Properties

Label 177.3.h.a.5.11
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.11
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.11

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.561287 + 1.66584i) q^{2} +(2.68858 - 1.33099i) q^{3} +(0.724387 + 0.550665i) q^{4} +(7.94437 + 3.16532i) q^{5} +(0.708151 + 5.22582i) q^{6} +(-11.0072 + 5.09247i) q^{7} +(-7.14376 + 4.84359i) q^{8} +(5.45694 - 7.15694i) q^{9} +O(q^{10})\) \(q+(-0.561287 + 1.66584i) q^{2} +(2.68858 - 1.33099i) q^{3} +(0.724387 + 0.550665i) q^{4} +(7.94437 + 3.16532i) q^{5} +(0.708151 + 5.22582i) q^{6} +(-11.0072 + 5.09247i) q^{7} +(-7.14376 + 4.84359i) q^{8} +(5.45694 - 7.15694i) q^{9} +(-9.73200 + 11.4574i) q^{10} +(5.78046 + 1.60494i) q^{11} +(2.68050 + 0.516355i) q^{12} +(3.73316 - 7.04149i) q^{13} +(-2.30505 - 21.1946i) q^{14} +(25.5721 - 2.06363i) q^{15} +(-3.08522 - 11.1120i) q^{16} +(5.02021 - 10.8510i) q^{17} +(8.85943 + 13.1075i) q^{18} +(-17.0313 + 3.74887i) q^{19} +(4.01176 + 6.66760i) q^{20} +(-22.8157 + 28.3420i) q^{21} +(-5.91807 + 8.72850i) q^{22} +(1.06856 + 0.175182i) q^{23} +(-12.7598 + 22.5306i) q^{24} +(34.9438 + 33.1005i) q^{25} +(9.63463 + 10.1712i) q^{26} +(5.14560 - 26.5051i) q^{27} +(-10.7777 - 2.37235i) q^{28} +(-11.2914 - 33.5116i) q^{29} +(-10.9156 + 43.7573i) q^{30} +(28.8402 + 6.34821i) q^{31} +(-14.2308 - 0.771569i) q^{32} +(17.6774 - 3.37873i) q^{33} +(15.2583 + 14.4534i) q^{34} +(-103.564 + 5.61510i) q^{35} +(7.89401 - 2.17946i) q^{36} +(-15.4779 + 22.8281i) q^{37} +(3.31443 - 30.4756i) q^{38} +(0.664760 - 23.9004i) q^{39} +(-72.0841 + 15.8669i) q^{40} +(64.5113 - 10.5761i) q^{41} +(-34.4071 - 53.9153i) q^{42} +(-1.67802 - 6.04366i) q^{43} +(3.30351 + 4.34569i) q^{44} +(66.0059 - 39.5844i) q^{45} +(-0.891595 + 1.68173i) q^{46} +(-28.3644 + 11.3014i) q^{47} +(-23.0848 - 25.7690i) q^{48} +(63.5031 - 74.7616i) q^{49} +(-74.7537 + 39.6319i) q^{50} +(-0.945332 - 35.8557i) q^{51} +(6.58175 - 3.04504i) q^{52} +(41.4105 - 35.1744i) q^{53} +(41.2652 + 23.4488i) q^{54} +(40.8419 + 31.0472i) q^{55} +(53.9669 - 89.6936i) q^{56} +(-40.8003 + 32.7476i) q^{57} +62.1626 q^{58} +(9.22505 + 58.2743i) q^{59} +(19.6605 + 12.5868i) q^{60} +(-35.2383 - 11.8732i) q^{61} +(-26.7628 + 44.4801i) q^{62} +(-23.6190 + 106.567i) q^{63} +(26.3471 - 66.1261i) q^{64} +(51.9462 - 44.1235i) q^{65} +(-4.29367 + 31.3442i) q^{66} +(-62.0406 - 91.5030i) q^{67} +(9.61185 - 5.09588i) q^{68} +(3.10608 - 0.951254i) q^{69} +(48.7756 - 175.674i) q^{70} +(-56.7190 + 22.5989i) q^{71} +(-4.31773 + 77.5586i) q^{72} +(-129.369 + 14.0698i) q^{73} +(-29.3405 - 38.5968i) q^{74} +(138.006 + 42.4836i) q^{75} +(-14.4016 - 6.66290i) q^{76} +(-71.7997 + 11.7710i) q^{77} +(39.4412 + 14.5224i) q^{78} +(74.7511 - 44.9762i) q^{79} +(10.6628 - 98.0433i) q^{80} +(-21.4437 - 78.1100i) q^{81} +(-18.5913 + 113.402i) q^{82} +(72.8133 - 3.94782i) q^{83} +(-32.1343 + 7.96676i) q^{84} +(74.2294 - 70.3138i) q^{85} +(11.0096 + 0.596925i) q^{86} +(-74.9613 - 75.0699i) q^{87} +(-49.0679 + 16.5329i) q^{88} +(-45.7688 - 135.837i) q^{89} +(28.8931 + 132.174i) q^{90} +(-5.23305 + 96.5180i) q^{91} +(0.677586 + 0.715319i) q^{92} +(85.9887 - 21.3183i) q^{93} +(-2.90578 - 53.5939i) q^{94} +(-147.169 - 24.1272i) q^{95} +(-39.2875 + 16.8666i) q^{96} +(-72.0110 - 7.83166i) q^{97} +(88.8976 + 147.749i) q^{98} +(43.0300 - 32.6124i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.561287 + 1.66584i −0.280644 + 0.832921i 0.710917 + 0.703276i \(0.248280\pi\)
−0.991561 + 0.129645i \(0.958616\pi\)
\(3\) 2.68858 1.33099i 0.896194 0.443663i
\(4\) 0.724387 + 0.550665i 0.181097 + 0.137666i
\(5\) 7.94437 + 3.16532i 1.58887 + 0.633065i 0.986294 0.164995i \(-0.0527606\pi\)
0.602579 + 0.798059i \(0.294140\pi\)
\(6\) 0.708151 + 5.22582i 0.118025 + 0.870970i
\(7\) −11.0072 + 5.09247i −1.57246 + 0.727496i −0.995976 0.0896159i \(-0.971436\pi\)
−0.576480 + 0.817112i \(0.695574\pi\)
\(8\) −7.14376 + 4.84359i −0.892969 + 0.605448i
\(9\) 5.45694 7.15694i 0.606326 0.795216i
\(10\) −9.73200 + 11.4574i −0.973200 + 1.14574i
\(11\) 5.78046 + 1.60494i 0.525496 + 0.145903i 0.520138 0.854082i \(-0.325881\pi\)
0.00535851 + 0.999986i \(0.498294\pi\)
\(12\) 2.68050 + 0.516355i 0.223375 + 0.0430296i
\(13\) 3.73316 7.04149i 0.287166 0.541653i −0.697396 0.716686i \(-0.745658\pi\)
0.984563 + 0.175033i \(0.0560031\pi\)
\(14\) −2.30505 21.1946i −0.164646 1.51390i
\(15\) 25.5721 2.06363i 1.70481 0.137576i
\(16\) −3.08522 11.1120i −0.192826 0.694498i
\(17\) 5.02021 10.8510i 0.295307 0.638295i −0.701957 0.712219i \(-0.747690\pi\)
0.997264 + 0.0739244i \(0.0235524\pi\)
\(18\) 8.85943 + 13.1075i 0.492190 + 0.728194i
\(19\) −17.0313 + 3.74887i −0.896384 + 0.197309i −0.639188 0.769050i \(-0.720730\pi\)
−0.257196 + 0.966359i \(0.582798\pi\)
\(20\) 4.01176 + 6.66760i 0.200588 + 0.333380i
\(21\) −22.8157 + 28.3420i −1.08646 + 1.34962i
\(22\) −5.91807 + 8.72850i −0.269003 + 0.396750i
\(23\) 1.06856 + 0.175182i 0.0464592 + 0.00761660i 0.184967 0.982745i \(-0.440782\pi\)
−0.138508 + 0.990361i \(0.544231\pi\)
\(24\) −12.7598 + 22.5306i −0.531659 + 0.938777i
\(25\) 34.9438 + 33.1005i 1.39775 + 1.32402i
\(26\) 9.63463 + 10.1712i 0.370563 + 0.391198i
\(27\) 5.14560 26.5051i 0.190578 0.981672i
\(28\) −10.7777 2.37235i −0.384918 0.0847269i
\(29\) −11.2914 33.5116i −0.389357 1.15557i −0.945818 0.324697i \(-0.894738\pi\)
0.556461 0.830874i \(-0.312159\pi\)
\(30\) −10.9156 + 43.7573i −0.363853 + 1.45858i
\(31\) 28.8402 + 6.34821i 0.930330 + 0.204781i 0.654185 0.756335i \(-0.273012\pi\)
0.276145 + 0.961116i \(0.410943\pi\)
\(32\) −14.2308 0.771569i −0.444711 0.0241115i
\(33\) 17.6774 3.37873i 0.535679 0.102386i
\(34\) 15.2583 + 14.4534i 0.448773 + 0.425100i
\(35\) −103.564 + 5.61510i −2.95899 + 0.160432i
\(36\) 7.89401 2.17946i 0.219278 0.0605405i
\(37\) −15.4779 + 22.8281i −0.418321 + 0.616977i −0.977212 0.212264i \(-0.931916\pi\)
0.558892 + 0.829241i \(0.311227\pi\)
\(38\) 3.31443 30.4756i 0.0872217 0.801990i
\(39\) 0.664760 23.9004i 0.0170451 0.612831i
\(40\) −72.0841 + 15.8669i −1.80210 + 0.396673i
\(41\) 64.5113 10.5761i 1.57345 0.257953i 0.689058 0.724706i \(-0.258024\pi\)
0.884388 + 0.466753i \(0.154576\pi\)
\(42\) −34.4071 53.9153i −0.819216 1.28370i
\(43\) −1.67802 6.04366i −0.0390236 0.140550i 0.941472 0.337091i \(-0.109443\pi\)
−0.980496 + 0.196541i \(0.937029\pi\)
\(44\) 3.30351 + 4.34569i 0.0750798 + 0.0987657i
\(45\) 66.0059 39.5844i 1.46680 0.879654i
\(46\) −0.891595 + 1.68173i −0.0193825 + 0.0365593i
\(47\) −28.3644 + 11.3014i −0.603498 + 0.240455i −0.651817 0.758377i \(-0.725993\pi\)
0.0483191 + 0.998832i \(0.484614\pi\)
\(48\) −23.0848 25.7690i −0.480933 0.536855i
\(49\) 63.5031 74.7616i 1.29598 1.52575i
\(50\) −74.7537 + 39.6319i −1.49507 + 0.792638i
\(51\) −0.945332 35.8557i −0.0185359 0.703052i
\(52\) 6.58175 3.04504i 0.126572 0.0585585i
\(53\) 41.4105 35.1744i 0.781331 0.663668i −0.165208 0.986259i \(-0.552830\pi\)
0.946539 + 0.322590i \(0.104554\pi\)
\(54\) 41.2652 + 23.4488i 0.764171 + 0.434236i
\(55\) 40.8419 + 31.0472i 0.742581 + 0.564495i
\(56\) 53.9669 89.6936i 0.963694 1.60167i
\(57\) −40.8003 + 32.7476i −0.715795 + 0.574520i
\(58\) 62.1626 1.07177
\(59\) 9.22505 + 58.2743i 0.156357 + 0.987701i
\(60\) 19.6605 + 12.5868i 0.327674 + 0.209780i
\(61\) −35.2383 11.8732i −0.577677 0.194642i 0.0152704 0.999883i \(-0.495139\pi\)
−0.592947 + 0.805241i \(0.702036\pi\)
\(62\) −26.7628 + 44.4801i −0.431658 + 0.717421i
\(63\) −23.6190 + 106.567i −0.374905 + 1.69154i
\(64\) 26.3471 66.1261i 0.411673 1.03322i
\(65\) 51.9462 44.1235i 0.799172 0.678823i
\(66\) −4.29367 + 31.3442i −0.0650556 + 0.474912i
\(67\) −62.0406 91.5030i −0.925979 1.36572i −0.930722 0.365728i \(-0.880820\pi\)
0.00474326 0.999989i \(-0.498490\pi\)
\(68\) 9.61185 5.09588i 0.141351 0.0749394i
\(69\) 3.10608 0.951254i 0.0450156 0.0137863i
\(70\) 48.7756 175.674i 0.696794 2.50962i
\(71\) −56.7190 + 22.5989i −0.798859 + 0.318294i −0.733607 0.679574i \(-0.762164\pi\)
−0.0652522 + 0.997869i \(0.520785\pi\)
\(72\) −4.31773 + 77.5586i −0.0599685 + 1.07720i
\(73\) −129.369 + 14.0698i −1.77218 + 0.192737i −0.935111 0.354354i \(-0.884701\pi\)
−0.837073 + 0.547091i \(0.815735\pi\)
\(74\) −29.3405 38.5968i −0.396494 0.521579i
\(75\) 138.006 + 42.4836i 1.84007 + 0.566448i
\(76\) −14.4016 6.66290i −0.189495 0.0876698i
\(77\) −71.7997 + 11.7710i −0.932464 + 0.152870i
\(78\) 39.4412 + 14.5224i 0.505656 + 0.186184i
\(79\) 74.7511 44.9762i 0.946216 0.569319i 0.0432655 0.999064i \(-0.486224\pi\)
0.902951 + 0.429744i \(0.141396\pi\)
\(80\) 10.6628 98.0433i 0.133286 1.22554i
\(81\) −21.4437 78.1100i −0.264737 0.964321i
\(82\) −18.5913 + 113.402i −0.226723 + 1.38295i
\(83\) 72.8133 3.94782i 0.877269 0.0475641i 0.389999 0.920815i \(-0.372475\pi\)
0.487270 + 0.873251i \(0.337993\pi\)
\(84\) −32.1343 + 7.96676i −0.382552 + 0.0948423i
\(85\) 74.2294 70.3138i 0.873287 0.827221i
\(86\) 11.0096 + 0.596925i 0.128019 + 0.00694099i
\(87\) −74.9613 75.0699i −0.861624 0.862872i
\(88\) −49.0679 + 16.5329i −0.557589 + 0.187874i
\(89\) −45.7688 135.837i −0.514257 1.52626i −0.818982 0.573819i \(-0.805461\pi\)
0.304726 0.952440i \(-0.401435\pi\)
\(90\) 28.8931 + 132.174i 0.321034 + 1.46860i
\(91\) −5.23305 + 96.5180i −0.0575061 + 1.06064i
\(92\) 0.677586 + 0.715319i 0.00736506 + 0.00777520i
\(93\) 85.9887 21.3183i 0.924610 0.229230i
\(94\) −2.90578 53.5939i −0.0309125 0.570148i
\(95\) −147.169 24.1272i −1.54915 0.253970i
\(96\) −39.2875 + 16.8666i −0.409245 + 0.175693i
\(97\) −72.0110 7.83166i −0.742381 0.0807388i −0.270891 0.962610i \(-0.587318\pi\)
−0.471490 + 0.881871i \(0.656284\pi\)
\(98\) 88.8976 + 147.749i 0.907118 + 1.50764i
\(99\) 43.0300 32.6124i 0.434647 0.329418i
\(100\) 7.08554 + 43.2199i 0.0708554 + 0.432199i
\(101\) 4.32263 9.34320i 0.0427983 0.0925070i −0.884997 0.465597i \(-0.845840\pi\)
0.927795 + 0.373090i \(0.121702\pi\)
\(102\) 60.2605 + 18.5506i 0.590789 + 0.181868i
\(103\) −46.3041 + 35.1995i −0.449554 + 0.341742i −0.805328 0.592830i \(-0.798011\pi\)
0.355773 + 0.934572i \(0.384218\pi\)
\(104\) 7.43727 + 68.3845i 0.0715122 + 0.657544i
\(105\) −270.968 + 152.940i −2.58065 + 1.45657i
\(106\) 35.3518 + 88.7263i 0.333508 + 0.837041i
\(107\) 19.4673 + 5.40507i 0.181937 + 0.0505147i 0.357302 0.933989i \(-0.383697\pi\)
−0.175365 + 0.984504i \(0.556110\pi\)
\(108\) 18.3229 16.3665i 0.169656 0.151542i
\(109\) 88.8228 + 167.538i 0.814888 + 1.53704i 0.843298 + 0.537446i \(0.180611\pi\)
−0.0284095 + 0.999596i \(0.509044\pi\)
\(110\) −74.6439 + 50.6098i −0.678581 + 0.460089i
\(111\) −11.2295 + 81.9762i −0.101166 + 0.738524i
\(112\) 90.5470 + 106.600i 0.808455 + 0.951787i
\(113\) 10.8543 + 4.32476i 0.0960560 + 0.0382722i 0.417671 0.908598i \(-0.362846\pi\)
−0.321615 + 0.946870i \(0.604226\pi\)
\(114\) −31.6516 86.3477i −0.277646 0.757436i
\(115\) 7.93454 + 4.77405i 0.0689960 + 0.0415135i
\(116\) 10.2743 30.4931i 0.0885717 0.262872i
\(117\) −30.0239 65.1430i −0.256615 0.556777i
\(118\) −102.254 17.3412i −0.866557 0.146959i
\(119\) 145.004i 1.21852i
\(120\) −172.685 + 138.603i −1.43904 + 1.15502i
\(121\) −72.8418 43.8275i −0.601998 0.362210i
\(122\) 39.5576 52.0371i 0.324243 0.426534i
\(123\) 159.367 114.299i 1.29567 0.929256i
\(124\) 17.3958 + 20.4799i 0.140288 + 0.165160i
\(125\) 83.0628 + 179.537i 0.664502 + 1.43630i
\(126\) −164.267 99.1603i −1.30371 0.786987i
\(127\) 87.5423 + 165.122i 0.689309 + 1.30018i 0.942969 + 0.332882i \(0.108021\pi\)
−0.253659 + 0.967294i \(0.581634\pi\)
\(128\) 51.9191 + 44.1005i 0.405618 + 0.344535i
\(129\) −12.5555 14.0155i −0.0973297 0.108647i
\(130\) 44.3460 + 111.300i 0.341123 + 0.856154i
\(131\) −35.9599 19.0647i −0.274503 0.145532i 0.325470 0.945552i \(-0.394477\pi\)
−0.599973 + 0.800020i \(0.704822\pi\)
\(132\) 14.6658 + 7.28681i 0.111105 + 0.0552031i
\(133\) 168.376 127.996i 1.26598 0.962375i
\(134\) 187.252 51.9903i 1.39740 0.387987i
\(135\) 124.776 194.279i 0.924266 1.43910i
\(136\) 16.6946 + 101.833i 0.122755 + 0.748770i
\(137\) 12.8638 + 58.4407i 0.0938961 + 0.426574i 0.999994 + 0.00350583i \(0.00111594\pi\)
−0.906098 + 0.423068i \(0.860953\pi\)
\(138\) −0.158765 + 5.70816i −0.00115047 + 0.0413635i
\(139\) −49.8969 5.42662i −0.358971 0.0390404i −0.0731431 0.997321i \(-0.523303\pi\)
−0.285828 + 0.958281i \(0.592269\pi\)
\(140\) −78.1128 52.9618i −0.557949 0.378299i
\(141\) −61.2179 + 68.1374i −0.434170 + 0.483244i
\(142\) −5.81055 107.169i −0.0409194 0.754714i
\(143\) 32.8805 34.7116i 0.229934 0.242738i
\(144\) −96.3636 38.5565i −0.669192 0.267754i
\(145\) 16.3723 301.969i 0.112912 2.08254i
\(146\) 49.1754 223.406i 0.336818 1.53018i
\(147\) 71.2263 285.525i 0.484533 1.94234i
\(148\) −23.7826 + 8.01330i −0.160693 + 0.0541439i
\(149\) −46.0322 + 209.126i −0.308941 + 1.40353i 0.524730 + 0.851269i \(0.324166\pi\)
−0.833670 + 0.552263i \(0.813765\pi\)
\(150\) −148.232 + 206.050i −0.988212 + 1.37367i
\(151\) −63.0343 + 59.7092i −0.417446 + 0.395425i −0.867388 0.497632i \(-0.834203\pi\)
0.449943 + 0.893057i \(0.351444\pi\)
\(152\) 103.509 109.274i 0.680983 0.718905i
\(153\) −50.2651 95.1426i −0.328530 0.621847i
\(154\) 20.6917 126.214i 0.134362 0.819571i
\(155\) 209.023 + 141.721i 1.34854 + 0.914331i
\(156\) 13.6427 16.9471i 0.0874529 0.108635i
\(157\) −242.173 + 145.711i −1.54250 + 0.928092i −0.546625 + 0.837378i \(0.684088\pi\)
−0.995877 + 0.0907148i \(0.971085\pi\)
\(158\) 32.9664 + 149.768i 0.208648 + 0.947899i
\(159\) 64.5188 149.686i 0.405778 0.941423i
\(160\) −110.612 51.1746i −0.691326 0.319841i
\(161\) −12.6540 + 3.51336i −0.0785961 + 0.0218221i
\(162\) 142.155 + 8.12030i 0.877500 + 0.0501253i
\(163\) 26.7486 2.90909i 0.164102 0.0178472i −0.0256992 0.999670i \(-0.508181\pi\)
0.189801 + 0.981823i \(0.439216\pi\)
\(164\) 52.5550 + 27.8629i 0.320458 + 0.169896i
\(165\) 151.130 + 29.1128i 0.915942 + 0.176441i
\(166\) −34.2928 + 123.511i −0.206583 + 0.744044i
\(167\) 22.8997 + 19.4512i 0.137124 + 0.116474i 0.713323 0.700835i \(-0.247189\pi\)
−0.576200 + 0.817309i \(0.695465\pi\)
\(168\) 25.7130 312.978i 0.153054 1.86296i
\(169\) 59.1946 + 87.3054i 0.350264 + 0.516600i
\(170\) 75.4676 + 163.121i 0.443927 + 0.959533i
\(171\) −66.1082 + 142.349i −0.386598 + 0.832453i
\(172\) 2.11250 5.30198i 0.0122820 0.0308255i
\(173\) 56.0417 73.7215i 0.323940 0.426136i −0.605080 0.796165i \(-0.706859\pi\)
0.929020 + 0.370028i \(0.120652\pi\)
\(174\) 167.129 82.7378i 0.960513 0.475505i
\(175\) −553.196 186.394i −3.16112 1.06511i
\(176\) 69.1839i 0.393090i
\(177\) 102.365 + 144.397i 0.578332 + 0.815801i
\(178\) 251.972 1.41558
\(179\) 11.9302 35.4075i 0.0666490 0.197807i −0.909153 0.416461i \(-0.863270\pi\)
0.975802 + 0.218654i \(0.0701667\pi\)
\(180\) 69.6116 + 7.67271i 0.386731 + 0.0426262i
\(181\) −20.7741 15.7921i −0.114774 0.0872490i 0.546213 0.837646i \(-0.316069\pi\)
−0.660987 + 0.750397i \(0.729862\pi\)
\(182\) −157.846 62.8918i −0.867288 0.345559i
\(183\) −110.544 + 14.9798i −0.604066 + 0.0818569i
\(184\) −8.48205 + 3.92421i −0.0460981 + 0.0213273i
\(185\) −195.220 + 132.363i −1.05524 + 0.715474i
\(186\) −12.7514 + 155.209i −0.0685558 + 0.834458i
\(187\) 46.4343 54.6667i 0.248312 0.292335i
\(188\) −26.7701 7.43268i −0.142394 0.0395355i
\(189\) 78.3381 + 317.951i 0.414487 + 1.68228i
\(190\) 122.796 231.618i 0.646296 1.21904i
\(191\) 18.0271 + 165.757i 0.0943829 + 0.867837i 0.941633 + 0.336642i \(0.109291\pi\)
−0.847250 + 0.531195i \(0.821743\pi\)
\(192\) −17.1770 212.853i −0.0894634 1.10861i
\(193\) −11.5839 41.7214i −0.0600202 0.216173i 0.927458 0.373926i \(-0.121989\pi\)
−0.987479 + 0.157753i \(0.949575\pi\)
\(194\) 53.4652 115.563i 0.275594 0.595686i
\(195\) 80.9336 187.769i 0.415044 0.962920i
\(196\) 87.1695 19.1874i 0.444742 0.0978951i
\(197\) −100.464 166.973i −0.509970 0.847577i 0.489735 0.871872i \(-0.337094\pi\)
−0.999705 + 0.0242944i \(0.992266\pi\)
\(198\) 30.1749 + 89.9862i 0.152398 + 0.454476i
\(199\) −4.77992 + 7.04985i −0.0240197 + 0.0354264i −0.839509 0.543345i \(-0.817157\pi\)
0.815490 + 0.578772i \(0.196468\pi\)
\(200\) −409.955 67.2087i −2.04978 0.336044i
\(201\) −288.591 163.438i −1.43577 0.813124i
\(202\) 13.1381 + 12.4450i 0.0650399 + 0.0616091i
\(203\) 294.943 + 311.367i 1.45292 + 1.53383i
\(204\) 19.0597 26.4939i 0.0934297 0.129872i
\(205\) 545.978 + 120.179i 2.66331 + 0.586238i
\(206\) −32.6468 96.8923i −0.158480 0.470351i
\(207\) 7.08484 6.69168i 0.0342263 0.0323270i
\(208\) −89.7624 19.7582i −0.431550 0.0949913i
\(209\) −104.465 5.66395i −0.499835 0.0271002i
\(210\) −102.683 537.233i −0.488966 2.55825i
\(211\) −15.8492 15.0131i −0.0751146 0.0711523i 0.649221 0.760600i \(-0.275095\pi\)
−0.724336 + 0.689447i \(0.757854\pi\)
\(212\) 49.3666 2.67658i 0.232861 0.0126254i
\(213\) −122.415 + 136.251i −0.574717 + 0.639678i
\(214\) −19.9307 + 29.3956i −0.0931343 + 0.137363i
\(215\) 5.79939 53.3245i 0.0269739 0.248021i
\(216\) 91.6211 + 214.269i 0.424172 + 0.991988i
\(217\) −349.778 + 76.9920i −1.61188 + 0.354802i
\(218\) −328.946 + 53.9280i −1.50893 + 0.247376i
\(219\) −329.094 + 210.017i −1.50271 + 0.958982i
\(220\) 12.4888 + 44.9805i 0.0567671 + 0.204457i
\(221\) −57.6660 75.8583i −0.260932 0.343250i
\(222\) −130.256 64.7187i −0.586740 0.291526i
\(223\) −110.142 + 207.750i −0.493910 + 0.931613i 0.503790 + 0.863826i \(0.331939\pi\)
−0.997700 + 0.0677870i \(0.978406\pi\)
\(224\) 160.570 63.9769i 0.716830 0.285611i
\(225\) 427.584 69.4634i 1.90038 0.308726i
\(226\) −13.2968 + 15.6542i −0.0588352 + 0.0692662i
\(227\) −266.470 + 141.274i −1.17388 + 0.622351i −0.937048 0.349200i \(-0.886453\pi\)
−0.236830 + 0.971551i \(0.576108\pi\)
\(228\) −47.5882 + 1.25466i −0.208720 + 0.00550289i
\(229\) 314.669 145.581i 1.37410 0.635727i 0.412697 0.910868i \(-0.364587\pi\)
0.961404 + 0.275141i \(0.0887247\pi\)
\(230\) −12.4064 + 10.5381i −0.0539407 + 0.0458177i
\(231\) −177.372 + 127.212i −0.767846 + 0.550701i
\(232\) 242.979 + 184.708i 1.04732 + 0.796154i
\(233\) 79.7126 132.483i 0.342114 0.568598i −0.637261 0.770648i \(-0.719933\pi\)
0.979375 + 0.202050i \(0.0647603\pi\)
\(234\) 125.370 13.4512i 0.535769 0.0574837i
\(235\) −261.110 −1.11111
\(236\) −25.4071 + 47.2931i −0.107657 + 0.200395i
\(237\) 141.111 220.415i 0.595407 0.930022i
\(238\) −241.554 81.3891i −1.01493 0.341971i
\(239\) 31.2196 51.8874i 0.130626 0.217102i −0.784641 0.619951i \(-0.787152\pi\)
0.915266 + 0.402849i \(0.131980\pi\)
\(240\) −101.827 277.789i −0.424277 1.15746i
\(241\) −43.1503 + 108.299i −0.179047 + 0.449373i −0.990919 0.134462i \(-0.957069\pi\)
0.811872 + 0.583835i \(0.198449\pi\)
\(242\) 113.895 96.7431i 0.470640 0.399765i
\(243\) −161.617 181.464i −0.665089 0.746764i
\(244\) −18.9880 28.0052i −0.0778198 0.114776i
\(245\) 741.137 392.926i 3.02505 1.60378i
\(246\) 100.952 + 329.635i 0.410376 + 1.33998i
\(247\) −37.1829 + 133.921i −0.150538 + 0.542189i
\(248\) −236.776 + 94.3401i −0.954741 + 0.380403i
\(249\) 190.510 107.528i 0.765100 0.431839i
\(250\) −345.703 + 37.5974i −1.38281 + 0.150390i
\(251\) −20.0773 26.4113i −0.0799894 0.105224i 0.754358 0.656463i \(-0.227948\pi\)
−0.834347 + 0.551239i \(0.814155\pi\)
\(252\) −75.7921 + 64.1897i −0.300762 + 0.254721i
\(253\) 5.89562 + 2.72761i 0.0233029 + 0.0107810i
\(254\) −324.204 + 53.1505i −1.27639 + 0.209254i
\(255\) 105.985 287.843i 0.415626 1.12880i
\(256\) 141.364 85.0560i 0.552204 0.332250i
\(257\) 13.9939 128.672i 0.0544511 0.500670i −0.934878 0.354970i \(-0.884491\pi\)
0.989329 0.145700i \(-0.0465434\pi\)
\(258\) 30.3948 13.0488i 0.117809 0.0505768i
\(259\) 54.1162 330.094i 0.208943 1.27450i
\(260\) 61.9264 3.35755i 0.238179 0.0129137i
\(261\) −301.457 102.059i −1.15501 0.391030i
\(262\) 51.9427 49.2027i 0.198254 0.187797i
\(263\) 87.1521 + 4.72525i 0.331377 + 0.0179667i 0.219077 0.975708i \(-0.429695\pi\)
0.112300 + 0.993674i \(0.464178\pi\)
\(264\) −109.918 + 109.759i −0.416355 + 0.415753i
\(265\) 440.319 148.361i 1.66158 0.559852i
\(266\) 118.714 + 352.330i 0.446292 + 1.32455i
\(267\) −303.851 304.291i −1.13802 1.13967i
\(268\) 5.44609 100.447i 0.0203212 0.374803i
\(269\) 217.624 + 229.743i 0.809011 + 0.854063i 0.991629 0.129121i \(-0.0412157\pi\)
−0.182618 + 0.983184i \(0.558457\pi\)
\(270\) 253.603 + 316.903i 0.939271 + 1.17372i
\(271\) −11.9069 219.610i −0.0439369 0.810368i −0.934599 0.355702i \(-0.884242\pi\)
0.890662 0.454665i \(-0.150241\pi\)
\(272\) −136.064 22.3066i −0.500237 0.0820097i
\(273\) 114.395 + 266.462i 0.419029 + 0.976050i
\(274\) −104.573 11.3730i −0.381654 0.0415074i
\(275\) 148.867 + 247.419i 0.541334 + 0.899705i
\(276\) 2.77383 + 1.02133i 0.0100501 + 0.00370048i
\(277\) 45.4924 + 277.491i 0.164232 + 1.00177i 0.932374 + 0.361494i \(0.117733\pi\)
−0.768142 + 0.640279i \(0.778819\pi\)
\(278\) 37.0464 80.0745i 0.133260 0.288038i
\(279\) 202.813 171.766i 0.726929 0.615649i
\(280\) 712.642 541.736i 2.54515 1.93477i
\(281\) −9.71145 89.2953i −0.0345603 0.317777i −0.998639 0.0521593i \(-0.983390\pi\)
0.964078 0.265618i \(-0.0855759\pi\)
\(282\) −79.1454 140.224i −0.280657 0.497248i
\(283\) 157.799 + 396.046i 0.557594 + 1.39946i 0.889844 + 0.456265i \(0.150813\pi\)
−0.332250 + 0.943191i \(0.607808\pi\)
\(284\) −53.5309 14.8628i −0.188489 0.0523338i
\(285\) −427.789 + 131.013i −1.50102 + 0.459694i
\(286\) 39.3685 + 74.2569i 0.137652 + 0.259640i
\(287\) −656.230 + 444.935i −2.28651 + 1.55030i
\(288\) −83.1784 + 97.6384i −0.288814 + 0.339022i
\(289\) 94.5528 + 111.316i 0.327172 + 0.385177i
\(290\) 493.843 + 196.765i 1.70291 + 0.678500i
\(291\) −204.031 + 74.7898i −0.701138 + 0.257009i
\(292\) −101.461 61.0473i −0.347470 0.209066i
\(293\) −149.326 + 443.182i −0.509643 + 1.51257i 0.316213 + 0.948688i \(0.397588\pi\)
−0.825857 + 0.563880i \(0.809308\pi\)
\(294\) 435.660 + 278.913i 1.48184 + 0.948684i
\(295\) −111.170 + 492.153i −0.376847 + 1.66832i
\(296\) 238.047i 0.804213i
\(297\) 72.2830 144.954i 0.243377 0.488059i
\(298\) −322.534 194.062i −1.08233 0.651215i
\(299\) 5.22265 6.87028i 0.0174671 0.0229775i
\(300\) 76.5753 + 106.769i 0.255251 + 0.355898i
\(301\) 49.2474 + 57.9785i 0.163613 + 0.192620i
\(302\) −64.0858 138.519i −0.212205 0.458673i
\(303\) −0.813973 30.8733i −0.00268638 0.101892i
\(304\) 94.2027 + 177.685i 0.309877 + 0.584490i
\(305\) −242.363 205.865i −0.794634 0.674968i
\(306\) 186.706 30.3313i 0.610149 0.0991220i
\(307\) −199.041 499.556i −0.648343 1.62722i −0.772544 0.634962i \(-0.781016\pi\)
0.124200 0.992257i \(-0.460363\pi\)
\(308\) −58.4927 31.0109i −0.189911 0.100685i
\(309\) −77.6422 + 156.267i −0.251269 + 0.505718i
\(310\) −353.407 + 268.653i −1.14002 + 0.866623i
\(311\) 61.9811 17.2090i 0.199296 0.0553343i −0.166446 0.986051i \(-0.553229\pi\)
0.365742 + 0.930716i \(0.380815\pi\)
\(312\) 111.015 + 173.958i 0.355817 + 0.557559i
\(313\) 1.19162 + 7.26855i 0.00380709 + 0.0232222i 0.988662 0.150160i \(-0.0479788\pi\)
−0.984855 + 0.173382i \(0.944531\pi\)
\(314\) −106.802 485.207i −0.340134 1.54525i
\(315\) −524.958 + 771.847i −1.66653 + 2.45031i
\(316\) 78.9156 + 8.58258i 0.249733 + 0.0271601i
\(317\) 440.856 + 298.908i 1.39071 + 0.942928i 0.999746 + 0.0225232i \(0.00716996\pi\)
0.390968 + 0.920404i \(0.372140\pi\)
\(318\) 213.140 + 191.495i 0.670252 + 0.602186i
\(319\) −11.4853 211.834i −0.0360041 0.664057i
\(320\) 418.621 441.933i 1.30819 1.38104i
\(321\) 59.5335 11.3788i 0.185463 0.0354480i
\(322\) 1.24982 23.0515i 0.00388142 0.0715885i
\(323\) −44.8217 + 203.627i −0.138767 + 0.630424i
\(324\) 27.4789 68.3902i 0.0848113 0.211081i
\(325\) 363.528 122.487i 1.11855 0.376882i
\(326\) −10.1676 + 46.1918i −0.0311889 + 0.141693i
\(327\) 461.798 + 332.216i 1.41223 + 1.01595i
\(328\) −409.627 + 388.019i −1.24886 + 1.18298i
\(329\) 254.660 268.842i 0.774043 0.817148i
\(330\) −133.325 + 235.419i −0.404015 + 0.713390i
\(331\) 35.3496 215.623i 0.106797 0.651430i −0.878125 0.478430i \(-0.841206\pi\)
0.984922 0.172999i \(-0.0553459\pi\)
\(332\) 54.9190 + 37.2360i 0.165419 + 0.112157i
\(333\) 78.9181 + 235.346i 0.236991 + 0.706745i
\(334\) −45.2559 + 27.2296i −0.135497 + 0.0815256i
\(335\) −203.236 923.312i −0.606676 2.75615i
\(336\) 385.327 + 166.086i 1.14681 + 0.494304i
\(337\) 91.5607 + 42.3605i 0.271693 + 0.125699i 0.551005 0.834502i \(-0.314244\pi\)
−0.279312 + 0.960200i \(0.590106\pi\)
\(338\) −178.662 + 49.6053i −0.528586 + 0.146761i
\(339\) 34.9390 2.81953i 0.103065 0.00831719i
\(340\) 92.4901 10.0589i 0.272030 0.0295850i
\(341\) 156.521 + 82.9824i 0.459007 + 0.243350i
\(342\) −200.026 190.025i −0.584871 0.555628i
\(343\) −159.283 + 573.686i −0.464383 + 1.67256i
\(344\) 41.2603 + 35.0468i 0.119943 + 0.101880i
\(345\) 27.6869 + 2.27464i 0.0802518 + 0.00659317i
\(346\) 91.3529 + 134.736i 0.264026 + 0.389409i
\(347\) 69.3001 + 149.790i 0.199712 + 0.431670i 0.981393 0.192007i \(-0.0614998\pi\)
−0.781681 + 0.623678i \(0.785638\pi\)
\(348\) −12.9626 95.6582i −0.0372490 0.274880i
\(349\) 12.6591 31.7719i 0.0362725 0.0910370i −0.909725 0.415212i \(-0.863707\pi\)
0.945997 + 0.324175i \(0.105087\pi\)
\(350\) 621.004 816.917i 1.77430 2.33405i
\(351\) −167.426 135.181i −0.476998 0.385130i
\(352\) −81.0220 27.2995i −0.230176 0.0775554i
\(353\) 130.788i 0.370503i 0.982691 + 0.185252i \(0.0593100\pi\)
−0.982691 + 0.185252i \(0.940690\pi\)
\(354\) −297.998 + 89.4755i −0.841803 + 0.252756i
\(355\) −522.129 −1.47079
\(356\) 41.6463 123.602i 0.116984 0.347196i
\(357\) 192.999 + 389.856i 0.540614 + 1.09203i
\(358\) 52.2870 + 39.7475i 0.146053 + 0.111027i
\(359\) −498.105 198.463i −1.38748 0.552822i −0.447571 0.894248i \(-0.647711\pi\)
−0.939909 + 0.341426i \(0.889090\pi\)
\(360\) −279.800 + 602.487i −0.777222 + 1.67357i
\(361\) −51.6238 + 23.8837i −0.143002 + 0.0661598i
\(362\) 37.9673 25.7425i 0.104882 0.0711118i
\(363\) −254.175 20.8820i −0.700207 0.0575262i
\(364\) −56.9398 + 67.0348i −0.156428 + 0.184161i
\(365\) −1072.29 297.721i −2.93779 0.815674i
\(366\) 37.0929 192.557i 0.101347 0.526111i
\(367\) −242.811 + 457.991i −0.661611 + 1.24793i 0.294703 + 0.955589i \(0.404779\pi\)
−0.956314 + 0.292342i \(0.905566\pi\)
\(368\) −1.35014 12.4143i −0.00366885 0.0337345i
\(369\) 276.341 519.417i 0.748893 1.40763i
\(370\) −110.921 399.500i −0.299785 1.07973i
\(371\) −276.689 + 598.053i −0.745792 + 1.61200i
\(372\) 74.0284 + 31.9082i 0.199001 + 0.0857748i
\(373\) 683.324 150.411i 1.83197 0.403246i 0.841415 0.540389i \(-0.181723\pi\)
0.990551 + 0.137143i \(0.0437919\pi\)
\(374\) 65.0031 + 108.036i 0.173805 + 0.288866i
\(375\) 462.283 + 372.145i 1.23276 + 0.992386i
\(376\) 147.889 218.120i 0.393322 0.580106i
\(377\) −278.124 45.5961i −0.737728 0.120944i
\(378\) −573.626 47.9630i −1.51753 0.126886i
\(379\) 44.8714 + 42.5044i 0.118394 + 0.112149i 0.744607 0.667504i \(-0.232637\pi\)
−0.626212 + 0.779652i \(0.715396\pi\)
\(380\) −93.3215 98.5184i −0.245583 0.259259i
\(381\) 455.141 + 327.427i 1.19459 + 0.859388i
\(382\) −286.243 63.0069i −0.749327 0.164939i
\(383\) −0.637992 1.89349i −0.00166577 0.00494384i 0.946817 0.321772i \(-0.104279\pi\)
−0.948483 + 0.316829i \(0.897382\pi\)
\(384\) 198.286 + 49.4640i 0.516370 + 0.128812i
\(385\) −607.662 133.757i −1.57834 0.347420i
\(386\) 76.0032 + 4.12077i 0.196899 + 0.0106756i
\(387\) −52.4110 20.9704i −0.135429 0.0541871i
\(388\) −47.8512 45.3271i −0.123328 0.116822i
\(389\) −245.959 + 13.3355i −0.632285 + 0.0342815i −0.367496 0.930025i \(-0.619785\pi\)
−0.264789 + 0.964306i \(0.585302\pi\)
\(390\) 267.367 + 240.215i 0.685556 + 0.615936i
\(391\) 7.26530 10.7155i 0.0185813 0.0274054i
\(392\) −91.5362 + 841.662i −0.233511 + 2.14710i
\(393\) −122.056 3.39484i −0.310575 0.00863826i
\(394\) 334.539 73.6377i 0.849085 0.186898i
\(395\) 736.214 120.696i 1.86383 0.305560i
\(396\) 49.1289 + 0.0711264i 0.124063 + 0.000179612i
\(397\) −171.595 618.030i −0.432229 1.55675i −0.784059 0.620686i \(-0.786854\pi\)
0.351830 0.936064i \(-0.385560\pi\)
\(398\) −9.06103 11.9196i −0.0227664 0.0299487i
\(399\) 282.331 568.234i 0.707595 1.42414i
\(400\) 260.002 490.417i 0.650006 1.22604i
\(401\) 27.1042 10.7993i 0.0675916 0.0269310i −0.336097 0.941827i \(-0.609107\pi\)
0.403689 + 0.914896i \(0.367728\pi\)
\(402\) 434.244 389.011i 1.08021 0.967688i
\(403\) 152.366 179.379i 0.378080 0.445110i
\(404\) 8.27623 4.38778i 0.0204857 0.0108608i
\(405\) 76.8867 688.411i 0.189844 1.69978i
\(406\) −684.236 + 316.561i −1.68531 + 0.779708i
\(407\) −126.107 + 107.116i −0.309845 + 0.263185i
\(408\) 180.423 + 251.565i 0.442214 + 0.616582i
\(409\) 493.546 + 375.184i 1.20671 + 0.917321i 0.998157 0.0606895i \(-0.0193299\pi\)
0.208558 + 0.978010i \(0.433123\pi\)
\(410\) −506.650 + 842.058i −1.23573 + 2.05380i
\(411\) 112.369 + 140.001i 0.273404 + 0.340635i
\(412\) −52.9252 −0.128459
\(413\) −398.302 594.459i −0.964412 1.43937i
\(414\) 7.17065 + 15.5582i 0.0173204 + 0.0375801i
\(415\) 590.952 + 199.115i 1.42398 + 0.479795i
\(416\) −58.5587 + 97.3253i −0.140766 + 0.233955i
\(417\) −141.375 + 51.8224i −0.339028 + 0.124274i
\(418\) 68.0704 170.844i 0.162848 0.408717i
\(419\) 10.8902 9.25021i 0.0259909 0.0220769i −0.634297 0.773090i \(-0.718710\pi\)
0.660288 + 0.751013i \(0.270434\pi\)
\(420\) −280.504 38.4248i −0.667867 0.0914876i
\(421\) −130.102 191.886i −0.309030 0.455785i 0.641182 0.767389i \(-0.278444\pi\)
−0.950212 + 0.311603i \(0.899134\pi\)
\(422\) 33.9054 17.9755i 0.0803447 0.0425960i
\(423\) −73.8991 + 264.673i −0.174702 + 0.625705i
\(424\) −125.456 + 451.853i −0.295888 + 1.06569i
\(425\) 534.599 213.004i 1.25788 0.501185i
\(426\) −158.263 280.400i −0.371510 0.658215i
\(427\) 448.338 48.7597i 1.04997 0.114191i
\(428\) 11.1255 + 14.6353i 0.0259941 + 0.0341947i
\(429\) 42.2013 137.088i 0.0983712 0.319553i
\(430\) 85.5751 + 39.5913i 0.199012 + 0.0920727i
\(431\) 163.055 26.7315i 0.378317 0.0620220i 0.0303767 0.999539i \(-0.490329\pi\)
0.347941 + 0.937517i \(0.386881\pi\)
\(432\) −310.400 + 24.5966i −0.718518 + 0.0569366i
\(433\) −515.413 + 310.113i −1.19033 + 0.716197i −0.966057 0.258329i \(-0.916828\pi\)
−0.224272 + 0.974526i \(0.572001\pi\)
\(434\) 68.0696 625.889i 0.156842 1.44214i
\(435\) −357.899 833.659i −0.822757 1.91646i
\(436\) −27.9150 + 170.274i −0.0640252 + 0.390536i
\(437\) −18.8557 + 1.02233i −0.0431481 + 0.00233942i
\(438\) −165.139 666.098i −0.377030 1.52077i
\(439\) 275.538 261.003i 0.627649 0.594541i −0.306305 0.951933i \(-0.599093\pi\)
0.933954 + 0.357392i \(0.116334\pi\)
\(440\) −442.145 23.9724i −1.00487 0.0544827i
\(441\) −188.533 862.458i −0.427512 1.95569i
\(442\) 158.735 53.4841i 0.359129 0.121005i
\(443\) −152.890 453.763i −0.345125 1.02429i −0.969903 0.243492i \(-0.921707\pi\)
0.624778 0.780803i \(-0.285190\pi\)
\(444\) −53.2759 + 53.1988i −0.119991 + 0.119817i
\(445\) 66.3640 1224.01i 0.149133 2.75059i
\(446\) −284.257 300.086i −0.637347 0.672839i
\(447\) 154.584 + 623.521i 0.345825 + 1.39490i
\(448\) 46.7382 + 862.035i 0.104326 + 1.92418i
\(449\) 470.074 + 77.0647i 1.04693 + 0.171636i 0.660612 0.750728i \(-0.270297\pi\)
0.386323 + 0.922364i \(0.373745\pi\)
\(450\) −124.283 + 751.277i −0.276184 + 1.66950i
\(451\) 389.879 + 42.4019i 0.864477 + 0.0940175i
\(452\) 5.48125 + 9.10990i 0.0121266 + 0.0201546i
\(453\) −90.0004 + 244.431i −0.198676 + 0.539583i
\(454\) −85.7731 523.193i −0.188927 1.15241i
\(455\) −347.084 + 750.210i −0.762822 + 1.64881i
\(456\) 132.852 431.561i 0.291341 0.946405i
\(457\) −408.178 + 310.289i −0.893168 + 0.678969i −0.947569 0.319550i \(-0.896468\pi\)
0.0544012 + 0.998519i \(0.482675\pi\)
\(458\) 65.8958 + 605.902i 0.143877 + 1.32293i
\(459\) −261.776 188.896i −0.570317 0.411539i
\(460\) 3.11877 + 7.82753i 0.00677994 + 0.0170164i
\(461\) 509.960 + 141.590i 1.10620 + 0.307136i 0.772165 0.635423i \(-0.219174\pi\)
0.334040 + 0.942559i \(0.391588\pi\)
\(462\) −112.358 366.877i −0.243199 0.794105i
\(463\) −273.772 516.388i −0.591300 1.11531i −0.980934 0.194340i \(-0.937744\pi\)
0.389635 0.920970i \(-0.372601\pi\)
\(464\) −337.543 + 228.860i −0.727463 + 0.493232i
\(465\) 750.605 + 102.821i 1.61420 + 0.221121i
\(466\) 175.955 + 207.150i 0.377585 + 0.444528i
\(467\) 117.344 + 46.7542i 0.251273 + 0.100116i 0.492374 0.870384i \(-0.336129\pi\)
−0.241101 + 0.970500i \(0.577509\pi\)
\(468\) 14.1230 63.7219i 0.0301773 0.136158i
\(469\) 1148.87 + 691.251i 2.44961 + 1.47388i
\(470\) 146.558 434.967i 0.311825 0.925463i
\(471\) −457.162 + 714.084i −0.970620 + 1.51610i
\(472\) −348.158 371.615i −0.737624 0.787321i
\(473\) 37.6283i 0.0795524i
\(474\) 287.973 + 358.786i 0.607537 + 0.756932i
\(475\) −719.227 432.745i −1.51416 0.911042i
\(476\) −79.8488 + 105.039i −0.167750 + 0.220671i
\(477\) −25.7668 488.317i −0.0540185 1.02373i
\(478\) 68.9130 + 81.1306i 0.144169 + 0.169729i
\(479\) −319.204 689.949i −0.666398 1.44039i −0.885475 0.464687i \(-0.846167\pi\)
0.219077 0.975707i \(-0.429695\pi\)
\(480\) −365.502 + 9.63644i −0.761463 + 0.0200759i
\(481\) 102.963 + 194.208i 0.214060 + 0.403759i
\(482\) −156.189 132.668i −0.324044 0.275246i
\(483\) −29.3450 + 26.2882i −0.0607557 + 0.0544270i
\(484\) −28.6314 71.8595i −0.0591559 0.148470i
\(485\) −547.292 290.156i −1.12844 0.598259i
\(486\) 393.003 167.375i 0.808648 0.344392i
\(487\) −177.528 + 134.953i −0.364533 + 0.277111i −0.771366 0.636392i \(-0.780426\pi\)
0.406833 + 0.913503i \(0.366633\pi\)
\(488\) 309.242 85.8607i 0.633693 0.175944i
\(489\) 68.0439 43.4234i 0.139149 0.0888005i
\(490\) 238.562 + 1455.16i 0.486860 + 2.96972i
\(491\) −30.2624 137.483i −0.0616342 0.280007i 0.935716 0.352754i \(-0.114755\pi\)
−0.997350 + 0.0727465i \(0.976824\pi\)
\(492\) 178.384 + 4.96152i 0.362569 + 0.0100844i
\(493\) −420.319 45.7125i −0.852574 0.0927230i
\(494\) −202.221 137.109i −0.409353 0.277548i
\(495\) 445.075 122.881i 0.899142 0.248244i
\(496\) −18.4374 340.057i −0.0371721 0.685599i
\(497\) 509.232 537.590i 1.02461 1.08167i
\(498\) 72.1934 + 377.714i 0.144967 + 0.758461i
\(499\) −1.28603 + 23.7195i −0.00257722 + 0.0475341i −0.999539 0.0303565i \(-0.990336\pi\)
0.996962 + 0.0778906i \(0.0248185\pi\)
\(500\) −38.6953 + 175.794i −0.0773905 + 0.351589i
\(501\) 87.4570 + 21.8168i 0.174565 + 0.0435465i
\(502\) 55.2662 18.6213i 0.110092 0.0370943i
\(503\) 180.837 821.549i 0.359516 1.63330i −0.355846 0.934545i \(-0.615807\pi\)
0.715362 0.698754i \(-0.246262\pi\)
\(504\) −347.439 875.690i −0.689363 1.73748i
\(505\) 63.9148 60.5433i 0.126564 0.119888i
\(506\) −7.85290 + 8.29020i −0.0155196 + 0.0163838i
\(507\) 275.352 + 155.940i 0.543101 + 0.307575i
\(508\) −27.5125 + 167.819i −0.0541585 + 0.330352i
\(509\) −411.700 279.140i −0.808841 0.548408i 0.0852152 0.996363i \(-0.472842\pi\)
−0.894056 + 0.447955i \(0.852153\pi\)
\(510\) 420.013 + 338.116i 0.823554 + 0.662973i
\(511\) 1352.34 813.679i 2.64647 1.59233i
\(512\) 120.920 + 549.344i 0.236171 + 1.07294i
\(513\) 11.7282 + 470.707i 0.0228621 + 0.917558i
\(514\) 206.493 + 95.5337i 0.401737 + 0.185863i
\(515\) −479.274 + 133.070i −0.930630 + 0.258388i
\(516\) −1.37725 17.0665i −0.00266908 0.0330746i
\(517\) −182.097 + 19.8043i −0.352219 + 0.0383061i
\(518\) 519.510 + 275.427i 1.00292 + 0.531712i
\(519\) 52.5500 272.797i 0.101252 0.525621i
\(520\) −157.375 + 566.813i −0.302644 + 1.09003i
\(521\) 259.235 + 220.196i 0.497572 + 0.422642i 0.860711 0.509093i \(-0.170019\pi\)
−0.363139 + 0.931735i \(0.618295\pi\)
\(522\) 339.218 444.895i 0.649842 0.852289i
\(523\) −325.255 479.715i −0.621902 0.917236i 0.378062 0.925780i \(-0.376591\pi\)
−0.999963 + 0.00854415i \(0.997280\pi\)
\(524\) −15.5506 33.6121i −0.0296768 0.0641453i
\(525\) −1735.40 + 235.164i −3.30553 + 0.447932i
\(526\) −56.7889 + 142.529i −0.107964 + 0.270968i
\(527\) 213.669 281.076i 0.405443 0.533351i
\(528\) −92.0830 186.006i −0.174400 0.352285i
\(529\) −500.197 168.536i −0.945553 0.318594i
\(530\) 816.774i 1.54108i
\(531\) 467.407 + 251.976i 0.880239 + 0.474531i
\(532\) 192.452 0.361752
\(533\) 166.360 493.738i 0.312119 0.926337i
\(534\) 677.448 335.373i 1.26863 0.628039i
\(535\) 137.547 + 104.560i 0.257096 + 0.195440i
\(536\) 886.405 + 353.176i 1.65374 + 0.658911i
\(537\) −15.0517 111.075i −0.0280293 0.206843i
\(538\) −504.865 + 233.575i −0.938410 + 0.434155i
\(539\) 487.065 330.238i 0.903646 0.612687i
\(540\) 197.369 72.0236i 0.365498 0.133377i
\(541\) −261.261 + 307.580i −0.482922 + 0.568539i −0.948625 0.316401i \(-0.897525\pi\)
0.465704 + 0.884941i \(0.345801\pi\)
\(542\) 372.518 + 103.429i 0.687303 + 0.190829i
\(543\) −76.8719 14.8081i −0.141569 0.0272710i
\(544\) −79.8137 + 150.545i −0.146716 + 0.276736i
\(545\) 175.330 + 1612.13i 0.321707 + 2.95804i
\(546\) −508.091 + 41.0023i −0.930570 + 0.0750958i
\(547\) −13.0101 46.8581i −0.0237844 0.0856638i 0.950705 0.310096i \(-0.100361\pi\)
−0.974490 + 0.224432i \(0.927947\pi\)
\(548\) −22.8629 + 49.4173i −0.0417206 + 0.0901775i
\(549\) −277.268 + 187.407i −0.505043 + 0.341361i
\(550\) −495.718 + 109.116i −0.901305 + 0.198392i
\(551\) 317.937 + 528.415i 0.577018 + 0.959012i
\(552\) −17.5816 + 21.8401i −0.0318507 + 0.0395654i
\(553\) −593.759 + 875.730i −1.07371 + 1.58360i
\(554\) −487.791 79.9692i −0.880489 0.144349i
\(555\) −348.692 + 615.704i −0.628274 + 1.10938i
\(556\) −33.1565 31.4075i −0.0596339 0.0564883i
\(557\) 270.337 + 285.391i 0.485345 + 0.512372i 0.921965 0.387274i \(-0.126583\pi\)
−0.436620 + 0.899646i \(0.643825\pi\)
\(558\) 172.299 + 434.265i 0.308779 + 0.778252i
\(559\) −48.8207 10.7462i −0.0873357 0.0192241i
\(560\) 381.914 + 1133.48i 0.681990 + 2.02407i
\(561\) 52.0816 208.779i 0.0928371 0.372156i
\(562\) 154.203 + 33.9426i 0.274382 + 0.0603961i
\(563\) −499.591 27.0870i −0.887372 0.0481119i −0.395185 0.918601i \(-0.629320\pi\)
−0.492187 + 0.870489i \(0.663802\pi\)
\(564\) −81.8664 + 15.6473i −0.145153 + 0.0277435i
\(565\) 72.5415 + 68.7150i 0.128392 + 0.121619i
\(566\) −748.321 + 40.5728i −1.32212 + 0.0716833i
\(567\) 633.808 + 750.570i 1.11783 + 1.32376i
\(568\) 295.727 436.164i 0.520646 0.767895i
\(569\) 77.5598 713.150i 0.136309 1.25334i −0.703594 0.710603i \(-0.748422\pi\)
0.839902 0.542737i \(-0.182612\pi\)
\(570\) 21.8662 786.165i 0.0383617 1.37924i
\(571\) 534.301 117.609i 0.935729 0.205970i 0.279168 0.960242i \(-0.409941\pi\)
0.656561 + 0.754273i \(0.272010\pi\)
\(572\) 42.9327 7.03845i 0.0750571 0.0123050i
\(573\) 269.088 + 421.657i 0.469613 + 0.735876i
\(574\) −372.857 1342.91i −0.649577 2.33957i
\(575\) 31.5410 + 41.4914i 0.0548539 + 0.0721590i
\(576\) −329.487 549.411i −0.572026 0.953838i
\(577\) −9.51001 + 17.9378i −0.0164818 + 0.0310880i −0.891616 0.452792i \(-0.850428\pi\)
0.875134 + 0.483880i \(0.160773\pi\)
\(578\) −238.506 + 95.0296i −0.412641 + 0.164411i
\(579\) −86.6750 96.7534i −0.149698 0.167104i
\(580\) 178.144 209.727i 0.307144 0.361598i
\(581\) −781.366 + 414.254i −1.34486 + 0.713002i
\(582\) −10.0678 381.862i −0.0172986 0.656121i
\(583\) 295.825 136.863i 0.507418 0.234757i
\(584\) 856.036 727.123i 1.46581 1.24507i
\(585\) −32.3224 612.555i −0.0552520 1.04710i
\(586\) −654.457 497.505i −1.11682 0.848985i
\(587\) 572.626 951.712i 0.975513 1.62131i 0.210198 0.977659i \(-0.432589\pi\)
0.765315 0.643656i \(-0.222583\pi\)
\(588\) 208.824 167.609i 0.355143 0.285049i
\(589\) −514.985 −0.874338
\(590\) −757.451 461.431i −1.28381 0.782086i
\(591\) −492.345 315.203i −0.833071 0.533338i
\(592\) 301.418 + 101.560i 0.509152 + 0.171553i
\(593\) 180.260 299.594i 0.303979 0.505218i −0.666786 0.745250i \(-0.732330\pi\)
0.970765 + 0.240032i \(0.0771579\pi\)
\(594\) 200.898 + 201.773i 0.338213 + 0.339685i
\(595\) −458.986 + 1151.97i −0.771405 + 1.93608i
\(596\) −148.504 + 126.140i −0.249167 + 0.211644i
\(597\) −3.46792 + 25.3161i −0.00580891 + 0.0424056i
\(598\) 8.51339 + 12.5563i 0.0142364 + 0.0209972i
\(599\) −656.002 + 347.790i −1.09516 + 0.580618i −0.915177 0.403052i \(-0.867949\pi\)
−0.179984 + 0.983670i \(0.557605\pi\)
\(600\) −1191.65 + 364.950i −1.98609 + 0.608249i
\(601\) −90.5556 + 326.152i −0.150675 + 0.542682i 0.849218 + 0.528043i \(0.177074\pi\)
−0.999893 + 0.0146395i \(0.995340\pi\)
\(602\) −124.225 + 49.4958i −0.206354 + 0.0822189i
\(603\) −993.433 55.3050i −1.64748 0.0917164i
\(604\) −78.5410 + 8.54185i −0.130035 + 0.0141421i
\(605\) −439.954 578.749i −0.727196 0.956611i
\(606\) 51.8870 + 15.9729i 0.0856220 + 0.0263579i
\(607\) −140.467 64.9869i −0.231412 0.107062i 0.300757 0.953701i \(-0.402761\pi\)
−0.532169 + 0.846638i \(0.678623\pi\)
\(608\) 245.261 40.2085i 0.403389 0.0661323i
\(609\) 1207.40 + 444.570i 1.98260 + 0.730001i
\(610\) 478.974 288.189i 0.785204 0.472442i
\(611\) −26.3101 + 241.917i −0.0430607 + 0.395937i
\(612\) 15.9803 96.5993i 0.0261116 0.157842i
\(613\) −60.1102 + 366.656i −0.0980591 + 0.598134i 0.891388 + 0.453241i \(0.149732\pi\)
−0.989447 + 0.144893i \(0.953716\pi\)
\(614\) 943.901 51.1768i 1.53730 0.0833499i
\(615\) 1627.86 403.580i 2.64693 0.656228i
\(616\) 455.906 431.857i 0.740107 0.701067i
\(617\) −33.8490 1.83524i −0.0548606 0.00297445i 0.0266882 0.999644i \(-0.491504\pi\)
−0.0815488 + 0.996669i \(0.525987\pi\)
\(618\) −216.736 217.050i −0.350706 0.351214i
\(619\) 334.599 112.739i 0.540547 0.182132i −0.0357663 0.999360i \(-0.511387\pi\)
0.576314 + 0.817229i \(0.304491\pi\)
\(620\) 73.3728 + 217.763i 0.118343 + 0.351230i
\(621\) 10.1416 27.4210i 0.0163311 0.0441561i
\(622\) −6.12180 + 112.910i −0.00984212 + 0.181527i
\(623\) 1195.53 + 1262.11i 1.91899 + 2.02586i
\(624\) −267.631 + 66.3513i −0.428897 + 0.106332i
\(625\) 26.4418 + 487.690i 0.0423068 + 0.780304i
\(626\) −12.7771 2.09470i −0.0204107 0.00334616i
\(627\) −288.402 + 123.814i −0.459972 + 0.197471i
\(628\) −255.665 27.8052i −0.407109 0.0442758i
\(629\) 170.006 + 282.553i 0.270280 + 0.449209i
\(630\) −991.122 1307.72i −1.57321 2.07575i
\(631\) −18.0496 110.098i −0.0286047 0.174481i 0.968660 0.248389i \(-0.0799012\pi\)
−0.997265 + 0.0739079i \(0.976453\pi\)
\(632\) −316.157 + 683.363i −0.500249 + 1.08127i
\(633\) −62.5941 19.2689i −0.0988848 0.0304407i
\(634\) −745.381 + 566.624i −1.17568 + 0.893728i
\(635\) 172.802 + 1588.89i 0.272130 + 2.50219i
\(636\) 129.164 72.9026i 0.203087 0.114627i
\(637\) −289.366 726.253i −0.454263 1.14012i
\(638\) 359.329 + 99.7671i 0.563211 + 0.156375i
\(639\) −147.773 + 529.255i −0.231256 + 0.828256i
\(640\) 272.872 + 514.691i 0.426363 + 0.804205i
\(641\) −488.824 + 331.431i −0.762596 + 0.517053i −0.879389 0.476103i \(-0.842049\pi\)
0.116793 + 0.993156i \(0.462738\pi\)
\(642\) −14.4601 + 105.560i −0.0225236 + 0.164424i
\(643\) −280.114 329.776i −0.435636 0.512871i 0.499909 0.866078i \(-0.333367\pi\)
−0.935545 + 0.353207i \(0.885091\pi\)
\(644\) −11.1011 4.42307i −0.0172377 0.00686811i
\(645\) −55.3823 151.086i −0.0858640 0.234242i
\(646\) −314.052 188.959i −0.486149 0.292506i
\(647\) 100.218 297.437i 0.154897 0.459717i −0.841905 0.539625i \(-0.818566\pi\)
0.996802 + 0.0799077i \(0.0254625\pi\)
\(648\) 531.521 + 454.134i 0.820249 + 0.700824i
\(649\) −40.2016 + 351.658i −0.0619439 + 0.541846i
\(650\) 674.330i 1.03743i
\(651\) −837.931 + 672.550i −1.28714 + 1.03310i
\(652\) 20.9783 + 12.6222i 0.0321753 + 0.0193592i
\(653\) 413.298 543.684i 0.632921 0.832594i −0.362112 0.932135i \(-0.617944\pi\)
0.995033 + 0.0995408i \(0.0317374\pi\)
\(654\) −812.621 + 582.814i −1.24254 + 0.891153i
\(655\) −225.333 265.282i −0.344019 0.405011i
\(656\) −316.553 684.218i −0.482550 1.04301i
\(657\) −605.264 + 1002.67i −0.921254 + 1.52613i
\(658\) 304.910 + 575.121i 0.463389 + 0.874044i
\(659\) −133.253 113.186i −0.202204 0.171754i 0.540563 0.841304i \(-0.318211\pi\)
−0.742767 + 0.669550i \(0.766487\pi\)
\(660\) 93.4456 + 104.311i 0.141584 + 0.158047i
\(661\) 98.9884 + 248.442i 0.149756 + 0.375858i 0.984647 0.174556i \(-0.0558491\pi\)
−0.834892 + 0.550414i \(0.814470\pi\)
\(662\) 339.353 + 179.914i 0.512618 + 0.271773i
\(663\) −256.006 127.198i −0.386133 0.191853i
\(664\) −501.039 + 380.880i −0.754577 + 0.573614i
\(665\) 1742.79 483.882i 2.62073 0.727643i
\(666\) −436.345 0.631718i −0.655172 0.000948525i
\(667\) −6.19490 37.7872i −0.00928770 0.0566525i
\(668\) 5.87717 + 26.7002i 0.00879816 + 0.0399704i
\(669\) −19.6129 + 705.150i −0.0293167 + 1.05404i
\(670\) 1652.17 + 179.684i 2.46592 + 0.268185i
\(671\) −184.638 125.188i −0.275168 0.186569i
\(672\) 346.553 385.724i 0.515703 0.573994i
\(673\) −8.24370 152.046i −0.0122492 0.225923i −0.998248 0.0591701i \(-0.981155\pi\)
0.985999 0.166753i \(-0.0533282\pi\)
\(674\) −121.958 + 128.749i −0.180946 + 0.191022i
\(675\) 1057.14 755.868i 1.56613 1.11980i
\(676\) −5.19626 + 95.8393i −0.00768677 + 0.141774i
\(677\) −259.883 + 1180.66i −0.383874 + 1.74396i 0.247882 + 0.968790i \(0.420266\pi\)
−0.631756 + 0.775168i \(0.717665\pi\)
\(678\) −14.9139 + 59.7853i −0.0219969 + 0.0881790i
\(679\) 832.521 280.509i 1.22610 0.413121i
\(680\) −189.706 + 861.841i −0.278979 + 1.26741i
\(681\) −528.393 + 734.495i −0.775908 + 1.07855i
\(682\) −226.089 + 214.163i −0.331509 + 0.314022i
\(683\) −391.479 + 413.280i −0.573176 + 0.605095i −0.946538 0.322591i \(-0.895446\pi\)
0.373362 + 0.927686i \(0.378205\pi\)
\(684\) −126.275 + 66.7126i −0.184612 + 0.0975331i
\(685\) −82.7892 + 504.992i −0.120860 + 0.737215i
\(686\) −866.267 587.344i −1.26278 0.856186i
\(687\) 652.246 810.229i 0.949412 1.17937i
\(688\) −61.9799 + 37.2921i −0.0900871 + 0.0542036i
\(689\) −93.0881 422.903i −0.135106 0.613793i
\(690\) −19.3295 + 44.8452i −0.0280137 + 0.0649930i
\(691\) 858.959 + 397.397i 1.24307 + 0.575104i 0.927508 0.373802i \(-0.121946\pi\)
0.315558 + 0.948906i \(0.397808\pi\)
\(692\) 81.1917 22.5428i 0.117329 0.0325763i
\(693\) −307.562 + 578.100i −0.443813 + 0.834199i
\(694\) −288.423 + 31.3679i −0.415595 + 0.0451987i
\(695\) −379.223 201.051i −0.545644 0.289282i
\(696\) 899.112 + 173.199i 1.29183 + 0.248850i
\(697\) 209.099 753.107i 0.299999 1.08050i
\(698\) 45.8216 + 38.9212i 0.0656470 + 0.0557611i
\(699\) 37.9798 462.289i 0.0543345 0.661358i
\(700\) −298.088 439.647i −0.425840 0.628067i
\(701\) −163.577 353.567i −0.233349 0.504375i 0.755160 0.655541i \(-0.227559\pi\)
−0.988508 + 0.151166i \(0.951697\pi\)
\(702\) 319.164 203.031i 0.454649 0.289217i
\(703\) 178.028 446.817i 0.253241 0.635587i
\(704\) 258.426 339.954i 0.367083 0.482890i
\(705\) −702.015 + 347.534i −0.995765 + 0.492956i
\(706\) −217.871 73.4095i −0.308600 0.103979i
\(707\) 124.855i 0.176599i
\(708\) −5.36249 + 160.968i −0.00757414 + 0.227356i
\(709\) −178.968 −0.252424 −0.126212 0.992003i \(-0.540282\pi\)
−0.126212 + 0.992003i \(0.540282\pi\)
\(710\) 293.065 869.785i 0.412767 1.22505i
\(711\) 86.0194 780.422i 0.120984 1.09764i
\(712\) 984.900 + 748.701i 1.38329 + 1.05155i
\(713\) 29.7055 + 11.8357i 0.0416626 + 0.0165999i
\(714\) −757.767 + 102.685i −1.06130 + 0.143816i
\(715\) 371.088 171.684i 0.519005 0.240117i
\(716\) 28.1397 19.0792i 0.0393013 0.0266469i
\(717\) 14.8749 181.056i 0.0207460 0.252519i
\(718\) 610.189 718.370i 0.849845 1.00051i
\(719\) 253.219 + 70.3058i 0.352182 + 0.0977827i 0.439114 0.898432i \(-0.355293\pi\)
−0.0869321 + 0.996214i \(0.527706\pi\)
\(720\) −643.504 611.329i −0.893755 0.849068i
\(721\) 330.426 623.249i 0.458288 0.864424i
\(722\) −10.8107 99.4026i −0.0149733 0.137677i
\(723\) 28.1318 + 348.603i 0.0389099 + 0.482162i
\(724\) −6.35236 22.8791i −0.00877398 0.0316010i
\(725\) 714.687 1544.77i 0.985775 2.13072i
\(726\) 177.451 411.694i 0.244423 0.567072i
\(727\) 1005.08 221.235i 1.38250 0.304312i 0.539394 0.842053i \(-0.318653\pi\)
0.843110 + 0.537741i \(0.180722\pi\)
\(728\) −430.110 714.848i −0.590810 0.981934i
\(729\) −676.046 272.770i −0.927360 0.374169i
\(730\) 1097.82 1619.16i 1.50386 2.21803i
\(731\) −74.0038 12.1323i −0.101236 0.0165969i
\(732\) −88.3255 50.0215i −0.120663 0.0683354i
\(733\) 205.380 + 194.547i 0.280192 + 0.265412i 0.814870 0.579644i \(-0.196808\pi\)
−0.534678 + 0.845056i \(0.679567\pi\)
\(734\) −626.653 661.549i −0.853750 0.901293i
\(735\) 1469.63 2042.86i 1.99949 2.77940i
\(736\) −15.0713 3.31744i −0.0204773 0.00450739i
\(737\) −211.767 628.501i −0.287336 0.852782i
\(738\) 710.159 + 751.883i 0.962275 + 1.01881i
\(739\) −608.737 133.993i −0.823731 0.181317i −0.216947 0.976183i \(-0.569610\pi\)
−0.606784 + 0.794866i \(0.707541\pi\)
\(740\) −214.303 11.6191i −0.289598 0.0157016i
\(741\) 78.2778 + 409.547i 0.105638 + 0.552695i
\(742\) −840.960 796.600i −1.13337 1.07358i
\(743\) 1192.06 64.6318i 1.60439 0.0869876i 0.769957 0.638096i \(-0.220278\pi\)
0.834434 + 0.551108i \(0.185795\pi\)
\(744\) −511.025 + 568.787i −0.686862 + 0.764498i
\(745\) −1027.65 + 1515.67i −1.37939 + 2.03445i
\(746\) −132.980 + 1222.73i −0.178258 + 1.63905i
\(747\) 369.083 542.664i 0.494087 0.726458i
\(748\) 63.7395 14.0301i 0.0852132 0.0187568i
\(749\) −241.805 + 39.6420i −0.322838 + 0.0529265i
\(750\) −879.408 + 561.211i −1.17254 + 0.748281i
\(751\) −67.4237 242.838i −0.0897785 0.323353i 0.905000 0.425412i \(-0.139871\pi\)
−0.994778 + 0.102059i \(0.967457\pi\)
\(752\) 213.091 + 280.317i 0.283366 + 0.372762i
\(753\) −89.1327 44.2862i −0.118370 0.0588130i
\(754\) 232.063 437.717i 0.307776 0.580527i
\(755\) −689.767 + 274.828i −0.913598 + 0.364011i
\(756\) −118.337 + 273.458i −0.156531 + 0.361717i
\(757\) 81.2662 95.6740i 0.107353 0.126386i −0.705861 0.708350i \(-0.749440\pi\)
0.813214 + 0.581964i \(0.197716\pi\)
\(758\) −95.9914 + 50.8914i −0.126638 + 0.0671391i
\(759\) 19.4813 0.513622i 0.0256670 0.000676709i
\(760\) 1168.20 540.468i 1.53711 0.711143i
\(761\) 627.742 533.209i 0.824891 0.700669i −0.131957 0.991255i \(-0.542126\pi\)
0.956849 + 0.290586i \(0.0938503\pi\)
\(762\) −800.906 + 574.412i −1.05106 + 0.753821i
\(763\) −1830.87 1391.79i −2.39957 1.82410i
\(764\) −78.2178 + 129.999i −0.102379 + 0.170156i
\(765\) −98.1671 914.953i −0.128323 1.19602i
\(766\) 3.51235 0.00458532
\(767\) 444.777 + 152.589i 0.579891 + 0.198943i
\(768\) 266.861 416.834i 0.347475 0.542753i
\(769\) −514.385 173.317i −0.668901 0.225379i −0.0356957 0.999363i \(-0.511365\pi\)
−0.633206 + 0.773984i \(0.718261\pi\)
\(770\) 563.891 937.193i 0.732325 1.21713i
\(771\) −133.637 364.571i −0.173330 0.472855i
\(772\) 14.5833 36.6013i 0.0188903 0.0474110i
\(773\) 93.8036 79.6775i 0.121350 0.103076i −0.584657 0.811281i \(-0.698771\pi\)
0.706007 + 0.708205i