Properties

Label 177.3.h.a.5.16
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.16
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.16

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.225119 + 0.668129i) q^{2} +(0.0215190 - 2.99992i) q^{3} +(2.78865 + 2.11988i) q^{4} +(-5.48264 - 2.18448i) q^{5} +(1.99949 + 0.689717i) q^{6} +(-11.1057 + 5.13804i) q^{7} +(-4.37833 + 2.96858i) q^{8} +(-8.99907 - 0.129111i) q^{9} +O(q^{10})\) \(q+(-0.225119 + 0.668129i) q^{2} +(0.0215190 - 2.99992i) q^{3} +(2.78865 + 2.11988i) q^{4} +(-5.48264 - 2.18448i) q^{5} +(1.99949 + 0.689717i) q^{6} +(-11.1057 + 5.13804i) q^{7} +(-4.37833 + 2.96858i) q^{8} +(-8.99907 - 0.129111i) q^{9} +(2.69377 - 3.17135i) q^{10} +(5.78043 + 1.60493i) q^{11} +(6.41948 - 8.32013i) q^{12} +(-8.84851 + 16.6901i) q^{13} +(-0.932772 - 8.57670i) q^{14} +(-6.67127 + 16.4005i) q^{15} +(2.75077 + 9.90739i) q^{16} +(4.58854 - 9.91797i) q^{17} +(2.11212 - 5.98348i) q^{18} +(14.5787 - 3.20902i) q^{19} +(-10.6584 - 17.7143i) q^{20} +(15.1747 + 33.4268i) q^{21} +(-2.37358 + 3.50077i) q^{22} +(-24.7858 - 4.06343i) q^{23} +(8.81131 + 13.1985i) q^{24} +(7.13752 + 6.76102i) q^{25} +(-9.15915 - 9.66919i) q^{26} +(-0.580973 + 26.9937i) q^{27} +(-41.8619 - 9.21450i) q^{28} +(-7.17466 - 21.2936i) q^{29} +(-9.45583 - 8.14933i) q^{30} +(-30.1472 - 6.63590i) q^{31} +(-28.3670 - 1.53801i) q^{32} +(4.93905 - 17.3063i) q^{33} +(5.59352 + 5.29846i) q^{34} +(72.1124 - 3.90982i) q^{35} +(-24.8216 - 19.4370i) q^{36} +(4.27137 - 6.29981i) q^{37} +(-1.13791 + 10.4629i) q^{38} +(49.8785 + 26.9040i) q^{39} +(30.4897 - 6.71128i) q^{40} +(-39.7713 + 6.52018i) q^{41} +(-25.7495 + 2.61368i) q^{42} +(-5.66638 - 20.4084i) q^{43} +(12.7174 + 16.7294i) q^{44} +(49.0567 + 20.3662i) q^{45} +(8.29466 - 15.6454i) q^{46} +(56.6852 - 22.5855i) q^{47} +(29.7806 - 8.03891i) q^{48} +(65.2148 - 76.7768i) q^{49} +(-6.12402 + 3.24675i) q^{50} +(-29.6544 - 13.9787i) q^{51} +(-60.0563 + 27.7850i) q^{52} +(-70.5103 + 59.8920i) q^{53} +(-17.9045 - 6.46497i) q^{54} +(-28.1861 - 21.4265i) q^{55} +(33.3717 - 55.4642i) q^{56} +(-9.31310 - 43.8041i) q^{57} +15.8421 q^{58} +(17.7986 + 56.2513i) q^{59} +(-53.3709 + 31.5930i) q^{60} +(92.1210 + 31.0392i) q^{61} +(11.2203 - 18.6484i) q^{62} +(100.604 - 44.8037i) q^{63} +(-7.80978 + 19.6011i) q^{64} +(84.9724 - 72.1762i) q^{65} +(10.4510 + 7.19590i) q^{66} +(1.75417 + 2.58721i) q^{67} +(33.8208 - 17.9306i) q^{68} +(-12.7233 + 74.2681i) q^{69} +(-13.6216 + 49.0606i) q^{70} +(-73.3264 + 29.2159i) q^{71} +(39.7842 - 26.1492i) q^{72} +(54.7298 - 5.95223i) q^{73} +(3.24752 + 4.27204i) q^{74} +(20.4361 - 21.2665i) q^{75} +(47.4578 + 21.9563i) q^{76} +(-72.4417 + 11.8762i) q^{77} +(-29.2039 + 27.2687i) q^{78} +(-3.39211 + 2.04097i) q^{79} +(6.56104 - 60.3277i) q^{80} +(80.9667 + 2.32375i) q^{81} +(4.59696 - 28.0402i) q^{82} +(-35.9048 + 1.94670i) q^{83} +(-28.5436 + 125.384i) q^{84} +(-46.8230 + 44.3531i) q^{85} +(14.9111 + 0.808456i) q^{86} +(-64.0337 + 21.0652i) q^{87} +(-30.0730 + 10.1328i) q^{88} +(20.7159 + 61.4826i) q^{89} +(-24.6508 + 28.1914i) q^{90} +(12.5146 - 230.818i) q^{91} +(-60.5051 - 63.8745i) q^{92} +(-20.5559 + 90.2964i) q^{93} +(2.32909 + 42.9575i) q^{94} +(-86.9401 - 14.2531i) q^{95} +(-5.22435 + 85.0656i) q^{96} +(57.8328 + 6.28969i) q^{97} +(36.6157 + 60.8558i) q^{98} +(-51.8113 - 15.1892i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.225119 + 0.668129i −0.112559 + 0.334065i −0.989096 0.147270i \(-0.952951\pi\)
0.876537 + 0.481335i \(0.159848\pi\)
\(3\) 0.0215190 2.99992i 0.00717300 0.999974i
\(4\) 2.78865 + 2.11988i 0.697164 + 0.529970i
\(5\) −5.48264 2.18448i −1.09653 0.436897i −0.249463 0.968384i \(-0.580254\pi\)
−0.847066 + 0.531487i \(0.821633\pi\)
\(6\) 1.99949 + 0.689717i 0.333249 + 0.114953i
\(7\) −11.1057 + 5.13804i −1.58653 + 0.734005i −0.997263 0.0739364i \(-0.976444\pi\)
−0.589263 + 0.807941i \(0.700582\pi\)
\(8\) −4.37833 + 2.96858i −0.547292 + 0.371073i
\(9\) −8.99907 0.129111i −0.999897 0.0143456i
\(10\) 2.69377 3.17135i 0.269377 0.317135i
\(11\) 5.78043 + 1.60493i 0.525493 + 0.145903i 0.520136 0.854083i \(-0.325881\pi\)
0.00535683 + 0.999986i \(0.498295\pi\)
\(12\) 6.41948 8.32013i 0.534957 0.693344i
\(13\) −8.84851 + 16.6901i −0.680654 + 1.28385i 0.266736 + 0.963770i \(0.414055\pi\)
−0.947390 + 0.320081i \(0.896290\pi\)
\(14\) −0.932772 8.57670i −0.0666266 0.612621i
\(15\) −6.67127 + 16.4005i −0.444751 + 1.09337i
\(16\) 2.75077 + 9.90739i 0.171923 + 0.619212i
\(17\) 4.58854 9.91797i 0.269914 0.583410i −0.724462 0.689315i \(-0.757912\pi\)
0.994376 + 0.105905i \(0.0337738\pi\)
\(18\) 2.11212 5.98348i 0.117340 0.332416i
\(19\) 14.5787 3.20902i 0.767302 0.168896i 0.185962 0.982557i \(-0.440460\pi\)
0.581340 + 0.813661i \(0.302529\pi\)
\(20\) −10.6584 17.7143i −0.532918 0.885716i
\(21\) 15.1747 + 33.4268i 0.722606 + 1.59175i
\(22\) −2.37358 + 3.50077i −0.107890 + 0.159126i
\(23\) −24.7858 4.06343i −1.07764 0.176671i −0.403285 0.915074i \(-0.632132\pi\)
−0.674359 + 0.738403i \(0.735580\pi\)
\(24\) 8.81131 + 13.1985i 0.367138 + 0.549939i
\(25\) 7.13752 + 6.76102i 0.285501 + 0.270441i
\(26\) −9.15915 9.66919i −0.352275 0.371892i
\(27\) −0.580973 + 26.9937i −0.0215175 + 0.999768i
\(28\) −41.8619 9.21450i −1.49507 0.329089i
\(29\) −7.17466 21.2936i −0.247402 0.734263i −0.997349 0.0727654i \(-0.976818\pi\)
0.749947 0.661498i \(-0.230079\pi\)
\(30\) −9.45583 8.14933i −0.315194 0.271644i
\(31\) −30.1472 6.63590i −0.972490 0.214061i −0.299813 0.953998i \(-0.596924\pi\)
−0.672677 + 0.739937i \(0.734855\pi\)
\(32\) −28.3670 1.53801i −0.886467 0.0480629i
\(33\) 4.93905 17.3063i 0.149668 0.524433i
\(34\) 5.59352 + 5.29846i 0.164515 + 0.155837i
\(35\) 72.1124 3.90982i 2.06036 0.111709i
\(36\) −24.8216 19.4370i −0.689489 0.539917i
\(37\) 4.27137 6.29981i 0.115443 0.170265i −0.765578 0.643343i \(-0.777547\pi\)
0.881020 + 0.473078i \(0.156857\pi\)
\(38\) −1.13791 + 10.4629i −0.0299449 + 0.275339i
\(39\) 49.8785 + 26.9040i 1.27893 + 0.689846i
\(40\) 30.4897 6.71128i 0.762242 0.167782i
\(41\) −39.7713 + 6.52018i −0.970033 + 0.159029i −0.625910 0.779896i \(-0.715272\pi\)
−0.344123 + 0.938924i \(0.611824\pi\)
\(42\) −25.7495 + 2.61368i −0.613084 + 0.0622305i
\(43\) −5.66638 20.4084i −0.131776 0.474615i 0.867982 0.496595i \(-0.165417\pi\)
−0.999758 + 0.0219804i \(0.993003\pi\)
\(44\) 12.7174 + 16.7294i 0.289031 + 0.380214i
\(45\) 49.0567 + 20.3662i 1.09015 + 0.452582i
\(46\) 8.29466 15.6454i 0.180319 0.340117i
\(47\) 56.6852 22.5855i 1.20607 0.480542i 0.321481 0.946916i \(-0.395819\pi\)
0.884587 + 0.466374i \(0.154440\pi\)
\(48\) 29.7806 8.03891i 0.620429 0.167477i
\(49\) 65.2148 76.7768i 1.33091 1.56687i
\(50\) −6.12402 + 3.24675i −0.122480 + 0.0649350i
\(51\) −29.6544 13.9787i −0.581459 0.274092i
\(52\) −60.0563 + 27.7850i −1.15493 + 0.534327i
\(53\) −70.5103 + 59.8920i −1.33038 + 1.13004i −0.349181 + 0.937055i \(0.613540\pi\)
−0.981202 + 0.192982i \(0.938184\pi\)
\(54\) −17.9045 6.46497i −0.331565 0.119722i
\(55\) −28.1861 21.4265i −0.512474 0.389573i
\(56\) 33.3717 55.4642i 0.595923 0.990432i
\(57\) −9.31310 43.8041i −0.163388 0.768493i
\(58\) 15.8421 0.273139
\(59\) 17.7986 + 56.2513i 0.301672 + 0.953412i
\(60\) −53.3709 + 31.5930i −0.889516 + 0.526551i
\(61\) 92.1210 + 31.0392i 1.51018 + 0.508839i 0.948026 0.318193i \(-0.103076\pi\)
0.562154 + 0.827032i \(0.309973\pi\)
\(62\) 11.2203 18.6484i 0.180973 0.300780i
\(63\) 100.604 44.8037i 1.59689 0.711170i
\(64\) −7.80978 + 19.6011i −0.122028 + 0.306267i
\(65\) 84.9724 72.1762i 1.30727 1.11040i
\(66\) 10.4510 + 7.19590i 0.158348 + 0.109029i
\(67\) 1.75417 + 2.58721i 0.0261817 + 0.0386151i 0.840555 0.541727i \(-0.182229\pi\)
−0.814373 + 0.580342i \(0.802919\pi\)
\(68\) 33.8208 17.9306i 0.497364 0.263686i
\(69\) −12.7233 + 74.2681i −0.184396 + 1.07635i
\(70\) −13.6216 + 49.0606i −0.194594 + 0.700866i
\(71\) −73.3264 + 29.2159i −1.03277 + 0.411492i −0.824070 0.566489i \(-0.808302\pi\)
−0.208697 + 0.977980i \(0.566922\pi\)
\(72\) 39.7842 26.1492i 0.552559 0.363184i
\(73\) 54.7298 5.95223i 0.749724 0.0815374i 0.274724 0.961523i \(-0.411414\pi\)
0.475000 + 0.879986i \(0.342448\pi\)
\(74\) 3.24752 + 4.27204i 0.0438854 + 0.0577302i
\(75\) 20.4361 21.2665i 0.272482 0.283554i
\(76\) 47.4578 + 21.9563i 0.624444 + 0.288899i
\(77\) −72.4417 + 11.8762i −0.940802 + 0.154237i
\(78\) −29.2039 + 27.2687i −0.374409 + 0.349598i
\(79\) −3.39211 + 2.04097i −0.0429381 + 0.0258350i −0.536861 0.843671i \(-0.680390\pi\)
0.493923 + 0.869506i \(0.335562\pi\)
\(80\) 6.56104 60.3277i 0.0820130 0.754097i
\(81\) 80.9667 + 2.32375i 0.999588 + 0.0286883i
\(82\) 4.59696 28.0402i 0.0560605 0.341954i
\(83\) −35.9048 + 1.94670i −0.432588 + 0.0234542i −0.269147 0.963099i \(-0.586742\pi\)
−0.163440 + 0.986553i \(0.552259\pi\)
\(84\) −28.5436 + 125.384i −0.339805 + 1.49267i
\(85\) −46.8230 + 44.3531i −0.550859 + 0.521801i
\(86\) 14.9111 + 0.808456i 0.173385 + 0.00940065i
\(87\) −64.0337 + 21.0652i −0.736019 + 0.242129i
\(88\) −30.0730 + 10.1328i −0.341739 + 0.115145i
\(89\) 20.7159 + 61.4826i 0.232763 + 0.690815i 0.998844 + 0.0480714i \(0.0153075\pi\)
−0.766081 + 0.642744i \(0.777796\pi\)
\(90\) −24.6508 + 28.1914i −0.273898 + 0.313238i
\(91\) 12.5146 230.818i 0.137523 2.53647i
\(92\) −60.5051 63.8745i −0.657664 0.694288i
\(93\) −20.5559 + 90.2964i −0.221031 + 0.970929i
\(94\) 2.32909 + 42.9575i 0.0247775 + 0.456994i
\(95\) −86.9401 14.2531i −0.915158 0.150033i
\(96\) −5.22435 + 85.0656i −0.0544203 + 0.886100i
\(97\) 57.8328 + 6.28969i 0.596214 + 0.0648422i 0.401251 0.915968i \(-0.368576\pi\)
0.194963 + 0.980811i \(0.437541\pi\)
\(98\) 36.6157 + 60.8558i 0.373630 + 0.620978i
\(99\) −51.8113 15.1892i −0.523346 0.153426i
\(100\) 5.57153 + 33.9848i 0.0557153 + 0.339848i
\(101\) 54.5782 117.969i 0.540378 1.16801i −0.424529 0.905414i \(-0.639560\pi\)
0.964907 0.262593i \(-0.0845777\pi\)
\(102\) 16.0153 16.6661i 0.157013 0.163393i
\(103\) −139.705 + 106.201i −1.35636 + 1.03108i −0.361235 + 0.932475i \(0.617645\pi\)
−0.995127 + 0.0986045i \(0.968562\pi\)
\(104\) −10.8041 99.3422i −0.103886 0.955213i
\(105\) −10.1774 216.416i −0.0969274 2.06110i
\(106\) −24.1424 60.5928i −0.227758 0.571630i
\(107\) −160.914 44.6776i −1.50387 0.417548i −0.584649 0.811287i \(-0.698768\pi\)
−0.919222 + 0.393739i \(0.871181\pi\)
\(108\) −58.8436 + 74.0446i −0.544848 + 0.685598i
\(109\) 10.6377 + 20.0649i 0.0975939 + 0.184082i 0.927502 0.373819i \(-0.121952\pi\)
−0.829908 + 0.557901i \(0.811607\pi\)
\(110\) 20.6609 14.0084i 0.187826 0.127349i
\(111\) −18.8070 12.9494i −0.169433 0.116661i
\(112\) −81.4538 95.8948i −0.727266 0.856203i
\(113\) 55.5835 + 22.1465i 0.491889 + 0.195987i 0.602875 0.797835i \(-0.294022\pi\)
−0.110986 + 0.993822i \(0.535401\pi\)
\(114\) 31.3634 + 3.63879i 0.275117 + 0.0319192i
\(115\) 127.015 + 76.4226i 1.10448 + 0.664544i
\(116\) 25.1323 74.5900i 0.216658 0.643017i
\(117\) 81.7832 149.053i 0.699002 1.27395i
\(118\) −41.5900 0.771435i −0.352457 0.00653758i
\(119\) 133.722i 1.12371i
\(120\) −19.4772 91.6111i −0.162310 0.763426i
\(121\) −72.8422 43.8277i −0.602001 0.362212i
\(122\) −41.4764 + 54.5612i −0.339970 + 0.447223i
\(123\) 18.7042 + 119.451i 0.152067 + 0.971149i
\(124\) −70.0028 82.4136i −0.564539 0.664626i
\(125\) 37.5895 + 81.2484i 0.300716 + 0.649987i
\(126\) 7.28674 + 77.3028i 0.0578313 + 0.613514i
\(127\) 37.6328 + 70.9829i 0.296321 + 0.558921i 0.986311 0.164899i \(-0.0527297\pi\)
−0.689990 + 0.723819i \(0.742385\pi\)
\(128\) −97.9458 83.1959i −0.765202 0.649968i
\(129\) −61.3457 + 16.5595i −0.475548 + 0.128368i
\(130\) 29.0941 + 73.0208i 0.223801 + 0.561698i
\(131\) 8.79194 + 4.66119i 0.0671140 + 0.0355816i 0.501627 0.865084i \(-0.332735\pi\)
−0.434513 + 0.900665i \(0.643080\pi\)
\(132\) 50.4606 37.7911i 0.382277 0.286296i
\(133\) −145.419 + 110.544i −1.09337 + 0.831161i
\(134\) −2.12349 + 0.589584i −0.0158469 + 0.00439988i
\(135\) 62.1527 146.728i 0.460390 1.08687i
\(136\) 9.35216 + 57.0457i 0.0687659 + 0.419453i
\(137\) 48.3208 + 219.524i 0.352707 + 1.60236i 0.734830 + 0.678252i \(0.237262\pi\)
−0.382123 + 0.924112i \(0.624807\pi\)
\(138\) −46.7565 25.2200i −0.338815 0.182754i
\(139\) 167.012 + 18.1637i 1.20153 + 0.130674i 0.686907 0.726745i \(-0.258968\pi\)
0.514619 + 0.857419i \(0.327933\pi\)
\(140\) 209.385 + 141.967i 1.49561 + 1.01405i
\(141\) −66.5348 170.537i −0.471878 1.20948i
\(142\) −3.01284 55.5686i −0.0212172 0.391328i
\(143\) −77.9345 + 82.2744i −0.544996 + 0.575346i
\(144\) −23.4753 89.5125i −0.163023 0.621615i
\(145\) −7.17952 + 132.418i −0.0495139 + 0.913230i
\(146\) −8.34387 + 37.9066i −0.0571498 + 0.259634i
\(147\) −228.921 197.292i −1.55729 1.34212i
\(148\) 25.2662 8.51318i 0.170718 0.0575215i
\(149\) −13.1208 + 59.6084i −0.0880591 + 0.400057i −0.999946 0.0103848i \(-0.996694\pi\)
0.911887 + 0.410441i \(0.134625\pi\)
\(150\) 9.60822 + 18.4415i 0.0640548 + 0.122943i
\(151\) −84.9094 + 80.4305i −0.562314 + 0.532652i −0.915192 0.403017i \(-0.867962\pi\)
0.352878 + 0.935669i \(0.385203\pi\)
\(152\) −54.3043 + 57.3284i −0.357265 + 0.377160i
\(153\) −42.5731 + 88.6601i −0.278256 + 0.579478i
\(154\) 8.37316 51.0740i 0.0543712 0.331649i
\(155\) 150.790 + 102.238i 0.972840 + 0.659602i
\(156\) 82.0605 + 180.762i 0.526029 + 1.15873i
\(157\) −101.400 + 61.0102i −0.645858 + 0.388600i −0.800468 0.599376i \(-0.795415\pi\)
0.154610 + 0.987976i \(0.450588\pi\)
\(158\) −0.600001 2.72583i −0.00379747 0.0172521i
\(159\) 178.154 + 212.814i 1.12047 + 1.33845i
\(160\) 152.166 + 70.3996i 0.951039 + 0.439997i
\(161\) 296.142 82.2233i 1.83939 0.510704i
\(162\) −19.7797 + 53.5731i −0.122097 + 0.330698i
\(163\) −160.420 + 17.4467i −0.984169 + 0.107035i −0.586029 0.810290i \(-0.699310\pi\)
−0.398140 + 0.917325i \(0.630344\pi\)
\(164\) −124.731 66.1279i −0.760552 0.403219i
\(165\) −64.8844 + 84.0950i −0.393239 + 0.509667i
\(166\) 6.78220 24.4273i 0.0408566 0.147152i
\(167\) −66.1218 56.1644i −0.395939 0.336314i 0.427196 0.904159i \(-0.359501\pi\)
−0.823135 + 0.567845i \(0.807777\pi\)
\(168\) −165.670 101.306i −0.986132 0.603012i
\(169\) −105.421 155.485i −0.623794 0.920027i
\(170\) −19.0929 41.2685i −0.112311 0.242756i
\(171\) −131.609 + 26.9960i −0.769646 + 0.157871i
\(172\) 27.4619 68.9241i 0.159662 0.400722i
\(173\) 65.6916 86.4158i 0.379720 0.499513i −0.566041 0.824377i \(-0.691525\pi\)
0.945761 + 0.324864i \(0.105319\pi\)
\(174\) 0.340905 47.5249i 0.00195923 0.273132i
\(175\) −114.005 38.4129i −0.651459 0.219502i
\(176\) 61.6838i 0.350476i
\(177\) 169.133 52.1841i 0.955551 0.294825i
\(178\) −45.7418 −0.256977
\(179\) −22.9528 + 68.1216i −0.128228 + 0.380568i −0.992467 0.122515i \(-0.960904\pi\)
0.864239 + 0.503082i \(0.167801\pi\)
\(180\) 93.6282 + 160.789i 0.520157 + 0.893270i
\(181\) 94.9154 + 72.1528i 0.524394 + 0.398634i 0.833606 0.552359i \(-0.186272\pi\)
−0.309212 + 0.950993i \(0.600065\pi\)
\(182\) 151.399 + 60.3230i 0.831864 + 0.331445i
\(183\) 95.0975 275.688i 0.519658 1.50649i
\(184\) 120.583 55.7878i 0.655344 0.303194i
\(185\) −37.1803 + 25.2088i −0.200974 + 0.136264i
\(186\) −55.7022 34.0615i −0.299474 0.183126i
\(187\) 42.4413 49.9658i 0.226959 0.267197i
\(188\) 205.954 + 57.1828i 1.09550 + 0.304164i
\(189\) −132.243 302.769i −0.699697 1.60195i
\(190\) 29.0948 54.8786i 0.153130 0.288834i
\(191\) −33.8733 311.460i −0.177347 1.63068i −0.657473 0.753478i \(-0.728374\pi\)
0.480126 0.877200i \(-0.340591\pi\)
\(192\) 58.6336 + 23.8505i 0.305383 + 0.124221i
\(193\) 40.5808 + 146.159i 0.210263 + 0.757300i 0.991164 + 0.132645i \(0.0423469\pi\)
−0.780900 + 0.624656i \(0.785239\pi\)
\(194\) −17.2216 + 37.2238i −0.0887710 + 0.191875i
\(195\) −214.694 256.464i −1.10100 1.31520i
\(196\) 344.619 75.8564i 1.75826 0.387023i
\(197\) −6.31742 10.4996i −0.0320681 0.0532977i 0.840409 0.541953i \(-0.182315\pi\)
−0.872477 + 0.488656i \(0.837487\pi\)
\(198\) 21.8120 31.1973i 0.110162 0.157562i
\(199\) 121.024 178.497i 0.608160 0.896970i −0.391571 0.920148i \(-0.628068\pi\)
0.999731 + 0.0231784i \(0.00737856\pi\)
\(200\) −51.3211 8.41367i −0.256605 0.0420683i
\(201\) 7.79919 5.20671i 0.0388019 0.0259040i
\(202\) 66.5318 + 63.0223i 0.329365 + 0.311991i
\(203\) 189.087 + 199.617i 0.931463 + 0.983333i
\(204\) −53.0627 101.846i −0.260111 0.499243i
\(205\) 232.295 + 51.1321i 1.13315 + 0.249425i
\(206\) −39.5058 117.249i −0.191776 0.569170i
\(207\) 222.525 + 39.7672i 1.07500 + 0.192112i
\(208\) −189.695 41.7551i −0.911996 0.200746i
\(209\) 89.4215 + 4.84830i 0.427854 + 0.0231976i
\(210\) 146.885 + 41.9195i 0.699452 + 0.199617i
\(211\) −294.125 278.610i −1.39396 1.32043i −0.889458 0.457017i \(-0.848918\pi\)
−0.504501 0.863411i \(-0.668324\pi\)
\(212\) −323.593 + 17.5447i −1.52638 + 0.0827580i
\(213\) 86.0676 + 220.602i 0.404073 + 1.03569i
\(214\) 66.0753 97.4537i 0.308763 0.455391i
\(215\) −13.5152 + 124.270i −0.0628614 + 0.578001i
\(216\) −77.5895 119.912i −0.359211 0.555150i
\(217\) 368.901 81.2011i 1.70000 0.374199i
\(218\) −15.8007 + 2.59039i −0.0724803 + 0.0118825i
\(219\) −16.6785 164.313i −0.0761575 0.750289i
\(220\) −33.1796 119.502i −0.150816 0.543192i
\(221\) 124.930 + 164.342i 0.565293 + 0.743630i
\(222\) 12.8857 9.65037i 0.0580435 0.0434701i
\(223\) 56.4913 106.554i 0.253324 0.477820i −0.723935 0.689868i \(-0.757668\pi\)
0.977259 + 0.212048i \(0.0680133\pi\)
\(224\) 322.937 128.670i 1.44168 0.574419i
\(225\) −63.3581 61.7644i −0.281592 0.274509i
\(226\) −27.3096 + 32.1514i −0.120839 + 0.142263i
\(227\) −315.263 + 167.142i −1.38883 + 0.736309i −0.984014 0.178092i \(-0.943008\pi\)
−0.404811 + 0.914400i \(0.632663\pi\)
\(228\) 66.8885 141.897i 0.293370 0.622356i
\(229\) −254.770 + 117.869i −1.11253 + 0.514712i −0.888041 0.459764i \(-0.847934\pi\)
−0.224491 + 0.974476i \(0.572072\pi\)
\(230\) −79.6538 + 67.6585i −0.346321 + 0.294167i
\(231\) 34.0689 + 217.575i 0.147484 + 0.941884i
\(232\) 94.6250 + 71.9321i 0.407866 + 0.310052i
\(233\) 108.095 179.655i 0.463925 0.771049i −0.533266 0.845948i \(-0.679036\pi\)
0.997191 + 0.0748981i \(0.0238631\pi\)
\(234\) 81.1754 + 88.1963i 0.346904 + 0.376907i
\(235\) −360.122 −1.53244
\(236\) −69.6117 + 194.596i −0.294965 + 0.824561i
\(237\) 6.04975 + 10.2200i 0.0255264 + 0.0431223i
\(238\) −89.3435 30.1033i −0.375393 0.126485i
\(239\) −96.3302 + 160.102i −0.403055 + 0.669883i −0.990209 0.139592i \(-0.955421\pi\)
0.587154 + 0.809475i \(0.300248\pi\)
\(240\) −180.837 20.9808i −0.753489 0.0874200i
\(241\) −96.9443 + 243.312i −0.402259 + 1.00959i 0.578728 + 0.815520i \(0.303549\pi\)
−0.980987 + 0.194073i \(0.937830\pi\)
\(242\) 45.6807 38.8016i 0.188763 0.160337i
\(243\) 8.71341 242.844i 0.0358576 0.999357i
\(244\) 191.094 + 281.843i 0.783173 + 1.15509i
\(245\) −525.267 + 278.479i −2.14395 + 1.13665i
\(246\) −84.0196 14.3939i −0.341543 0.0585119i
\(247\) −75.4413 + 271.715i −0.305430 + 1.10006i
\(248\) 151.694 60.4403i 0.611668 0.243711i
\(249\) 5.06731 + 107.753i 0.0203507 + 0.432745i
\(250\) −62.7465 + 6.82410i −0.250986 + 0.0272964i
\(251\) −268.351 353.009i −1.06913 1.40641i −0.907747 0.419519i \(-0.862199\pi\)
−0.161380 0.986892i \(-0.551594\pi\)
\(252\) 375.529 + 88.3268i 1.49019 + 0.350503i
\(253\) −136.751 63.2678i −0.540518 0.250070i
\(254\) −55.8976 + 9.16395i −0.220069 + 0.0360785i
\(255\) 132.048 + 141.420i 0.517836 + 0.554587i
\(256\) 5.31762 3.19951i 0.0207720 0.0124981i
\(257\) 6.79724 62.4996i 0.0264484 0.243189i −0.973450 0.228902i \(-0.926487\pi\)
0.999898 0.0142874i \(-0.00454797\pi\)
\(258\) 2.74618 44.7147i 0.0106441 0.173313i
\(259\) −15.0679 + 91.9101i −0.0581772 + 0.354865i
\(260\) 389.963 21.1432i 1.49986 0.0813200i
\(261\) 61.8161 + 192.549i 0.236843 + 0.737737i
\(262\) −5.09351 + 4.82483i −0.0194409 + 0.0184154i
\(263\) 43.9769 + 2.38436i 0.167212 + 0.00906599i 0.137555 0.990494i \(-0.456076\pi\)
0.0296574 + 0.999560i \(0.490558\pi\)
\(264\) 29.7504 + 90.4347i 0.112691 + 0.342556i
\(265\) 517.416 174.338i 1.95251 0.657878i
\(266\) −41.1215 122.044i −0.154592 0.458813i
\(267\) 184.889 60.8230i 0.692467 0.227802i
\(268\) −0.592796 + 10.9335i −0.00221193 + 0.0407966i
\(269\) 245.688 + 259.370i 0.913338 + 0.964200i 0.999485 0.0320829i \(-0.0102141\pi\)
−0.0861469 + 0.996282i \(0.527455\pi\)
\(270\) 84.0415 + 74.5573i 0.311265 + 0.276138i
\(271\) −3.14534 58.0124i −0.0116064 0.214068i −0.998584 0.0532070i \(-0.983056\pi\)
0.986977 0.160861i \(-0.0514271\pi\)
\(272\) 110.883 + 18.1784i 0.407659 + 0.0668323i
\(273\) −692.168 42.5098i −2.53541 0.155714i
\(274\) −157.548 17.1344i −0.574993 0.0625343i
\(275\) 30.4070 + 50.5368i 0.110571 + 0.183770i
\(276\) −192.921 + 180.136i −0.698987 + 0.652667i
\(277\) −70.0096 427.039i −0.252742 1.54166i −0.742528 0.669815i \(-0.766373\pi\)
0.489786 0.871843i \(-0.337075\pi\)
\(278\) −49.7333 + 107.497i −0.178897 + 0.386679i
\(279\) 270.440 + 63.6093i 0.969319 + 0.227990i
\(280\) −304.126 + 231.190i −1.08616 + 0.825680i
\(281\) 12.5895 + 115.758i 0.0448025 + 0.411952i 0.994967 + 0.100203i \(0.0319492\pi\)
−0.950165 + 0.311749i \(0.899085\pi\)
\(282\) 128.919 6.06268i 0.457160 0.0214989i
\(283\) −157.802 396.052i −0.557603 1.39948i −0.889836 0.456280i \(-0.849181\pi\)
0.332233 0.943197i \(-0.392198\pi\)
\(284\) −266.416 73.9701i −0.938085 0.260458i
\(285\) −44.6291 + 260.507i −0.156593 + 0.914059i
\(286\) −37.4254 70.5918i −0.130858 0.246825i
\(287\) 408.187 276.758i 1.42225 0.964312i
\(288\) 255.078 + 17.5032i 0.885687 + 0.0607749i
\(289\) 109.783 + 129.247i 0.379873 + 0.447221i
\(290\) −86.8564 34.6067i −0.299505 0.119334i
\(291\) 20.1131 173.358i 0.0691172 0.595733i
\(292\) 165.241 + 99.4220i 0.565892 + 0.340486i
\(293\) 57.8940 171.823i 0.197590 0.586428i −0.802355 0.596847i \(-0.796420\pi\)
0.999946 + 0.0104192i \(0.00331658\pi\)
\(294\) 183.351 108.535i 0.623642 0.369166i
\(295\) 25.2965 347.287i 0.0857507 1.17724i
\(296\) 40.2626i 0.136022i
\(297\) −46.6813 + 155.103i −0.157176 + 0.522232i
\(298\) −36.8724 22.1854i −0.123733 0.0744476i
\(299\) 287.136 377.722i 0.960323 1.26328i
\(300\) 102.072 15.9828i 0.340239 0.0532761i
\(301\) 167.788 + 197.536i 0.557436 + 0.656264i
\(302\) −34.6232 74.8369i −0.114646 0.247804i
\(303\) −352.723 166.269i −1.16410 0.548742i
\(304\) 71.8959 + 135.610i 0.236500 + 0.446085i
\(305\) −437.262 371.414i −1.43365 1.21775i
\(306\) −49.6524 48.4034i −0.162263 0.158181i
\(307\) 23.7411 + 59.5857i 0.0773326 + 0.194090i 0.962560 0.271068i \(-0.0873768\pi\)
−0.885228 + 0.465158i \(0.845997\pi\)
\(308\) −227.191 120.449i −0.737634 0.391069i
\(309\) 315.589 + 421.390i 1.02132 + 1.36372i
\(310\) −102.254 + 77.7316i −0.329852 + 0.250747i
\(311\) −84.8479 + 23.5579i −0.272823 + 0.0757489i −0.401245 0.915971i \(-0.631422\pi\)
0.128422 + 0.991720i \(0.459009\pi\)
\(312\) −298.251 + 30.2738i −0.955934 + 0.0970313i
\(313\) 45.6523 + 278.467i 0.145854 + 0.889671i 0.953806 + 0.300423i \(0.0971277\pi\)
−0.807952 + 0.589248i \(0.799424\pi\)
\(314\) −17.9357 81.4826i −0.0571200 0.259499i
\(315\) −649.450 + 25.8743i −2.06175 + 0.0821406i
\(316\) −13.7860 1.49932i −0.0436267 0.00474469i
\(317\) 59.2308 + 40.1595i 0.186848 + 0.126686i 0.651025 0.759057i \(-0.274339\pi\)
−0.464177 + 0.885743i \(0.653650\pi\)
\(318\) −182.293 + 71.1214i −0.573249 + 0.223652i
\(319\) −7.29786 134.601i −0.0228773 0.421947i
\(320\) 85.6365 90.4053i 0.267614 0.282517i
\(321\) −137.492 + 481.769i −0.428324 + 1.50084i
\(322\) −11.7313 + 216.371i −0.0364326 + 0.671959i
\(323\) 35.0681 159.316i 0.108570 0.493239i
\(324\) 220.862 + 178.120i 0.681673 + 0.549752i
\(325\) −175.998 + 59.3007i −0.541533 + 0.182464i
\(326\) 24.4568 111.109i 0.0750210 0.340824i
\(327\) 60.4220 31.4806i 0.184777 0.0962709i
\(328\) 154.777 146.612i 0.471880 0.446988i
\(329\) −513.483 + 542.077i −1.56074 + 1.64765i
\(330\) −41.5796 62.2825i −0.125999 0.188735i
\(331\) −23.8682 + 145.590i −0.0721095 + 0.439849i 0.925954 + 0.377638i \(0.123263\pi\)
−0.998063 + 0.0622110i \(0.980185\pi\)
\(332\) −104.253 70.6851i −0.314014 0.212907i
\(333\) −39.2518 + 56.1409i −0.117873 + 0.168591i
\(334\) 52.4103 31.5342i 0.156917 0.0944139i
\(335\) −3.96578 18.0167i −0.0118382 0.0537813i
\(336\) −289.430 + 242.291i −0.861398 + 0.721105i
\(337\) −361.982 167.471i −1.07413 0.496946i −0.198587 0.980083i \(-0.563635\pi\)
−0.875545 + 0.483137i \(0.839497\pi\)
\(338\) 127.616 35.4324i 0.377563 0.104830i
\(339\) 67.6339 166.270i 0.199510 0.490471i
\(340\) −224.596 + 24.4263i −0.660577 + 0.0718421i
\(341\) −163.613 86.7424i −0.479805 0.254376i
\(342\) 11.5910 94.0094i 0.0338918 0.274881i
\(343\) −169.364 + 609.994i −0.493773 + 1.77841i
\(344\) 85.3934 + 72.5338i 0.248237 + 0.210854i
\(345\) 231.995 379.392i 0.672450 1.09969i
\(346\) 42.9485 + 63.3443i 0.124129 + 0.183076i
\(347\) −21.6896 46.8812i −0.0625059 0.135104i 0.873805 0.486277i \(-0.161645\pi\)
−0.936311 + 0.351172i \(0.885783\pi\)
\(348\) −223.223 77.0001i −0.641447 0.221265i
\(349\) −50.6125 + 127.028i −0.145022 + 0.363977i −0.983487 0.180978i \(-0.942074\pi\)
0.838466 + 0.544955i \(0.183453\pi\)
\(350\) 51.3295 67.5229i 0.146656 0.192922i
\(351\) −445.386 248.551i −1.26891 0.708122i
\(352\) −161.505 54.4173i −0.458820 0.154595i
\(353\) 334.980i 0.948952i 0.880268 + 0.474476i \(0.157362\pi\)
−0.880268 + 0.474476i \(0.842638\pi\)
\(354\) −3.20922 + 124.750i −0.00906559 + 0.352401i
\(355\) 465.844 1.31224
\(356\) −72.5662 + 215.369i −0.203838 + 0.604969i
\(357\) 401.155 + 2.87756i 1.12368 + 0.00806040i
\(358\) −40.3469 30.6709i −0.112701 0.0856730i
\(359\) −390.957 155.772i −1.08902 0.433904i −0.244619 0.969619i \(-0.578663\pi\)
−0.844399 + 0.535715i \(0.820042\pi\)
\(360\) −275.245 + 56.4588i −0.764570 + 0.156830i
\(361\) −125.393 + 58.0130i −0.347349 + 0.160701i
\(362\) −69.5747 + 47.1728i −0.192195 + 0.130312i
\(363\) −133.047 + 217.578i −0.366521 + 0.599388i
\(364\) 524.206 617.143i 1.44013 1.69545i
\(365\) −313.067 86.9226i −0.857717 0.238144i
\(366\) 162.787 + 125.600i 0.444773 + 0.343169i
\(367\) 28.0680 52.9419i 0.0764795 0.144256i −0.842323 0.538973i \(-0.818813\pi\)
0.918803 + 0.394717i \(0.129157\pi\)
\(368\) −27.9222 256.741i −0.0758756 0.697665i
\(369\) 358.747 53.5407i 0.972214 0.145097i
\(370\) −8.47278 30.5162i −0.0228994 0.0824762i
\(371\) 475.338 1027.43i 1.28123 2.76934i
\(372\) −248.741 + 208.229i −0.668658 + 0.559757i
\(373\) −194.594 + 42.8334i −0.521699 + 0.114835i −0.468010 0.883723i \(-0.655029\pi\)
−0.0536891 + 0.998558i \(0.517098\pi\)
\(374\) 23.8293 + 39.6046i 0.0637146 + 0.105895i
\(375\) 244.548 111.017i 0.652127 0.296046i
\(376\) −181.140 + 267.161i −0.481755 + 0.710536i
\(377\) 418.877 + 68.6714i 1.11108 + 0.182152i
\(378\) 232.059 20.1962i 0.613913 0.0534291i
\(379\) 338.318 + 320.472i 0.892660 + 0.845572i 0.988716 0.149804i \(-0.0478641\pi\)
−0.0960558 + 0.995376i \(0.530623\pi\)
\(380\) −212.231 224.049i −0.558502 0.589604i
\(381\) 213.753 111.368i 0.561032 0.292304i
\(382\) 215.721 + 47.4837i 0.564714 + 0.124303i
\(383\) 152.784 + 453.447i 0.398914 + 1.18393i 0.939472 + 0.342627i \(0.111317\pi\)
−0.540558 + 0.841307i \(0.681787\pi\)
\(384\) −251.689 + 292.040i −0.655440 + 0.760520i
\(385\) 423.116 + 93.1348i 1.09900 + 0.241909i
\(386\) −106.789 5.78991i −0.276654 0.0149998i
\(387\) 48.3572 + 184.389i 0.124954 + 0.476456i
\(388\) 147.942 + 140.138i 0.381294 + 0.361181i
\(389\) 299.246 16.2247i 0.769271 0.0417086i 0.334674 0.942334i \(-0.391374\pi\)
0.434597 + 0.900625i \(0.356891\pi\)
\(390\) 219.683 85.7088i 0.563289 0.219766i
\(391\) −154.032 + 227.180i −0.393943 + 0.581023i
\(392\) −57.6138 + 529.750i −0.146974 + 1.35140i
\(393\) 14.1724 26.2748i 0.0360621 0.0668571i
\(394\) 8.43729 1.85719i 0.0214144 0.00471367i
\(395\) 23.0562 3.77987i 0.0583701 0.00956930i
\(396\) −112.284 152.191i −0.283547 0.384321i
\(397\) −125.988 453.768i −0.317350 1.14299i −0.934446 0.356104i \(-0.884105\pi\)
0.617096 0.786888i \(-0.288309\pi\)
\(398\) 92.0143 + 121.043i 0.231192 + 0.304127i
\(399\) 328.495 + 438.624i 0.823297 + 1.09931i
\(400\) −47.3504 + 89.3123i −0.118376 + 0.223281i
\(401\) −203.137 + 80.9373i −0.506577 + 0.201839i −0.609403 0.792861i \(-0.708591\pi\)
0.102826 + 0.994699i \(0.467212\pi\)
\(402\) 1.72301 + 6.38300i 0.00428610 + 0.0158781i
\(403\) 377.511 444.440i 0.936752 1.10283i
\(404\) 402.279 213.275i 0.995741 0.527908i
\(405\) −438.835 189.611i −1.08354 0.468175i
\(406\) −175.937 + 81.3970i −0.433342 + 0.200485i
\(407\) 34.8011 29.5603i 0.0855064 0.0726298i
\(408\) 171.334 26.8282i 0.419936 0.0657554i
\(409\) 552.714 + 420.163i 1.35138 + 1.02729i 0.995695 + 0.0926866i \(0.0295455\pi\)
0.355685 + 0.934606i \(0.384248\pi\)
\(410\) −86.4569 + 143.693i −0.210871 + 0.350470i
\(411\) 659.594 140.235i 1.60485 0.341204i
\(412\) −614.723 −1.49205
\(413\) −486.687 533.259i −1.17842 1.29118i
\(414\) −76.6642 + 139.723i −0.185179 + 0.337495i
\(415\) 201.106 + 67.7604i 0.484592 + 0.163278i
\(416\) 276.675 459.837i 0.665083 1.10538i
\(417\) 58.0835 500.633i 0.139289 1.20056i
\(418\) −23.3698 + 58.6537i −0.0559085 + 0.140320i
\(419\) −74.0064 + 62.8616i −0.176626 + 0.150028i −0.731339 0.682014i \(-0.761104\pi\)
0.554713 + 0.832042i \(0.312828\pi\)
\(420\) 430.395 625.084i 1.02475 1.48830i
\(421\) −337.777 498.184i −0.802321 1.18334i −0.979951 0.199238i \(-0.936153\pi\)
0.177630 0.984097i \(-0.443157\pi\)
\(422\) 252.361 133.793i 0.598012 0.317046i
\(423\) −513.030 + 195.930i −1.21284 + 0.463190i
\(424\) 130.923 471.543i 0.308781 1.11213i
\(425\) 99.8064 39.7665i 0.234839 0.0935682i
\(426\) −166.766 + 7.84251i −0.391470 + 0.0184096i
\(427\) −1182.55 + 128.610i −2.76943 + 0.301194i
\(428\) −354.023 465.709i −0.827156 1.08811i
\(429\) 245.140 + 235.568i 0.571421 + 0.549109i
\(430\) −79.9861 37.0055i −0.186014 0.0860593i
\(431\) −219.767 + 36.0289i −0.509899 + 0.0835937i −0.411239 0.911527i \(-0.634904\pi\)
−0.0986601 + 0.995121i \(0.531456\pi\)
\(432\) −269.036 + 68.4978i −0.622768 + 0.158560i
\(433\) 468.959 282.163i 1.08305 0.651647i 0.141979 0.989870i \(-0.454653\pi\)
0.941066 + 0.338223i \(0.109826\pi\)
\(434\) −28.7936 + 264.753i −0.0663448 + 0.610030i
\(435\) 397.090 + 24.3875i 0.912852 + 0.0560632i
\(436\) −12.8702 + 78.5048i −0.0295188 + 0.180057i
\(437\) −374.386 + 20.2986i −0.856718 + 0.0464499i
\(438\) 113.537 + 25.8467i 0.259217 + 0.0590107i
\(439\) 384.704 364.411i 0.876318 0.830093i −0.110172 0.993913i \(-0.535140\pi\)
0.986490 + 0.163820i \(0.0523815\pi\)
\(440\) 187.014 + 10.1396i 0.425033 + 0.0230446i
\(441\) −596.786 + 682.500i −1.35326 + 1.54762i
\(442\) −137.926 + 46.4726i −0.312050 + 0.105142i
\(443\) 206.057 + 611.556i 0.465141 + 1.38049i 0.881885 + 0.471465i \(0.156275\pi\)
−0.416744 + 0.909024i \(0.636829\pi\)
\(444\) −24.9952 75.9799i −0.0562955 0.171126i
\(445\) 20.7299 382.341i 0.0465840 0.859192i
\(446\) 58.4745 + 61.7308i 0.131109 + 0.138410i
\(447\) 178.538 + 40.6441i 0.399415 + 0.0909265i
\(448\) −13.9781 257.810i −0.0312010 0.575469i
\(449\) 414.103 + 67.8888i 0.922279 + 0.151200i 0.604171 0.796854i \(-0.293504\pi\)
0.318108 + 0.948054i \(0.396953\pi\)
\(450\) 55.5297 28.4271i 0.123399 0.0631713i
\(451\) −240.360 26.1407i −0.532949 0.0579616i
\(452\) 108.055 + 179.589i 0.239060 + 0.397321i
\(453\) 239.458 + 256.453i 0.528605 + 0.566120i
\(454\) −40.7007 248.264i −0.0896492 0.546836i
\(455\) −572.832 + 1238.16i −1.25897 + 2.72122i
\(456\) 170.812 + 164.142i 0.374588 + 0.359961i
\(457\) 454.950 345.844i 0.995514 0.756770i 0.0254643 0.999676i \(-0.491894\pi\)
0.970050 + 0.242905i \(0.0781005\pi\)
\(458\) −21.3983 196.754i −0.0467211 0.429594i
\(459\) 265.057 + 129.624i 0.577467 + 0.282405i
\(460\) 192.195 + 482.374i 0.417816 + 1.04864i
\(461\) 406.020 + 112.731i 0.880738 + 0.244536i 0.678323 0.734764i \(-0.262707\pi\)
0.202415 + 0.979300i \(0.435121\pi\)
\(462\) −153.038 26.2179i −0.331251 0.0567487i
\(463\) 161.938 + 305.447i 0.349757 + 0.659712i 0.994506 0.104683i \(-0.0333827\pi\)
−0.644748 + 0.764395i \(0.723038\pi\)
\(464\) 191.229 129.656i 0.412131 0.279431i
\(465\) 309.952 450.159i 0.666563 0.968084i
\(466\) 95.6983 + 112.665i 0.205361 + 0.241770i
\(467\) −186.023 74.1185i −0.398337 0.158712i 0.162363 0.986731i \(-0.448089\pi\)
−0.560700 + 0.828019i \(0.689468\pi\)
\(468\) 544.039 242.285i 1.16248 0.517704i
\(469\) −32.7745 19.7198i −0.0698817 0.0420464i
\(470\) 81.0704 240.608i 0.172490 0.511933i
\(471\) 180.844 + 305.504i 0.383957 + 0.648629i
\(472\) −244.915 193.450i −0.518888 0.409852i
\(473\) 127.064i 0.268633i
\(474\) −8.19019 + 1.74130i −0.0172789 + 0.00367363i
\(475\) 125.752 + 75.6626i 0.264742 + 0.159290i
\(476\) −283.474 + 372.904i −0.595534 + 0.783412i
\(477\) 642.260 529.869i 1.34646 1.11084i
\(478\) −85.2831 100.403i −0.178417 0.210048i
\(479\) 16.0051 + 34.5945i 0.0334136 + 0.0722224i 0.923564 0.383445i \(-0.125263\pi\)
−0.890150 + 0.455668i \(0.849401\pi\)
\(480\) 214.468 454.972i 0.446808 0.947858i
\(481\) 67.3488 + 127.033i 0.140018 + 0.264103i
\(482\) −140.740 119.545i −0.291991 0.248020i
\(483\) −240.291 890.171i −0.497497 1.84300i
\(484\) −110.222 276.637i −0.227732 0.571564i
\(485\) −303.337 160.819i −0.625436 0.331585i
\(486\) 160.289 + 60.4904i 0.329814 + 0.124466i
\(487\) 449.747 341.889i 0.923505 0.702031i −0.0312220 0.999512i \(-0.509940\pi\)
0.954727 + 0.297482i \(0.0961468\pi\)
\(488\) −495.479 + 137.569i −1.01533 + 0.281904i
\(489\) 48.8866 + 481.622i 0.0999726 + 0.984912i
\(490\) −67.8124 413.637i −0.138393 0.844158i
\(491\) 196.774 + 893.954i 0.400762 + 1.82068i 0.554032 + 0.832496i \(0.313089\pi\)
−0.153270 + 0.988184i \(0.548980\pi\)
\(492\) −201.063 + 372.759i −0.408664 + 0.757640i
\(493\) −244.111 26.5487i −0.495154 0.0538512i
\(494\) −164.557 111.573i −0.333112 0.225856i
\(495\) 250.882 + 196.458i 0.506833 + 0.396884i
\(496\) −17.1837 316.934i −0.0346445 0.638980i
\(497\) 664.227 701.216i 1.33647 1.41090i
\(498\) −73.1340 20.8717i −0.146855 0.0419111i
\(499\) 6.67125 123.044i 0.0133692 0.246581i −0.984208 0.177015i \(-0.943356\pi\)
0.997577 0.0695659i \(-0.0221614\pi\)
\(500\) −67.4127 + 306.259i −0.134825 + 0.612518i
\(501\) −169.912 + 197.152i −0.339145 + 0.393516i
\(502\) 296.267 99.8239i 0.590173 0.198852i
\(503\) 166.427 756.087i 0.330869 1.50315i −0.458199 0.888849i \(-0.651505\pi\)
0.789069 0.614305i \(-0.210564\pi\)
\(504\) −307.475 + 494.818i −0.610070 + 0.981781i
\(505\) −556.934 + 527.556i −1.10284 + 1.04466i
\(506\) 73.0564 77.1247i 0.144380 0.152420i
\(507\) −468.710 + 312.910i −0.924478 + 0.617179i
\(508\) −45.5305 + 277.724i −0.0896269 + 0.546700i
\(509\) −412.016 279.353i −0.809461 0.548828i 0.0847876 0.996399i \(-0.472979\pi\)
−0.894248 + 0.447571i \(0.852289\pi\)
\(510\) −124.213 + 56.3890i −0.243555 + 0.110567i
\(511\) −577.229 + 347.307i −1.12961 + 0.679662i
\(512\) −109.563 497.751i −0.213991 0.972169i
\(513\) 78.1537 + 395.399i 0.152346 + 0.770758i
\(514\) 40.2276 + 18.6113i 0.0782639 + 0.0362087i
\(515\) 997.949 277.079i 1.93776 0.538018i
\(516\) −206.176 83.8667i −0.399566 0.162532i
\(517\) 363.913 39.5779i 0.703893 0.0765530i
\(518\) −58.0158 30.7580i −0.112000 0.0593784i
\(519\) −257.827 198.929i −0.496777 0.383293i
\(520\) −157.776 + 568.259i −0.303416 + 1.09281i
\(521\) −436.884 371.092i −0.838548 0.712269i 0.121353 0.992609i \(-0.461277\pi\)
−0.959901 + 0.280340i \(0.909553\pi\)
\(522\) −142.564 2.04538i −0.273111 0.00391835i
\(523\) 60.3886 + 89.0666i 0.115466 + 0.170299i 0.881030 0.473060i \(-0.156851\pi\)
−0.765564 + 0.643359i \(0.777540\pi\)
\(524\) 14.6365 + 31.6363i 0.0279323 + 0.0603746i
\(525\) −117.689 + 341.181i −0.224169 + 0.649868i
\(526\) −11.4931 + 28.8455i −0.0218500 + 0.0548393i
\(527\) −204.146 + 268.550i −0.387374 + 0.509582i
\(528\) 185.047 + 1.32737i 0.350467 + 0.00251396i
\(529\) 96.5174 + 32.5205i 0.182453 + 0.0614754i
\(530\) 384.948i 0.726316i
\(531\) −152.909 508.508i −0.287964 0.957641i
\(532\) −639.863 −1.20275
\(533\) 243.095 721.480i 0.456088 1.35362i
\(534\) −0.984319 + 137.222i −0.00184329 + 0.256970i
\(535\) 784.638 + 596.466i 1.46661 + 1.11489i
\(536\) −15.3607 6.12027i −0.0286581 0.0114184i
\(537\) 203.866 + 70.3227i 0.379638 + 0.130955i
\(538\) −228.602 + 105.762i −0.424910 + 0.196584i
\(539\) 500.191 339.138i 0.927998 0.629198i
\(540\) 484.368 277.417i 0.896978 0.513736i
\(541\) −120.825 + 142.246i −0.223337 + 0.262932i −0.862406 0.506216i \(-0.831044\pi\)
0.639070 + 0.769149i \(0.279320\pi\)
\(542\) 39.4679 + 10.9582i 0.0728190 + 0.0202181i
\(543\) 218.495 283.186i 0.402386 0.521522i
\(544\) −145.417 + 274.285i −0.267311 + 0.504201i
\(545\) −14.4914 133.247i −0.0265898 0.244489i
\(546\) 184.222 452.888i 0.337403 0.829465i
\(547\) 24.4389 + 88.0209i 0.0446781 + 0.160916i 0.982524 0.186136i \(-0.0595965\pi\)
−0.937846 + 0.347052i \(0.887183\pi\)
\(548\) −330.614 + 714.610i −0.603310 + 1.30403i
\(549\) −824.996 291.218i −1.50273 0.530451i
\(550\) −40.6103 + 8.93900i −0.0738369 + 0.0162527i
\(551\) −172.929 287.411i −0.313846 0.521616i
\(552\) −164.764 362.941i −0.298486 0.657502i
\(553\) 27.1852 40.0951i 0.0491594 0.0725047i
\(554\) 301.078 + 49.3592i 0.543462 + 0.0890961i
\(555\) 74.8245 + 112.080i 0.134819 + 0.201947i
\(556\) 427.234 + 404.698i 0.768407 + 0.727874i
\(557\) 730.358 + 771.029i 1.31123 + 1.38425i 0.874775 + 0.484530i \(0.161009\pi\)
0.436460 + 0.899724i \(0.356232\pi\)
\(558\) −103.380 + 166.369i −0.185270 + 0.298153i
\(559\) 390.757 + 86.0121i 0.699028 + 0.153868i
\(560\) 237.101 + 703.691i 0.423395 + 1.25659i
\(561\) −148.980 128.396i −0.265562 0.228870i
\(562\) −80.1757 17.6480i −0.142661 0.0314022i
\(563\) 281.026 + 15.2368i 0.499157 + 0.0270635i 0.301999 0.953308i \(-0.402346\pi\)
0.197158 + 0.980372i \(0.436829\pi\)
\(564\) 175.976 616.615i 0.312014 1.09329i
\(565\) −256.366 242.843i −0.453745 0.429810i
\(566\) 300.138 16.2730i 0.530279 0.0287509i
\(567\) −911.129 + 390.203i −1.60693 + 0.688188i
\(568\) 234.318 345.593i 0.412531 0.608438i
\(569\) −71.9351 + 661.432i −0.126424 + 1.16245i 0.743318 + 0.668939i \(0.233251\pi\)
−0.869741 + 0.493508i \(0.835714\pi\)
\(570\) −164.005 88.4630i −0.287729 0.155198i
\(571\) −168.973 + 37.1938i −0.295925 + 0.0651381i −0.360452 0.932778i \(-0.617377\pi\)
0.0645263 + 0.997916i \(0.479446\pi\)
\(572\) −391.744 + 64.2232i −0.684867 + 0.112278i
\(573\) −935.083 + 94.9149i −1.63191 + 0.165646i
\(574\) 93.0193 + 335.025i 0.162054 + 0.583667i
\(575\) −149.436 196.580i −0.259889 0.341879i
\(576\) 72.8115 175.383i 0.126409 0.304485i
\(577\) −48.7038 + 91.8651i −0.0844087 + 0.159212i −0.922123 0.386897i \(-0.873547\pi\)
0.837714 + 0.546109i \(0.183892\pi\)
\(578\) −111.068 + 44.2535i −0.192159 + 0.0765631i
\(579\) 439.339 118.594i 0.758789 0.204826i
\(580\) −300.732 + 354.049i −0.518504 + 0.610430i
\(581\) 388.745 206.099i 0.669096 0.354732i
\(582\) 111.298 + 52.4644i 0.191234 + 0.0901451i
\(583\) −503.702 + 233.037i −0.863983 + 0.399721i
\(584\) −221.956 + 188.531i −0.380061 + 0.322827i
\(585\) −773.991 + 638.548i −1.32306 + 1.09153i
\(586\) 101.767 + 77.3614i 0.173664 + 0.132016i
\(587\) −414.554 + 688.994i −0.706225 + 1.17375i 0.271211 + 0.962520i \(0.412576\pi\)
−0.977435 + 0.211235i \(0.932252\pi\)
\(588\) −220.148 1035.46i −0.374401 1.76099i
\(589\) −460.803 −0.782347
\(590\) 226.338 + 95.0821i 0.383623 + 0.161156i
\(591\) −31.6341 + 18.7258i −0.0535263 + 0.0316850i
\(592\) 74.1643 + 24.9888i 0.125277 + 0.0422109i
\(593\) 484.946 805.986i 0.817784 1.35917i −0.112999 0.993595i \(-0.536046\pi\)
0.930783 0.365572i \(-0.119127\pi\)
\(594\) −93.1200 66.1058i −0.156768 0.111289i
\(595\) 292.113 733.149i 0.490947 1.23218i
\(596\) −162.952 + 138.413i −0.273410 + 0.232236i
\(597\) −532.873 366.904i −0.892584 0.614579i
\(598\) 187.727 + 276.877i 0.313925 + 0.463004i
\(599\) −505.835 + 268.177i −0.844465 + 0.447707i −0.833689 0.552235i \(-0.813775\pi\)
−0.0107765 + 0.999942i \(0.503430\pi\)
\(600\) −26.3447 + 153.778i −0.0439079 + 0.256297i
\(601\) 79.1697 285.143i 0.131730 0.474448i −0.868027 0.496518i \(-0.834612\pi\)
0.999756 + 0.0220696i \(0.00702553\pi\)
\(602\) −169.752 + 67.6352i −0.281979 + 0.112351i
\(603\) −15.4519 23.5090i −0.0256251 0.0389868i
\(604\) −407.286 + 44.2950i −0.674314 + 0.0733361i
\(605\) 303.627 + 399.414i 0.501862 + 0.660189i
\(606\) 190.494 198.234i 0.314346 0.327119i
\(607\) 568.413 + 262.976i 0.936429 + 0.433238i 0.827913 0.560856i \(-0.189528\pi\)
0.108516 + 0.994095i \(0.465390\pi\)
\(608\) −418.490 + 68.6079i −0.688306 + 0.112842i
\(609\) 602.904 562.951i 0.989990 0.924386i
\(610\) 346.588 208.535i 0.568178 0.341861i
\(611\) −124.627 + 1145.93i −0.203972 + 1.87549i
\(612\) −306.671 + 156.992i −0.501096 + 0.256524i
\(613\) 78.3920 478.170i 0.127883 0.780049i −0.842540 0.538634i \(-0.818940\pi\)
0.970422 0.241414i \(-0.0776113\pi\)
\(614\) −45.1555 + 2.44826i −0.0735432 + 0.00398740i
\(615\) 158.391 695.768i 0.257546 1.13133i
\(616\) 281.919 267.047i 0.457660 0.433519i
\(617\) 243.368 + 13.1950i 0.394437 + 0.0213857i 0.250291 0.968171i \(-0.419474\pi\)
0.144146 + 0.989556i \(0.453957\pi\)
\(618\) −352.588 + 115.991i −0.570531 + 0.187688i
\(619\) −451.523 + 152.136i −0.729439 + 0.245777i −0.659426 0.751769i \(-0.729201\pi\)
−0.0700132 + 0.997546i \(0.522304\pi\)
\(620\) 203.769 + 604.765i 0.328660 + 0.975427i
\(621\) 124.087 666.702i 0.199818 1.07359i
\(622\) 3.36115 61.9927i 0.00540377 0.0996667i
\(623\) −545.964 576.367i −0.876346 0.925147i
\(624\) −129.344 + 568.172i −0.207282 + 0.910533i
\(625\) −41.9105 772.993i −0.0670567 1.23679i
\(626\) −196.329 32.1865i −0.313625 0.0514162i
\(627\) 16.4688 268.153i 0.0262660 0.427677i
\(628\) −412.103 44.8189i −0.656215 0.0713676i
\(629\) −42.8819 71.2703i −0.0681747 0.113307i
\(630\) 128.916 439.741i 0.204629 0.698002i
\(631\) 60.7593 + 370.615i 0.0962905 + 0.587346i 0.990261 + 0.139221i \(0.0444598\pi\)
−0.893971 + 0.448125i \(0.852092\pi\)
\(632\) 8.79302 19.0058i 0.0139130 0.0300725i
\(633\) −842.139 + 876.358i −1.33039 + 1.38445i
\(634\) −40.1657 + 30.5332i −0.0633528 + 0.0481596i
\(635\) −51.2659 471.382i −0.0807337 0.742334i
\(636\) 45.6693 + 971.131i 0.0718071 + 1.52694i
\(637\) 704.355 + 1767.80i 1.10574 + 2.77519i
\(638\) 91.5738 + 25.4254i 0.143533 + 0.0398517i
\(639\) 663.642 253.449i 1.03856 0.396634i
\(640\) 355.262 + 670.095i 0.555096 + 1.04702i
\(641\) −900.756 + 610.728i −1.40524 + 0.952773i −0.405992 + 0.913877i \(0.633074\pi\)
−0.999243 + 0.0388966i \(0.987616\pi\)
\(642\) −290.932 200.318i −0.453165 0.312021i
\(643\) −710.457 836.414i −1.10491 1.30080i −0.949784 0.312905i \(-0.898698\pi\)
−0.155125 0.987895i \(-0.549578\pi\)
\(644\) 1000.14 + 398.492i 1.55301 + 0.618777i
\(645\) 372.511 + 43.2188i 0.577536 + 0.0670058i
\(646\) 98.5493 + 59.2951i 0.152553 + 0.0917881i
\(647\) −135.513 + 402.188i −0.209448 + 0.621620i 0.790510 + 0.612450i \(0.209816\pi\)
−0.999958 + 0.00917078i \(0.997081\pi\)
\(648\) −361.397 + 230.182i −0.557712 + 0.355219i
\(649\) 12.6045 + 353.722i 0.0194215 + 0.545026i
\(650\) 130.939i 0.201445i
\(651\) −235.659 1108.42i −0.361995 1.70264i
\(652\) −484.340 291.417i −0.742852 0.446959i
\(653\) −216.222 + 284.435i −0.331121 + 0.435582i −0.931283 0.364296i \(-0.881310\pi\)
0.600162 + 0.799878i \(0.295103\pi\)
\(654\) 7.43096 + 47.4566i 0.0113623 + 0.0725636i
\(655\) −38.0208 44.7615i −0.0580470 0.0683382i
\(656\) −174.000 376.095i −0.265244 0.573315i
\(657\) −493.286 + 46.4983i −0.750816 + 0.0707737i
\(658\) −246.583 465.105i −0.374746 0.706847i
\(659\) −360.287 306.031i −0.546718 0.464387i 0.330955 0.943647i \(-0.392629\pi\)
−0.877673 + 0.479260i \(0.840905\pi\)
\(660\) −359.211 + 96.9647i −0.544260 + 0.146916i
\(661\) 407.806 + 1023.52i 0.616954 + 1.54844i 0.821881 + 0.569660i \(0.192925\pi\)
−0.204927 + 0.978777i \(0.565696\pi\)
\(662\) −91.8997 48.7221i −0.138821 0.0735984i
\(663\) 495.702 371.243i 0.747666 0.559944i
\(664\) 151.424 115.110i 0.228048 0.173358i
\(665\) 1038.76 288.411i 1.56205 0.433700i
\(666\) −28.6731 38.8637i −0.0430527 0.0583538i
\(667\) 91.3047 + 556.934i 0.136889 + 0.834984i
\(668\) −65.3291 296.793i −0.0977981 0.444301i
\(669\) −318.438 171.763i −0.475991 0.256745i
\(670\) 12.9303 + 1.40625i 0.0192989 + 0.00209889i
\(671\) 482.683 + 327.267i 0.719349 + 0.487731i
\(672\) −379.050 971.554i −0.564063 1.44577i
\(673\) 4.46051 + 82.2693i 0.00662780 + 0.122243i 0.999975 + 0.00708394i \(0.00225491\pi\)
−0.993347 + 0.115159i \(0.963262\pi\)
\(674\) 193.381 204.150i 0.286916 0.302893i
\(675\) −186.652 + 188.740i −0.276521 + 0.279615i
\(676\) 35.6255 657.073i 0.0527004 0.972002i
\(677\) 97.4582 442.757i 0.143956 0.653999i −0.848271 0.529562i \(-0.822356\pi\)
0.992227 0.124437i \(-0.0397125\pi\)
\(678\) 95.8639 + 82.6186i 0.141392 + 0.121856i
\(679\) −674.589 + 227.295i −0.993503 + 0.334750i
\(680\) 73.3408 333.191i 0.107854 0.489986i
\(681\) 494.629 + 949.362i 0.726328 + 1.39407i
\(682\) 94.7876 89.7876i 0.138985 0.131653i
\(683\) 148.835 157.124i 0.217914 0.230049i −0.607868 0.794038i \(-0.707975\pi\)
0.825783 + 0.563989i \(0.190734\pi\)
\(684\) −424.241 203.714i −0.620236 0.297827i
\(685\) 214.620 1309.13i 0.313314 1.91113i
\(686\) −369.428 250.478i −0.538525 0.365129i
\(687\) 348.116 + 766.827i 0.506719 + 1.11620i
\(688\) 186.608 112.278i 0.271232 0.163195i
\(689\) −375.690 1706.78i −0.545268 2.47718i
\(690\) 201.256 + 240.411i 0.291676 + 0.348422i
\(691\) −926.399 428.598i −1.34066 0.620257i −0.387265 0.921969i \(-0.626580\pi\)
−0.953399 + 0.301711i \(0.902442\pi\)
\(692\) 366.382 101.726i 0.529454 0.147002i
\(693\) 653.442 97.5220i 0.942918 0.140724i
\(694\) 36.2054 3.93758i 0.0521692 0.00567375i
\(695\) −875.990 464.420i −1.26042 0.668231i
\(696\) 217.827 282.320i 0.312970 0.405632i
\(697\) −117.826 + 424.369i −0.169047 + 0.608851i
\(698\) −73.4772 62.4121i −0.105268 0.0894156i
\(699\) −536.624 328.141i −0.767702 0.469444i
\(700\) −236.491 348.798i −0.337844 0.498283i
\(701\) 401.405 + 867.623i 0.572618 + 1.23769i 0.950178 + 0.311708i \(0.100901\pi\)
−0.377560 + 0.925985i \(0.623237\pi\)
\(702\) 266.329 241.622i 0.379386 0.344191i
\(703\) 42.0550 105.550i 0.0598222 0.150142i
\(704\) −76.6021 + 100.768i −0.108810 + 0.143137i
\(705\) −7.74948 + 1080.34i −0.0109922 + 1.53240i
\(706\) −223.810 75.4104i −0.317011 0.106814i
\(707\) 1590.55i 2.24971i
\(708\) 582.276 + 213.017i 0.822424 + 0.300872i
\(709\) 732.425 1.03304 0.516520 0.856275i \(-0.327227\pi\)
0.516520 + 0.856275i \(0.327227\pi\)
\(710\) −104.870 + 311.244i −0.147705 + 0.438372i
\(711\) 30.7894 17.9289i 0.0433043 0.0252164i
\(712\) −273.217 207.694i −0.383732 0.291706i
\(713\) 720.259 + 286.977i 1.01018 + 0.402493i
\(714\) −92.2303 + 267.376i −0.129174 + 0.374476i
\(715\) 607.014 280.835i 0.848971 0.392776i
\(716\) −208.417 + 141.310i −0.291085 + 0.197361i
\(717\) 478.221 + 292.428i 0.666975 + 0.407850i
\(718\) 192.088 226.143i 0.267531 0.314962i
\(719\) −602.167 167.191i −0.837506 0.232532i −0.177810 0.984065i \(-0.556901\pi\)
−0.659696 + 0.751532i \(0.729315\pi\)
\(720\) −66.8322 + 542.047i −0.0928225 + 0.752843i
\(721\) 1005.86 1897.25i 1.39509 2.63141i
\(722\) −10.5318 96.8386i −0.0145870 0.134126i
\(723\) 727.831 + 296.061i 1.00668 + 0.409490i
\(724\) 111.731 + 402.418i 0.154324 + 0.555827i
\(725\) 92.7574 200.492i 0.127941 0.276540i
\(726\) −115.419 137.874i −0.158979 0.189909i
\(727\) −1188.38 + 261.581i −1.63463 + 0.359809i −0.934986 0.354684i \(-0.884589\pi\)
−0.699643 + 0.714493i \(0.746658\pi\)
\(728\) 630.410 + 1047.75i 0.865948 + 1.43922i
\(729\) −728.325 31.3653i −0.999074 0.0430251i
\(730\) 128.553 189.601i 0.176100 0.259728i
\(731\) −228.411 37.4460i −0.312463 0.0512258i
\(732\) 849.619 567.203i 1.16068 0.774868i
\(733\) −387.029 366.613i −0.528006 0.500154i 0.376615 0.926370i \(-0.377088\pi\)
−0.904622 + 0.426216i \(0.859846\pi\)
\(734\) 29.0534 + 30.6713i 0.0395822 + 0.0417865i
\(735\) 824.113 + 1581.75i 1.12124 + 2.15205i
\(736\) 696.849 + 153.388i 0.946806 + 0.208408i
\(737\) 5.98759 + 17.7705i 0.00812427 + 0.0241120i
\(738\) −44.9887 + 251.742i −0.0609603 + 0.341114i
\(739\) −390.690 85.9974i −0.528674 0.116370i −0.0573907 0.998352i \(-0.518278\pi\)
−0.471283 + 0.881982i \(0.656209\pi\)
\(740\) −157.123 8.51894i −0.212328 0.0115121i
\(741\) 813.500 + 232.165i 1.09784 + 0.313313i
\(742\) 579.446 + 548.880i 0.780924 + 0.739731i
\(743\) −1.00733 + 0.0546156i −0.00135575 + 7.35069e-5i −0.0548168 0.998496i \(-0.517457\pi\)
0.0534610 + 0.998570i \(0.482975\pi\)
\(744\) −178.052 456.370i −0.239317 0.613400i
\(745\) 202.150 298.150i 0.271343 0.400201i
\(746\) 15.1886 139.656i 0.0203600 0.187207i
\(747\) 323.361 12.8828i 0.432879 0.0172461i
\(748\) 224.276 49.3668i 0.299834 0.0659984i
\(749\) 2016.62 330.608i 2.69241 0.441399i
\(750\) 19.1215 + 188.382i 0.0254954 + 0.251175i
\(751\) 159.171 + 573.282i 0.211945 + 0.763358i 0.990704 + 0.136035i \(0.0434358\pi\)
−0.778759 + 0.627323i \(0.784150\pi\)
\(752\) 379.691 + 499.475i 0.504909 + 0.664196i
\(753\) −1064.78 + 797.435i −1.41404 + 1.05901i
\(754\) −140.179 + 264.405i −0.185913 + 0.350669i
\(755\) 641.227 255.488i 0.849308 0.338395i
\(756\) 273.055 1124.66i 0.361183 1.48764i
\(757\) 55.0018 64.7532i 0.0726576 0.0855392i −0.724632 0.689136i \(-0.757990\pi\)
0.797290 + 0.603597i \(0.206266\pi\)
\(758\) −290.279 + 153.896i −0.382953 + 0.203029i
\(759\) −192.741 + 408.881i −0.253941 + 0.538711i
\(760\) 422.964 195.684i 0.556532 0.257479i
\(761\) −199.825 + 169.733i −0.262582 + 0.223039i −0.769000 0.639249i \(-0.779245\pi\)
0.506418 + 0.862288i \(0.330969\pi\)
\(762\) 26.2883 + 167.886i 0.0344990 + 0.220322i
\(763\) −221.233 168.177i −0.289952 0.220416i
\(764\) 565.796 940.360i 0.740571 1.23084i
\(765\) 427.090 393.091i 0.558288 0.513845i
\(766\) −337.356 −0.440412
\(767\) −1096.33 200.680i −1.42937 0.261642i
\(768\) −9.48385 16.0213i −0.0123488 0.0208611i
\(769\) −57.5571 19.3932i −0.0748466 0.0252188i 0.281629 0.959523i \(-0.409125\pi\)
−0.356476 + 0.934305i \(0.616022\pi\)
\(770\) −157.477 + 261.730i −0.204516 + 0.339909i
\(771\) −187.348 21.7361i −0.242993 0.0281921i
\(772\) −196.674 + 493.613i −0.254758 + 0.639396i
\(773\) −43.1245 + 36.6303i −0.0557885 + 0.0473872i −0.674847 0.737958i \(-0.735790\pi\)
0.619058 + 0.785345i