Properties

Label 177.3.h.a.5.4
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.4
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.00783 + 2.99114i) q^{2} +(-2.99774 - 0.116447i) q^{3} +(-4.74683 - 3.60844i) q^{4} +(-2.80678 - 1.11832i) q^{5} +(3.36953 - 8.84930i) q^{6} +(-12.2974 + 5.68939i) q^{7} +(5.12741 - 3.47647i) q^{8} +(8.97288 + 0.698155i) q^{9} +O(q^{10})\) \(q+(-1.00783 + 2.99114i) q^{2} +(-2.99774 - 0.116447i) q^{3} +(-4.74683 - 3.60844i) q^{4} +(-2.80678 - 1.11832i) q^{5} +(3.36953 - 8.84930i) q^{6} +(-12.2974 + 5.68939i) q^{7} +(5.12741 - 3.47647i) q^{8} +(8.97288 + 0.698155i) q^{9} +(6.17382 - 7.26839i) q^{10} +(15.0724 + 4.18482i) q^{11} +(13.8096 + 11.3699i) q^{12} +(9.63264 - 18.1691i) q^{13} +(-4.62403 - 42.5172i) q^{14} +(8.28376 + 3.67928i) q^{15} +(-1.14967 - 4.14073i) q^{16} +(-5.45020 + 11.7804i) q^{17} +(-11.1314 + 26.1355i) q^{18} +(8.96329 - 1.97297i) q^{19} +(9.28789 + 15.4366i) q^{20} +(37.5269 - 15.6233i) q^{21} +(-27.7078 + 40.8660i) q^{22} +(-0.699848 - 0.114734i) q^{23} +(-15.7755 + 9.82449i) q^{24} +(-11.5225 - 10.9147i) q^{25} +(44.6382 + 47.1240i) q^{26} +(-26.8171 - 3.13775i) q^{27} +(78.9035 + 17.3680i) q^{28} +(-5.03571 - 14.9455i) q^{29} +(-19.3539 + 21.0698i) q^{30} +(-14.1807 - 3.12141i) q^{31} +(38.2873 + 2.07588i) q^{32} +(-44.6957 - 14.3001i) q^{33} +(-29.7440 - 28.1750i) q^{34} +(40.8787 - 2.21638i) q^{35} +(-40.0735 - 35.6922i) q^{36} +(20.7324 - 30.5780i) q^{37} +(-3.13207 + 28.7989i) q^{38} +(-30.9919 + 53.3445i) q^{39} +(-18.2793 + 4.02359i) q^{40} +(-49.6344 + 8.13715i) q^{41} +(8.91063 + 127.994i) q^{42} +(-4.03175 - 14.5211i) q^{43} +(-56.4453 - 74.2525i) q^{44} +(-24.4041 - 11.9941i) q^{45} +(1.04852 - 1.97771i) q^{46} +(-28.7363 + 11.4496i) q^{47} +(2.96423 + 12.5467i) q^{48} +(87.1351 - 102.583i) q^{49} +(44.2603 - 23.4653i) q^{50} +(17.7101 - 34.6800i) q^{51} +(-111.287 + 51.4867i) q^{52} +(54.4675 - 46.2652i) q^{53} +(36.4126 - 77.0513i) q^{54} +(-37.6248 - 28.6016i) q^{55} +(-43.2749 + 71.9234i) q^{56} +(-27.0994 + 4.87070i) q^{57} +49.7791 q^{58} +(42.7930 - 40.6173i) q^{59} +(-26.0451 - 47.3564i) q^{60} +(-59.1557 - 19.9319i) q^{61} +(23.6284 - 39.2707i) q^{62} +(-114.315 + 42.4647i) q^{63} +(-38.4339 + 96.4619i) q^{64} +(-47.3556 + 40.2242i) q^{65} +(87.8196 - 119.279i) q^{66} +(41.2761 + 60.8777i) q^{67} +(68.3802 - 36.2529i) q^{68} +(2.08460 + 0.425439i) q^{69} +(-34.5694 + 124.508i) q^{70} +(57.6746 - 22.9797i) q^{71} +(48.4348 - 27.6142i) q^{72} +(-40.7663 + 4.43360i) q^{73} +(70.5684 + 92.8312i) q^{74} +(33.2706 + 34.0612i) q^{75} +(-49.6665 - 22.9782i) q^{76} +(-209.160 + 34.2901i) q^{77} +(-128.326 - 146.463i) q^{78} +(77.8983 - 46.8698i) q^{79} +(-1.40381 + 12.9078i) q^{80} +(80.0252 + 12.5289i) q^{81} +(25.6838 - 156.664i) q^{82} +(-112.020 + 6.07353i) q^{83} +(-234.510 - 61.2527i) q^{84} +(28.4718 - 26.9699i) q^{85} +(47.4978 + 2.57526i) q^{86} +(13.3554 + 45.3890i) q^{87} +(91.8307 - 30.9414i) q^{88} +(4.43444 + 13.1610i) q^{89} +(60.4714 - 60.9081i) q^{90} +(-15.0855 + 278.236i) q^{91} +(2.90805 + 3.06999i) q^{92} +(42.1467 + 11.0085i) q^{93} +(-5.28595 - 97.4935i) q^{94} +(-27.3644 - 4.48616i) q^{95} +(-114.534 - 10.6814i) q^{96} +(8.85195 + 0.962707i) q^{97} +(219.024 + 364.020i) q^{98} +(132.321 + 48.0728i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00783 + 2.99114i −0.503916 + 1.49557i 0.330162 + 0.943924i \(0.392897\pi\)
−0.834078 + 0.551646i \(0.814000\pi\)
\(3\) −2.99774 0.116447i −0.999246 0.0388156i
\(4\) −4.74683 3.60844i −1.18671 0.902111i
\(5\) −2.80678 1.11832i −0.561356 0.223665i 0.0721618 0.997393i \(-0.477010\pi\)
−0.633517 + 0.773728i \(0.718390\pi\)
\(6\) 3.36953 8.84930i 0.561588 1.47488i
\(7\) −12.2974 + 5.68939i −1.75677 + 0.812769i −0.772753 + 0.634707i \(0.781121\pi\)
−0.984019 + 0.178062i \(0.943017\pi\)
\(8\) 5.12741 3.47647i 0.640927 0.434559i
\(9\) 8.97288 + 0.698155i 0.996987 + 0.0775727i
\(10\) 6.17382 7.26839i 0.617382 0.726839i
\(11\) 15.0724 + 4.18482i 1.37022 + 0.380439i 0.873225 0.487317i \(-0.162024\pi\)
0.496991 + 0.867756i \(0.334438\pi\)
\(12\) 13.8096 + 11.3699i 1.15080 + 0.947494i
\(13\) 9.63264 18.1691i 0.740973 1.39762i −0.170121 0.985423i \(-0.554416\pi\)
0.911094 0.412199i \(-0.135239\pi\)
\(14\) −4.62403 42.5172i −0.330288 3.03694i
\(15\) 8.28376 + 3.67928i 0.552251 + 0.245285i
\(16\) −1.14967 4.14073i −0.0718543 0.258796i
\(17\) −5.45020 + 11.7804i −0.320600 + 0.692966i −0.999134 0.0416030i \(-0.986754\pi\)
0.678534 + 0.734569i \(0.262616\pi\)
\(18\) −11.1314 + 26.1355i −0.618414 + 1.45197i
\(19\) 8.96329 1.97297i 0.471752 0.103841i 0.0272698 0.999628i \(-0.491319\pi\)
0.444482 + 0.895788i \(0.353388\pi\)
\(20\) 9.28789 + 15.4366i 0.464394 + 0.771829i
\(21\) 37.5269 15.6233i 1.78700 0.743967i
\(22\) −27.7078 + 40.8660i −1.25945 + 1.85755i
\(23\) −0.699848 0.114734i −0.0304282 0.00498845i 0.146549 0.989203i \(-0.453184\pi\)
−0.176977 + 0.984215i \(0.556632\pi\)
\(24\) −15.7755 + 9.82449i −0.657311 + 0.409354i
\(25\) −11.5225 10.9147i −0.460901 0.436589i
\(26\) 44.6382 + 47.1240i 1.71685 + 1.81246i
\(27\) −26.8171 3.13775i −0.993224 0.116213i
\(28\) 78.9035 + 17.3680i 2.81798 + 0.620285i
\(29\) −5.03571 14.9455i −0.173645 0.515361i 0.825124 0.564951i \(-0.191105\pi\)
−0.998770 + 0.0495903i \(0.984208\pi\)
\(30\) −19.3539 + 21.0698i −0.645130 + 0.702327i
\(31\) −14.1807 3.12141i −0.457443 0.100691i −0.0197295 0.999805i \(-0.506281\pi\)
−0.437713 + 0.899115i \(0.644212\pi\)
\(32\) 38.2873 + 2.07588i 1.19648 + 0.0648711i
\(33\) −44.6957 14.3001i −1.35442 0.433338i
\(34\) −29.7440 28.1750i −0.874824 0.828677i
\(35\) 40.8787 2.21638i 1.16796 0.0633250i
\(36\) −40.0735 35.6922i −1.11315 0.991449i
\(37\) 20.7324 30.5780i 0.560336 0.826433i −0.436994 0.899464i \(-0.643957\pi\)
0.997330 + 0.0730310i \(0.0232672\pi\)
\(38\) −3.13207 + 28.7989i −0.0824229 + 0.757866i
\(39\) −30.9919 + 53.3445i −0.794664 + 1.36781i
\(40\) −18.2793 + 4.02359i −0.456983 + 0.100590i
\(41\) −49.6344 + 8.13715i −1.21060 + 0.198467i −0.733072 0.680152i \(-0.761914\pi\)
−0.477524 + 0.878619i \(0.658466\pi\)
\(42\) 8.91063 + 127.994i 0.212158 + 3.04748i
\(43\) −4.03175 14.5211i −0.0937616 0.337699i 0.901760 0.432238i \(-0.142276\pi\)
−0.995521 + 0.0945393i \(0.969862\pi\)
\(44\) −56.4453 74.2525i −1.28285 1.68756i
\(45\) −24.4041 11.9941i −0.542314 0.266536i
\(46\) 1.04852 1.97771i 0.0227938 0.0429937i
\(47\) −28.7363 + 11.4496i −0.611410 + 0.243608i −0.655228 0.755431i \(-0.727427\pi\)
0.0438175 + 0.999040i \(0.486048\pi\)
\(48\) 2.96423 + 12.5467i 0.0617549 + 0.261390i
\(49\) 87.1351 102.583i 1.77827 2.09354i
\(50\) 44.2603 23.4653i 0.885205 0.469306i
\(51\) 17.7101 34.6800i 0.347256 0.679999i
\(52\) −111.287 + 51.4867i −2.14013 + 0.990129i
\(53\) 54.4675 46.2652i 1.02769 0.872927i 0.0357146 0.999362i \(-0.488629\pi\)
0.991975 + 0.126435i \(0.0403534\pi\)
\(54\) 36.4126 77.0513i 0.674307 1.42688i
\(55\) −37.6248 28.6016i −0.684088 0.520030i
\(56\) −43.2749 + 71.9234i −0.772766 + 1.28435i
\(57\) −27.0994 + 4.87070i −0.475427 + 0.0854509i
\(58\) 49.7791 0.858261
\(59\) 42.7930 40.6173i 0.725305 0.688428i
\(60\) −26.0451 47.3564i −0.434085 0.789273i
\(61\) −59.1557 19.9319i −0.969766 0.326752i −0.210544 0.977584i \(-0.567524\pi\)
−0.759222 + 0.650832i \(0.774420\pi\)
\(62\) 23.6284 39.2707i 0.381103 0.633398i
\(63\) −114.315 + 42.4647i −1.81453 + 0.674043i
\(64\) −38.4339 + 96.4619i −0.600530 + 1.50722i
\(65\) −47.3556 + 40.2242i −0.728548 + 0.618834i
\(66\) 87.8196 119.279i 1.33060 1.80726i
\(67\) 41.2761 + 60.8777i 0.616061 + 0.908623i 0.999891 0.0147815i \(-0.00470527\pi\)
−0.383829 + 0.923404i \(0.625395\pi\)
\(68\) 68.3802 36.2529i 1.00559 0.533130i
\(69\) 2.08460 + 0.425439i 0.0302116 + 0.00616578i
\(70\) −34.5694 + 124.508i −0.493848 + 1.77868i
\(71\) 57.6746 22.9797i 0.812318 0.323657i 0.0732721 0.997312i \(-0.476656\pi\)
0.739046 + 0.673655i \(0.235277\pi\)
\(72\) 48.4348 27.6142i 0.672705 0.383531i
\(73\) −40.7663 + 4.43360i −0.558442 + 0.0607343i −0.382988 0.923753i \(-0.625105\pi\)
−0.175454 + 0.984488i \(0.556139\pi\)
\(74\) 70.5684 + 92.8312i 0.953627 + 1.25448i
\(75\) 33.2706 + 34.0612i 0.443607 + 0.454150i
\(76\) −49.6665 22.9782i −0.653507 0.302345i
\(77\) −209.160 + 34.2901i −2.71637 + 0.445326i
\(78\) −128.326 146.463i −1.64521 1.87774i
\(79\) 77.8983 46.8698i 0.986054 0.593289i 0.0713662 0.997450i \(-0.477264\pi\)
0.914688 + 0.404161i \(0.132437\pi\)
\(80\) −1.40381 + 12.9078i −0.0175476 + 0.161348i
\(81\) 80.0252 + 12.5289i 0.987965 + 0.154678i
\(82\) 25.6838 156.664i 0.313218 1.91054i
\(83\) −112.020 + 6.07353i −1.34963 + 0.0731751i −0.714722 0.699409i \(-0.753447\pi\)
−0.634913 + 0.772584i \(0.718964\pi\)
\(84\) −234.510 61.2527i −2.79178 0.729199i
\(85\) 28.4718 26.9699i 0.334963 0.317293i
\(86\) 47.4978 + 2.57526i 0.552301 + 0.0299449i
\(87\) 13.3554 + 45.3890i 0.153510 + 0.521713i
\(88\) 91.8307 30.9414i 1.04353 0.351607i
\(89\) 4.43444 + 13.1610i 0.0498252 + 0.147876i 0.969677 0.244390i \(-0.0785878\pi\)
−0.919852 + 0.392266i \(0.871691\pi\)
\(90\) 60.4714 60.9081i 0.671905 0.676756i
\(91\) −15.0855 + 278.236i −0.165775 + 3.05754i
\(92\) 2.90805 + 3.06999i 0.0316092 + 0.0333694i
\(93\) 42.1467 + 11.0085i 0.453190 + 0.118371i
\(94\) −5.28595 97.4935i −0.0562335 1.03717i
\(95\) −27.3644 4.48616i −0.288046 0.0472228i
\(96\) −114.534 10.6814i −1.19306 0.111264i
\(97\) 8.85195 + 0.962707i 0.0912572 + 0.00992482i 0.153634 0.988128i \(-0.450902\pi\)
−0.0623765 + 0.998053i \(0.519868\pi\)
\(98\) 219.024 + 364.020i 2.23494 + 3.71449i
\(99\) 132.321 + 48.0728i 1.33658 + 0.485584i
\(100\) 15.3103 + 93.3887i 0.153103 + 0.933887i
\(101\) 14.0191 30.3018i 0.138803 0.300018i −0.825691 0.564123i \(-0.809214\pi\)
0.964494 + 0.264105i \(0.0850764\pi\)
\(102\) 85.8839 + 87.9250i 0.841999 + 0.862010i
\(103\) 49.1851 37.3896i 0.477526 0.363006i −0.338552 0.940948i \(-0.609937\pi\)
0.816078 + 0.577942i \(0.196144\pi\)
\(104\) −13.7738 126.648i −0.132440 1.21777i
\(105\) −122.802 + 1.88393i −1.16954 + 0.0179422i
\(106\) 83.4914 + 209.548i 0.787655 + 1.97686i
\(107\) −67.9358 18.8623i −0.634914 0.176283i −0.0648657 0.997894i \(-0.520662\pi\)
−0.570049 + 0.821611i \(0.693076\pi\)
\(108\) 115.974 + 111.662i 1.07383 + 1.03391i
\(109\) −34.2102 64.5272i −0.313855 0.591993i 0.675527 0.737336i \(-0.263916\pi\)
−0.989381 + 0.145343i \(0.953571\pi\)
\(110\) 123.471 83.7155i 1.12246 0.761050i
\(111\) −65.7111 + 89.2508i −0.591992 + 0.804061i
\(112\) 37.6962 + 44.3794i 0.336573 + 0.396244i
\(113\) −152.860 60.9049i −1.35274 0.538982i −0.422645 0.906295i \(-0.638898\pi\)
−0.930097 + 0.367313i \(0.880278\pi\)
\(114\) 12.7427 85.9669i 0.111778 0.754095i
\(115\) 1.83601 + 1.10469i 0.0159653 + 0.00960600i
\(116\) −30.0262 + 89.1146i −0.258847 + 0.768229i
\(117\) 99.1174 156.304i 0.847157 1.33593i
\(118\) 78.3638 + 168.935i 0.664100 + 1.43165i
\(119\) 175.877i 1.47796i
\(120\) 55.2652 9.93309i 0.460543 0.0827757i
\(121\) 105.984 + 63.7684i 0.875901 + 0.527012i
\(122\) 119.238 156.855i 0.977362 1.28570i
\(123\) 149.739 18.6133i 1.21739 0.151328i
\(124\) 56.0500 + 65.9872i 0.452016 + 0.532155i
\(125\) 51.8510 + 112.074i 0.414808 + 0.896592i
\(126\) −11.8072 384.730i −0.0937082 3.05341i
\(127\) −85.2107 160.724i −0.670951 1.26555i −0.952072 0.305875i \(-0.901051\pi\)
0.281121 0.959672i \(-0.409294\pi\)
\(128\) −132.900 112.887i −1.03828 0.881926i
\(129\) 10.3952 + 43.9998i 0.0805830 + 0.341084i
\(130\) −72.5898 182.187i −0.558383 1.40143i
\(131\) −29.3885 15.5808i −0.224339 0.118937i 0.352448 0.935831i \(-0.385349\pi\)
−0.576788 + 0.816894i \(0.695694\pi\)
\(132\) 160.562 + 229.162i 1.21638 + 1.73608i
\(133\) −99.0002 + 75.2580i −0.744363 + 0.565850i
\(134\) −223.693 + 62.1081i −1.66935 + 0.463493i
\(135\) 71.7605 + 38.7971i 0.531559 + 0.287386i
\(136\) 13.0089 + 79.3506i 0.0956534 + 0.583460i
\(137\) 36.3531 + 165.154i 0.265351 + 1.20550i 0.901101 + 0.433608i \(0.142760\pi\)
−0.635750 + 0.771895i \(0.719309\pi\)
\(138\) −3.37348 + 5.80657i −0.0244455 + 0.0420766i
\(139\) −121.893 13.2566i −0.876927 0.0953715i −0.341428 0.939908i \(-0.610911\pi\)
−0.535498 + 0.844536i \(0.679876\pi\)
\(140\) −202.042 136.988i −1.44315 0.978483i
\(141\) 87.4771 30.9766i 0.620405 0.219692i
\(142\) 10.6091 + 195.673i 0.0747117 + 1.37798i
\(143\) 221.221 233.540i 1.54700 1.63315i
\(144\) −7.42497 37.9570i −0.0515623 0.263590i
\(145\) −2.57972 + 47.5801i −0.0177912 + 0.328139i
\(146\) 27.8241 126.406i 0.190576 0.865795i
\(147\) −273.154 + 297.372i −1.85819 + 2.02294i
\(148\) −208.752 + 70.3369i −1.41049 + 0.475249i
\(149\) −0.286008 + 1.29935i −0.00191952 + 0.00872045i −0.977571 0.210608i \(-0.932456\pi\)
0.975651 + 0.219329i \(0.0703866\pi\)
\(150\) −135.413 + 65.1889i −0.902754 + 0.434593i
\(151\) 65.0177 61.5881i 0.430581 0.407868i −0.441475 0.897273i \(-0.645545\pi\)
0.872056 + 0.489405i \(0.162786\pi\)
\(152\) 39.0995 41.2769i 0.257234 0.271558i
\(153\) −57.1286 + 101.899i −0.373389 + 0.666008i
\(154\) 108.232 660.186i 0.702805 4.28692i
\(155\) 36.3114 + 24.6197i 0.234267 + 0.158837i
\(156\) 339.604 141.385i 2.17695 0.906312i
\(157\) 82.2803 49.5064i 0.524078 0.315327i −0.228815 0.973470i \(-0.573485\pi\)
0.752893 + 0.658142i \(0.228658\pi\)
\(158\) 61.6859 + 280.242i 0.390417 + 1.77368i
\(159\) −168.667 + 132.348i −1.06080 + 0.832379i
\(160\) −105.142 48.6441i −0.657140 0.304025i
\(161\) 9.25909 2.57077i 0.0575099 0.0159675i
\(162\) −118.128 + 226.740i −0.729184 + 1.39963i
\(163\) 67.3884 7.32893i 0.413426 0.0449628i 0.100957 0.994891i \(-0.467810\pi\)
0.312469 + 0.949928i \(0.398844\pi\)
\(164\) 264.969 + 140.477i 1.61566 + 0.856570i
\(165\) 109.459 + 90.1216i 0.663387 + 0.546191i
\(166\) 94.7303 341.188i 0.570665 2.05535i
\(167\) −27.7941 23.6085i −0.166432 0.141369i 0.560300 0.828290i \(-0.310686\pi\)
−0.726732 + 0.686921i \(0.758962\pi\)
\(168\) 138.102 210.568i 0.822036 1.25338i
\(169\) −142.487 210.153i −0.843121 1.24351i
\(170\) 51.9761 + 112.344i 0.305742 + 0.660850i
\(171\) 81.8040 11.4455i 0.478386 0.0669325i
\(172\) −33.2604 + 83.4773i −0.193374 + 0.485333i
\(173\) 147.946 194.620i 0.855179 1.12497i −0.135771 0.990740i \(-0.543351\pi\)
0.990950 0.134229i \(-0.0428557\pi\)
\(174\) −149.225 5.79663i −0.857614 0.0333139i
\(175\) 203.795 + 68.6666i 1.16454 + 0.392381i
\(176\) 67.2219i 0.381942i
\(177\) −133.012 + 116.777i −0.751480 + 0.659756i
\(178\) −43.8354 −0.246267
\(179\) −57.3101 + 170.090i −0.320168 + 0.950224i 0.659864 + 0.751385i \(0.270614\pi\)
−0.980032 + 0.198840i \(0.936283\pi\)
\(180\) 72.5620 + 144.995i 0.403122 + 0.805528i
\(181\) −112.979 85.8847i −0.624196 0.474501i 0.244632 0.969616i \(-0.421333\pi\)
−0.868828 + 0.495115i \(0.835126\pi\)
\(182\) −817.041 325.539i −4.48924 1.78868i
\(183\) 175.012 + 66.6391i 0.956352 + 0.364148i
\(184\) −3.98728 + 1.84471i −0.0216700 + 0.0100256i
\(185\) −92.3874 + 62.6402i −0.499391 + 0.338596i
\(186\) −75.4047 + 114.972i −0.405402 + 0.618128i
\(187\) −131.446 + 154.751i −0.702922 + 0.827544i
\(188\) 177.721 + 49.3441i 0.945326 + 0.262469i
\(189\) 347.632 113.986i 1.83932 0.603103i
\(190\) 40.9975 77.3294i 0.215776 0.406997i
\(191\) 5.84511 + 53.7449i 0.0306027 + 0.281387i 0.999433 + 0.0336627i \(0.0107172\pi\)
−0.968831 + 0.247724i \(0.920317\pi\)
\(192\) 126.448 284.692i 0.658581 1.48277i
\(193\) −11.7873 42.4542i −0.0610743 0.219970i 0.926715 0.375765i \(-0.122620\pi\)
−0.987789 + 0.155795i \(0.950206\pi\)
\(194\) −11.8009 + 25.5072i −0.0608293 + 0.131480i
\(195\) 146.644 115.067i 0.752019 0.590088i
\(196\) −783.782 + 172.523i −3.99889 + 0.880222i
\(197\) −143.079 237.799i −0.726288 1.20710i −0.971364 0.237596i \(-0.923640\pi\)
0.245076 0.969504i \(-0.421187\pi\)
\(198\) −277.150 + 347.341i −1.39975 + 1.75425i
\(199\) −47.4733 + 70.0179i −0.238559 + 0.351849i −0.928056 0.372440i \(-0.878521\pi\)
0.689497 + 0.724289i \(0.257832\pi\)
\(200\) −97.0255 15.9065i −0.485128 0.0795326i
\(201\) −116.646 187.302i −0.580328 0.931851i
\(202\) 76.5082 + 72.4724i 0.378753 + 0.358774i
\(203\) 146.957 + 155.140i 0.723925 + 0.764238i
\(204\) −209.207 + 100.714i −1.02553 + 0.493696i
\(205\) 148.413 + 32.6681i 0.723965 + 0.159357i
\(206\) 62.2671 + 184.802i 0.302267 + 0.897098i
\(207\) −6.19955 1.51810i −0.0299495 0.00733382i
\(208\) −86.3077 18.9978i −0.414941 0.0913354i
\(209\) 143.355 + 7.77246i 0.685907 + 0.0371888i
\(210\) 118.128 369.216i 0.562516 1.75817i
\(211\) −59.0928 55.9756i −0.280060 0.265287i 0.534756 0.845007i \(-0.320404\pi\)
−0.814816 + 0.579719i \(0.803162\pi\)
\(212\) −425.493 + 23.0696i −2.00704 + 0.108819i
\(213\) −175.569 + 62.1710i −0.824269 + 0.291883i
\(214\) 124.888 184.196i 0.583588 0.860727i
\(215\) −4.92299 + 45.2662i −0.0228976 + 0.210540i
\(216\) −148.410 + 77.1402i −0.687085 + 0.357131i
\(217\) 192.145 42.2943i 0.885461 0.194905i
\(218\) 227.488 37.2948i 1.04352 0.171077i
\(219\) 122.723 8.54367i 0.560379 0.0390122i
\(220\) 75.3911 + 271.534i 0.342687 + 1.23425i
\(221\) 161.540 + 212.502i 0.730949 + 0.961547i
\(222\) −200.736 286.501i −0.904215 1.29055i
\(223\) −89.0275 + 167.924i −0.399226 + 0.753021i −0.998884 0.0472359i \(-0.984959\pi\)
0.599657 + 0.800257i \(0.295304\pi\)
\(224\) −482.645 + 192.303i −2.15466 + 0.858496i
\(225\) −95.7701 105.981i −0.425645 0.471027i
\(226\) 336.233 395.844i 1.48775 1.75152i
\(227\) −268.206 + 142.194i −1.18152 + 0.626404i −0.939059 0.343756i \(-0.888301\pi\)
−0.242465 + 0.970160i \(0.577956\pi\)
\(228\) 146.212 + 74.6661i 0.641279 + 0.327483i
\(229\) 8.41657 3.89392i 0.0367536 0.0170040i −0.401426 0.915891i \(-0.631485\pi\)
0.438180 + 0.898887i \(0.355623\pi\)
\(230\) −5.15467 + 4.37842i −0.0224116 + 0.0190366i
\(231\) 631.001 78.4366i 2.73160 0.339553i
\(232\) −77.7777 59.1251i −0.335249 0.254849i
\(233\) 98.7030 164.046i 0.423618 0.704059i −0.569395 0.822064i \(-0.692822\pi\)
0.993013 + 0.118005i \(0.0376500\pi\)
\(234\) 367.634 + 454.002i 1.57108 + 1.94018i
\(235\) 93.4607 0.397705
\(236\) −349.696 + 38.3871i −1.48176 + 0.162657i
\(237\) −238.977 + 131.433i −1.00834 + 0.554568i
\(238\) 526.073 + 177.255i 2.21039 + 0.744767i
\(239\) −152.310 + 253.142i −0.637282 + 1.05917i 0.354964 + 0.934880i \(0.384493\pi\)
−0.992246 + 0.124291i \(0.960334\pi\)
\(240\) 5.71133 38.5308i 0.0237972 0.160545i
\(241\) 28.9665 72.7005i 0.120193 0.301662i −0.856554 0.516058i \(-0.827399\pi\)
0.976747 + 0.214396i \(0.0687783\pi\)
\(242\) −297.555 + 252.745i −1.22956 + 1.04440i
\(243\) −238.436 46.8771i −0.981216 0.192910i
\(244\) 208.879 + 308.073i 0.856061 + 1.26260i
\(245\) −359.290 + 190.484i −1.46649 + 0.777484i
\(246\) −95.2365 + 466.648i −0.387140 + 1.89694i
\(247\) 50.4931 181.860i 0.204426 0.736274i
\(248\) −83.5620 + 33.2941i −0.336944 + 0.134251i
\(249\) 336.513 5.16252i 1.35146 0.0207330i
\(250\) −387.486 + 42.1417i −1.54995 + 0.168567i
\(251\) 238.294 + 313.470i 0.949378 + 1.24889i 0.968486 + 0.249069i \(0.0801244\pi\)
−0.0191075 + 0.999817i \(0.506082\pi\)
\(252\) 695.866 + 210.928i 2.76137 + 0.837014i
\(253\) −10.0682 4.65806i −0.0397954 0.0184113i
\(254\) 566.628 92.8939i 2.23082 0.365724i
\(255\) −88.4917 + 77.5334i −0.347026 + 0.304053i
\(256\) 115.708 69.6191i 0.451984 0.271950i
\(257\) 22.7013 208.735i 0.0883321 0.812200i −0.863244 0.504787i \(-0.831571\pi\)
0.951576 0.307413i \(-0.0994634\pi\)
\(258\) −142.086 13.2509i −0.550722 0.0513602i
\(259\) −80.9848 + 493.985i −0.312683 + 1.90728i
\(260\) 369.936 20.0573i 1.42283 0.0771436i
\(261\) −34.7506 137.620i −0.133144 0.527278i
\(262\) 76.2229 72.2022i 0.290927 0.275581i
\(263\) 138.344 + 7.50081i 0.526024 + 0.0285202i 0.315239 0.949012i \(-0.397915\pi\)
0.210785 + 0.977533i \(0.432398\pi\)
\(264\) −278.888 + 82.0608i −1.05639 + 0.310836i
\(265\) −204.618 + 68.9437i −0.772142 + 0.260165i
\(266\) −125.332 371.971i −0.471172 1.39839i
\(267\) −11.7607 39.9695i −0.0440477 0.149698i
\(268\) 23.7433 437.919i 0.0885942 1.63402i
\(269\) −349.352 368.806i −1.29871 1.37103i −0.888394 0.459081i \(-0.848179\pi\)
−0.410311 0.911945i \(-0.634580\pi\)
\(270\) −188.370 + 175.545i −0.697667 + 0.650166i
\(271\) −23.6975 437.074i −0.0874445 1.61282i −0.632596 0.774482i \(-0.718011\pi\)
0.545152 0.838338i \(-0.316472\pi\)
\(272\) 55.0455 + 9.02426i 0.202373 + 0.0331774i
\(273\) 77.6223 832.324i 0.284331 3.04881i
\(274\) −530.637 57.7102i −1.93663 0.210621i
\(275\) −127.996 212.731i −0.465439 0.773565i
\(276\) −8.36008 9.54166i −0.0302901 0.0345712i
\(277\) 48.1149 + 293.488i 0.173700 + 1.05952i 0.919424 + 0.393268i \(0.128655\pi\)
−0.745724 + 0.666255i \(0.767896\pi\)
\(278\) 162.500 351.238i 0.584533 1.26345i
\(279\) −125.063 37.9084i −0.448254 0.135872i
\(280\) 201.897 153.478i 0.721059 0.548135i
\(281\) −16.6919 153.479i −0.0594017 0.546190i −0.985593 0.169135i \(-0.945903\pi\)
0.926191 0.377054i \(-0.123063\pi\)
\(282\) 4.49307 + 292.876i 0.0159329 + 1.03857i
\(283\) −131.462 329.946i −0.464531 1.16589i −0.955574 0.294750i \(-0.904764\pi\)
0.491043 0.871135i \(-0.336616\pi\)
\(284\) −356.692 99.0351i −1.25596 0.348715i
\(285\) 81.5089 + 16.6348i 0.285996 + 0.0583679i
\(286\) 475.598 + 897.074i 1.66293 + 3.13662i
\(287\) 564.079 382.455i 1.96543 1.33260i
\(288\) 342.098 + 45.3570i 1.18784 + 0.157490i
\(289\) 78.0210 + 91.8535i 0.269969 + 0.317832i
\(290\) −139.719 55.6691i −0.481790 0.191963i
\(291\) −26.4237 3.91673i −0.0908032 0.0134595i
\(292\) 209.509 + 126.057i 0.717497 + 0.431703i
\(293\) 98.3375 291.855i 0.335623 0.996093i −0.638412 0.769695i \(-0.720408\pi\)
0.974035 0.226398i \(-0.0726950\pi\)
\(294\) −614.187 1116.74i −2.08907 3.79845i
\(295\) −165.534 + 66.1473i −0.561131 + 0.224228i
\(296\) 228.862i 0.773182i
\(297\) −391.066 159.518i −1.31672 0.537098i
\(298\) −3.59828 2.16501i −0.0120748 0.00726515i
\(299\) −8.82601 + 11.6104i −0.0295184 + 0.0388308i
\(300\) −35.0215 281.738i −0.116738 0.939126i
\(301\) 132.196 + 155.633i 0.439189 + 0.517053i
\(302\) 118.692 + 256.548i 0.393019 + 0.849496i
\(303\) −45.5542 + 89.2046i −0.150344 + 0.294404i
\(304\) −18.4744 34.8463i −0.0607709 0.114626i
\(305\) 143.747 + 122.100i 0.471301 + 0.400326i
\(306\) −247.219 273.577i −0.807905 0.894043i
\(307\) 28.6230 + 71.8382i 0.0932344 + 0.234001i 0.968197 0.250190i \(-0.0804932\pi\)
−0.874962 + 0.484191i \(0.839114\pi\)
\(308\) 1116.58 + 591.974i 3.62526 + 1.92199i
\(309\) −151.798 + 106.357i −0.491256 + 0.344197i
\(310\) −110.237 + 83.8000i −0.355603 + 0.270323i
\(311\) 142.034 39.4356i 0.456702 0.126803i −0.0315563 0.999502i \(-0.510046\pi\)
0.488258 + 0.872699i \(0.337633\pi\)
\(312\) 26.5425 + 381.262i 0.0850722 + 1.22199i
\(313\) 26.1182 + 159.314i 0.0834447 + 0.508990i 0.995168 + 0.0981855i \(0.0313038\pi\)
−0.911723 + 0.410804i \(0.865248\pi\)
\(314\) 65.1559 + 296.006i 0.207503 + 0.942695i
\(315\) 368.347 + 8.65235i 1.16935 + 0.0274678i
\(316\) −538.897 58.6086i −1.70537 0.185470i
\(317\) 346.337 + 234.822i 1.09254 + 0.740764i 0.967874 0.251435i \(-0.0809024\pi\)
0.124670 + 0.992198i \(0.460213\pi\)
\(318\) −225.884 637.892i −0.710328 2.00595i
\(319\) −13.3560 246.337i −0.0418684 0.772217i
\(320\) 215.751 227.766i 0.674222 0.711767i
\(321\) 201.457 + 64.4552i 0.627593 + 0.200795i
\(322\) −1.64207 + 30.2861i −0.00509959 + 0.0940564i
\(323\) −25.6093 + 116.344i −0.0792859 + 0.360199i
\(324\) −334.656 348.239i −1.03289 1.07481i
\(325\) −309.303 + 104.216i −0.951701 + 0.320666i
\(326\) −45.9944 + 208.955i −0.141087 + 0.640965i
\(327\) 95.0392 + 197.419i 0.290640 + 0.603729i
\(328\) −226.208 + 214.275i −0.689658 + 0.653278i
\(329\) 288.241 304.292i 0.876111 0.924899i
\(330\) −379.883 + 236.579i −1.15116 + 0.716907i
\(331\) 89.4108 545.382i 0.270123 1.64768i −0.408184 0.912900i \(-0.633838\pi\)
0.678307 0.734779i \(-0.262714\pi\)
\(332\) 553.654 + 375.387i 1.66763 + 1.13068i
\(333\) 207.378 259.899i 0.622756 0.780476i
\(334\) 98.6283 59.3427i 0.295294 0.177673i
\(335\) −47.7720 217.030i −0.142603 0.647851i
\(336\) −107.835 137.427i −0.320939 0.409010i
\(337\) 206.462 + 95.5194i 0.612647 + 0.283440i 0.701573 0.712598i \(-0.252481\pi\)
−0.0889263 + 0.996038i \(0.528344\pi\)
\(338\) 772.202 214.401i 2.28462 0.634322i
\(339\) 451.142 + 200.377i 1.33080 + 0.591083i
\(340\) −232.470 + 25.2827i −0.683736 + 0.0743608i
\(341\) −200.675 106.391i −0.588489 0.311997i
\(342\) −48.2098 + 256.222i −0.140964 + 0.749188i
\(343\) −310.278 + 1117.52i −0.904599 + 3.25807i
\(344\) −71.1545 60.4392i −0.206844 0.175695i
\(345\) −5.37524 3.52537i −0.0155804 0.0102185i
\(346\) 433.030 + 638.671i 1.25153 + 1.84587i
\(347\) −105.638 228.332i −0.304431 0.658017i 0.693625 0.720336i \(-0.256012\pi\)
−0.998056 + 0.0623189i \(0.980150\pi\)
\(348\) 100.388 263.646i 0.288471 0.757603i
\(349\) 3.24594 8.14670i 0.00930069 0.0233430i −0.924253 0.381780i \(-0.875311\pi\)
0.933554 + 0.358437i \(0.116690\pi\)
\(350\) −410.783 + 540.376i −1.17367 + 1.54393i
\(351\) −315.329 + 457.017i −0.898374 + 1.30204i
\(352\) 568.393 + 191.514i 1.61475 + 0.544074i
\(353\) 100.055i 0.283442i −0.989907 0.141721i \(-0.954736\pi\)
0.989907 0.141721i \(-0.0452637\pi\)
\(354\) −215.242 515.549i −0.608029 1.45635i
\(355\) −187.578 −0.528390
\(356\) 26.4410 78.4742i 0.0742726 0.220433i
\(357\) −20.4803 + 527.233i −0.0573678 + 1.47684i
\(358\) −451.005 342.845i −1.25979 0.957667i
\(359\) −251.266 100.113i −0.699904 0.278867i −0.00708105 0.999975i \(-0.502254\pi\)
−0.692823 + 0.721108i \(0.743633\pi\)
\(360\) −166.827 + 23.3413i −0.463409 + 0.0648371i
\(361\) −251.187 + 116.211i −0.695808 + 0.321915i
\(362\) 370.758 251.380i 1.02419 0.694420i
\(363\) −310.287 203.503i −0.854784 0.560613i
\(364\) 1075.61 1266.31i 2.95497 3.47886i
\(365\) 119.380 + 33.1457i 0.327069 + 0.0908102i
\(366\) −375.710 + 456.326i −1.02653 + 1.24679i
\(367\) 18.3153 34.5463i 0.0499054 0.0941316i −0.857305 0.514809i \(-0.827863\pi\)
0.907210 + 0.420678i \(0.138208\pi\)
\(368\) 0.329510 + 3.02979i 0.000895407 + 0.00823313i
\(369\) −451.045 + 38.3612i −1.22234 + 0.103960i
\(370\) −94.2547 339.475i −0.254742 0.917499i
\(371\) −406.589 + 878.828i −1.09593 + 2.36881i
\(372\) −160.339 204.339i −0.431020 0.549299i
\(373\) −40.7916 + 8.97892i −0.109361 + 0.0240722i −0.269314 0.963053i \(-0.586797\pi\)
0.159953 + 0.987125i \(0.448866\pi\)
\(374\) −330.405 549.138i −0.883437 1.46828i
\(375\) −142.385 342.007i −0.379693 0.912017i
\(376\) −107.539 + 158.608i −0.286007 + 0.421829i
\(377\) −320.053 52.4700i −0.848946 0.139178i
\(378\) −9.40562 + 1154.70i −0.0248826 + 3.05475i
\(379\) 101.557 + 96.2003i 0.267961 + 0.253827i 0.809868 0.586612i \(-0.199539\pi\)
−0.541907 + 0.840439i \(0.682297\pi\)
\(380\) 113.706 + 120.038i 0.299226 + 0.315889i
\(381\) 236.724 + 491.733i 0.621322 + 1.29064i
\(382\) −166.650 36.6823i −0.436255 0.0960271i
\(383\) 67.5526 + 200.489i 0.176377 + 0.523470i 0.998980 0.0451467i \(-0.0143755\pi\)
−0.822603 + 0.568616i \(0.807479\pi\)
\(384\) 385.255 + 353.880i 1.00327 + 0.921563i
\(385\) 625.413 + 137.664i 1.62445 + 0.357569i
\(386\) 138.866 + 7.52910i 0.359757 + 0.0195054i
\(387\) −26.0385 133.110i −0.0672829 0.343955i
\(388\) −38.5448 36.5116i −0.0993422 0.0941020i
\(389\) 37.0715 2.00996i 0.0952994 0.00516698i −0.00642754 0.999979i \(-0.502046\pi\)
0.101727 + 0.994812i \(0.467563\pi\)
\(390\) 196.390 + 554.601i 0.503564 + 1.42205i
\(391\) 5.16593 7.61918i 0.0132121 0.0194864i
\(392\) 90.1495 828.911i 0.229973 2.11457i
\(393\) 86.2846 + 50.1293i 0.219554 + 0.127555i
\(394\) 855.489 188.307i 2.17129 0.477938i
\(395\) −271.059 + 44.4378i −0.686225 + 0.112501i
\(396\) −454.637 705.666i −1.14807 1.78198i
\(397\) 41.7463 + 150.357i 0.105154 + 0.378732i 0.997336 0.0729449i \(-0.0232397\pi\)
−0.892182 + 0.451677i \(0.850826\pi\)
\(398\) −161.588 212.566i −0.406001 0.534085i
\(399\) 305.540 214.076i 0.765766 0.536530i
\(400\) −31.9479 + 60.2601i −0.0798697 + 0.150650i
\(401\) −261.910 + 104.354i −0.653142 + 0.260235i −0.673084 0.739566i \(-0.735031\pi\)
0.0199427 + 0.999801i \(0.493652\pi\)
\(402\) 677.806 160.136i 1.68609 0.398347i
\(403\) −193.311 + 227.584i −0.479680 + 0.564723i
\(404\) −175.889 + 93.2504i −0.435369 + 0.230818i
\(405\) −210.601 124.660i −0.520004 0.307802i
\(406\) −612.154 + 283.213i −1.50777 + 0.697568i
\(407\) 440.451 374.122i 1.08219 0.919219i
\(408\) −29.7571 239.387i −0.0729340 0.586733i
\(409\) 36.2350 + 27.5451i 0.0885942 + 0.0673475i 0.648534 0.761186i \(-0.275383\pi\)
−0.559940 + 0.828533i \(0.689176\pi\)
\(410\) −247.290 + 411.000i −0.603147 + 1.00244i
\(411\) −89.7455 499.322i −0.218359 1.21489i
\(412\) −368.392 −0.894154
\(413\) −295.155 + 742.953i −0.714662 + 1.79892i
\(414\) 10.7890 17.0138i 0.0260603 0.0410960i
\(415\) 321.207 + 108.227i 0.773992 + 0.260788i
\(416\) 406.524 675.649i 0.977222 1.62416i
\(417\) 363.859 + 53.9340i 0.872564 + 0.129338i
\(418\) −167.726 + 420.961i −0.401258 + 1.00708i
\(419\) −201.880 + 171.478i −0.481813 + 0.409256i −0.855102 0.518459i \(-0.826506\pi\)
0.373289 + 0.927715i \(0.378230\pi\)
\(420\) 589.716 + 434.180i 1.40409 + 1.03376i
\(421\) 350.174 + 516.468i 0.831767 + 1.22676i 0.971609 + 0.236591i \(0.0760301\pi\)
−0.139842 + 0.990174i \(0.544660\pi\)
\(422\) 226.987 120.341i 0.537883 0.285168i
\(423\) −265.841 + 82.6733i −0.628465 + 0.195445i
\(424\) 118.438 426.576i 0.279335 1.00607i
\(425\) 191.380 76.2528i 0.450306 0.179418i
\(426\) −9.01773 587.811i −0.0211684 1.37984i
\(427\) 840.862 91.4493i 1.96923 0.214167i
\(428\) 254.416 + 334.679i 0.594430 + 0.781960i
\(429\) −690.359 + 674.333i −1.60923 + 1.57187i
\(430\) −130.436 60.3461i −0.303339 0.140340i
\(431\) −477.945 + 78.3551i −1.10892 + 0.181798i −0.688291 0.725434i \(-0.741639\pi\)
−0.420629 + 0.907233i \(0.638191\pi\)
\(432\) 17.8382 + 114.650i 0.0412920 + 0.265393i
\(433\) 394.028 237.079i 0.909996 0.547527i 0.0181349 0.999836i \(-0.494227\pi\)
0.891861 + 0.452309i \(0.149400\pi\)
\(434\) −67.1418 + 617.359i −0.154705 + 1.42249i
\(435\) 13.2739 142.332i 0.0305147 0.327201i
\(436\) −70.4531 + 429.745i −0.161590 + 0.985654i
\(437\) −6.49931 + 0.352382i −0.0148726 + 0.000806367i
\(438\) −98.1289 + 375.692i −0.224039 + 0.857745i
\(439\) −636.327 + 602.761i −1.44949 + 1.37303i −0.684416 + 0.729092i \(0.739943\pi\)
−0.765076 + 0.643940i \(0.777299\pi\)
\(440\) −292.351 15.8508i −0.664434 0.0360246i
\(441\) 853.472 859.635i 1.93531 1.94929i
\(442\) −798.428 + 269.022i −1.80640 + 0.608646i
\(443\) 171.966 + 510.377i 0.388186 + 1.15209i 0.946566 + 0.322509i \(0.104526\pi\)
−0.558381 + 0.829585i \(0.688577\pi\)
\(444\) 633.976 186.543i 1.42787 0.420142i
\(445\) 2.27170 41.8990i 0.00510494 0.0941551i
\(446\) −412.559 435.533i −0.925019 0.976531i
\(447\) 1.00868 3.86180i 0.00225656 0.00863937i
\(448\) −76.1713 1404.90i −0.170025 3.13593i
\(449\) −449.060 73.6197i −1.00013 0.163964i −0.360595 0.932722i \(-0.617426\pi\)
−0.639539 + 0.768759i \(0.720875\pi\)
\(450\) 413.524 179.651i 0.918943 0.399224i
\(451\) −782.161 85.0652i −1.73428 0.188615i
\(452\) 505.827 + 840.692i 1.11909 + 1.85994i
\(453\) −202.078 + 177.054i −0.446088 + 0.390847i
\(454\) −155.015 945.550i −0.341443 2.08271i
\(455\) 353.500 764.078i 0.776923 1.67929i
\(456\) −122.017 + 119.184i −0.267581 + 0.261369i
\(457\) 519.427 394.858i 1.13660 0.864022i 0.144505 0.989504i \(-0.453841\pi\)
0.992096 + 0.125482i \(0.0400478\pi\)
\(458\) 3.16477 + 29.0996i 0.00690998 + 0.0635362i
\(459\) 183.122 298.815i 0.398960 0.651013i
\(460\) −4.72901 11.8689i −0.0102804 0.0258020i
\(461\) −103.047 28.6108i −0.223529 0.0620626i 0.153958 0.988077i \(-0.450798\pi\)
−0.377487 + 0.926015i \(0.623212\pi\)
\(462\) −401.328 + 1966.46i −0.868675 + 4.25641i
\(463\) −339.974 641.260i −0.734286 1.38501i −0.915805 0.401623i \(-0.868446\pi\)
0.181520 0.983387i \(-0.441898\pi\)
\(464\) −56.0958 + 38.0339i −0.120896 + 0.0819696i
\(465\) −105.985 78.0319i −0.227925 0.167811i
\(466\) 391.208 + 460.565i 0.839502 + 0.988338i
\(467\) −473.752 188.760i −1.01446 0.404197i −0.197135 0.980376i \(-0.563164\pi\)
−0.817323 + 0.576179i \(0.804543\pi\)
\(468\) −1034.51 + 384.289i −2.21049 + 0.821129i
\(469\) −853.946 513.802i −1.82078 1.09553i
\(470\) −94.1927 + 279.554i −0.200410 + 0.594796i
\(471\) −252.420 + 138.826i −0.535923 + 0.294747i
\(472\) 78.2125 357.030i 0.165704 0.756420i
\(473\) 235.739i 0.498391i
\(474\) −152.285 847.275i −0.321276 1.78750i
\(475\) −124.814 75.0982i −0.262767 0.158102i
\(476\) −634.642 + 834.857i −1.33328 + 1.75390i
\(477\) 521.031 377.105i 1.09231 0.790576i
\(478\) −603.680 710.707i −1.26293 1.48683i
\(479\) −86.7827 187.578i −0.181175 0.391603i 0.795615 0.605802i \(-0.207148\pi\)
−0.976790 + 0.214200i \(0.931286\pi\)
\(480\) 309.525 + 158.066i 0.644844 + 0.329304i
\(481\) −355.867 671.237i −0.739848 1.39550i
\(482\) 188.264 + 159.913i 0.390589 + 0.331770i
\(483\) −28.0557 + 6.62831i −0.0580863 + 0.0137232i
\(484\) −272.983 685.135i −0.564014 1.41557i
\(485\) −23.7688 12.6014i −0.0490079 0.0259823i
\(486\) 380.519 665.950i 0.782962 1.37027i
\(487\) 582.331 442.677i 1.19575 0.908987i 0.198287 0.980144i \(-0.436462\pi\)
0.997465 + 0.0711567i \(0.0226690\pi\)
\(488\) −372.609 + 103.454i −0.763542 + 0.211996i
\(489\) −202.866 + 14.1231i −0.414859 + 0.0288815i
\(490\) −207.659 1266.66i −0.423794 2.58503i
\(491\) −6.38264 28.9966i −0.0129993 0.0590562i 0.969674 0.244400i \(-0.0785911\pi\)
−0.982674 + 0.185344i \(0.940660\pi\)
\(492\) −777.948 451.969i −1.58120 0.918637i
\(493\) 203.509 + 22.1330i 0.412798 + 0.0448945i
\(494\) 493.080 + 334.316i 0.998137 + 0.676754i
\(495\) −317.635 282.907i −0.641686 0.571529i
\(496\) 3.37820 + 62.3072i 0.00681089 + 0.125619i
\(497\) −578.508 + 610.723i −1.16400 + 1.22882i
\(498\) −323.707 + 1011.76i −0.650014 + 2.03165i
\(499\) −26.5988 + 490.587i −0.0533043 + 0.983140i 0.842502 + 0.538694i \(0.181082\pi\)
−0.895806 + 0.444446i \(0.853401\pi\)
\(500\) 158.285 719.097i 0.316571 1.43819i
\(501\) 80.5704 + 74.0088i 0.160819 + 0.147722i
\(502\) −1177.79 + 396.845i −2.34620 + 0.790528i
\(503\) 95.2087 432.538i 0.189282 0.859916i −0.782242 0.622975i \(-0.785924\pi\)
0.971524 0.236941i \(-0.0761449\pi\)
\(504\) −438.514 + 615.148i −0.870068 + 1.22053i
\(505\) −73.2358 + 69.3727i −0.145021 + 0.137372i
\(506\) 24.0800 25.4210i 0.0475890 0.0502391i
\(507\) 402.669 + 646.577i 0.794218 + 1.27530i
\(508\) −175.485 + 1070.41i −0.345442 + 2.10711i
\(509\) 774.292 + 524.983i 1.52120 + 1.03140i 0.981925 + 0.189272i \(0.0606129\pi\)
0.539277 + 0.842128i \(0.318697\pi\)
\(510\) −142.729 342.832i −0.279860 0.672219i
\(511\) 476.095 286.457i 0.931693 0.560581i
\(512\) −58.3135 264.921i −0.113894 0.517424i
\(513\) −246.560 + 24.7847i −0.480623 + 0.0483132i
\(514\) 601.478 + 278.273i 1.17019 + 0.541388i
\(515\) −179.865 + 49.9394i −0.349253 + 0.0969697i
\(516\) 109.427 246.370i 0.212067 0.477461i
\(517\) −481.038 + 52.3161i −0.930442 + 0.101192i
\(518\) −1395.96 740.091i −2.69490 1.42875i
\(519\) −466.166 + 566.191i −0.898201 + 1.09093i
\(520\) −102.973 + 370.877i −0.198026 + 0.713224i
\(521\) 528.311 + 448.752i 1.01403 + 0.861328i 0.990377 0.138392i \(-0.0441935\pi\)
0.0236559 + 0.999720i \(0.492469\pi\)
\(522\) 446.662 + 34.7535i 0.855675 + 0.0665777i
\(523\) 161.499 + 238.193i 0.308793 + 0.455435i 0.950144 0.311812i \(-0.100936\pi\)
−0.641351 + 0.767248i \(0.721626\pi\)
\(524\) 83.2796 + 180.006i 0.158930 + 0.343523i
\(525\) −602.929 229.576i −1.14844 0.437288i
\(526\) −161.864 + 406.248i −0.307726 + 0.772334i
\(527\) 114.059 150.043i 0.216432 0.284711i
\(528\) −7.82778 + 201.514i −0.0148253 + 0.381655i
\(529\) −500.832 168.750i −0.946752 0.318998i
\(530\) 681.524i 1.28589i
\(531\) 412.333 334.578i 0.776522 0.630090i
\(532\) 741.501 1.39380
\(533\) −330.266 + 980.195i −0.619636 + 1.83901i
\(534\) 131.407 + 5.10450i 0.246081 + 0.00955899i
\(535\) 169.587 + 128.916i 0.316984 + 0.240965i
\(536\) 423.279 + 168.650i 0.789700 + 0.314645i
\(537\) 191.607 503.212i 0.356810 0.937081i
\(538\) 1455.24 673.266i 2.70491 1.25142i
\(539\) 1742.63 1181.53i 3.23307 2.19208i
\(540\) −200.638 443.107i −0.371551 0.820568i
\(541\) −306.771 + 361.158i −0.567044 + 0.667575i −0.968706 0.248213i \(-0.920157\pi\)
0.401662 + 0.915788i \(0.368433\pi\)
\(542\) 1331.23 + 369.615i 2.45615 + 0.681947i
\(543\) 328.682 + 270.616i 0.605307 + 0.498372i
\(544\) −233.128 + 439.726i −0.428544 + 0.808321i
\(545\) 23.8581 + 219.372i 0.0437763 + 0.402517i
\(546\) 2411.37 + 1071.02i 4.41642 + 1.96158i
\(547\) −140.983 507.773i −0.257738 0.928287i −0.973262 0.229699i \(-0.926226\pi\)
0.715524 0.698588i \(-0.246188\pi\)
\(548\) 423.387 915.136i 0.772604 1.66996i
\(549\) −516.882 220.146i −0.941497 0.400995i
\(550\) 765.305 168.456i 1.39146 0.306284i
\(551\) −74.6235 124.025i −0.135433 0.225091i
\(552\) 12.1676 5.06566i 0.0220428 0.00917693i
\(553\) −691.286 + 1019.57i −1.25007 + 1.84371i
\(554\) −926.355 151.868i −1.67212 0.274130i
\(555\) 284.248 177.021i 0.512158 0.318956i
\(556\) 530.768 + 502.770i 0.954619 + 0.904263i
\(557\) −312.318 329.710i −0.560714 0.591939i 0.382569 0.923927i \(-0.375039\pi\)
−0.943284 + 0.331988i \(0.892281\pi\)
\(558\) 239.432 335.875i 0.429089 0.601927i
\(559\) −302.671 66.6229i −0.541450 0.119182i
\(560\) −56.1744 166.720i −0.100311 0.297713i
\(561\) 412.063 448.596i 0.734514 0.799636i
\(562\) 475.901 + 104.754i 0.846799 + 0.186395i
\(563\) −498.486 27.0271i −0.885411 0.0480056i −0.394178 0.919034i \(-0.628971\pi\)
−0.491233 + 0.871028i \(0.663453\pi\)
\(564\) −527.016 168.616i −0.934426 0.298964i
\(565\) 360.932 + 341.893i 0.638818 + 0.605121i
\(566\) 1119.41 60.6924i 1.97775 0.107230i
\(567\) −1055.38 + 301.221i −1.86135 + 0.531254i
\(568\) 215.833 318.330i 0.379988 0.560441i
\(569\) −8.24033 + 75.7686i −0.0144821 + 0.133161i −0.999147 0.0412958i \(-0.986851\pi\)
0.984665 + 0.174457i \(0.0558169\pi\)
\(570\) −131.904 + 227.039i −0.231411 + 0.398315i
\(571\) −379.120 + 83.4507i −0.663958 + 0.146148i −0.534149 0.845391i \(-0.679368\pi\)
−0.129810 + 0.991539i \(0.541437\pi\)
\(572\) −1892.82 + 310.312i −3.30912 + 0.542503i
\(573\) −11.2637 161.794i −0.0196574 0.282363i
\(574\) 575.480 + 2072.69i 1.00258 + 3.61096i
\(575\) 6.81173 + 8.96068i 0.0118465 + 0.0155838i
\(576\) −412.208 + 838.708i −0.715640 + 1.45609i
\(577\) 359.940 678.919i 0.623812 1.17664i −0.347242 0.937776i \(-0.612882\pi\)
0.971054 0.238860i \(-0.0767735\pi\)
\(578\) −353.379 + 140.799i −0.611382 + 0.243597i
\(579\) 30.3917 + 128.639i 0.0524900 + 0.222175i
\(580\) 183.936 216.546i 0.317131 0.373355i
\(581\) 1343.00 712.012i 2.31153 1.22549i
\(582\) 38.3462 75.0897i 0.0658869 0.129020i
\(583\) 1014.57 469.389i 1.74025 0.805126i
\(584\) −193.612 + 164.456i −0.331528 + 0.281602i
\(585\) −452.999 + 327.865i −0.774357 + 0.560454i
\(586\) 773.872 + 588.283i 1.32060 + 1.00390i
\(587\) 257.328 427.682i 0.438377 0.728589i −0.556372 0.830934i \(-0.687807\pi\)
0.994749 + 0.102345i \(0.0326345\pi\)
\(588\) 2369.66 425.911i 4.03004 0.724339i
\(589\) −133.264 −0.226255
\(590\) −31.0257 561.800i −0.0525860 0.952203i
\(591\) 401.222 + 729.520i 0.678887 + 1.23438i
\(592\) −150.451 50.6928i −0.254140 0.0856298i
\(593\) −105.895 + 175.998i −0.178574 + 0.296793i −0.933196 0.359367i \(-0.882993\pi\)
0.754622 + 0.656160i \(0.227820\pi\)
\(594\) 871.270 1008.97i 1.46678 1.69860i
\(595\) −196.687 + 493.647i −0.330567 + 0.829660i
\(596\) 6.04625 5.13573i 0.0101447 0.00861700i
\(597\) 150.466 204.367i 0.252037 0.342324i
\(598\) −25.8333 38.1012i −0.0431994 0.0637144i
\(599\) −869.171 + 460.805i −1.45104 + 0.769291i −0.992828 0.119553i \(-0.961854\pi\)
−0.458209 + 0.888844i \(0.651509\pi\)
\(600\) 289.005 + 58.9819i 0.481675 + 0.0983032i
\(601\) 9.89637 35.6435i 0.0164665 0.0593070i −0.954860 0.297055i \(-0.903995\pi\)
0.971327 + 0.237748i \(0.0764093\pi\)
\(602\) −598.752 + 238.565i −0.994604 + 0.396287i
\(603\) 327.864 + 575.066i 0.543721 + 0.953674i
\(604\) −530.865 + 57.7351i −0.878916 + 0.0955879i
\(605\) −226.160 297.508i −0.373818 0.491749i
\(606\) −220.912 226.162i −0.364542 0.373205i
\(607\) 495.307 + 229.153i 0.815991 + 0.377518i 0.783065 0.621940i \(-0.213655\pi\)
0.0329263 + 0.999458i \(0.489517\pi\)
\(608\) 347.276 56.9330i 0.571177 0.0936397i
\(609\) −422.472 482.183i −0.693715 0.791762i
\(610\) −510.090 + 306.911i −0.836213 + 0.503133i
\(611\) −68.7778 + 632.402i −0.112566 + 1.03503i
\(612\) 638.877 277.553i 1.04392 0.453518i
\(613\) 85.7728 523.191i 0.139923 0.853492i −0.819822 0.572619i \(-0.805928\pi\)
0.959745 0.280874i \(-0.0906242\pi\)
\(614\) −243.725 + 13.2144i −0.396947 + 0.0215218i
\(615\) −441.099 115.213i −0.717234 0.187338i
\(616\) −953.242 + 902.959i −1.54747 + 1.46584i
\(617\) −110.686 6.00121i −0.179393 0.00972643i −0.0357767 0.999360i \(-0.511391\pi\)
−0.143617 + 0.989633i \(0.545873\pi\)
\(618\) −165.141 561.239i −0.267218 0.908154i
\(619\) 904.880 304.890i 1.46184 0.492552i 0.527693 0.849435i \(-0.323057\pi\)
0.934149 + 0.356883i \(0.116161\pi\)
\(620\) −83.5250 247.893i −0.134718 0.399828i
\(621\) 18.4079 + 5.27279i 0.0296423 + 0.00849080i
\(622\) −25.1893 + 464.589i −0.0404972 + 0.746927i
\(623\) −129.410 136.616i −0.207720 0.219288i
\(624\) 256.516 + 67.0006i 0.411083 + 0.107373i
\(625\) 1.28221 + 23.6489i 0.00205153 + 0.0378383i
\(626\) −502.853 82.4386i −0.803280 0.131691i
\(627\) −428.835 39.9930i −0.683947 0.0637847i
\(628\) −569.211 61.9055i −0.906388 0.0985756i
\(629\) 247.226 + 410.893i 0.393046 + 0.653248i
\(630\) −397.112 + 1093.06i −0.630337 + 1.73501i
\(631\) 3.30097 + 20.1350i 0.00523132 + 0.0319097i 0.989313 0.145806i \(-0.0465775\pi\)
−0.984082 + 0.177716i \(0.943129\pi\)
\(632\) 236.475 511.132i 0.374169 0.808754i
\(633\) 170.626 + 174.681i 0.269552 + 0.275958i
\(634\) −1051.44 + 799.280i −1.65842 + 1.26069i
\(635\) 59.4258 + 546.411i 0.0935839 + 0.860490i
\(636\) 1278.20 19.6092i 2.00976 0.0308321i
\(637\) −1024.51 2571.32i −1.60833 4.03660i
\(638\) 750.290 + 208.317i 1.17600 + 0.326516i
\(639\) 533.551 165.928i 0.834977 0.259668i
\(640\) 246.778 + 465.473i 0.385591 + 0.727301i
\(641\) 451.109 305.860i 0.703758 0.477160i −0.156068 0.987746i \(-0.549882\pi\)
0.859826 + 0.510586i \(0.170572\pi\)
\(642\) −395.830 + 537.628i −0.616558 + 0.837426i
\(643\) −251.897 296.556i −0.391753 0.461207i 0.530562 0.847646i \(-0.321981\pi\)
−0.922315 + 0.386439i \(0.873705\pi\)
\(644\) −53.2278 21.2079i −0.0826518 0.0329315i
\(645\) 20.0289 135.123i 0.0310526 0.209493i
\(646\) −322.193 193.857i −0.498750 0.300088i
\(647\) −61.2595 + 181.812i −0.0946824 + 0.281007i −0.984521 0.175269i \(-0.943921\pi\)
0.889838 + 0.456276i \(0.150817\pi\)
\(648\) 453.879 213.964i 0.700430 0.330192i
\(649\) 814.968 433.117i 1.25573 0.667361i
\(650\) 1030.20i 1.58493i
\(651\) −580.926 + 104.413i −0.892359 + 0.160388i
\(652\) −346.327 208.378i −0.531177 0.319598i
\(653\) −569.149 + 748.703i −0.871592 + 1.14656i 0.116576 + 0.993182i \(0.462808\pi\)
−0.988168 + 0.153377i \(0.950985\pi\)
\(654\) −686.293 + 85.3098i −1.04938 + 0.130443i
\(655\) 65.0625 + 76.5975i 0.0993321 + 0.116943i
\(656\) 90.7570 + 196.168i 0.138349 + 0.299037i
\(657\) −368.886 + 11.3210i −0.561471 + 0.0172313i
\(658\) 619.682 + 1168.84i 0.941765 + 1.77636i
\(659\) 603.497 + 512.615i 0.915776 + 0.777868i 0.975420 0.220352i \(-0.0707207\pi\)
−0.0596439 + 0.998220i \(0.518997\pi\)
\(660\) −194.384 822.768i −0.294520 1.24662i
\(661\) 45.6079 + 114.467i 0.0689983 + 0.173173i 0.959432 0.281941i \(-0.0909781\pi\)
−0.890434 + 0.455113i \(0.849599\pi\)
\(662\) 1541.20 + 817.094i 2.32810 + 1.23428i
\(663\) −459.509 655.836i −0.693075 0.989194i
\(664\) −553.257 + 420.575i −0.833218 + 0.633396i
\(665\) 362.034 100.518i 0.544413 0.151155i
\(666\) 568.391 + 882.231i 0.853441 + 1.32467i
\(667\) 1.80948 + 11.0373i 0.00271286 + 0.0165477i
\(668\) 46.7438 + 212.359i 0.0699758 + 0.317903i
\(669\) 286.435 493.024i 0.428155 0.736957i
\(670\) 697.314 + 75.8375i 1.04077 + 0.113190i
\(671\) −808.206 547.977i −1.20448 0.816658i
\(672\) 1469.24 520.272i 2.18636 0.774215i
\(673\) 59.2642 + 1093.06i 0.0880597 + 1.62417i 0.625055 + 0.780581i \(0.285077\pi\)
−0.536995 + 0.843585i \(0.680441\pi\)
\(674\) −493.791 + 521.289i −0.732628 + 0.773426i
\(675\) 274.753 + 328.856i 0.407041 + 0.487193i
\(676\) −81.9631 + 1511.72i −0.121247 + 2.23627i
\(677\) −234.660 + 1066.07i −0.346617 + 1.57470i 0.404506 + 0.914535i \(0.367443\pi\)
−0.751123 + 0.660162i \(0.770488\pi\)
\(678\) −1054.03 + 1147.48i −1.55462 + 1.69245i
\(679\) −114.333 + 38.5233i −0.168385 + 0.0567354i
\(680\) 52.2265 237.268i 0.0768037 0.348923i
\(681\) 820.570 395.028i 1.20495 0.580071i
\(682\) 520.477 493.022i 0.763163 0.722906i
\(683\) 142.004 149.912i 0.207912 0.219490i −0.613697 0.789542i \(-0.710318\pi\)
0.821609 + 0.570052i \(0.193077\pi\)
\(684\) −429.610 240.855i −0.628084 0.352128i
\(685\) 82.6602 504.205i 0.120672 0.736066i
\(686\) −3029.95 2054.36i −4.41683 2.99469i
\(687\) −25.6841 + 10.6929i −0.0373859 + 0.0155646i
\(688\) −55.4926 + 33.3888i −0.0806579 + 0.0485303i
\(689\) −315.929 1435.28i −0.458533 2.08314i
\(690\) 15.9622 12.5251i 0.0231337 0.0181523i
\(691\) −549.139 254.059i −0.794703 0.367669i −0.0198439 0.999803i \(-0.506317\pi\)
−0.774859 + 0.632135i \(0.782179\pi\)
\(692\) −1404.55 + 389.971i −2.02969 + 0.563542i
\(693\) −1900.71 + 161.655i −2.74273 + 0.233268i
\(694\) 789.438 85.8566i 1.13752 0.123713i
\(695\) 327.301 + 173.524i 0.470937 + 0.249675i
\(696\) 226.272 + 186.298i 0.325104 + 0.267670i
\(697\) 174.659 629.064i 0.250586 0.902530i
\(698\) 21.0966 + 17.9196i 0.0302243 + 0.0256727i
\(699\) −314.989 + 480.273i −0.450627 + 0.687085i
\(700\) −719.601 1061.33i −1.02800 1.51619i
\(701\) −134.146 289.951i −0.191363 0.413625i 0.788016 0.615655i \(-0.211108\pi\)
−0.979379 + 0.202030i \(0.935246\pi\)
\(702\) −1049.20 1403.79i −1.49459 1.99970i
\(703\) 125.501 314.984i 0.178522 0.448057i
\(704\) −982.967 + 1293.07i −1.39626 + 1.83675i
\(705\) −280.171 10.8832i −0.397405 0.0154372i
\(706\) 299.279 + 100.839i 0.423908 + 0.142831i
\(707\) 452.394i 0.639879i
\(708\) 1052.77 74.3534i 1.48696 0.105019i
\(709\) 378.776 0.534240 0.267120 0.963663i \(-0.413928\pi\)
0.267120 + 0.963663i \(0.413928\pi\)
\(710\) 189.048 561.074i 0.266264 0.790245i
\(711\) 731.694 366.172i 1.02911 0.515010i
\(712\) 68.4909 + 52.0654i 0.0961951 + 0.0731256i
\(713\) 9.56623 + 3.81153i 0.0134169 + 0.00534577i
\(714\) −1556.39 592.622i −2.17982 0.830003i
\(715\) −882.092 + 408.099i −1.23370 + 0.570768i
\(716\) 885.802 600.589i 1.23715 0.838811i
\(717\) 486.064 741.117i 0.677914 1.03364i
\(718\) 552.687 650.673i 0.769759 0.906230i
\(719\) −631.320 175.285i −0.878052 0.243790i −0.200881 0.979616i \(-0.564381\pi\)
−0.677171 + 0.735826i \(0.736794\pi\)
\(720\) −21.6079 + 114.840i −0.0300109 + 0.159500i
\(721\) −392.126 + 739.628i −0.543864 + 1.02584i
\(722\) −94.4504 868.457i −0.130818 1.20285i
\(723\) −95.2998 + 214.564i −0.131812 + 0.296769i
\(724\) 226.384 + 815.360i 0.312684 + 1.12619i
\(725\) −105.101 + 227.173i −0.144967 + 0.313342i
\(726\) 921.422 723.015i 1.26918 0.995888i
\(727\) 22.8014 5.01898i 0.0313637 0.00690368i −0.199261 0.979946i \(-0.563854\pi\)
0.230625 + 0.973043i \(0.425923\pi\)
\(728\) 889.932 + 1479.08i 1.22243 + 2.03170i
\(729\) 709.309 + 168.290i 0.972989 + 0.230851i
\(730\) −219.459 + 323.678i −0.300628 + 0.443394i
\(731\) 193.038 + 31.6470i 0.264074 + 0.0432927i
\(732\) −590.290 947.847i −0.806408 1.29487i
\(733\) 700.670 + 663.710i 0.955894 + 0.905471i 0.995597 0.0937405i \(-0.0298824\pi\)
−0.0397025 + 0.999212i \(0.512641\pi\)
\(734\) 84.8741 + 89.6005i 0.115632 + 0.122072i
\(735\) 1099.24 529.182i 1.49556 0.719976i
\(736\) −26.5571 5.84566i −0.0360830 0.00794248i
\(737\) 367.366 + 1090.30i 0.498462 + 1.47938i
\(738\) 339.834 1387.80i 0.460480 1.88049i
\(739\) −940.001 206.910i −1.27199 0.279986i −0.472856 0.881139i \(-0.656777\pi\)
−0.799134 + 0.601153i \(0.794708\pi\)
\(740\) 664.581 + 36.0325i 0.898082 + 0.0486926i
\(741\) −172.542 + 539.288i −0.232850 + 0.727785i
\(742\) −2218.93 2101.88i −2.99047 2.83272i
\(743\) 952.440 51.6398i 1.28188 0.0695017i 0.599428 0.800429i \(-0.295395\pi\)
0.682456 + 0.730927i \(0.260912\pi\)
\(744\) 254.374 90.0766i 0.341901 0.121071i
\(745\) 2.25585 3.32713i 0.00302798 0.00446594i
\(746\) 14.2539 131.063i 0.0191072 0.175687i
\(747\) −1009.38 23.7100i −1.35124 0.0317403i
\(748\) 1182.36 260.258i 1.58070 0.347938i
\(749\) 942.749 154.556i 1.25868 0.206350i
\(750\) 1166.49 81.2082i 1.55532 0.108278i
\(751\) 223.282 + 804.191i 0.297313 + 1.07083i 0.949757 + 0.312989i \(0.101330\pi\)
−0.652443 + 0.757838i \(0.726256\pi\)
\(752\) 80.4469 + 105.826i 0.106977 + 0.140726i
\(753\) −677.841 967.451i −0.900187 1.28480i
\(754\) 479.505 904.442i 0.635948 1.19953i
\(755\) −251.366 + 100.153i −0.332935 + 0.132653i
\(756\) −2061.46 713.337i −2.72680 0.943568i
\(757\) 338.645 398.684i 0.447352 0.526663i −0.491550 0.870849i \(-0.663569\pi\)
0.938901 + 0.344187i \(0.111845\pi\)
\(758\) −390.101 + 206.819i −0.514646 + 0.272848i
\(759\) 29.6395 + 15.1361i 0.0390508 + 0.0199421i
\(760\) −155.905 + 72.1291i −0.205138 + 0.0949067i
\(761\) 243.970 207.230i 0.320591 0.272312i −0.472611 0.881271i \(-0.656688\pi\)
0.793202 + 0.608959i \(0.208413\pi\)
\(762\) −1709.42 + 212.490i −2.24333 + 0.278858i
\(763\) 787.816 + 598.882i 1.03252 + 0.784905i
\(764\) 166.190 276.210i 0.217526 0.361531i
\(765\) 274.303 222.120i 0.358567 0.290353i
\(766\) −667.772 −0.871765
\(767\) −325.769 1168.76i −0.424732 1.52381i
\(768\) −354.969 + 195.226i −0.462199 + 0.254201i
\(769\) 975.660 + 328.738i 1.26874 + 0.427488i 0.871576 0.490260i \(-0.163098\pi\)
0.397163 + 0.917748i \(0.369995\pi\)
\(770\) −1042.08 + 1731.96i −1.35336 + 2.24930i
\(771\) −92.3593 + 623.091i −0.119792 + 0.808159i
\(772\) −97.2411 + 244.057i −0.125960 + 0.316136i
\(773\) 50.5088 42.9026i 0.0653413 0.0555014i −0.614121 0.789212i \(-0.710489\pi\)
0.679462 + 0.733711i \(0.26