
\(601\) 1.01753 3.66483i 0.00169307 0.00609788i −0.962699 0.270576i \(-0.912786\pi\)
0.964392 + 0.264478i \(0.0851997\pi\)
\(602\) 267.937 106.756i 0.445077 0.177335i
\(603\) 496.977 61.9549i 0.824174 0.102744i
\(604\) 523.163 56.8974i 0.866164 0.0942010i
\(605\) −283.373 372.771i −0.468385 0.616150i
\(606\) −125.580 + 592.626i −0.207228 + 0.977931i
\(607\) −72.0821 33.3487i −0.118751 0.0549402i 0.359614 0.933101i \(-0.382908\pi\)
−0.478365 + 0.878161i \(0.658770\pi\)
\(608\) −1192.64 + 195.523i −1.96158 + 0.321585i
\(609\) −105.306 + 391.157i −0.172916 + 0.642294i
\(610\) −659.252 + 396.659i −1.08074 + 0.650261i
\(611\) 79.8619 734.318i 0.130707 1.20183i
\(612\) −4.63863 295.564i −0.00757945 0.482948i
\(613\) −55.6727 + 339.589i −0.0908201 + 0.553978i 0.901745 + 0.432267i \(0.142286\pi\)
−0.992566 + 0.121711i \(0.961162\pi\)
\(614\) 1601.05 86.8066i 2.60758 0.141379i
\(615\) 61.6120 + 178.224i 0.100182 + 0.289795i
\(616\) 71.8683 68.0772i 0.116669 0.110515i
\(617\) 497.118 + 26.9530i 0.805702 + 0.0436839i 0.452388 0.891821i \(-0.350572\pi\)
0.353314 + 0.935505i \(0.385055\pi\)
\(618\) 1091.19 1305.27i 1.76568 2.11208i
\(619\) 903.361 304.378i 1.45939 0.491725i 0.525966 0.850505i \(-0.323704\pi\)
0.933422 + 0.358780i \(0.116807\pi\)
\(620\) 368.146 + 1092.62i 0.593784 + 1.76229i
\(621\) −175.094 14.8822i −0.281955 0.0239649i
\(622\) 62.1550 1146.38i 0.0999277 1.84306i
\(623\) −204.565 215.957i −0.328355 0.346640i
\(624\) −88.1019 254.851i −0.141189 0.408415i
\(625\) −34.5368 636.994i −0.0552589 1.01919i
\(626\) −1119.24 183.490i −1.78792 0.293115i
\(627\) −230.019 425.756i −0.366856 0.679036i
\(628\) −1224.10 133.129i −1.94920 0.211989i
\(629\) −63.4967 105.532i −0.100949 0.167778i
\(630\) 344.717 + 316.419i 0.547170 + 0.502253i
\(631\) 94.5480 + 576.717i 0.149838 + 0.913973i 0.949556 + 0.313597i \(0.101534\pi\)
−0.799718 + 0.600376i \(0.795018\pi\)
\(632\) −40.7484 + 88.0763i −0.0644753 + 0.139361i
\(633\) 154.645 729.789i 0.244305 1.15290i
\(634\) 126.584 96.2264i 0.199659 0.151777i
\(635\) 79.4668 + 730.685i 0.125145 + 1.15068i
\(636\) 113.277 + 164.281i 0.178108 + 0.258303i
\(637\) −231.004 579.777i −0.362644 0.910168i
\(638\) 659.964 + 183.238i 1.03443 + 0.287207i
\(639\) −67.2465 + 723.829i −0.105237 + 1.13275i
\(640\) −384.944 726.081i −0.601474 1.13450i
\(641\) 562.171 381.161i 0.877021 0.594635i −0.0374444 0.999299i \(-0.511922\pi\)
0.914466 + 0.404664i \(0.132611\pi\)
\(642\) −498.699 23.1157i −0.776789 0.0360058i
\(643\) −138.601 163.173i −0.215553 0.253769i 0.643750 0.765236i \(-0.277378\pi\)
−0.859303 + 0.511468i \(0.829102\pi\)
\(644\) −115.375 45.9696i −0.179154 0.0713813i
\(645\) 384.176 181.412i 0.595622 0.281259i
\(646\) −459.967 276.753i −0.712024 0.428410i
\(647\) −366.899 + 1088.92i −0.567077 + 1.68302i 0.152241 + 0.988343i \(0.451351\pi\)
−0.719318 + 0.694681i \(0.755546\pi\)
\(648\) −431.084 156.270i −0.665253 0.241158i
\(649\) −131.008 285.365i −0.201862 0.439699i
\(650\) 27.0312i 0.0415864i
\(651\) −268.558 279.094i −0.412531 0.428715i
\(652\) 1510.13 + 908.614i 2.31615 + 1.39358i
\(653\) 229.922 302.457i 0.352101 0.463181i −0.585612 0.810592i \(-0.699146\pi\)
0.937713 + 0.347410i \(0.112939\pi\)
\(654\) −99.9471 115.813i −0.152824 0.177084i
\(655\) 177.092 + 208.489i 0.270369 + 0.318303i
\(656\) 28.7415 + 62.1237i 0.0438132 + 0.0947007i
\(657\) −90.6095 + 238.218i −0.137914 + 0.362584i
\(658\) 217.937 + 411.073i 0.331211 + 0.624730i
\(659\) −84.6825 71.9299i −0.128501 0.109150i 0.580831 0.814024i \(-0.302728\pi\)
−0.709333 + 0.704874i \(0.751004\pi\)
\(660\) 319.508 342.646i 0.484103 0.519160i
\(661\) −152.967 383.918i −0.231418 0.580815i 0.766709 0.641995i \(-0.221893\pi\)
−0.998127 + 0.0611801i \(0.980514\pi\)
\(662\) 759.768 + 402.804i 1.14769 + 0.608465i
\(663\) 100.566 258.276i 0.151683 0.389557i
\(664\) 652.098 495.712i 0.982076 0.746555i
\(665\) 484.837 134.614i 0.729078 0.202427i
\(666\) −604.095 + 108.797i −0.907049 + 0.163359i
\(667\) −43.2701 263.936i −0.0648727 0.395706i
\(668\) 163.477 + 742.684i 0.244726 + 1.11180i
\(669\) −338.085 + 20.9922i −0.505358 + 0.0313784i
\(670\) 875.351 + 95.2001i 1.30649 + 0.142090i
\(671\) −214.188 145.223i −0.319208 0.216428i
\(672\) 314.767 + 235.406i 0.468403 + 0.350306i
\(673\) −57.8718 1067.38i −0.0859908 1.58601i −0.649802 0.760104i \(-0.725148\pi\)
0.563811 0.825904i \(-0.309335\pi\)
\(674\) 712.216 751.878i 1.05670 1.11555i
\(675\) 11.0872 + 8.97700i 0.0164255 + 0.0132993i
\(676\) −30.7725 + 567.565i −0.0455214 + 0.839594i
\(677\) −148.594 + 675.068i −0.219488 + 0.997146i 0.730025 + 0.683420i \(0.239508\pi\)
−0.949514 + 0.313726i \(0.898423\pi\)
\(678\) −1254.32 195.541i −1.85002 0.288409i
\(679\) −414.632 + 139.706i −0.610650 + 0.205752i
\(680\) 34.7730 157.975i 0.0511367 0.232317i
\(681\) −479.314 283.295i −0.703839 0.415999i
\(682\) −475.449 + 450.370i −0.697140 + 0.660366i
\(683\) 314.703 332.228i 0.460765 0.486424i −0.453662 0.891174i \(-0.649883\pi\)
0.914427 + 0.404750i \(0.132641\pi\)
\(684\) −1245.98 + 978.394i −1.82160 + 1.43040i
\(685\) −210.027 + 1281.11i −0.306608 + 1.87023i
\(686\) 742.714 + 503.572i 1.08267 + 0.734071i
\(687\) 40.7702 + 27.1784i 0.0593452 + 0.0395609i
\(688\) 132.143 79.5077i 0.192068 0.115564i
\(689\) 40.2216 + 182.729i 0.0583768 + 0.265209i
\(690\) −293.541 96.3474i −0.425421 0.139634i
\(691\) −1009.39 466.994i −1.46077 0.675823i −0.481140 0.876644i \(-0.659777\pi\)
−0.979628 + 0.200821i \(0.935639\pi\)
\(692\) 519.516 144.243i 0.750746 0.208444i
\(693\) −47.9061 + 149.915i −0.0691286 + 0.216328i
\(694\) 512.362 55.7228i 0.738274 0.0802922i
\(695\) −1162.25 616.188i −1.67231 0.886602i
\(696\) 70.0103 694.382i 0.100589 0.997675i
\(697\) −18.8227 + 67.7932i −0.0270053 + 0.0972642i
\(698\) 552.034 + 468.902i 0.790880 + 0.671779i
\(699\) 300.091 2.35469i 0.429314 0.00336865i
\(700\) 5.65816 + 8.34516i 0.00808309 + 0.0119217i
\(701\) 79.5559 + 171.957i 0.113489 + 0.245303i 0.955994 0.293386i \(-0.0947820\pi\)
−0.842505 + 0.538689i \(0.818920\pi\)
\(702\) −1024.92 926.071i −1.46000 1.31919i
\(703\) −244.314 + 613.182i −0.347530 + 0.872236i
\(704\) 331.312 435.833i 0.470613 0.619081i
\(705\) 357.937 + 584.466i 0.507713 + 0.829030i
\(706\) 1408.16 + 474.463i 1.99456 + 0.672044i
\(707\) 211.862i 0.299664i
\(708\) −847.977 + 581.043i −1.19771 + 0.820682i
\(709\) −1257.20 −1.77320 −0.886602 0.462533i \(-0.846940\pi\)
−0.886602 + 0.462533i \(0.846940\pi\)
\(710\) −408.088 + 1211.16i −0.574772 + 1.70586i
\(711\) −10.7695 153.911i −0.0151470 0.216472i
\(712\) 407.987 + 310.143i 0.573015 + 0.435595i
\(713\) 237.567 + 94.6554i 0.333194 + 0.132756i
\(714\) 38.8672 + 170.203i 0.0544358 + 0.238380i
\(715\) 398.679 184.449i 0.557593 0.257970i
\(716\) 18.3123 12.4160i 0.0255758 0.0173408i
\(717\) −300.221 + 2.35571i −0.418718 + 0.00328551i
\(718\) 1192.07 1403.42i 1.66027 1.95462i
\(719\) −187.369 52.0227i −0.260596 0.0723542i 0.134773 0.990877i \(-0.456970\pi\)
−0.395369 + 0.918522i \(0.629383\pi\)
\(720\) 209.263 + 137.140i 0.290643 + 0.190472i
\(721\) −278.702 + 525.687i −0.386549 + 0.729108i
\(722\) 188.815 + 1736.12i 0.261516 + 2.40460i
\(723\) 479.913 82.5496i 0.663780 0.114176i
\(724\) 468.114 + 1685.99i 0.646566 + 2.32872i
\(725\) −9.11702 + 19.7061i −0.0125752 + 0.0271809i
\(726\) −827.279 271.534i −1.13950 0.374013i
\(727\) −438.268 + 96.4701i −0.602845 + 0.132696i −0.505898 0.862593i \(-0.668839\pi\)
−0.0969470 + 0.995290i \(0.530908\pi\)
\(728\) −156.657 260.366i −0.215188 0.357646i
\(729\) 720.214 112.838i 0.987948 0.154785i
\(730\) −251.463 + 370.880i −0.344470 + 0.508055i
\(731\) 156.428 + 25.6450i 0.213991 + 0.0350821i
\(732\) −349.672 + 771.635i −0.477694 + 1.05415i
\(733\) 563.134 + 533.429i 0.768259 + 0.727734i 0.967680 0.252180i \(-0.0811475\pi\)
−0.199421 + 0.979914i \(0.563906\pi\)
\(734\) 567.415 + 599.013i 0.773045 + 0.816094i
\(735\) 498.515 + 294.644i 0.678252 + 0.400876i
\(736\) −253.451 55.7887i −0.344362 0.0757999i
\(737\) 94.5631 + 280.653i 0.128308 + 0.380805i
\(738\) 282.444 + 207.796i 0.382715 + 0.281567i
\(739\) 260.657 + 57.3749i 0.352715 + 0.0776385i 0.387794 0.921746i \(-0.373237\pi\)
−0.0350788 + 0.999385i \(0.511168\pi\)
\(740\) −638.093 34.5964i −0.862288 0.0467519i
\(741\) −1428.10 + 408.605i −1.92726 + 0.551424i
\(742\) −85.5625 81.0491i −0.115313 0.109231i
\(743\) −96.7047 + 5.24318i −0.130154 + 0.00705677i −0.119101 0.992882i \(-0.538001\pi\)
−0.0110534 + 0.999939i \(0.503518\pi\)
\(744\) 534.382 + 399.650i 0.718255 + 0.537164i
\(745\) −177.310 + 261.512i −0.237999 + 0.351023i
\(746\) 110.220 1013.46i 0.147748 1.35852i
\(747\) −528.199 + 1190.35i −0.707094 + 1.59351i
\(748\) 170.713 37.5768i 0.228226 0.0502363i
\(749\) 172.298 28.2468i 0.230037 0.0377127i
\(750\) −710.239 919.242i −0.946985 1.22566i
\(751\) −37.6538 135.617i −0.0501382 0.180581i 0.934241 0.356642i \(-0.116078\pi\)
−0.984379 + 0.176060i \(0.943665\pi\)
\(752\) 150.555 + 198.051i 0.200206 + 0.263366i
\(753\) 237.058 608.820i 0.314818 0.808526i
\(754\) 984.790 1857.51i 1.30609 2.46354i
\(755\) −425.313 + 169.460i −0.563329 + 0.224451i
\(756\) 510.261 + 71.3643i 0.674949 + 0.0943972i
\(757\) 366.018 430.910i 0.483511 0.569233i −0.465269 0.885169i \(-0.654043\pi\)
0.948781 + 0.315936i \(0.102318\pi\)
\(758\) −920.358 + 487.943i −1.21419 + 0.643724i
\(759\) −12.0452 103.213i −0.0158698 0.135985i
\(760\) −786.780 + 364.003i −1.03524 + 0.478951i
\(761\) 996.070 846.069i 1.30890 1.11179i 0.322647 0.946519i \(-0.395427\pi\)
0.986249 0.165267i \(-0.0528486\pi\)
\(762\) 892.932 + 1034.68i 1.17183 + 1.35784i
\(763\) 42.5918 + 32.3774i 0.0558214 + 0.0424343i
\(764\) 167.934 279.109i 0.219809 0.365326i
\(765\) 72.6800 + 246.685i 0.0950065 + 0.322464i
\(766\) −551.469 −0.719933
\(767\) −941.906 + 204.433i −1.22804 + 0.266536i
\(768\) −260.588 135.547i −0.339308 0.176493i
\(769\) 606.872 + 204.479i 0.789171 + 0.265903i 0.684891 0.728645i \(-0.259850\pi\)
0.104280 + 0.994548i \(0.466746\pi\)
\(770\) −142.654 + 237.093i −0.185265 + 0.307912i
\(771\) 1148.60 542.382i 1.48976 0.703478i
\(772\) −149.374 + 374.900i −0.193490 + 0.485622i
\(773\) 164.956 140.115i 0.213397 0.181261i −0.534312 0.845287i \(-0.679429\pi\)
0.747710 + 0.664026i \(0.231154\pi\)