Properties

Label 177.3.h.a.5.18
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.18
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.18

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.192085 + 0.570088i) q^{2} +(2.47232 - 1.69930i) q^{3} +(2.89627 + 2.20169i) q^{4} +(1.33026 + 0.530023i) q^{5} +(0.493857 + 1.73585i) q^{6} +(7.94838 - 3.67731i) q^{7} +(-3.80316 + 2.57861i) q^{8} +(3.22474 - 8.40244i) q^{9} +O(q^{10})\) \(q+(-0.192085 + 0.570088i) q^{2} +(2.47232 - 1.69930i) q^{3} +(2.89627 + 2.20169i) q^{4} +(1.33026 + 0.530023i) q^{5} +(0.493857 + 1.73585i) q^{6} +(7.94838 - 3.67731i) q^{7} +(-3.80316 + 2.57861i) q^{8} +(3.22474 - 8.40244i) q^{9} +(-0.557682 + 0.656554i) q^{10} +(-11.5423 - 3.20471i) q^{11} +(10.9018 + 0.521634i) q^{12} +(-8.99080 + 16.9584i) q^{13} +(0.569626 + 5.23763i) q^{14} +(4.18949 - 0.950125i) q^{15} +(3.15368 + 11.3585i) q^{16} +(7.51219 - 16.2373i) q^{17} +(4.17071 + 3.45236i) q^{18} +(4.66573 - 1.02700i) q^{19} +(2.68584 + 4.46390i) q^{20} +(13.4021 - 22.5982i) q^{21} +(4.04407 - 5.96456i) q^{22} +(1.10019 + 0.180367i) q^{23} +(-5.02080 + 12.8379i) q^{24} +(-16.6612 - 15.7824i) q^{25} +(-7.94080 - 8.38300i) q^{26} +(-6.30572 - 26.2533i) q^{27} +(31.1169 + 6.84935i) q^{28} +(14.5010 + 43.0374i) q^{29} +(-0.263084 + 2.57088i) q^{30} +(20.4312 + 4.49725i) q^{31} +(-25.4338 - 1.37898i) q^{32} +(-33.9821 + 11.6908i) q^{33} +(7.81373 + 7.40155i) q^{34} +(12.5225 - 0.678948i) q^{35} +(27.8393 - 17.2359i) q^{36} +(1.96357 - 2.89605i) q^{37} +(-0.310733 + 2.85714i) q^{38} +(6.58941 + 57.2048i) q^{39} +(-6.42591 + 1.41445i) q^{40} +(-34.1083 + 5.59176i) q^{41} +(10.3086 + 11.9811i) q^{42} +(-7.39087 - 26.6195i) q^{43} +(-26.3739 - 34.6943i) q^{44} +(8.74322 - 9.46824i) q^{45} +(-0.314155 + 0.592560i) q^{46} +(-18.9100 + 7.53442i) q^{47} +(27.0985 + 22.7229i) q^{48} +(17.9322 - 21.1114i) q^{49} +(12.1977 - 6.46681i) q^{50} +(-9.01962 - 52.9094i) q^{51} +(-63.3769 + 29.3213i) q^{52} +(-35.6709 + 30.2991i) q^{53} +(16.1779 + 1.44806i) q^{54} +(-13.6557 - 10.3808i) q^{55} +(-20.7466 + 34.4812i) q^{56} +(9.78998 - 10.4676i) q^{57} -27.3205 q^{58} +(-56.7326 + 16.1990i) q^{59} +(14.2258 + 6.47214i) q^{60} +(-79.8914 - 26.9185i) q^{61} +(-6.48835 + 10.7837i) q^{62} +(-5.26699 - 78.6442i) q^{63} +(-11.7815 + 29.5693i) q^{64} +(-20.9484 + 17.7938i) q^{65} +(-0.137355 - 21.6184i) q^{66} +(-51.8146 - 76.4208i) q^{67} +(57.5068 - 30.4882i) q^{68} +(3.02653 - 1.42363i) q^{69} +(-2.01832 + 7.26931i) q^{70} +(98.5311 - 39.2584i) q^{71} +(9.40242 + 40.2712i) q^{72} +(21.0421 - 2.28846i) q^{73} +(1.27383 + 1.67569i) q^{74} +(-68.0109 - 10.7066i) q^{75} +(15.7743 + 7.29799i) q^{76} +(-103.527 + 16.9725i) q^{77} +(-33.8775 - 7.23164i) q^{78} +(3.61903 - 2.17750i) q^{79} +(-1.82508 + 16.7813i) q^{80} +(-60.2022 - 54.1913i) q^{81} +(3.36388 - 20.5188i) q^{82} +(14.6958 - 0.796781i) q^{83} +(88.5702 - 35.9433i) q^{84} +(18.5993 - 17.6182i) q^{85} +(16.5951 + 0.899762i) q^{86} +(108.985 + 81.7606i) q^{87} +(52.1610 - 17.5751i) q^{88} +(-8.33764 - 24.7452i) q^{89} +(3.71828 + 6.80311i) q^{90} +(-9.10078 + 167.854i) q^{91} +(2.78934 + 2.94467i) q^{92} +(58.1547 - 23.6002i) q^{93} +(-0.662961 - 12.2276i) q^{94} +(6.75096 + 1.10676i) q^{95} +(-65.2239 + 39.8105i) q^{96} +(164.018 + 17.8381i) q^{97} +(8.59085 + 14.2781i) q^{98} +(-64.1483 + 86.6493i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.192085 + 0.570088i −0.0960424 + 0.285044i −0.984896 0.173148i \(-0.944606\pi\)
0.888853 + 0.458192i \(0.151503\pi\)
\(3\) 2.47232 1.69930i 0.824107 0.566434i
\(4\) 2.89627 + 2.20169i 0.724067 + 0.550422i
\(5\) 1.33026 + 0.530023i 0.266052 + 0.106005i 0.499349 0.866401i \(-0.333572\pi\)
−0.233298 + 0.972405i \(0.574952\pi\)
\(6\) 0.493857 + 1.73585i 0.0823094 + 0.289308i
\(7\) 7.94838 3.67731i 1.13548 0.525330i 0.240153 0.970735i \(-0.422802\pi\)
0.895329 + 0.445405i \(0.146940\pi\)
\(8\) −3.80316 + 2.57861i −0.475395 + 0.322326i
\(9\) 3.22474 8.40244i 0.358304 0.933605i
\(10\) −0.557682 + 0.656554i −0.0557682 + 0.0656554i
\(11\) −11.5423 3.20471i −1.04930 0.291337i −0.300258 0.953858i \(-0.597073\pi\)
−0.749043 + 0.662521i \(0.769487\pi\)
\(12\) 10.9018 + 0.521634i 0.908486 + 0.0434695i
\(13\) −8.99080 + 16.9584i −0.691600 + 1.30450i 0.250159 + 0.968205i \(0.419517\pi\)
−0.941758 + 0.336290i \(0.890828\pi\)
\(14\) 0.569626 + 5.23763i 0.0406876 + 0.374116i
\(15\) 4.18949 0.950125i 0.279300 0.0633417i
\(16\) 3.15368 + 11.3585i 0.197105 + 0.709908i
\(17\) 7.51219 16.2373i 0.441894 0.955137i −0.550818 0.834625i \(-0.685684\pi\)
0.992712 0.120512i \(-0.0384537\pi\)
\(18\) 4.17071 + 3.45236i 0.231706 + 0.191798i
\(19\) 4.66573 1.02700i 0.245565 0.0540528i −0.0904825 0.995898i \(-0.528841\pi\)
0.336047 + 0.941845i \(0.390910\pi\)
\(20\) 2.68584 + 4.46390i 0.134292 + 0.223195i
\(21\) 13.4021 22.5982i 0.638194 1.07610i
\(22\) 4.04407 5.96456i 0.183821 0.271116i
\(23\) 1.10019 + 0.180367i 0.0478344 + 0.00784206i 0.185652 0.982616i \(-0.440560\pi\)
−0.137817 + 0.990458i \(0.544009\pi\)
\(24\) −5.02080 + 12.8379i −0.209200 + 0.534911i
\(25\) −16.6612 15.7824i −0.666449 0.631294i
\(26\) −7.94080 8.38300i −0.305415 0.322423i
\(27\) −6.30572 26.2533i −0.233545 0.972346i
\(28\) 31.1169 + 6.84935i 1.11132 + 0.244620i
\(29\) 14.5010 + 43.0374i 0.500034 + 1.48405i 0.839464 + 0.543415i \(0.182869\pi\)
−0.339430 + 0.940631i \(0.610234\pi\)
\(30\) −0.263084 + 2.57088i −0.00876947 + 0.0856961i
\(31\) 20.4312 + 4.49725i 0.659071 + 0.145072i 0.531898 0.846808i \(-0.321479\pi\)
0.127172 + 0.991881i \(0.459410\pi\)
\(32\) −25.4338 1.37898i −0.794808 0.0430932i
\(33\) −33.9821 + 11.6908i −1.02976 + 0.354268i
\(34\) 7.81373 + 7.40155i 0.229815 + 0.217693i
\(35\) 12.5225 0.678948i 0.357784 0.0193985i
\(36\) 27.8393 17.2359i 0.773313 0.478775i
\(37\) 1.96357 2.89605i 0.0530694 0.0782716i −0.800229 0.599695i \(-0.795289\pi\)
0.853298 + 0.521424i \(0.174599\pi\)
\(38\) −0.310733 + 2.85714i −0.00817719 + 0.0751880i
\(39\) 6.58941 + 57.2048i 0.168959 + 1.46679i
\(40\) −6.42591 + 1.41445i −0.160648 + 0.0353612i
\(41\) −34.1083 + 5.59176i −0.831909 + 0.136384i −0.562662 0.826687i \(-0.690223\pi\)
−0.269246 + 0.963071i \(0.586775\pi\)
\(42\) 10.3086 + 11.9811i 0.245443 + 0.285265i
\(43\) −7.39087 26.6195i −0.171881 0.619059i −0.998421 0.0561805i \(-0.982108\pi\)
0.826540 0.562878i \(-0.190306\pi\)
\(44\) −26.3739 34.6943i −0.599407 0.788506i
\(45\) 8.74322 9.46824i 0.194294 0.210405i
\(46\) −0.314155 + 0.592560i −0.00682946 + 0.0128817i
\(47\) −18.9100 + 7.53442i −0.402340 + 0.160307i −0.562525 0.826780i \(-0.690170\pi\)
0.160185 + 0.987087i \(0.448791\pi\)
\(48\) 27.0985 + 22.7229i 0.564552 + 0.473393i
\(49\) 17.9322 21.1114i 0.365963 0.430845i
\(50\) 12.1977 6.46681i 0.243954 0.129336i
\(51\) −9.01962 52.9094i −0.176855 1.03744i
\(52\) −63.3769 + 29.3213i −1.21879 + 0.563871i
\(53\) −35.6709 + 30.2991i −0.673035 + 0.571681i −0.917383 0.398007i \(-0.869702\pi\)
0.244348 + 0.969688i \(0.421426\pi\)
\(54\) 16.1779 + 1.44806i 0.299591 + 0.0268158i
\(55\) −13.6557 10.3808i −0.248285 0.188742i
\(56\) −20.7466 + 34.4812i −0.370476 + 0.615735i
\(57\) 9.78998 10.4676i 0.171754 0.183642i
\(58\) −27.3205 −0.471043
\(59\) −56.7326 + 16.1990i −0.961570 + 0.274560i
\(60\) 14.2258 + 6.47214i 0.237096 + 0.107869i
\(61\) −79.8914 26.9185i −1.30969 0.441288i −0.424045 0.905641i \(-0.639390\pi\)
−0.885650 + 0.464354i \(0.846287\pi\)
\(62\) −6.48835 + 10.7837i −0.104651 + 0.173931i
\(63\) −5.26699 78.6442i −0.0836030 1.24832i
\(64\) −11.7815 + 29.5693i −0.184085 + 0.462020i
\(65\) −20.9484 + 17.7938i −0.322284 + 0.273750i
\(66\) −0.137355 21.6184i −0.00208114 0.327551i
\(67\) −51.8146 76.4208i −0.773353 1.14061i −0.986527 0.163596i \(-0.947691\pi\)
0.213175 0.977014i \(-0.431620\pi\)
\(68\) 57.5068 30.4882i 0.845689 0.448356i
\(69\) 3.02653 1.42363i 0.0438627 0.0206324i
\(70\) −2.01832 + 7.26931i −0.0288331 + 0.103847i
\(71\) 98.5311 39.2584i 1.38776 0.552935i 0.447776 0.894146i \(-0.352216\pi\)
0.939987 + 0.341211i \(0.110837\pi\)
\(72\) 9.40242 + 40.2712i 0.130589 + 0.559322i
\(73\) 21.0421 2.28846i 0.288248 0.0313488i 0.0371470 0.999310i \(-0.488173\pi\)
0.251101 + 0.967961i \(0.419207\pi\)
\(74\) 1.27383 + 1.67569i 0.0172139 + 0.0226445i
\(75\) −68.0109 10.7066i −0.906812 0.142754i
\(76\) 15.7743 + 7.29799i 0.207557 + 0.0960261i
\(77\) −103.527 + 16.9725i −1.34451 + 0.220422i
\(78\) −33.8775 7.23164i −0.434327 0.0927133i
\(79\) 3.61903 2.17750i 0.0458104 0.0275632i −0.492464 0.870333i \(-0.663904\pi\)
0.538275 + 0.842769i \(0.319076\pi\)
\(80\) −1.82508 + 16.7813i −0.0228135 + 0.209766i
\(81\) −60.2022 54.1913i −0.743237 0.669029i
\(82\) 3.36388 20.5188i 0.0410230 0.250229i
\(83\) 14.6958 0.796781i 0.177057 0.00959977i 0.0346030 0.999401i \(-0.488983\pi\)
0.142454 + 0.989801i \(0.454501\pi\)
\(84\) 88.5702 35.9433i 1.05441 0.427897i
\(85\) 18.5993 17.6182i 0.218816 0.207273i
\(86\) 16.5951 + 0.899762i 0.192967 + 0.0104624i
\(87\) 108.985 + 81.7606i 1.25270 + 0.939777i
\(88\) 52.1610 17.5751i 0.592739 0.199717i
\(89\) −8.33764 24.7452i −0.0936814 0.278036i 0.890560 0.454865i \(-0.150313\pi\)
−0.984242 + 0.176829i \(0.943416\pi\)
\(90\) 3.71828 + 6.80311i 0.0413143 + 0.0755901i
\(91\) −9.10078 + 167.854i −0.100009 + 1.84455i
\(92\) 2.78934 + 2.94467i 0.0303189 + 0.0320073i
\(93\) 58.1547 23.6002i 0.625319 0.253765i
\(94\) −0.662961 12.2276i −0.00705277 0.130081i
\(95\) 6.75096 + 1.10676i 0.0710627 + 0.0116501i
\(96\) −65.2239 + 39.8105i −0.679416 + 0.414693i
\(97\) 164.018 + 17.8381i 1.69091 + 0.183898i 0.902334 0.431038i \(-0.141852\pi\)
0.788578 + 0.614935i \(0.210818\pi\)
\(98\) 8.59085 + 14.2781i 0.0876617 + 0.145695i
\(99\) −64.1483 + 86.6493i −0.647963 + 0.875246i
\(100\) −13.5076 82.3927i −0.135076 0.823927i
\(101\) −76.3371 + 165.000i −0.755813 + 1.63366i 0.0176675 + 0.999844i \(0.494376\pi\)
−0.773481 + 0.633820i \(0.781486\pi\)
\(102\) 31.8955 + 5.02112i 0.312701 + 0.0492267i
\(103\) −47.6963 + 36.2578i −0.463071 + 0.352017i −0.810549 0.585671i \(-0.800831\pi\)
0.347478 + 0.937688i \(0.387038\pi\)
\(104\) −9.53572 87.6795i −0.0916896 0.843072i
\(105\) 29.8058 22.9580i 0.283865 0.218648i
\(106\) −10.4213 26.1555i −0.0983142 0.246750i
\(107\) 41.1362 + 11.4214i 0.384450 + 0.106742i 0.454376 0.890810i \(-0.349862\pi\)
−0.0699255 + 0.997552i \(0.522276\pi\)
\(108\) 39.5386 89.9200i 0.366098 0.832592i
\(109\) −63.2302 119.265i −0.580093 1.09417i −0.983798 0.179283i \(-0.942622\pi\)
0.403704 0.914890i \(-0.367723\pi\)
\(110\) 8.54101 5.79095i 0.0776455 0.0526450i
\(111\) −0.0666920 10.4967i −0.000600829 0.0945645i
\(112\) 66.8355 + 78.6848i 0.596746 + 0.702543i
\(113\) 167.432 + 66.7110i 1.48170 + 0.590363i 0.964166 0.265300i \(-0.0854710\pi\)
0.517533 + 0.855663i \(0.326850\pi\)
\(114\) 4.08692 + 7.59181i 0.0358502 + 0.0665948i
\(115\) 1.36794 + 0.823062i 0.0118951 + 0.00715706i
\(116\) −52.7560 + 156.574i −0.454793 + 1.34978i
\(117\) 113.499 + 130.231i 0.970080 + 1.11309i
\(118\) 1.66261 35.4542i 0.0140899 0.300459i
\(119\) 156.685i 1.31668i
\(120\) −13.4833 + 14.4165i −0.112361 + 0.120138i
\(121\) 19.2752 + 11.5975i 0.159299 + 0.0958471i
\(122\) 30.6919 40.3744i 0.251573 0.330938i
\(123\) −74.8244 + 71.7849i −0.608329 + 0.583617i
\(124\) 49.2727 + 58.0083i 0.397361 + 0.467809i
\(125\) −28.8303 62.3157i −0.230643 0.498526i
\(126\) 45.8458 + 12.1037i 0.363855 + 0.0960612i
\(127\) 93.0988 + 175.603i 0.733062 + 1.38270i 0.916647 + 0.399697i \(0.130885\pi\)
−0.183586 + 0.983004i \(0.558770\pi\)
\(128\) −92.2468 78.3551i −0.720678 0.612149i
\(129\) −63.5073 53.2527i −0.492304 0.412811i
\(130\) −6.12013 15.3604i −0.0470779 0.118157i
\(131\) 88.2294 + 46.7763i 0.673507 + 0.357071i 0.769803 0.638282i \(-0.220355\pi\)
−0.0962958 + 0.995353i \(0.530699\pi\)
\(132\) −124.161 40.9581i −0.940612 0.310288i
\(133\) 33.3083 25.3203i 0.250439 0.190379i
\(134\) 53.5194 14.8596i 0.399398 0.110892i
\(135\) 5.52664 38.2659i 0.0409381 0.283451i
\(136\) 13.2996 + 81.1242i 0.0977915 + 0.596502i
\(137\) −46.3430 210.538i −0.338270 1.53678i −0.771935 0.635702i \(-0.780711\pi\)
0.433665 0.901074i \(-0.357220\pi\)
\(138\) 0.230246 + 1.99884i 0.00166845 + 0.0144844i
\(139\) −25.8865 2.81533i −0.186234 0.0202541i 0.0145268 0.999894i \(-0.495376\pi\)
−0.200761 + 0.979640i \(0.564341\pi\)
\(140\) 37.7632 + 25.6041i 0.269737 + 0.182886i
\(141\) −33.9482 + 50.7613i −0.240768 + 0.360009i
\(142\) 3.45438 + 63.7123i 0.0243266 + 0.448678i
\(143\) 158.121 166.927i 1.10574 1.16732i
\(144\) 105.609 + 10.1296i 0.733397 + 0.0703447i
\(145\) −3.52076 + 64.9366i −0.0242811 + 0.447839i
\(146\) −2.73724 + 12.4354i −0.0187482 + 0.0851740i
\(147\) 8.45943 82.6664i 0.0575471 0.562356i
\(148\) 12.0632 4.06457i 0.0815082 0.0274633i
\(149\) 8.97179 40.7593i 0.0602134 0.273552i −0.936889 0.349628i \(-0.886308\pi\)
0.997102 + 0.0760757i \(0.0242391\pi\)
\(150\) 19.1675 36.7156i 0.127784 0.244771i
\(151\) 153.627 145.523i 1.01739 0.963727i 0.0180467 0.999837i \(-0.494255\pi\)
0.999348 + 0.0361099i \(0.0114966\pi\)
\(152\) −15.0963 + 15.9369i −0.0993176 + 0.104848i
\(153\) −112.208 115.482i −0.733389 0.754784i
\(154\) 10.2103 62.2799i 0.0663004 0.404415i
\(155\) 24.7951 + 16.8115i 0.159969 + 0.108461i
\(156\) −106.862 + 180.188i −0.685015 + 1.15505i
\(157\) −83.5947 + 50.2973i −0.532450 + 0.320365i −0.756263 0.654267i \(-0.772977\pi\)
0.223813 + 0.974632i \(0.428150\pi\)
\(158\) 0.546203 + 2.48143i 0.00345698 + 0.0157052i
\(159\) −36.7024 + 135.525i −0.230833 + 0.852356i
\(160\) −33.1027 15.3149i −0.206892 0.0957183i
\(161\) 9.40801 2.61212i 0.0584348 0.0162244i
\(162\) 42.4577 23.9112i 0.262085 0.147600i
\(163\) −26.6091 + 2.89391i −0.163246 + 0.0177541i −0.189377 0.981904i \(-0.560647\pi\)
0.0261311 + 0.999659i \(0.491681\pi\)
\(164\) −111.098 58.9004i −0.677427 0.359149i
\(165\) −51.4013 2.45947i −0.311523 0.0149059i
\(166\) −2.36860 + 8.53092i −0.0142687 + 0.0513911i
\(167\) 163.949 + 139.259i 0.981729 + 0.833888i 0.986109 0.166102i \(-0.0531182\pi\)
−0.00437947 + 0.999990i \(0.501394\pi\)
\(168\) 7.30165 + 120.503i 0.0434622 + 0.717282i
\(169\) −111.914 165.060i −0.662211 0.976688i
\(170\) 6.47128 + 13.9874i 0.0380663 + 0.0822790i
\(171\) 6.41639 42.5153i 0.0375227 0.248628i
\(172\) 37.2019 93.3697i 0.216290 0.542847i
\(173\) 193.856 255.013i 1.12055 1.47406i 0.259365 0.965779i \(-0.416487\pi\)
0.861189 0.508284i \(-0.169720\pi\)
\(174\) −67.5450 + 46.4258i −0.388190 + 0.266815i
\(175\) −190.466 64.1756i −1.08838 0.366718i
\(176\) 141.210i 0.802332i
\(177\) −112.734 + 136.455i −0.636916 + 0.770933i
\(178\) 15.7085 0.0882500
\(179\) 10.9378 32.4623i 0.0611052 0.181354i −0.912752 0.408513i \(-0.866047\pi\)
0.973858 + 0.227160i \(0.0729439\pi\)
\(180\) 46.1688 8.17272i 0.256493 0.0454040i
\(181\) −83.9075 63.7848i −0.463577 0.352402i 0.347166 0.937804i \(-0.387144\pi\)
−0.810744 + 0.585401i \(0.800937\pi\)
\(182\) −93.9434 37.4305i −0.516173 0.205662i
\(183\) −243.260 + 69.2084i −1.32929 + 0.378188i
\(184\) −4.64930 + 2.15100i −0.0252680 + 0.0116902i
\(185\) 4.14703 2.81175i 0.0224164 0.0151987i
\(186\) 2.28353 + 37.6865i 0.0122771 + 0.202616i
\(187\) −138.744 + 163.342i −0.741947 + 0.873487i
\(188\) −71.3568 19.8121i −0.379557 0.105384i
\(189\) −146.662 185.483i −0.775989 0.981394i
\(190\) −1.92771 + 3.63604i −0.0101458 + 0.0191371i
\(191\) 24.6194 + 226.371i 0.128897 + 1.18519i 0.862660 + 0.505784i \(0.168797\pi\)
−0.733763 + 0.679406i \(0.762238\pi\)
\(192\) 21.1196 + 93.1249i 0.109998 + 0.485026i
\(193\) 85.7149 + 308.717i 0.444119 + 1.59957i 0.759434 + 0.650585i \(0.225476\pi\)
−0.315315 + 0.948987i \(0.602110\pi\)
\(194\) −41.6747 + 90.0785i −0.214818 + 0.464322i
\(195\) −21.5543 + 79.5897i −0.110535 + 0.408152i
\(196\) 98.4171 21.6632i 0.502128 0.110527i
\(197\) 84.0148 + 139.634i 0.426471 + 0.708801i 0.993367 0.114989i \(-0.0366833\pi\)
−0.566896 + 0.823790i \(0.691856\pi\)
\(198\) −37.0758 53.2142i −0.187251 0.268759i
\(199\) 116.544 171.889i 0.585646 0.863763i −0.413256 0.910615i \(-0.635608\pi\)
0.998902 + 0.0468515i \(0.0149188\pi\)
\(200\) 104.062 + 17.0601i 0.520309 + 0.0853004i
\(201\) −257.965 100.888i −1.28341 0.501931i
\(202\) −79.4013 75.2129i −0.393076 0.372341i
\(203\) 273.521 + 288.753i 1.34739 + 1.42243i
\(204\) 90.3666 173.098i 0.442974 0.848520i
\(205\) −48.3365 10.6397i −0.235788 0.0519009i
\(206\) −11.5084 34.1556i −0.0558659 0.165804i
\(207\) 5.06335 8.66266i 0.0244606 0.0418486i
\(208\) −220.977 48.6407i −1.06239 0.233850i
\(209\) −57.1445 3.09829i −0.273419 0.0148243i
\(210\) 7.36285 + 21.4018i 0.0350612 + 0.101913i
\(211\) 139.051 + 131.716i 0.659010 + 0.624247i 0.942293 0.334789i \(-0.108665\pi\)
−0.283283 + 0.959036i \(0.591424\pi\)
\(212\) −170.021 + 9.21830i −0.801988 + 0.0434825i
\(213\) 176.889 264.494i 0.830463 1.24175i
\(214\) −14.4128 + 21.2573i −0.0673497 + 0.0993334i
\(215\) 4.27720 39.3282i 0.0198939 0.182922i
\(216\) 91.6788 + 83.5857i 0.424439 + 0.386971i
\(217\) 178.933 39.3861i 0.824575 0.181503i
\(218\) 80.1370 13.1378i 0.367601 0.0602651i
\(219\) 48.1340 41.4147i 0.219790 0.189108i
\(220\) −16.6953 60.1311i −0.0758878 0.273323i
\(221\) 207.819 + 273.382i 0.940359 + 1.23702i
\(222\) 5.99683 + 1.97823i 0.0270127 + 0.00891094i
\(223\) −154.987 + 292.337i −0.695009 + 1.31093i 0.244915 + 0.969544i \(0.421240\pi\)
−0.939925 + 0.341382i \(0.889105\pi\)
\(224\) −207.229 + 82.5675i −0.925129 + 0.368605i
\(225\) −186.338 + 89.1011i −0.828171 + 0.396005i
\(226\) −70.1923 + 82.6368i −0.310585 + 0.365649i
\(227\) 46.9188 24.8748i 0.206691 0.109580i −0.361848 0.932237i \(-0.617854\pi\)
0.568538 + 0.822657i \(0.307509\pi\)
\(228\) 51.4007 8.76243i 0.225442 0.0384317i
\(229\) 142.401 65.8815i 0.621837 0.287692i −0.0835626 0.996503i \(-0.526630\pi\)
0.705399 + 0.708810i \(0.250768\pi\)
\(230\) −0.731978 + 0.621748i −0.00318251 + 0.00270325i
\(231\) −227.112 + 217.886i −0.983167 + 0.943229i
\(232\) −166.126 126.286i −0.716061 0.544335i
\(233\) 139.382 231.655i 0.598206 0.994226i −0.398810 0.917033i \(-0.630577\pi\)
0.997016 0.0771925i \(-0.0245956\pi\)
\(234\) −96.0447 + 39.6892i −0.410447 + 0.169612i
\(235\) −29.1486 −0.124036
\(236\) −199.978 77.9907i −0.847365 0.330469i
\(237\) 5.24716 11.5333i 0.0221399 0.0486637i
\(238\) 89.3243 + 30.0969i 0.375312 + 0.126457i
\(239\) −127.950 + 212.655i −0.535356 + 0.889768i 0.464635 + 0.885502i \(0.346185\pi\)
−0.999991 + 0.00426587i \(0.998642\pi\)
\(240\) 24.0043 + 44.5901i 0.100018 + 0.185792i
\(241\) 166.399 417.630i 0.690453 1.73291i 0.0101794 0.999948i \(-0.496760\pi\)
0.680274 0.732958i \(-0.261861\pi\)
\(242\) −10.3141 + 8.76084i −0.0426201 + 0.0362018i
\(243\) −240.927 31.6766i −0.991467 0.130356i
\(244\) −172.121 253.859i −0.705413 1.04041i
\(245\) 35.0440 18.5791i 0.143037 0.0758332i
\(246\) −26.5510 56.4453i −0.107931 0.229452i
\(247\) −24.5322 + 88.3570i −0.0993207 + 0.357721i
\(248\) −89.2998 + 35.5803i −0.360080 + 0.143469i
\(249\) 34.9787 26.9425i 0.140477 0.108203i
\(250\) 41.0633 4.46590i 0.164253 0.0178636i
\(251\) −301.809 397.023i −1.20243 1.58177i −0.692142 0.721761i \(-0.743333\pi\)
−0.510285 0.860005i \(-0.670460\pi\)
\(252\) 157.895 239.371i 0.626568 0.949885i
\(253\) −12.1207 5.60765i −0.0479080 0.0221646i
\(254\) −117.992 + 19.3438i −0.464535 + 0.0761567i
\(255\) 16.0448 75.1637i 0.0629207 0.294760i
\(256\) −46.7063 + 28.1022i −0.182446 + 0.109774i
\(257\) 18.3438 168.669i 0.0713768 0.656299i −0.902730 0.430208i \(-0.858440\pi\)
0.974106 0.226090i \(-0.0725944\pi\)
\(258\) 42.5575 25.9757i 0.164951 0.100681i
\(259\) 4.95752 30.2395i 0.0191410 0.116755i
\(260\) −99.8486 + 5.41364i −0.384033 + 0.0208217i
\(261\) 408.381 + 16.9405i 1.56468 + 0.0649060i
\(262\) −43.6141 + 41.3135i −0.166466 + 0.157685i
\(263\) −151.073 8.19093i −0.574421 0.0311442i −0.235359 0.971908i \(-0.575627\pi\)
−0.339062 + 0.940764i \(0.610110\pi\)
\(264\) 99.0933 132.089i 0.375353 0.500336i
\(265\) −63.5107 + 21.3992i −0.239663 + 0.0807518i
\(266\) 8.03679 + 23.8523i 0.0302135 + 0.0896704i
\(267\) −62.6630 47.0100i −0.234693 0.176067i
\(268\) 18.1857 335.415i 0.0678570 1.25155i
\(269\) −47.4984 50.1435i −0.176574 0.186407i 0.631701 0.775212i \(-0.282357\pi\)
−0.808275 + 0.588805i \(0.799598\pi\)
\(270\) 20.7533 + 10.5010i 0.0768642 + 0.0388925i
\(271\) 10.7325 + 197.949i 0.0396032 + 0.730438i 0.949148 + 0.314831i \(0.101948\pi\)
−0.909544 + 0.415607i \(0.863569\pi\)
\(272\) 208.123 + 34.1201i 0.765159 + 0.125441i
\(273\) 262.735 + 430.454i 0.962399 + 1.57675i
\(274\) 128.927 + 14.0217i 0.470537 + 0.0511740i
\(275\) 141.731 + 235.559i 0.515387 + 0.856579i
\(276\) 11.9000 + 2.54023i 0.0431160 + 0.00920374i
\(277\) 30.7399 + 187.505i 0.110974 + 0.676914i 0.982457 + 0.186488i \(0.0597106\pi\)
−0.871483 + 0.490426i \(0.836841\pi\)
\(278\) 6.57739 14.2168i 0.0236597 0.0511395i
\(279\) 103.673 157.170i 0.371588 0.563332i
\(280\) −45.8742 + 34.8727i −0.163836 + 0.124545i
\(281\) −0.712710 6.55326i −0.00253633 0.0233212i 0.992801 0.119772i \(-0.0382164\pi\)
−0.995338 + 0.0964510i \(0.969251\pi\)
\(282\) −22.4174 29.1040i −0.0794945 0.103205i
\(283\) 98.5793 + 247.415i 0.348337 + 0.874259i 0.993873 + 0.110529i \(0.0352546\pi\)
−0.645536 + 0.763730i \(0.723366\pi\)
\(284\) 371.807 + 103.232i 1.30918 + 0.363492i
\(285\) 18.5713 8.73565i 0.0651623 0.0306514i
\(286\) 64.7902 + 122.207i 0.226539 + 0.427298i
\(287\) −250.543 + 169.872i −0.872971 + 0.591889i
\(288\) −93.6043 + 209.260i −0.325015 + 0.726596i
\(289\) −20.1234 23.6911i −0.0696311 0.0819761i
\(290\) −36.3433 14.4805i −0.125322 0.0499327i
\(291\) 435.818 234.616i 1.49766 0.806239i
\(292\) 65.9820 + 39.7001i 0.225966 + 0.135959i
\(293\) 49.4682 146.817i 0.168834 0.501080i −0.829518 0.558481i \(-0.811385\pi\)
0.998351 + 0.0574002i \(0.0182811\pi\)
\(294\) 45.5021 + 20.7016i 0.154769 + 0.0704135i
\(295\) −84.0549 8.52071i −0.284932 0.0288838i
\(296\) 16.0774i 0.0543156i
\(297\) −11.3516 + 323.232i −0.0382210 + 1.08832i
\(298\) 21.5130 + 12.9439i 0.0721913 + 0.0434361i
\(299\) −12.9503 + 17.0359i −0.0433122 + 0.0569762i
\(300\) −173.405 180.748i −0.578018 0.602492i
\(301\) −156.634 184.404i −0.520378 0.612636i
\(302\) 53.4514 + 115.533i 0.176991 + 0.382561i
\(303\) 91.6552 + 537.653i 0.302493 + 1.77443i
\(304\) 26.3795 + 49.7569i 0.0867746 + 0.163674i
\(305\) −92.0087 78.1529i −0.301668 0.256239i
\(306\) 87.3884 41.7863i 0.285583 0.136557i
\(307\) 160.610 + 403.100i 0.523158 + 1.31303i 0.918836 + 0.394639i \(0.129130\pi\)
−0.395678 + 0.918389i \(0.629490\pi\)
\(308\) −337.211 178.778i −1.09484 0.580448i
\(309\) −56.3075 + 170.691i −0.182225 + 0.552399i
\(310\) −14.3468 + 10.9062i −0.0462800 + 0.0351811i
\(311\) 561.824 155.990i 1.80651 0.501574i 0.810102 0.586289i \(-0.199412\pi\)
0.996405 + 0.0847146i \(0.0269978\pi\)
\(312\) −172.569 200.568i −0.553107 0.642845i
\(313\) 7.52989 + 45.9303i 0.0240572 + 0.146742i 0.996124 0.0879631i \(-0.0280358\pi\)
−0.972067 + 0.234705i \(0.924587\pi\)
\(314\) −12.6166 57.3177i −0.0401802 0.182540i
\(315\) 34.6768 107.409i 0.110085 0.340980i
\(316\) 15.2758 + 1.66135i 0.0483412 + 0.00525743i
\(317\) −180.742 122.546i −0.570164 0.386581i 0.241767 0.970334i \(-0.422273\pi\)
−0.811931 + 0.583753i \(0.801584\pi\)
\(318\) −70.2110 46.9558i −0.220789 0.147660i
\(319\) −29.4526 543.222i −0.0923281 1.70289i
\(320\) −31.3448 + 33.0903i −0.0979524 + 0.103407i
\(321\) 121.110 41.6655i 0.377290 0.129799i
\(322\) −0.317999 + 5.86514i −0.000987573 + 0.0182147i
\(323\) 18.3740 83.4740i 0.0568855 0.258433i
\(324\) −55.0493 289.499i −0.169905 0.893515i
\(325\) 417.442 140.652i 1.28444 0.432777i
\(326\) 3.46142 15.7254i 0.0106178 0.0482373i
\(327\) −358.992 187.413i −1.09784 0.573130i
\(328\) 115.300 109.218i 0.351525 0.332982i
\(329\) −122.597 + 129.424i −0.372636 + 0.393387i
\(330\) 11.2755 28.8308i 0.0341683 0.0873662i
\(331\) −65.8827 + 401.867i −0.199042 + 1.21410i 0.678501 + 0.734600i \(0.262630\pi\)
−0.877542 + 0.479500i \(0.840818\pi\)
\(332\) 44.3171 + 30.0478i 0.133485 + 0.0905053i
\(333\) −18.0019 25.8378i −0.0540597 0.0775909i
\(334\) −110.882 + 66.7155i −0.331982 + 0.199747i
\(335\) −28.4220 129.122i −0.0848418 0.385440i
\(336\) 298.948 + 80.9603i 0.889727 + 0.240953i
\(337\) −15.5482 7.19334i −0.0461370 0.0213452i 0.396685 0.917955i \(-0.370161\pi\)
−0.442822 + 0.896610i \(0.646023\pi\)
\(338\) 115.596 32.0950i 0.341999 0.0949556i
\(339\) 527.308 119.587i 1.55548 0.352763i
\(340\) 92.6584 10.0772i 0.272525 0.0296388i
\(341\) −221.411 117.385i −0.649299 0.344237i
\(342\) 23.0050 + 11.8245i 0.0672660 + 0.0345744i
\(343\) −49.9066 + 179.748i −0.145500 + 0.524045i
\(344\) 96.7500 + 82.1802i 0.281250 + 0.238896i
\(345\) 4.78062 0.289672i 0.0138569 0.000839628i
\(346\) 108.143 + 159.499i 0.312552 + 0.460980i
\(347\) 224.410 + 485.055i 0.646715 + 1.39785i 0.902318 + 0.431070i \(0.141864\pi\)
−0.255603 + 0.966782i \(0.582274\pi\)
\(348\) 135.637 + 476.750i 0.389763 + 1.36997i
\(349\) 100.632 252.567i 0.288343 0.723687i −0.711438 0.702749i \(-0.751956\pi\)
0.999781 0.0209375i \(-0.00666511\pi\)
\(350\) 73.1714 96.2554i 0.209061 0.275015i
\(351\) 501.909 + 129.103i 1.42994 + 0.367815i
\(352\) 289.146 + 97.4247i 0.821438 + 0.276775i
\(353\) 91.7221i 0.259836i 0.991525 + 0.129918i \(0.0414714\pi\)
−0.991525 + 0.129918i \(0.958529\pi\)
\(354\) −56.1369 90.4793i −0.158579 0.255591i
\(355\) 151.880 0.427830
\(356\) 30.3332 90.0258i 0.0852056 0.252881i
\(357\) −266.256 387.376i −0.745814 1.08509i
\(358\) 16.4054 + 12.4710i 0.0458251 + 0.0348353i
\(359\) 101.044 + 40.2595i 0.281459 + 0.112143i 0.506596 0.862184i \(-0.330904\pi\)
−0.225137 + 0.974327i \(0.572283\pi\)
\(360\) −8.83703 + 58.5546i −0.0245473 + 0.162652i
\(361\) −306.920 + 141.997i −0.850195 + 0.393342i
\(362\) 52.4803 35.5825i 0.144973 0.0982943i
\(363\) 67.3621 4.08167i 0.185571 0.0112443i
\(364\) −395.920 + 466.113i −1.08769 + 1.28053i
\(365\) 29.2043 + 8.10854i 0.0800119 + 0.0222152i
\(366\) 7.27167 151.973i 0.0198679 0.415228i
\(367\) 206.329 389.178i 0.562205 1.06043i −0.425626 0.904899i \(-0.639946\pi\)
0.987831 0.155531i \(-0.0497090\pi\)
\(368\) 1.42095 + 13.0654i 0.00386127 + 0.0355038i
\(369\) −63.0056 + 304.625i −0.170747 + 0.825541i
\(370\) 0.806365 + 2.90426i 0.00217937 + 0.00784936i
\(371\) −172.106 + 372.002i −0.463898 + 1.00270i
\(372\) 220.392 + 59.6859i 0.592451 + 0.160446i
\(373\) 419.735 92.3906i 1.12529 0.247696i 0.386937 0.922106i \(-0.373533\pi\)
0.738357 + 0.674410i \(0.235602\pi\)
\(374\) −66.4687 110.472i −0.177724 0.295379i
\(375\) −177.171 105.073i −0.472456 0.280195i
\(376\) 52.4894 77.4161i 0.139599 0.205894i
\(377\) −860.222 141.026i −2.28176 0.374075i
\(378\) 133.913 47.9816i 0.354268 0.126936i
\(379\) −174.054 164.873i −0.459246 0.435021i 0.422772 0.906236i \(-0.361057\pi\)
−0.882018 + 0.471215i \(0.843816\pi\)
\(380\) 17.1158 + 18.0690i 0.0450417 + 0.0475499i
\(381\) 528.573 + 275.944i 1.38733 + 0.724262i
\(382\) −133.780 29.4473i −0.350211 0.0770872i
\(383\) −108.306 321.442i −0.282784 0.839274i −0.991069 0.133347i \(-0.957427\pi\)
0.708285 0.705927i \(-0.249469\pi\)
\(384\) −361.213 36.9637i −0.940658 0.0962596i
\(385\) −146.714 32.2942i −0.381075 0.0838810i
\(386\) −192.460 10.4349i −0.498602 0.0270334i
\(387\) −247.503 23.7395i −0.639542 0.0613424i
\(388\) 435.768 + 412.781i 1.12311 + 1.06387i
\(389\) 81.1920 4.40210i 0.208720 0.0113165i 0.0505175 0.998723i \(-0.483913\pi\)
0.158202 + 0.987407i \(0.449430\pi\)
\(390\) −41.2328 27.5758i −0.105725 0.0707072i
\(391\) 11.1935 16.5092i 0.0286280 0.0422231i
\(392\) −13.7610 + 126.530i −0.0351046 + 0.322781i
\(393\) 297.618 34.2826i 0.757299 0.0872331i
\(394\) −95.7414 + 21.0743i −0.242999 + 0.0534880i
\(395\) 5.96836 0.978463i 0.0151098 0.00247712i
\(396\) −376.565 + 109.725i −0.950923 + 0.277084i
\(397\) −192.275 692.513i −0.484321 1.74437i −0.651703 0.758474i \(-0.725945\pi\)
0.167383 0.985892i \(-0.446468\pi\)
\(398\) 75.6055 + 99.4573i 0.189964 + 0.249893i
\(399\) 39.3220 119.201i 0.0985513 0.298749i
\(400\) 126.720 239.020i 0.316800 0.597549i
\(401\) 302.075 120.358i 0.753304 0.300144i 0.0383018 0.999266i \(-0.487805\pi\)
0.715002 + 0.699123i \(0.246426\pi\)
\(402\) 107.066 127.683i 0.266334 0.317620i
\(403\) −259.959 + 306.047i −0.645060 + 0.759423i
\(404\) −584.371 + 309.814i −1.44646 + 0.766866i
\(405\) −51.3617 103.997i −0.126819 0.256783i
\(406\) −217.154 + 100.466i −0.534861 + 0.247453i
\(407\) −31.9451 + 27.1344i −0.0784893 + 0.0666694i
\(408\) 170.736 + 177.965i 0.418470 + 0.436189i
\(409\) −130.315 99.0629i −0.318619 0.242208i 0.433624 0.901094i \(-0.357235\pi\)
−0.752242 + 0.658886i \(0.771028\pi\)
\(410\) 15.3503 25.5123i 0.0374397 0.0622252i
\(411\) −472.343 441.767i −1.14925 1.07486i
\(412\) −217.969 −0.529052
\(413\) −391.364 + 337.380i −0.947611 + 0.816900i
\(414\) 3.96588 + 4.55052i 0.00957943 + 0.0109916i
\(415\) 19.9715 + 6.72917i 0.0481240 + 0.0162149i
\(416\) 252.056 418.920i 0.605904 1.00702i
\(417\) −68.7838 + 37.0286i −0.164949 + 0.0887976i
\(418\) 12.7429 31.9823i 0.0304854 0.0765126i
\(419\) 148.344 126.005i 0.354043 0.300727i −0.452661 0.891683i \(-0.649525\pi\)
0.806704 + 0.590956i \(0.201249\pi\)
\(420\) 136.872 0.869635i 0.325886 0.00207056i
\(421\) −26.3626 38.8819i −0.0626189 0.0923559i 0.795090 0.606491i \(-0.207423\pi\)
−0.857709 + 0.514135i \(0.828113\pi\)
\(422\) −101.799 + 53.9706i −0.241231 + 0.127892i
\(423\) 2.32790 + 183.187i 0.00550330 + 0.433065i
\(424\) 57.5326 207.214i 0.135690 0.488711i
\(425\) −381.426 + 151.974i −0.897472 + 0.357586i
\(426\) 116.807 + 151.647i 0.274195 + 0.355979i
\(427\) −733.995 + 79.8267i −1.71896 + 0.186948i
\(428\) 93.9951 + 123.648i 0.219615 + 0.288898i
\(429\) 107.268 681.393i 0.250041 1.58833i
\(430\) 21.5989 + 9.99273i 0.0502301 + 0.0232389i
\(431\) −334.313 + 54.8078i −0.775667 + 0.127164i −0.536598 0.843838i \(-0.680291\pi\)
−0.239070 + 0.971002i \(0.576842\pi\)
\(432\) 278.313 154.418i 0.644243 0.357450i
\(433\) −390.888 + 235.189i −0.902743 + 0.543163i −0.889595 0.456751i \(-0.849013\pi\)
−0.0131487 + 0.999914i \(0.504185\pi\)
\(434\) −11.9168 + 109.573i −0.0274580 + 0.252472i
\(435\) 101.643 + 166.527i 0.233661 + 0.382821i
\(436\) 79.4520 484.636i 0.182229 1.11155i
\(437\) 5.31843 0.288357i 0.0121703 0.000659856i
\(438\) 14.3642 + 35.3957i 0.0327950 + 0.0808121i
\(439\) −148.580 + 140.743i −0.338452 + 0.320599i −0.837982 0.545698i \(-0.816265\pi\)
0.499530 + 0.866296i \(0.333506\pi\)
\(440\) 78.7028 + 4.26714i 0.178870 + 0.00969805i
\(441\) −119.561 218.753i −0.271113 0.496038i
\(442\) −195.770 + 65.9627i −0.442920 + 0.149237i
\(443\) 155.642 + 461.928i 0.351335 + 1.04273i 0.967013 + 0.254728i \(0.0819858\pi\)
−0.615678 + 0.787998i \(0.711118\pi\)
\(444\) 22.9172 30.5480i 0.0516153 0.0688018i
\(445\) 2.02434 37.3367i 0.00454907 0.0839027i
\(446\) −136.887 144.510i −0.306921 0.324013i
\(447\) −47.0812 116.016i −0.105327 0.259543i
\(448\) 15.0918 + 278.352i 0.0336870 + 0.621321i
\(449\) −641.666 105.196i −1.42910 0.234289i −0.602968 0.797766i \(-0.706015\pi\)
−0.826132 + 0.563477i \(0.809463\pi\)
\(450\) −15.0027 123.344i −0.0333392 0.274098i
\(451\) 411.608 + 44.7651i 0.912657 + 0.0992574i
\(452\) 338.051 + 561.846i 0.747901 + 1.24302i
\(453\) 132.527 620.837i 0.292553 1.37050i
\(454\) 5.16841 + 31.5259i 0.0113842 + 0.0694403i
\(455\) −101.073 + 218.466i −0.222138 + 0.480144i
\(456\) −10.2411 + 65.0544i −0.0224586 + 0.142663i
\(457\) 148.394 112.806i 0.324712 0.246840i −0.430099 0.902782i \(-0.641521\pi\)
0.754811 + 0.655942i \(0.227728\pi\)
\(458\) 10.2052 + 93.8357i 0.0222822 + 0.204881i
\(459\) −473.654 94.8320i −1.03193 0.206606i
\(460\) 2.14980 + 5.39558i 0.00467347 + 0.0117295i
\(461\) −148.640 41.2697i −0.322429 0.0895220i 0.102543 0.994729i \(-0.467302\pi\)
−0.424972 + 0.905207i \(0.639716\pi\)
\(462\) −80.5893 171.326i −0.174436 0.370836i
\(463\) −13.9827 26.3742i −0.0302002 0.0569637i 0.867953 0.496647i \(-0.165436\pi\)
−0.898153 + 0.439683i \(0.855091\pi\)
\(464\) −443.110 + 300.436i −0.954978 + 0.647491i
\(465\) 89.8693 0.570997i 0.193267 0.00122795i
\(466\) 105.290 + 123.957i 0.225945 + 0.266003i
\(467\) 663.075 + 264.193i 1.41986 + 0.565725i 0.948659 0.316300i \(-0.102441\pi\)
0.471203 + 0.882025i \(0.343820\pi\)
\(468\) 41.9967 + 627.075i 0.0897365 + 1.33990i
\(469\) −692.866 416.883i −1.47733 0.888877i
\(470\) 5.59900 16.6172i 0.0119128 0.0353558i
\(471\) −121.203 + 266.404i −0.257330 + 0.565613i
\(472\) 173.992 207.899i 0.368628 0.440464i
\(473\) 330.937i 0.699654i
\(474\) 5.56708 + 5.20671i 0.0117449 + 0.0109846i
\(475\) −93.9453 56.5250i −0.197779 0.119000i
\(476\) 344.972 453.802i 0.724730 0.953366i
\(477\) 139.557 + 397.429i 0.292573 + 0.833184i
\(478\) −96.6545 113.790i −0.202206 0.238055i
\(479\) −247.849 535.717i −0.517431 1.11841i −0.973547 0.228488i \(-0.926622\pi\)
0.456116 0.889920i \(-0.349240\pi\)
\(480\) −107.865 + 18.3881i −0.224719 + 0.0383085i
\(481\) 31.4584 + 59.3369i 0.0654021 + 0.123361i
\(482\) 206.123 + 175.083i 0.427641 + 0.363242i
\(483\) 18.8208 22.4451i 0.0389665 0.0464701i
\(484\) 30.2921 + 76.0274i 0.0625869 + 0.157081i
\(485\) 208.732 + 110.663i 0.430376 + 0.228171i
\(486\) 64.3368 131.265i 0.132380 0.270092i
\(487\) 275.714 209.593i 0.566148 0.430375i −0.282550 0.959253i \(-0.591180\pi\)
0.848698 + 0.528878i \(0.177387\pi\)
\(488\) 373.252 103.633i 0.764861 0.212363i
\(489\) −60.8685 + 52.3715i −0.124475 + 0.107099i
\(490\) 3.86032 + 23.5469i 0.00787820 + 0.0480549i
\(491\) 115.792 + 526.049i 0.235829 + 1.07138i 0.934507 + 0.355945i \(0.115841\pi\)
−0.698678 + 0.715437i \(0.746228\pi\)
\(492\) −374.760 + 43.1685i −0.761706 + 0.0877408i
\(493\) 807.746 + 87.8477i 1.63843 + 0.178190i
\(494\) −45.6590 30.9576i −0.0924271 0.0626671i
\(495\) −131.260 + 81.2659i −0.265172 + 0.164174i
\(496\) 13.3514 + 246.251i 0.0269181 + 0.496474i
\(497\) 638.798 674.370i 1.28531 1.35688i
\(498\) 8.64069 + 25.1161i 0.0173508 + 0.0504340i
\(499\) 9.52156 175.615i 0.0190813 0.351934i −0.973366 0.229258i \(-0.926370\pi\)
0.992447 0.122675i \(-0.0391473\pi\)
\(500\) 53.6993 243.959i 0.107399 0.487917i
\(501\) 641.978 + 65.6950i 1.28139 + 0.131128i
\(502\) 284.311 95.7956i 0.566357 0.190828i
\(503\) −121.128 + 550.291i −0.240811 + 1.09402i 0.688649 + 0.725095i \(0.258204\pi\)
−0.929460 + 0.368922i \(0.879727\pi\)
\(504\) 222.824 + 285.515i 0.442111 + 0.566498i
\(505\) −189.002 + 179.032i −0.374261 + 0.354519i
\(506\) 5.52506 5.83274i 0.0109191 0.0115271i
\(507\) −557.174 217.907i −1.09896 0.429796i
\(508\) −116.984 + 713.568i −0.230283 + 1.40466i
\(509\) −6.54527 4.43781i −0.0128591 0.00871868i 0.554741 0.832023i \(-0.312818\pi\)
−0.567600 + 0.823305i \(0.692128\pi\)
\(510\) 39.7680 + 23.5848i 0.0779764 + 0.0462446i
\(511\) 158.835 95.5679i 0.310832 0.187021i
\(512\) −111.123 504.838i −0.217038 0.986012i
\(513\) −56.3831 116.015i −0.109909 0.226150i
\(514\) 92.6324 + 42.8563i 0.180219 + 0.0833781i
\(515\) −82.6658 + 22.9520i −0.160516 + 0.0445671i
\(516\) −66.6885 294.057i −0.129241 0.569878i
\(517\) 242.411 26.3637i 0.468879 0.0509937i
\(518\) 16.2869 + 8.63478i 0.0314419 + 0.0166695i
\(519\) 45.9293 959.894i 0.0884957 1.84951i
\(520\) 33.7872 121.690i 0.0649754 0.234020i
\(521\) −660.139 560.727i −1.26706 1.07625i −0.993433 0.114416i \(-0.963500\pi\)
−0.273628 0.961835i \(-0.588224\pi\)
\(522\) −88.1013 + 229.559i −0.168777 + 0.439768i
\(523\) −78.0953 115.182i −0.149322 0.220233i 0.745670 0.666315i \(-0.232129\pi\)
−0.894992 + 0.446082i \(0.852819\pi\)
\(524\) 152.549 + 329.730i 0.291125 + 0.629256i
\(525\) −579.948 + 164.998i −1.10466 + 0.314281i
\(526\) 33.6883 84.5513i 0.0640463 0.160744i
\(527\) 226.506 297.964i 0.429803 0.565397i
\(528\) −239.959 349.117i −0.454468 0.661207i
\(529\) −500.131 168.514i −0.945427 0.318551i
\(530\) 40.3171i 0.0760700i
\(531\) −46.8362 + 528.930i −0.0882038 + 0.996102i
\(532\) 152.217 0.286123
\(533\) 211.833 628.697i 0.397435 1.17954i
\(534\) 38.8364 26.6935i 0.0727274 0.0499878i
\(535\) 48.6681 + 36.9965i 0.0909685 + 0.0691524i
\(536\) 394.119 + 157.031i 0.735296 + 0.292969i
\(537\) −28.1215 98.8439i −0.0523678 0.184067i
\(538\) 37.7099 17.4465i 0.0700927 0.0324283i
\(539\) −274.635 + 186.207i −0.509527 + 0.345468i
\(540\) 100.256 98.6604i 0.185660 0.182704i
\(541\) 301.260 354.671i 0.556858 0.655584i −0.409643 0.912246i \(-0.634347\pi\)
0.966501 + 0.256662i \(0.0826227\pi\)
\(542\) −114.910 31.9045i −0.212010 0.0588644i
\(543\) −315.836 15.1122i −0.581650 0.0278310i
\(544\) −213.455 + 402.619i −0.392380 + 0.740108i
\(545\) −20.8994 192.166i −0.0383474 0.352599i
\(546\) −295.864 + 67.0982i −0.541875 + 0.122891i
\(547\) −9.95424 35.8519i −0.0181979 0.0655429i 0.953894 0.300145i \(-0.0970351\pi\)
−0.972091 + 0.234602i \(0.924621\pi\)
\(548\) 329.318 711.808i 0.600944 1.29892i
\(549\) −483.810 + 584.478i −0.881257 + 1.06462i
\(550\) −161.514 + 35.5519i −0.293662 + 0.0646398i
\(551\) 111.857 + 185.908i 0.203007 + 0.337401i
\(552\) −7.83937 + 13.2185i −0.0142018 + 0.0239466i
\(553\) 20.7581 30.6158i 0.0375372 0.0553632i
\(554\) −112.799 18.4925i −0.203609 0.0333799i
\(555\) 5.47476 13.9986i 0.00986443 0.0252227i
\(556\) −68.7758 65.1479i −0.123697 0.117172i
\(557\) −23.9285 25.2611i −0.0429597 0.0453520i 0.704161 0.710040i \(-0.251323\pi\)
−0.747121 + 0.664688i \(0.768565\pi\)
\(558\) 69.6864 + 89.2926i 0.124886 + 0.160023i
\(559\) 517.875 + 113.993i 0.926432 + 0.203923i
\(560\) 47.2037 + 140.096i 0.0842923 + 0.250171i
\(561\) −65.4519 + 639.602i −0.116670 + 1.14011i
\(562\) 3.87283 + 0.852475i 0.00689116 + 0.00151686i
\(563\) −32.4782 1.76092i −0.0576878 0.00312774i 0.0252724 0.999681i \(-0.491955\pi\)
−0.0829602 + 0.996553i \(0.526437\pi\)
\(564\) −210.084 + 72.2750i −0.372489 + 0.128147i
\(565\) 187.369 + 177.486i 0.331627 + 0.314134i
\(566\) −159.984 + 8.67408i −0.282657 + 0.0153252i
\(567\) −677.788 209.351i −1.19539 0.369226i
\(568\) −273.498 + 403.379i −0.481511 + 0.710175i
\(569\) −21.1321 + 194.307i −0.0371391 + 0.341488i 0.960796 + 0.277257i \(0.0894252\pi\)
−0.997935 + 0.0642317i \(0.979540\pi\)
\(570\) 1.41283 + 12.2652i 0.00247865 + 0.0215179i
\(571\) −806.053 + 177.426i −1.41165 + 0.310728i −0.854400 0.519615i \(-0.826075\pi\)
−0.557252 + 0.830343i \(0.688144\pi\)
\(572\) 825.483 135.331i 1.44315 0.236593i
\(573\) 445.540 + 517.827i 0.777558 + 0.903711i
\(574\) −48.7166 175.461i −0.0848720 0.305681i
\(575\) −15.4839 20.3688i −0.0269286 0.0354239i
\(576\) 210.462 + 194.346i 0.365385 + 0.337407i
\(577\) 69.4226 130.945i 0.120316 0.226941i −0.816037 0.578000i \(-0.803833\pi\)
0.936353 + 0.351059i \(0.114178\pi\)
\(578\) 17.3714 6.92140i 0.0300543 0.0119747i
\(579\) 736.519 + 617.592i 1.27205 + 1.06665i
\(580\) −153.167 + 180.322i −0.264081 + 0.310901i
\(581\) 113.877 60.3740i 0.196003 0.103914i
\(582\) 50.0373 + 293.521i 0.0859748 + 0.504331i
\(583\) 508.824 235.407i 0.872769 0.403786i
\(584\) −74.1254 + 62.9627i −0.126927 + 0.107813i
\(585\) 81.9580 + 233.398i 0.140099 + 0.398972i
\(586\) 74.1962 + 56.4025i 0.126615 + 0.0962500i
\(587\) 46.7068 77.6274i 0.0795687 0.132244i −0.814518 0.580139i \(-0.802998\pi\)
0.894086 + 0.447894i \(0.147826\pi\)
\(588\) 206.506 220.799i 0.351201 0.375508i
\(589\) 99.9451 0.169686
\(590\) 21.0032 46.2820i 0.0355987 0.0784440i
\(591\) 444.992 + 202.453i 0.752947 + 0.342559i
\(592\) 39.0873 + 13.1701i 0.0660259 + 0.0222467i
\(593\) 273.053 453.817i 0.460460 0.765290i −0.536443 0.843937i \(-0.680232\pi\)
0.996903 + 0.0786465i \(0.0250598\pi\)
\(594\) −182.090 68.5595i −0.306549 0.115420i
\(595\) 83.0468 208.432i 0.139574 0.350305i
\(596\) 115.724 98.2967i 0.194168 0.164927i
\(597\) −3.95836 623.007i −0.00663042 1.04356i
\(598\) −7.22438 10.6552i −0.0120809 0.0178180i
\(599\) 835.774 443.100i 1.39528 0.739732i 0.410230 0.911982i \(-0.365449\pi\)
0.985053 + 0.172250i \(0.0551037\pi\)
\(600\) 286.265 134.655i 0.477108 0.224424i
\(601\) −264.436 + 952.412i −0.439993 + 1.58471i 0.328274 + 0.944583i \(0.393533\pi\)
−0.768267 + 0.640129i \(0.778881\pi\)
\(602\) 135.213 53.8738i 0.224607 0.0894914i
\(603\) −809.210 + 188.932i −1.34197 + 0.313321i
\(604\) 765.339 83.2357i 1.26712 0.137807i
\(605\) 19.4940 + 25.6440i 0.0322215 + 0.0423867i
\(606\) −324.115 51.0235i −0.534843 0.0841972i
\(607\) −94.5971 43.7653i −0.155844 0.0721010i 0.340417 0.940275i \(-0.389432\pi\)
−0.496260 + 0.868174i \(0.665294\pi\)
\(608\) −120.084 + 19.6867i −0.197506 + 0.0323795i
\(609\) 1166.91 + 249.094i 1.91611 + 0.409021i
\(610\) 62.2275 37.4410i 0.102012 0.0613787i
\(611\) 42.2437 388.424i 0.0691386 0.635719i
\(612\) −70.7310 581.514i −0.115574 0.950187i
\(613\) −127.046 + 774.946i −0.207253 + 1.26419i 0.654190 + 0.756330i \(0.273010\pi\)
−0.861443 + 0.507855i \(0.830439\pi\)
\(614\) −260.653 + 14.1322i −0.424516 + 0.0230166i
\(615\) −137.583 + 55.8338i −0.223713 + 0.0907866i
\(616\) 349.966 331.506i 0.568127 0.538159i
\(617\) 732.539 + 39.7171i 1.18726 + 0.0643714i 0.637163 0.770729i \(-0.280108\pi\)
0.550097 + 0.835101i \(0.314591\pi\)
\(618\) −86.4931 64.8874i −0.139957 0.104996i
\(619\) −92.4408 + 31.1469i −0.149339 + 0.0503182i −0.392978 0.919548i \(-0.628555\pi\)
0.243639 + 0.969866i \(0.421659\pi\)
\(620\) 34.7997 + 103.282i 0.0561285 + 0.166583i
\(621\) −2.20226 30.0211i −0.00354631 0.0483431i
\(622\) −18.9901 + 350.252i −0.0305307 + 0.563106i
\(623\) −157.267 166.024i −0.252435 0.266492i
\(624\) −628.981 + 255.252i −1.00798 + 0.409057i
\(625\) 25.7385 + 474.719i 0.0411816 + 0.759550i
\(626\) −27.6307 4.52982i −0.0441385 0.00723613i
\(627\) −146.545 + 89.4459i −0.233723 + 0.142657i
\(628\) −352.852 38.3749i −0.561866 0.0611066i
\(629\) −32.2734 53.6388i −0.0513091 0.0852763i
\(630\) 54.5715 + 40.4004i 0.0866214 + 0.0641276i
\(631\) −125.659 766.487i −0.199143 1.21472i −0.877351 0.479848i \(-0.840692\pi\)
0.678209 0.734869i \(-0.262757\pi\)
\(632\) −8.14884 + 17.6134i −0.0128937 + 0.0278693i
\(633\) 567.605 + 89.3546i 0.896690 + 0.141161i
\(634\) 104.580 79.4996i 0.164953 0.125394i
\(635\) 30.7718 + 282.942i 0.0484595 + 0.445578i
\(636\) −404.683 + 311.709i −0.636294 + 0.490108i
\(637\) 196.792 + 493.910i 0.308935 + 0.775369i
\(638\) 315.342 + 87.5542i 0.494266 + 0.137232i
\(639\) −12.1296 954.501i −0.0189821 1.49374i
\(640\) −81.1820 153.125i −0.126847 0.239259i
\(641\) −747.678 + 506.938i −1.16642 + 0.790855i −0.981418 0.191882i \(-0.938541\pi\)
−0.185006 + 0.982737i \(0.559231\pi\)
\(642\) 0.489527 + 77.0468i 0.000762503 + 0.120011i
\(643\) −202.946 238.927i −0.315624 0.371581i 0.581358 0.813648i \(-0.302521\pi\)
−0.896982 + 0.442066i \(0.854246\pi\)
\(644\) 32.9992 + 13.1481i 0.0512410 + 0.0204163i
\(645\) −56.2559 104.500i −0.0872185 0.162016i
\(646\) 44.0581 + 26.5089i 0.0682014 + 0.0410354i
\(647\) 244.324 725.128i 0.377626 1.12075i −0.575402 0.817871i \(-0.695154\pi\)
0.953028 0.302883i \(-0.0979492\pi\)
\(648\) 368.697 + 50.8607i 0.568977 + 0.0784887i
\(649\) 706.739 5.16288i 1.08897 0.00795513i
\(650\) 264.996i 0.407686i
\(651\) 375.450 401.436i 0.576728 0.616645i
\(652\) −83.4385 50.2033i −0.127973 0.0769989i
\(653\) −664.510 + 874.148i −1.01763 + 1.33866i −0.0778158 + 0.996968i \(0.524795\pi\)
−0.939810 + 0.341697i \(0.888998\pi\)
\(654\) 175.799 168.658i 0.268806 0.257887i
\(655\) 92.5754 + 108.988i 0.141336 + 0.166394i
\(656\) −171.081 369.785i −0.260794 0.563697i
\(657\) 48.6265 184.185i 0.0740129 0.280342i
\(658\) −50.2341 94.7516i −0.0763437 0.143999i
\(659\) −753.178 639.755i −1.14291 0.970797i −0.143089 0.989710i \(-0.545704\pi\)
−0.999821 + 0.0189131i \(0.993979\pi\)
\(660\) −143.457 120.293i −0.217359 0.182262i
\(661\) −58.7702 147.502i −0.0889110 0.223150i 0.877797 0.479034i \(-0.159013\pi\)
−0.966708 + 0.255884i \(0.917634\pi\)
\(662\) −216.444 114.752i −0.326955 0.173341i
\(663\) 978.354 + 322.739i 1.47565 + 0.486786i
\(664\) −53.8358 + 40.9249i −0.0810780 + 0.0616339i
\(665\) 57.7291 16.0284i 0.0868106 0.0241029i
\(666\) 18.1877 5.29961i 0.0273088 0.00795737i
\(667\) 8.19132 + 49.9648i 0.0122808 + 0.0749098i
\(668\) 168.234 + 764.296i 0.251848 + 1.14416i
\(669\) 113.591 + 986.120i 0.169792 + 1.47402i
\(670\) 79.0705 + 8.59944i 0.118016 + 0.0128350i
\(671\) 835.865 + 566.731i 1.24570 + 0.844606i
\(672\) −372.029 + 556.278i −0.553614 + 0.827795i
\(673\) 18.6703 + 344.353i 0.0277419 + 0.511669i 0.979074 + 0.203503i \(0.0652326\pi\)
−0.951332 + 0.308167i \(0.900285\pi\)
\(674\) 7.08740 7.48208i 0.0105154 0.0111010i
\(675\) −309.278 + 536.932i −0.458190 + 0.795455i
\(676\) 39.2790 724.458i 0.0581050 1.07168i
\(677\) 25.0076 113.611i 0.0369389 0.167815i −0.954540 0.298083i \(-0.903653\pi\)
0.991479 + 0.130268i \(0.0415838\pi\)
\(678\) −33.1129 + 323.583i −0.0488391 + 0.477260i
\(679\) 1369.28 461.363i 2.01661 0.679474i
\(680\) −25.3058 + 114.965i −0.0372144 + 0.169067i
\(681\) 73.7285 141.228i 0.108265 0.207383i
\(682\) 109.449 103.676i 0.160483 0.152017i
\(683\) 460.473 486.116i 0.674192 0.711736i −0.295697 0.955282i \(-0.595552\pi\)
0.969889 + 0.243546i \(0.0783106\pi\)
\(684\) 112.189 109.009i 0.164019 0.159370i
\(685\) 49.9421 304.633i 0.0729081 0.444720i
\(686\) −92.8855 62.9779i −0.135402 0.0918046i
\(687\) 240.107 404.862i 0.349501 0.589319i
\(688\) 279.050 167.899i 0.405596 0.244039i
\(689\) −193.116 877.335i −0.280285 1.27335i
\(690\) −0.753146 + 2.78101i −0.00109152 + 0.00403045i
\(691\) −358.538 165.877i −0.518868 0.240054i 0.142935 0.989732i \(-0.454346\pi\)
−0.661802 + 0.749678i \(0.730208\pi\)
\(692\) 1122.92 311.776i 1.62271 0.450544i
\(693\) −191.238 + 924.615i −0.275957 + 1.33422i
\(694\) −319.630 + 34.7618i −0.460561 + 0.0500891i
\(695\) −32.9435 17.4655i −0.0474008 0.0251303i
\(696\) −625.315 29.9202i −0.898441 0.0429889i
\(697\) −165.432 + 595.834i −0.237349 + 0.854854i
\(698\) 124.655 + 105.883i 0.178589 + 0.151695i
\(699\) −49.0546 809.577i −0.0701783 1.15819i
\(700\) −410.347 605.217i −0.586210 0.864596i
\(701\) 101.768 + 219.967i 0.145175 + 0.313790i 0.966499 0.256672i \(-0.0826261\pi\)
−0.821324 + 0.570462i \(0.806764\pi\)
\(702\) −170.009 + 261.333i −0.242178 + 0.372270i
\(703\) 6.18722 15.5288i 0.00880117 0.0220893i
\(704\) 230.746 303.541i 0.327765 0.431167i
\(705\) −72.0646 + 49.5323i −0.102219 + 0.0702585i
\(706\) −52.2896 17.6184i −0.0740646 0.0249553i
\(707\) 1592.20i 2.25205i
\(708\) −626.940 + 147.006i −0.885508 + 0.207635i
\(709\) −240.924 −0.339809 −0.169904 0.985461i \(-0.554346\pi\)
−0.169904 + 0.985461i \(0.554346\pi\)
\(710\) −29.1738 + 86.5848i −0.0410899 + 0.121950i
\(711\) −6.62588 37.4305i −0.00931910 0.0526449i
\(712\) 95.5177 + 72.6107i 0.134154 + 0.101981i
\(713\) 21.6671 + 8.63295i 0.0303886 + 0.0121079i
\(714\) 271.982 77.3800i 0.380927 0.108375i
\(715\) 298.817 138.248i 0.417926 0.193353i
\(716\) 103.151 69.9379i 0.144065 0.0976787i
\(717\) 45.0312 + 743.176i 0.0628050 + 1.03651i
\(718\) −42.3604 + 49.8705i −0.0589978 + 0.0694575i
\(719\) −349.560 97.0547i −0.486175 0.134986i 0.0157875 0.999875i \(-0.494974\pi\)
−0.501962 + 0.864890i \(0.667388\pi\)
\(720\) 135.119 + 69.4504i 0.187665 + 0.0964588i
\(721\) −245.777 + 463.584i −0.340883 + 0.642974i
\(722\) −21.9957 202.247i −0.0304649 0.280120i
\(723\) −298.289 1315.28i −0.412571 1.81920i
\(724\) −102.584 369.476i −0.141691 0.510326i
\(725\) 437.627 945.914i 0.603623 1.30471i
\(726\) −10.6123 + 39.1863i −0.0146175 + 0.0539757i
\(727\) −765.338 + 168.464i −1.05273 + 0.231724i −0.707442 0.706771i \(-0.750151\pi\)
−0.345292 + 0.938495i \(0.612220\pi\)
\(728\) −398.218 661.844i −0.547003 0.909126i
\(729\) −649.476 + 331.093i −0.890913 + 0.454174i
\(730\) −10.2323 + 15.0915i −0.0140168 + 0.0206733i
\(731\) −487.752 79.9629i −0.667239 0.109388i
\(732\) −856.921 335.136i −1.17066 0.457836i
\(733\) 224.153 + 212.329i 0.305802 + 0.289671i 0.825176 0.564876i \(-0.191076\pi\)
−0.519374 + 0.854547i \(0.673835\pi\)
\(734\) 182.233 + 192.381i 0.248274 + 0.262099i
\(735\) 55.0683 105.484i 0.0749229 0.143516i
\(736\) −27.7334 6.10458i −0.0376812 0.00829427i
\(737\) 353.154 + 1048.12i 0.479178 + 1.42215i
\(738\) −161.560 94.4325i −0.218916 0.127957i
\(739\) −111.227 24.4829i −0.150510 0.0331298i 0.139076 0.990282i \(-0.455587\pi\)
−0.289586 + 0.957152i \(0.593518\pi\)
\(740\) 18.2015 + 0.986857i 0.0245966 + 0.00133359i
\(741\) 89.4939 + 260.135i 0.120775 + 0.351059i
\(742\) −179.014 169.572i −0.241259 0.228533i
\(743\) −726.404 + 39.3845i −0.977664 + 0.0530074i −0.536040 0.844193i \(-0.680080\pi\)
−0.441624 + 0.897200i \(0.645597\pi\)
\(744\) −160.316 + 239.713i −0.215479 + 0.322195i
\(745\) 33.5382 49.4651i 0.0450177 0.0663961i
\(746\) −27.9540 + 257.032i −0.0374718 + 0.344547i
\(747\) 40.6950 126.050i 0.0544780 0.168741i
\(748\) −761.468 + 167.612i −1.01801 + 0.224080i
\(749\) 368.966 60.4889i 0.492612 0.0807596i
\(750\) 93.9327 80.8202i 0.125244 0.107760i
\(751\) −95.9584 345.611i −0.127774 0.460201i 0.871785 0.489889i \(-0.162963\pi\)
−0.999559 + 0.0296876i \(0.990549\pi\)
\(752\) −145.216 191.028i −0.193106 0.254027i
\(753\) −1420.83 468.703i −1.88690 0.622448i
\(754\) 245.633 463.313i 0.325773 0.614473i
\(755\) 281.493 112.157i 0.372839 0.148553i
\(756\) −16.3963 860.114i −0.0216882 1.13772i
\(757\) −594.283 + 699.643i −0.785050 + 0.924232i −0.998610 0.0526979i \(-0.983218\pi\)
0.213561 + 0.976930i \(0.431494\pi\)
\(758\) 127.425 67.5566i 0.168107 0.0891248i
\(759\) −39.4954 + 6.73290i −0.0520362 + 0.00887075i
\(760\) −28.5289 + 13.1989i −0.0375380 + 0.0173669i
\(761\) −364.645 + 309.732i −0.479165 + 0.407007i −0.854152 0.520023i \(-0.825923\pi\)
0.374987 + 0.927030i \(0.377647\pi\)
\(762\) −258.843 + 248.328i −0.339689 + 0.325890i
\(763\) −941.151 715.445i −1.23349 0.937673i
\(764\) −427.094 + 709.836i −0.559024 + 0.929105i
\(765\) −88.0582 213.094i −0.115109 0.278554i
\(766\) 204.054 0.266389
\(767\) 235.361 1107.74i 0.306859 1.44425i
\(768\) −67.7187 + 148.846i −0.0881753 + 0.193810i
\(769\) −1199.22 404.065i −1.55945 0.525442i −0.598258 0.801304i \(-0.704140\pi\)
−0.961197 + 0.275862i \(0.911037\pi\)
\(770\) 46.5921 77.4366i 0.0605092 0.100567i
\(771\) −241.268 448.175i −0.312928 0.581291i
\(772\) −431.445 + 1082.85i −0.558867 + 1.40265i
\(773\) −481.774 + 409.222i −0.623252 + 0.529395i −0.902426