Properties

Label 177.3.h.a.5.10
Level $177$
Weight $3$
Character 177.5
Analytic conductor $4.823$
Analytic rank $0$
Dimension $1064$
CM no
Inner twists $4$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.h (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(1064\)
Relative dimension: \(38\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 5.10
Character \(\chi\) \(=\) 177.5
Dual form 177.3.h.a.71.10

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.792761 + 2.35283i) q^{2} +(-2.47356 - 1.69749i) q^{3} +(-1.72297 - 1.30976i) q^{4} +(-7.18639 - 2.86332i) q^{5} +(5.95485 - 4.47417i) q^{6} +(10.9013 - 5.04348i) q^{7} +(-3.77238 + 2.55774i) q^{8} +(3.23704 + 8.39771i) q^{9} +O(q^{10})\) \(q+(-0.792761 + 2.35283i) q^{2} +(-2.47356 - 1.69749i) q^{3} +(-1.72297 - 1.30976i) q^{4} +(-7.18639 - 2.86332i) q^{5} +(5.95485 - 4.47417i) q^{6} +(10.9013 - 5.04348i) q^{7} +(-3.77238 + 2.55774i) q^{8} +(3.23704 + 8.39771i) q^{9} +(12.4340 - 14.6384i) q^{10} +(12.6695 + 3.51766i) q^{11} +(2.03855 + 6.16451i) q^{12} +(-8.60974 + 16.2397i) q^{13} +(3.22433 + 29.6472i) q^{14} +(12.9155 + 19.2815i) q^{15} +(-5.34335 - 19.2450i) q^{16} +(-0.124018 + 0.268061i) q^{17} +(-22.3246 + 0.958823i) q^{18} +(20.6385 - 4.54288i) q^{19} +(8.63163 + 14.3459i) q^{20} +(-35.5263 - 6.02951i) q^{21} +(-18.3203 + 27.0204i) q^{22} +(31.7535 + 5.20572i) q^{23} +(13.6730 + 0.0768604i) q^{24} +(25.2958 + 23.9614i) q^{25} +(-31.3838 - 33.1314i) q^{26} +(6.24803 - 26.2671i) q^{27} +(-25.3883 - 5.58840i) q^{28} +(4.51252 + 13.3927i) q^{29} +(-55.6049 + 15.1025i) q^{30} +(8.57597 + 1.88771i) q^{31} +(31.3120 + 1.69769i) q^{32} +(-25.3675 - 30.2075i) q^{33} +(-0.532385 - 0.504302i) q^{34} +(-92.7822 + 5.03050i) q^{35} +(5.42172 - 18.7087i) q^{36} +(-15.2154 + 22.4410i) q^{37} +(-5.67278 + 52.1604i) q^{38} +(48.8635 - 25.5549i) q^{39} +(34.4334 - 7.57937i) q^{40} +(34.3195 - 5.62640i) q^{41} +(42.3503 - 78.8075i) q^{42} +(7.45016 + 26.8331i) q^{43} +(-17.2217 - 22.6548i) q^{44} +(0.782717 - 69.6179i) q^{45} +(-37.4211 + 70.5836i) q^{46} +(40.8575 - 16.2791i) q^{47} +(-19.4511 + 56.6740i) q^{48} +(61.6798 - 72.6151i) q^{49} +(-76.4306 + 40.5209i) q^{50} +(0.761798 - 0.452546i) q^{51} +(36.1045 - 16.7037i) q^{52} +(-10.2445 + 8.70175i) q^{53} +(56.8489 + 35.5241i) q^{54} +(-80.9755 - 61.5560i) q^{55} +(-28.2240 + 46.9086i) q^{56} +(-58.7622 - 23.7966i) q^{57} -35.0881 q^{58} +(-50.5089 - 30.4935i) q^{59} +(3.00114 - 50.1376i) q^{60} +(40.8548 + 13.7656i) q^{61} +(-11.2402 + 18.6813i) q^{62} +(77.6416 + 75.2201i) q^{63} +(0.753787 - 1.89186i) q^{64} +(108.372 - 92.0524i) q^{65} +(91.1834 - 35.7382i) q^{66} +(9.22152 + 13.6007i) q^{67} +(0.564776 - 0.299425i) q^{68} +(-69.7076 - 66.7779i) q^{69} +(61.7181 - 222.289i) q^{70} +(80.8152 - 32.1997i) q^{71} +(-33.6905 - 23.3999i) q^{72} +(-40.8694 + 4.44482i) q^{73} +(-40.7377 - 53.5895i) q^{74} +(-21.8964 - 102.209i) q^{75} +(-41.5096 - 19.2044i) q^{76} +(155.855 - 25.5511i) q^{77} +(21.3894 + 135.226i) q^{78} +(-18.4242 + 11.0855i) q^{79} +(-16.7052 + 153.602i) q^{80} +(-60.0432 + 54.3674i) q^{81} +(-13.9692 + 85.2083i) q^{82} +(-53.3659 + 2.89342i) q^{83} +(53.3134 + 56.9198i) q^{84} +(1.65879 - 1.57129i) q^{85} +(-69.0398 - 3.74323i) q^{86} +(11.5720 - 40.7876i) q^{87} +(-56.7912 + 19.1352i) q^{88} +(-18.4021 - 54.6156i) q^{89} +(163.179 + 57.0320i) q^{90} +(-11.9528 + 220.457i) q^{91} +(-47.8919 - 50.5588i) q^{92} +(-18.0088 - 19.2270i) q^{93} +(5.91177 + 109.036i) q^{94} +(-161.324 - 26.4478i) q^{95} +(-74.5705 - 57.3513i) q^{96} +(-144.169 - 15.6794i) q^{97} +(121.954 + 202.688i) q^{98} +(11.4712 + 117.781i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} + O(q^{10}) \) \( 1064q - 29q^{3} + 18q^{4} - 21q^{6} - 46q^{7} - 49q^{9} - 94q^{10} - 29q^{12} - 54q^{13} - 12q^{15} - 158q^{16} - 27q^{18} - 30q^{19} - 18q^{21} - 142q^{22} - 23q^{24} + 108q^{25} - 32q^{27} - 70q^{28} - 131q^{30} - 18q^{31} + 17q^{33} + 90q^{34} + 67q^{36} - 170q^{37} - 91q^{39} - 2q^{40} - 43q^{42} - 222q^{43} - 461q^{45} - 54q^{46} - 1645q^{48} - 300q^{49} - 893q^{51} - 66q^{52} - 859q^{54} + 170q^{55} - 27q^{57} - 36q^{58} + 510q^{60} - 70q^{61} + 610q^{63} - 106q^{64} + 1619q^{66} - 182q^{67} + 1487q^{69} - 206q^{70} + 2241q^{72} + 134q^{73} + 542q^{75} + 246q^{76} - 273q^{78} - 122q^{79} + 127q^{81} + 122q^{82} - 329q^{84} - 6q^{85} + 54q^{87} + 38q^{88} + 347q^{90} + 274q^{91} - 483q^{93} - 826q^{94} + 693q^{96} - 474q^{97} - 523q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{3}{29}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.792761 + 2.35283i −0.396380 + 1.17641i 0.544816 + 0.838555i \(0.316599\pi\)
−0.941197 + 0.337859i \(0.890297\pi\)
\(3\) −2.47356 1.69749i −0.824521 0.565831i
\(4\) −1.72297 1.30976i −0.430741 0.327441i
\(5\) −7.18639 2.86332i −1.43728 0.572664i −0.484084 0.875022i \(-0.660847\pi\)
−0.953195 + 0.302357i \(0.902226\pi\)
\(6\) 5.95485 4.47417i 0.992476 0.745695i
\(7\) 10.9013 5.04348i 1.55733 0.720497i 0.562962 0.826483i \(-0.309662\pi\)
0.994368 + 0.105986i \(0.0337998\pi\)
\(8\) −3.77238 + 2.55774i −0.471548 + 0.319717i
\(9\) 3.23704 + 8.39771i 0.359671 + 0.933079i
\(10\) 12.4340 14.6384i 1.24340 1.46384i
\(11\) 12.6695 + 3.51766i 1.15177 + 0.319787i 0.790373 0.612626i \(-0.209887\pi\)
0.361395 + 0.932413i \(0.382300\pi\)
\(12\) 2.03855 + 6.16451i 0.169879 + 0.513709i
\(13\) −8.60974 + 16.2397i −0.662288 + 1.24921i 0.293727 + 0.955889i \(0.405104\pi\)
−0.956015 + 0.293318i \(0.905241\pi\)
\(14\) 3.22433 + 29.6472i 0.230309 + 2.11766i
\(15\) 12.9155 + 19.2815i 0.861036 + 1.28543i
\(16\) −5.34335 19.2450i −0.333959 1.20281i
\(17\) −0.124018 + 0.268061i −0.00729519 + 0.0157683i −0.911189 0.411989i \(-0.864834\pi\)
0.903894 + 0.427757i \(0.140696\pi\)
\(18\) −22.3246 + 0.958823i −1.24025 + 0.0532680i
\(19\) 20.6385 4.54288i 1.08624 0.239099i 0.364457 0.931220i \(-0.381255\pi\)
0.721781 + 0.692121i \(0.243324\pi\)
\(20\) 8.63163 + 14.3459i 0.431582 + 0.717294i
\(21\) −35.5263 6.02951i −1.69173 0.287120i
\(22\) −18.3203 + 27.0204i −0.832741 + 1.22820i
\(23\) 31.7535 + 5.20572i 1.38059 + 0.226335i 0.805906 0.592043i \(-0.201679\pi\)
0.574679 + 0.818379i \(0.305127\pi\)
\(24\) 13.6730 + 0.0768604i 0.569707 + 0.00320252i
\(25\) 25.2958 + 23.9614i 1.01183 + 0.958456i
\(26\) −31.3838 33.1314i −1.20707 1.27429i
\(27\) 6.24803 26.2671i 0.231409 0.972857i
\(28\) −25.3883 5.58840i −0.906727 0.199586i
\(29\) 4.51252 + 13.3927i 0.155604 + 0.461817i 0.996893 0.0787693i \(-0.0250991\pi\)
−0.841289 + 0.540586i \(0.818203\pi\)
\(30\) −55.6049 + 15.1025i −1.85350 + 0.503416i
\(31\) 8.57597 + 1.88771i 0.276644 + 0.0608940i 0.351126 0.936328i \(-0.385799\pi\)
−0.0744812 + 0.997222i \(0.523730\pi\)
\(32\) 31.3120 + 1.69769i 0.978501 + 0.0530528i
\(33\) −25.3675 30.2075i −0.768712 0.915377i
\(34\) −0.532385 0.504302i −0.0156584 0.0148324i
\(35\) −92.7822 + 5.03050i −2.65092 + 0.143729i
\(36\) 5.42172 18.7087i 0.150603 0.519687i
\(37\) −15.2154 + 22.4410i −0.411226 + 0.606513i −0.975746 0.218907i \(-0.929751\pi\)
0.564520 + 0.825420i \(0.309061\pi\)
\(38\) −5.67278 + 52.1604i −0.149284 + 1.37264i
\(39\) 48.8635 25.5549i 1.25291 0.655255i
\(40\) 34.4334 7.57937i 0.860836 0.189484i
\(41\) 34.3195 5.62640i 0.837061 0.137229i 0.272020 0.962292i \(-0.412308\pi\)
0.565042 + 0.825062i \(0.308860\pi\)
\(42\) 42.3503 78.8075i 1.00834 1.87637i
\(43\) 7.45016 + 26.8331i 0.173260 + 0.624025i 0.998264 + 0.0588984i \(0.0187588\pi\)
−0.825004 + 0.565126i \(0.808827\pi\)
\(44\) −17.2217 22.6548i −0.391403 0.514882i
\(45\) 0.782717 69.6179i 0.0173937 1.54707i
\(46\) −37.4211 + 70.5836i −0.813501 + 1.53443i
\(47\) 40.8575 16.2791i 0.869308 0.346364i 0.107530 0.994202i \(-0.465706\pi\)
0.761778 + 0.647838i \(0.224327\pi\)
\(48\) −19.4511 + 56.6740i −0.405232 + 1.18071i
\(49\) 61.6798 72.6151i 1.25877 1.48194i
\(50\) −76.4306 + 40.5209i −1.52861 + 0.810419i
\(51\) 0.761798 0.452546i 0.0149372 0.00887345i
\(52\) 36.1045 16.7037i 0.694316 0.321225i
\(53\) −10.2445 + 8.70175i −0.193292 + 0.164184i −0.738806 0.673918i \(-0.764610\pi\)
0.545514 + 0.838102i \(0.316334\pi\)
\(54\) 56.8489 + 35.5241i 1.05276 + 0.657854i
\(55\) −80.9755 61.5560i −1.47228 1.11920i
\(56\) −28.2240 + 46.9086i −0.503999 + 0.837654i
\(57\) −58.7622 23.7966i −1.03092 0.417485i
\(58\) −35.0881 −0.604967
\(59\) −50.5089 30.4935i −0.856083 0.516838i
\(60\) 3.00114 50.1376i 0.0500189 0.835627i
\(61\) 40.8548 + 13.7656i 0.669751 + 0.225665i 0.633577 0.773680i \(-0.281586\pi\)
0.0361747 + 0.999345i \(0.488483\pi\)
\(62\) −11.2402 + 18.6813i −0.181293 + 0.301311i
\(63\) 77.6416 + 75.2201i 1.23241 + 1.19397i
\(64\) 0.753787 1.89186i 0.0117779 0.0295603i
\(65\) 108.372 92.0524i 1.66727 1.41619i
\(66\) 91.1834 35.7382i 1.38157 0.541487i
\(67\) 9.22152 + 13.6007i 0.137635 + 0.202996i 0.890260 0.455454i \(-0.150523\pi\)
−0.752625 + 0.658450i \(0.771213\pi\)
\(68\) 0.564776 0.299425i 0.00830552 0.00440331i
\(69\) −69.7076 66.7779i −1.01025 0.967796i
\(70\) 61.7181 222.289i 0.881688 3.17555i
\(71\) 80.8152 32.1997i 1.13824 0.453517i 0.276575 0.960992i \(-0.410800\pi\)
0.861666 + 0.507475i \(0.169421\pi\)
\(72\) −33.6905 23.3999i −0.467923 0.324998i
\(73\) −40.8694 + 4.44482i −0.559855 + 0.0608879i −0.383672 0.923469i \(-0.625341\pi\)
−0.176183 + 0.984357i \(0.556375\pi\)
\(74\) −40.7377 53.5895i −0.550509 0.724182i
\(75\) −21.8964 102.209i −0.291951 1.36279i
\(76\) −41.5096 19.2044i −0.546179 0.252689i
\(77\) 155.855 25.5511i 2.02409 0.331832i
\(78\) 21.3894 + 135.226i 0.274223 + 1.73367i
\(79\) −18.4242 + 11.0855i −0.233218 + 0.140323i −0.627367 0.778724i \(-0.715867\pi\)
0.394148 + 0.919047i \(0.371040\pi\)
\(80\) −16.7052 + 153.602i −0.208815 + 1.92002i
\(81\) −60.0432 + 54.3674i −0.741274 + 0.671203i
\(82\) −13.9692 + 85.2083i −0.170356 + 1.03913i
\(83\) −53.3659 + 2.89342i −0.642963 + 0.0348604i −0.372738 0.927937i \(-0.621581\pi\)
−0.270225 + 0.962797i \(0.587098\pi\)
\(84\) 53.3134 + 56.9198i 0.634684 + 0.677616i
\(85\) 1.65879 1.57129i 0.0195151 0.0184857i
\(86\) −69.0398 3.74323i −0.802789 0.0435259i
\(87\) 11.5720 40.7876i 0.133011 0.468823i
\(88\) −56.7912 + 19.1352i −0.645355 + 0.217445i
\(89\) −18.4021 54.6156i −0.206766 0.613659i −0.999989 0.00472758i \(-0.998495\pi\)
0.793223 0.608931i \(-0.208401\pi\)
\(90\) 163.179 + 57.0320i 1.81310 + 0.633688i
\(91\) −11.9528 + 220.457i −0.131350 + 2.42260i
\(92\) −47.8919 50.5588i −0.520564 0.549552i
\(93\) −18.0088 19.2270i −0.193643 0.206742i
\(94\) 5.91177 + 109.036i 0.0628912 + 1.15996i
\(95\) −161.324 26.4478i −1.69815 0.278398i
\(96\) −74.5705 57.3513i −0.776776 0.597409i
\(97\) −144.169 15.6794i −1.48628 0.161643i −0.671325 0.741163i \(-0.734274\pi\)
−0.814958 + 0.579520i \(0.803240\pi\)
\(98\) 121.954 + 202.688i 1.24442 + 2.06825i
\(99\) 11.4712 + 117.781i 0.115871 + 1.18971i
\(100\) −12.1999 74.4162i −0.121999 0.744162i
\(101\) −42.7293 + 92.3579i −0.423062 + 0.914434i 0.572462 + 0.819931i \(0.305988\pi\)
−0.995525 + 0.0945032i \(0.969874\pi\)
\(102\) 0.460840 + 2.15114i 0.00451804 + 0.0210896i
\(103\) −20.8587 + 15.8563i −0.202511 + 0.153945i −0.701515 0.712655i \(-0.747493\pi\)
0.499004 + 0.866600i \(0.333699\pi\)
\(104\) −9.05765 83.2837i −0.0870928 0.800805i
\(105\) 238.042 + 145.054i 2.26707 + 1.38146i
\(106\) −12.3523 31.0019i −0.116531 0.292471i
\(107\) −98.4645 27.3385i −0.920229 0.255500i −0.225058 0.974345i \(-0.572257\pi\)
−0.695170 + 0.718845i \(0.744671\pi\)
\(108\) −45.1689 + 37.0739i −0.418231 + 0.343277i
\(109\) 90.7148 + 171.106i 0.832246 + 1.56978i 0.821758 + 0.569837i \(0.192994\pi\)
0.0104880 + 0.999945i \(0.496662\pi\)
\(110\) 209.025 141.722i 1.90023 1.28839i
\(111\) 75.7296 29.6812i 0.682248 0.267399i
\(112\) −155.311 182.847i −1.38671 1.63256i
\(113\) 2.41619 + 0.962699i 0.0213822 + 0.00851946i 0.380805 0.924655i \(-0.375647\pi\)
−0.359423 + 0.933175i \(0.617026\pi\)
\(114\) 102.574 119.393i 0.899770 1.04730i
\(115\) −213.287 128.331i −1.85467 1.11592i
\(116\) 9.76634 28.9855i 0.0841926 0.249875i
\(117\) −164.246 19.7336i −1.40381 0.168663i
\(118\) 111.787 94.6648i 0.947351 0.802244i
\(119\) 3.54770i 0.0298126i
\(120\) −98.0392 39.7024i −0.816994 0.330854i
\(121\) 44.4615 + 26.7516i 0.367450 + 0.221087i
\(122\) −64.7762 + 85.2116i −0.530952 + 0.698456i
\(123\) −94.4423 44.3399i −0.767823 0.360487i
\(124\) −12.3036 14.4850i −0.0992230 0.116814i
\(125\) −31.9714 69.1051i −0.255771 0.552840i
\(126\) −238.531 + 123.046i −1.89311 + 0.976556i
\(127\) −5.69484 10.7416i −0.0448412 0.0845795i 0.860079 0.510161i \(-0.170414\pi\)
−0.904920 + 0.425582i \(0.860069\pi\)
\(128\) 99.4532 + 84.4763i 0.776978 + 0.659971i
\(129\) 27.1205 79.0199i 0.210236 0.612557i
\(130\) 130.670 + 327.957i 1.00515 + 2.52275i
\(131\) 171.098 + 90.7103i 1.30609 + 0.692445i 0.968539 0.248862i \(-0.0800567\pi\)
0.337551 + 0.941307i \(0.390401\pi\)
\(132\) 4.14270 + 85.2719i 0.0313841 + 0.645999i
\(133\) 202.075 153.613i 1.51936 1.15499i
\(134\) −39.3107 + 10.9146i −0.293363 + 0.0814519i
\(135\) −120.112 + 170.876i −0.889719 + 1.26575i
\(136\) −0.217786 1.32843i −0.00160136 0.00976789i
\(137\) 22.9379 + 104.208i 0.167430 + 0.760641i 0.983239 + 0.182320i \(0.0583607\pi\)
−0.815810 + 0.578321i \(0.803708\pi\)
\(138\) 212.378 111.071i 1.53897 0.804863i
\(139\) 106.274 + 11.5579i 0.764558 + 0.0831507i 0.482085 0.876125i \(-0.339880\pi\)
0.282473 + 0.959275i \(0.408845\pi\)
\(140\) 166.449 + 112.855i 1.18892 + 0.806110i
\(141\) −128.697 29.0879i −0.912747 0.206297i
\(142\) 11.6933 + 215.671i 0.0823475 + 1.51881i
\(143\) −166.206 + 175.462i −1.16228 + 1.22701i
\(144\) 144.317 107.169i 1.00220 0.744227i
\(145\) 5.91880 109.166i 0.0408193 0.752868i
\(146\) 21.9418 99.6825i 0.150286 0.682757i
\(147\) −275.833 + 74.9171i −1.87641 + 0.509640i
\(148\) 55.6079 18.7365i 0.375729 0.126598i
\(149\) 24.6282 111.887i 0.165290 0.750920i −0.818919 0.573909i \(-0.805426\pi\)
0.984209 0.177011i \(-0.0566427\pi\)
\(150\) 257.840 + 29.5092i 1.71893 + 0.196728i
\(151\) 163.451 154.829i 1.08246 1.02536i 0.0828708 0.996560i \(-0.473591\pi\)
0.999585 0.0287966i \(-0.00916751\pi\)
\(152\) −66.2369 + 69.9254i −0.435769 + 0.460036i
\(153\) −2.65255 0.173746i −0.0173369 0.00113559i
\(154\) −63.4382 + 386.956i −0.411936 + 2.51270i
\(155\) −56.2252 38.1216i −0.362743 0.245946i
\(156\) −117.661 19.9694i −0.754238 0.128009i
\(157\) 209.422 126.005i 1.33390 0.802579i 0.343278 0.939234i \(-0.388463\pi\)
0.990619 + 0.136654i \(0.0436350\pi\)
\(158\) −11.4763 52.1372i −0.0726346 0.329982i
\(159\) 40.1116 4.13439i 0.252274 0.0260024i
\(160\) −220.159 101.857i −1.37600 0.636604i
\(161\) 372.409 103.399i 2.31310 0.642229i
\(162\) −80.3175 184.372i −0.495787 1.13810i
\(163\) −189.966 + 20.6601i −1.16544 + 0.126749i −0.670316 0.742076i \(-0.733841\pi\)
−0.495120 + 0.868825i \(0.664876\pi\)
\(164\) −66.5006 35.2564i −0.405491 0.214978i
\(165\) 95.8073 + 289.718i 0.580650 + 1.75587i
\(166\) 35.4987 127.855i 0.213848 0.770209i
\(167\) −82.7105 70.2549i −0.495272 0.420688i 0.364626 0.931154i \(-0.381197\pi\)
−0.859898 + 0.510466i \(0.829473\pi\)
\(168\) 149.441 68.1215i 0.889529 0.405485i
\(169\) −94.7593 139.760i −0.560706 0.826980i
\(170\) 2.38195 + 5.14850i 0.0140115 + 0.0302853i
\(171\) 104.958 + 158.611i 0.613787 + 0.927550i
\(172\) 22.3086 55.9904i 0.129701 0.325526i
\(173\) 81.6473 107.405i 0.471950 0.620839i −0.497103 0.867691i \(-0.665603\pi\)
0.969053 + 0.246852i \(0.0793961\pi\)
\(174\) 86.7926 + 59.5617i 0.498808 + 0.342309i
\(175\) 396.606 + 133.632i 2.26632 + 0.763611i
\(176\) 262.620i 1.49216i
\(177\) 73.1746 + 161.166i 0.413416 + 0.910542i
\(178\) 143.090 0.803875
\(179\) −54.8599 + 162.818i −0.306480 + 0.909600i 0.678147 + 0.734927i \(0.262783\pi\)
−0.984626 + 0.174673i \(0.944113\pi\)
\(180\) −92.5317 + 118.924i −0.514065 + 0.660690i
\(181\) −121.527 92.3828i −0.671423 0.510402i 0.213022 0.977047i \(-0.431669\pi\)
−0.884445 + 0.466645i \(0.845462\pi\)
\(182\) −509.222 202.892i −2.79792 1.11479i
\(183\) −77.6900 103.401i −0.424536 0.565032i
\(184\) −133.101 + 61.5791i −0.723375 + 0.334669i
\(185\) 173.599 117.703i 0.938375 0.636234i
\(186\) 59.5146 27.1293i 0.319971 0.145856i
\(187\) −2.51419 + 2.95993i −0.0134449 + 0.0158285i
\(188\) −91.7179 25.4653i −0.487861 0.135454i
\(189\) −64.3660 317.858i −0.340561 1.68179i
\(190\) 190.119 358.602i 1.00062 1.88738i
\(191\) 25.3538 + 233.124i 0.132742 + 1.22055i 0.851150 + 0.524923i \(0.175906\pi\)
−0.718407 + 0.695623i \(0.755129\pi\)
\(192\) −5.07596 + 3.40009i −0.0264373 + 0.0177088i
\(193\) 60.8481 + 219.155i 0.315275 + 1.13552i 0.936148 + 0.351607i \(0.114365\pi\)
−0.620873 + 0.783911i \(0.713222\pi\)
\(194\) 151.183 326.776i 0.779292 1.68441i
\(195\) −424.324 + 43.7360i −2.17602 + 0.224287i
\(196\) −201.381 + 44.3273i −1.02745 + 0.226160i
\(197\) −160.237 266.317i −0.813388 1.35186i −0.933308 0.359077i \(-0.883092\pi\)
0.119920 0.992784i \(-0.461736\pi\)
\(198\) −286.213 66.3825i −1.44552 0.335265i
\(199\) 47.2103 69.6300i 0.237238 0.349899i −0.690369 0.723457i \(-0.742552\pi\)
0.927607 + 0.373558i \(0.121862\pi\)
\(200\) −156.712 25.6917i −0.783561 0.128458i
\(201\) 0.277108 49.2957i 0.00137865 0.245252i
\(202\) −183.428 173.752i −0.908061 0.860161i
\(203\) 116.738 + 123.239i 0.575065 + 0.607088i
\(204\) −1.90528 0.218055i −0.00933961 0.00106890i
\(205\) −262.744 57.8343i −1.28168 0.282118i
\(206\) −20.7713 61.6472i −0.100832 0.299258i
\(207\) 59.0711 + 283.508i 0.285367 + 1.36960i
\(208\) 358.538 + 78.9201i 1.72374 + 0.379424i
\(209\) 277.459 + 15.0434i 1.32756 + 0.0719780i
\(210\) −529.997 + 445.079i −2.52380 + 2.11942i
\(211\) −7.41951 7.02813i −0.0351636 0.0333087i 0.669916 0.742437i \(-0.266330\pi\)
−0.705080 + 0.709128i \(0.749089\pi\)
\(212\) 29.0481 1.57494i 0.137020 0.00742898i
\(213\) −254.560 57.5351i −1.19512 0.270118i
\(214\) 142.382 209.997i 0.665335 0.981296i
\(215\) 23.2919 214.165i 0.108334 0.996117i
\(216\) 43.6145 + 115.070i 0.201919 + 0.532733i
\(217\) 103.010 22.6742i 0.474700 0.104489i
\(218\) −474.499 + 77.7902i −2.17660 + 0.356836i
\(219\) 108.638 + 58.3810i 0.496065 + 0.266580i
\(220\) 58.8942 + 212.118i 0.267701 + 0.964171i
\(221\) −3.28546 4.32195i −0.0148663 0.0195563i
\(222\) 9.79948 + 201.709i 0.0441418 + 0.908599i
\(223\) −148.545 + 280.186i −0.666121 + 1.25644i 0.288176 + 0.957577i \(0.406951\pi\)
−0.954297 + 0.298860i \(0.903394\pi\)
\(224\) 349.904 139.415i 1.56207 0.622386i
\(225\) −119.338 + 289.990i −0.530390 + 1.28885i
\(226\) −4.18053 + 4.92170i −0.0184979 + 0.0217774i
\(227\) 260.033 137.861i 1.14552 0.607316i 0.216110 0.976369i \(-0.430663\pi\)
0.929408 + 0.369053i \(0.120318\pi\)
\(228\) 70.0773 + 117.965i 0.307357 + 0.517392i
\(229\) 43.4134 20.0852i 0.189578 0.0877083i −0.322804 0.946466i \(-0.604625\pi\)
0.512382 + 0.858758i \(0.328763\pi\)
\(230\) 471.026 400.093i 2.04794 1.73953i
\(231\) −428.890 201.360i −1.85667 0.871689i
\(232\) −51.2779 38.9805i −0.221026 0.168019i
\(233\) −125.433 + 208.471i −0.538337 + 0.894724i 0.461633 + 0.887071i \(0.347264\pi\)
−0.999971 + 0.00765280i \(0.997564\pi\)
\(234\) 176.638 370.800i 0.754863 1.58461i
\(235\) −340.230 −1.44779
\(236\) 47.0859 + 118.694i 0.199516 + 0.502940i
\(237\) 64.3911 + 3.85432i 0.271692 + 0.0162630i
\(238\) −8.34712 2.81247i −0.0350720 0.0118171i
\(239\) 191.207 317.788i 0.800029 1.32966i −0.140547 0.990074i \(-0.544886\pi\)
0.940576 0.339584i \(-0.110286\pi\)
\(240\) 302.059 351.587i 1.25858 1.46495i
\(241\) −38.0332 + 95.4560i −0.157814 + 0.396083i −0.986529 0.163588i \(-0.947693\pi\)
0.828715 + 0.559671i \(0.189073\pi\)
\(242\) −98.1892 + 83.4027i −0.405740 + 0.344639i
\(243\) 240.809 32.5585i 0.990983 0.133986i
\(244\) −52.3618 77.2278i −0.214597 0.316508i
\(245\) −651.176 + 345.232i −2.65786 + 1.40911i
\(246\) 179.194 187.056i 0.728432 0.760389i
\(247\) −103.917 + 374.276i −0.420718 + 1.51529i
\(248\) −37.1801 + 14.8139i −0.149920 + 0.0597335i
\(249\) 136.916 + 83.4312i 0.549862 + 0.335065i
\(250\) 187.938 20.4395i 0.751752 0.0817580i
\(251\) −120.362 158.333i −0.479530 0.630811i 0.491182 0.871057i \(-0.336565\pi\)
−0.970712 + 0.240246i \(0.922772\pi\)
\(252\) −35.2533 231.294i −0.139894 0.917833i
\(253\) 383.987 + 177.651i 1.51774 + 0.702179i
\(254\) 29.7878 4.88346i 0.117275 0.0192262i
\(255\) −6.77036 + 1.07090i −0.0265505 + 0.00419961i
\(256\) −270.621 + 162.827i −1.05711 + 0.636044i
\(257\) −14.1345 + 129.965i −0.0549982 + 0.505700i 0.933946 + 0.357413i \(0.116341\pi\)
−0.988944 + 0.148286i \(0.952624\pi\)
\(258\) 164.420 + 126.454i 0.637288 + 0.490131i
\(259\) −52.6867 + 321.374i −0.203423 + 1.24083i
\(260\) −307.289 + 16.6607i −1.18188 + 0.0640797i
\(261\) −97.8607 + 81.2475i −0.374945 + 0.311293i
\(262\) −349.065 + 330.652i −1.33231 + 1.26203i
\(263\) 42.8881 + 2.32533i 0.163073 + 0.00884154i 0.135494 0.990778i \(-0.456738\pi\)
0.0275782 + 0.999620i \(0.491220\pi\)
\(264\) 172.959 + 49.0706i 0.655146 + 0.185873i
\(265\) 98.5368 33.2009i 0.371837 0.125286i
\(266\) 201.229 + 597.227i 0.756500 + 2.24521i
\(267\) −47.1907 + 166.333i −0.176744 + 0.622969i
\(268\) 1.92538 35.5116i 0.00718427 0.132506i
\(269\) −124.330 131.254i −0.462194 0.487933i 0.452679 0.891673i \(-0.350468\pi\)
−0.914873 + 0.403741i \(0.867710\pi\)
\(270\) −306.822 418.067i −1.13638 1.54840i
\(271\) −26.0540 480.538i −0.0961402 1.77320i −0.507426 0.861695i \(-0.669403\pi\)
0.411286 0.911506i \(-0.365080\pi\)
\(272\) 5.82150 + 0.954387i 0.0214026 + 0.00350878i
\(273\) 403.790 525.024i 1.47908 1.92317i
\(274\) −263.367 28.6429i −0.961195 0.104536i
\(275\) 236.195 + 392.560i 0.858892 + 1.42749i
\(276\) 32.6404 + 206.357i 0.118262 + 0.747669i
\(277\) −47.7352 291.172i −0.172329 1.05116i −0.921384 0.388654i \(-0.872940\pi\)
0.749055 0.662508i \(-0.230508\pi\)
\(278\) −111.443 + 240.881i −0.400875 + 0.866478i
\(279\) 11.9083 + 78.1292i 0.0426820 + 0.280033i
\(280\) 337.143 256.289i 1.20408 0.915319i
\(281\) −42.3684 389.571i −0.150777 1.38637i −0.787991 0.615687i \(-0.788879\pi\)
0.637213 0.770687i \(-0.280087\pi\)
\(282\) 170.465 279.743i 0.604486 0.991997i
\(283\) −47.3842 118.925i −0.167435 0.420231i 0.821185 0.570662i \(-0.193313\pi\)
−0.988621 + 0.150431i \(0.951934\pi\)
\(284\) −181.416 50.3698i −0.638788 0.177359i
\(285\) 354.151 + 339.267i 1.24264 + 1.19041i
\(286\) −281.070 530.155i −0.982763 1.85369i
\(287\) 345.751 234.425i 1.20471 0.816811i
\(288\) 87.1015 + 268.445i 0.302436 + 0.932100i
\(289\) 187.038 + 220.198i 0.647191 + 0.761932i
\(290\) 252.157 + 100.468i 0.869505 + 0.346443i
\(291\) 329.997 + 283.510i 1.13401 + 0.974263i
\(292\) 76.2383 + 45.8711i 0.261090 + 0.157093i
\(293\) −175.874 + 521.975i −0.600252 + 1.78148i 0.0233318 + 0.999728i \(0.492573\pi\)
−0.623584 + 0.781757i \(0.714324\pi\)
\(294\) 42.4021 708.378i 0.144225 2.40945i
\(295\) 275.664 + 363.761i 0.934455 + 1.23309i
\(296\) 123.573i 0.417476i
\(297\) 171.558 310.812i 0.577636 1.04650i
\(298\) 243.727 + 146.646i 0.817875 + 0.492099i
\(299\) −357.928 + 470.846i −1.19708 + 1.57474i
\(300\) −96.1436 + 204.782i −0.320479 + 0.682608i
\(301\) 216.549 + 254.941i 0.719430 + 0.846979i
\(302\) 234.709 + 507.314i 0.777181 + 1.67985i
\(303\) 262.470 155.920i 0.866239 0.514589i
\(304\) −197.707 372.914i −0.650351 1.22669i
\(305\) −254.184 215.905i −0.833389 0.707887i
\(306\) 2.51163 6.10326i 0.00820794 0.0199453i
\(307\) −186.719 468.630i −0.608206 1.52648i −0.833689 0.552234i \(-0.813775\pi\)
0.225483 0.974247i \(-0.427604\pi\)
\(308\) −301.998 160.109i −0.980514 0.519836i
\(309\) 78.5113 3.81426i 0.254082 0.0123439i
\(310\) 134.267 102.067i 0.433119 0.329248i
\(311\) −83.5776 + 23.2052i −0.268738 + 0.0746148i −0.399283 0.916828i \(-0.630741\pi\)
0.130545 + 0.991442i \(0.458327\pi\)
\(312\) −118.969 + 221.383i −0.381310 + 0.709561i
\(313\) −39.8783 243.247i −0.127407 0.777147i −0.970807 0.239861i \(-0.922898\pi\)
0.843400 0.537286i \(-0.180550\pi\)
\(314\) 130.447 + 592.626i 0.415436 + 1.88734i
\(315\) −342.584 762.874i −1.08757 2.42182i
\(316\) 46.2637 + 5.03148i 0.146404 + 0.0159224i
\(317\) 260.111 + 176.359i 0.820538 + 0.556339i 0.897663 0.440683i \(-0.145264\pi\)
−0.0771247 + 0.997021i \(0.524574\pi\)
\(318\) −22.0714 + 97.6532i −0.0694068 + 0.307086i
\(319\) 10.0603 + 185.552i 0.0315370 + 0.581666i
\(320\) −10.8340 + 11.4373i −0.0338563 + 0.0357417i
\(321\) 197.151 + 234.766i 0.614178 + 0.731359i
\(322\) −51.9513 + 958.186i −0.161339 + 2.97573i
\(323\) −1.34178 + 6.09578i −0.00415413 + 0.0188724i
\(324\) 174.661 15.0308i 0.539077 0.0463914i
\(325\) −606.916 + 204.494i −1.86743 + 0.629211i
\(326\) 101.988 463.336i 0.312847 1.42128i
\(327\) 66.0627 577.230i 0.202027 1.76523i
\(328\) −115.075 + 109.005i −0.350840 + 0.332333i
\(329\) 363.297 383.528i 1.10424 1.16574i
\(330\) −757.609 4.25878i −2.29579 0.0129054i
\(331\) 38.3453 233.896i 0.115847 0.706634i −0.863485 0.504374i \(-0.831723\pi\)
0.979332 0.202260i \(-0.0648285\pi\)
\(332\) 95.7374 + 64.9115i 0.288366 + 0.195517i
\(333\) −237.706 55.1319i −0.713831 0.165561i
\(334\) 230.867 138.908i 0.691220 0.415893i
\(335\) −27.3262 124.144i −0.0815709 0.370580i
\(336\) 73.7917 + 715.922i 0.219618 + 2.13072i
\(337\) −187.414 86.7071i −0.556126 0.257291i 0.121634 0.992575i \(-0.461187\pi\)
−0.677759 + 0.735284i \(0.737049\pi\)
\(338\) 403.952 112.157i 1.19512 0.331825i
\(339\) −4.34243 6.48276i −0.0128095 0.0191232i
\(340\) −4.91605 + 0.534653i −0.0144590 + 0.00157251i
\(341\) 102.013 + 54.0836i 0.299157 + 0.158603i
\(342\) −456.391 + 121.207i −1.33448 + 0.354406i
\(343\) 148.701 535.572i 0.433530 1.56143i
\(344\) −96.7368 82.1690i −0.281212 0.238863i
\(345\) 309.739 + 679.488i 0.897795 + 1.96953i
\(346\) 187.979 + 277.249i 0.543293 + 0.801297i
\(347\) −46.2029 99.8658i −0.133149 0.287798i 0.829520 0.558477i \(-0.188614\pi\)
−0.962670 + 0.270679i \(0.912752\pi\)
\(348\) −73.3603 + 55.1191i −0.210806 + 0.158388i
\(349\) 54.9593 137.937i 0.157476 0.395236i −0.828976 0.559284i \(-0.811076\pi\)
0.986452 + 0.164048i \(0.0524553\pi\)
\(350\) −628.827 + 827.207i −1.79665 + 2.36345i
\(351\) 372.776 + 327.619i 1.06204 + 0.933388i
\(352\) 390.734 + 131.654i 1.11004 + 0.374016i
\(353\) 141.942i 0.402101i 0.979581 + 0.201050i \(0.0644355\pi\)
−0.979581 + 0.201050i \(0.935565\pi\)
\(354\) −437.206 + 44.4013i −1.23505 + 0.125427i
\(355\) −672.968 −1.89568
\(356\) −39.8273 + 118.203i −0.111875 + 0.332032i
\(357\) 6.02219 8.77545i 0.0168689 0.0245811i
\(358\) −339.593 258.152i −0.948584 0.721095i
\(359\) 192.435 + 76.6732i 0.536031 + 0.213574i 0.622415 0.782688i \(-0.286152\pi\)
−0.0863836 + 0.996262i \(0.527531\pi\)
\(360\) 175.112 + 264.627i 0.486421 + 0.735076i
\(361\) 77.6765 35.9370i 0.215170 0.0995484i
\(362\) 313.703 212.696i 0.866583 0.587558i
\(363\) −64.5677 141.645i −0.177872 0.390206i
\(364\) 309.341 364.184i 0.849837 1.00051i
\(365\) 306.431 + 85.0801i 0.839536 + 0.233096i
\(366\) 304.874 100.819i 0.832990 0.275463i
\(367\) 104.473 197.057i 0.284667 0.536939i −0.699401 0.714729i \(-0.746550\pi\)
0.984068 + 0.177790i \(0.0568948\pi\)
\(368\) −69.4858 638.911i −0.188820 1.73617i
\(369\) 158.342 + 269.993i 0.429112 + 0.731687i
\(370\) 139.313 + 501.760i 0.376522 + 1.35611i
\(371\) −67.7912 + 146.528i −0.182726 + 0.394955i
\(372\) 5.84572 + 56.7149i 0.0157143 + 0.152459i
\(373\) −321.941 + 70.8645i −0.863111 + 0.189985i −0.624399 0.781105i \(-0.714656\pi\)
−0.238712 + 0.971090i \(0.576725\pi\)
\(374\) −4.97107 8.26197i −0.0132916 0.0220908i
\(375\) −38.2220 + 225.207i −0.101925 + 0.600552i
\(376\) −112.492 + 165.914i −0.299182 + 0.441260i
\(377\) −256.345 42.0256i −0.679959 0.111474i
\(378\) 798.892 + 100.543i 2.11347 + 0.265986i
\(379\) −104.841 99.3109i −0.276626 0.262034i 0.536791 0.843715i \(-0.319636\pi\)
−0.813417 + 0.581681i \(0.802395\pi\)
\(380\) 243.316 + 256.866i 0.640305 + 0.675962i
\(381\) −4.14725 + 36.2370i −0.0108852 + 0.0951102i
\(382\) −568.601 125.159i −1.48848 0.327640i
\(383\) 153.079 + 454.323i 0.399684 + 1.18622i 0.938941 + 0.344079i \(0.111809\pi\)
−0.539256 + 0.842142i \(0.681295\pi\)
\(384\) −102.606 377.779i −0.267203 0.983799i
\(385\) −1193.20 262.642i −3.09921 0.682187i
\(386\) −563.872 30.5723i −1.46081 0.0792028i
\(387\) −201.220 + 149.424i −0.519948 + 0.386108i
\(388\) 227.863 + 215.843i 0.587275 + 0.556296i
\(389\) −141.011 + 7.64539i −0.362496 + 0.0196540i −0.234488 0.972119i \(-0.575341\pi\)
−0.128009 + 0.991773i \(0.540858\pi\)
\(390\) 233.484 1033.03i 0.598677 2.64881i
\(391\) −5.33345 + 7.86626i −0.0136405 + 0.0201183i
\(392\) −46.9494 + 431.693i −0.119769 + 1.10126i
\(393\) −269.241 514.815i −0.685092 1.30996i
\(394\) 753.627 165.886i 1.91276 0.421030i
\(395\) 164.145 26.9102i 0.415557 0.0681272i
\(396\) 134.501 217.958i 0.339649 0.550398i
\(397\) 51.5448 + 185.648i 0.129836 + 0.467626i 0.999669 0.0257192i \(-0.00818758\pi\)
−0.869833 + 0.493346i \(0.835774\pi\)
\(398\) 126.401 + 166.278i 0.317591 + 0.417783i
\(399\) −760.603 + 36.9518i −1.90627 + 0.0926111i
\(400\) 325.973 614.851i 0.814933 1.53713i
\(401\) −307.582 + 122.552i −0.767036 + 0.305615i −0.720641 0.693308i \(-0.756153\pi\)
−0.0463949 + 0.998923i \(0.514773\pi\)
\(402\) 115.765 + 39.7317i 0.287972 + 0.0988351i
\(403\) −104.493 + 123.018i −0.259287 + 0.305257i
\(404\) 194.588 103.164i 0.481654 0.255357i
\(405\) 587.165 218.783i 1.44979 0.540205i
\(406\) −382.506 + 176.966i −0.942132 + 0.435877i
\(407\) −271.710 + 230.793i −0.667592 + 0.567058i
\(408\) −1.71630 + 3.65565i −0.00420662 + 0.00895994i
\(409\) 163.637 + 124.394i 0.400091 + 0.304141i 0.785802 0.618479i \(-0.212251\pi\)
−0.385711 + 0.922620i \(0.626044\pi\)
\(410\) 344.367 572.342i 0.839919 1.39596i
\(411\) 120.154 296.701i 0.292345 0.721901i
\(412\) 56.7068 0.137638
\(413\) −704.406 77.6777i −1.70558 0.188082i
\(414\) −713.874 85.7695i −1.72433 0.207173i
\(415\) 391.793 + 132.011i 0.944080 + 0.318098i
\(416\) −297.158 + 493.881i −0.714323 + 1.18721i
\(417\) −243.255 208.988i −0.583345 0.501170i
\(418\) −255.353 + 640.889i −0.610893 + 1.53323i
\(419\) −361.680 + 307.214i −0.863198 + 0.733207i −0.965182 0.261579i \(-0.915757\pi\)
0.101984 + 0.994786i \(0.467481\pi\)
\(420\) −220.152 561.701i −0.524171 1.33738i
\(421\) −46.8781 69.1401i −0.111349 0.164228i 0.767931 0.640533i \(-0.221286\pi\)
−0.879280 + 0.476304i \(0.841976\pi\)
\(422\) 22.4179 11.8852i 0.0531230 0.0281640i
\(423\) 268.965 + 290.413i 0.635850 + 0.686557i
\(424\) 16.3893 59.0290i 0.0386541 0.139219i
\(425\) −9.56025 + 3.80915i −0.0224947 + 0.00896271i
\(426\) 337.176 553.325i 0.791492 1.29889i
\(427\) 514.797 55.9876i 1.20561 0.131118i
\(428\) 133.844 + 176.069i 0.312719 + 0.411375i
\(429\) 708.967 151.882i 1.65260 0.354038i
\(430\) 485.429 + 224.583i 1.12891 + 0.522287i
\(431\) −223.722 + 36.6773i −0.519076 + 0.0850981i −0.415624 0.909536i \(-0.636437\pi\)
−0.103451 + 0.994635i \(0.532989\pi\)
\(432\) −538.896 + 20.1110i −1.24744 + 0.0465532i
\(433\) −360.382 + 216.835i −0.832292 + 0.500773i −0.866815 0.498631i \(-0.833836\pi\)
0.0345228 + 0.999404i \(0.489009\pi\)
\(434\) −28.3137 + 260.340i −0.0652389 + 0.599862i
\(435\) −199.949 + 259.982i −0.459653 + 0.597659i
\(436\) 67.8104 413.625i 0.155528 0.948682i
\(437\) 678.994 36.8140i 1.55376 0.0842425i
\(438\) −223.485 + 209.325i −0.510239 + 0.477911i
\(439\) 302.182 286.242i 0.688342 0.652033i −0.261340 0.965247i \(-0.584164\pi\)
0.949683 + 0.313214i \(0.101406\pi\)
\(440\) 462.914 + 25.0985i 1.05208 + 0.0570420i
\(441\) 809.461 + 282.912i 1.83551 + 0.641523i
\(442\) 12.7734 4.30386i 0.0288991 0.00973724i
\(443\) −239.719 711.461i −0.541127 1.60601i −0.773785 0.633448i \(-0.781639\pi\)
0.232659 0.972558i \(-0.425257\pi\)
\(444\) −169.355 48.0481i −0.381430 0.108217i
\(445\) −24.1370 + 445.181i −0.0542404 + 1.00041i
\(446\) −541.468 571.621i −1.21405 1.28166i
\(447\) −250.847 + 234.954i −0.561178 + 0.525623i
\(448\) −1.32431 24.4255i −0.00295605 0.0545212i
\(449\) −529.866 86.8671i −1.18010 0.193468i −0.460375 0.887725i \(-0.652285\pi\)
−0.719728 + 0.694257i \(0.755733\pi\)
\(450\) −587.692 510.674i −1.30598 1.13483i
\(451\) 454.601 + 49.4409i 1.00798 + 0.109625i
\(452\) −2.90211 4.82334i −0.00642059 0.0106711i
\(453\) −667.127 + 105.523i −1.47269 + 0.232942i
\(454\) 118.219 + 721.103i 0.260394 + 1.58833i
\(455\) 717.136 1550.06i 1.57612 3.40674i
\(456\) 282.539 60.5284i 0.619603 0.132738i
\(457\) −373.951 + 284.270i −0.818274 + 0.622035i −0.928274 0.371896i \(-0.878708\pi\)
0.110001 + 0.993932i \(0.464915\pi\)
\(458\) 12.8406 + 118.067i 0.0280362 + 0.257789i
\(459\) 6.26632 + 4.93245i 0.0136521 + 0.0107461i
\(460\) 199.404 + 500.465i 0.433486 + 1.08797i
\(461\) −201.923 56.0637i −0.438011 0.121613i 0.0415208 0.999138i \(-0.486780\pi\)
−0.479532 + 0.877524i \(0.659194\pi\)
\(462\) 813.773 849.474i 1.76141 1.83869i
\(463\) −122.558 231.169i −0.264704 0.499285i 0.715157 0.698963i \(-0.246355\pi\)
−0.979861 + 0.199679i \(0.936010\pi\)
\(464\) 233.630 158.405i 0.503513 0.341391i
\(465\) 74.3654 + 189.738i 0.159926 + 0.408039i
\(466\) −391.058 460.389i −0.839180 0.987959i
\(467\) −459.315 183.008i −0.983545 0.391880i −0.177750 0.984076i \(-0.556882\pi\)
−0.805794 + 0.592196i \(0.798261\pi\)
\(468\) 257.144 + 249.124i 0.549454 + 0.532317i
\(469\) 169.122 + 101.757i 0.360601 + 0.216966i
\(470\) 269.721 800.504i 0.573875 1.70320i
\(471\) −731.911 43.8107i −1.55395 0.0930164i
\(472\) 268.533 14.1556i 0.568926 0.0299907i
\(473\) 366.167i 0.774138i
\(474\) −60.1153 + 148.446i −0.126825 + 0.313177i
\(475\) 630.921 + 379.613i 1.32826 + 0.799185i
\(476\) 4.64665 6.11256i 0.00976186 0.0128415i
\(477\) −106.237 57.8624i −0.222718 0.121305i
\(478\) 596.120 + 701.807i 1.24711 + 1.46822i
\(479\) 231.721 + 500.857i 0.483760 + 1.04563i 0.983741 + 0.179593i \(0.0574782\pi\)
−0.499981 + 0.866036i \(0.666660\pi\)
\(480\) 371.678 + 625.668i 0.774329 + 1.30347i
\(481\) −233.434 440.304i −0.485310 0.915392i
\(482\) −194.441 165.159i −0.403404 0.342654i
\(483\) −1096.70 376.398i −2.27059 0.779292i
\(484\) −41.5673 104.326i −0.0858829 0.215550i
\(485\) 991.163 + 525.481i 2.04364 + 1.08347i
\(486\) −114.299 + 592.393i −0.235184 + 1.21892i
\(487\) 199.600 151.732i 0.409856 0.311564i −0.379852 0.925047i \(-0.624025\pi\)
0.789708 + 0.613483i \(0.210232\pi\)
\(488\) −189.329 + 52.5669i −0.387969 + 0.107719i
\(489\) 504.964 + 271.362i 1.03265 + 0.554933i
\(490\) −296.044 1805.79i −0.604172 3.68529i
\(491\) 43.0409 + 195.537i 0.0876596 + 0.398242i 0.999936 0.0113340i \(-0.00360780\pi\)
−0.912276 + 0.409576i \(0.865677\pi\)
\(492\) 104.646 + 200.093i 0.212695 + 0.406693i
\(493\) −4.14969 0.451306i −0.00841722 0.000915428i
\(494\) −798.227 541.211i −1.61584 1.09557i
\(495\) 254.809 879.268i 0.514765 1.77630i
\(496\) −9.49534 175.131i −0.0191438 0.353087i
\(497\) 718.592 758.608i 1.44586 1.52638i
\(498\) −304.841 + 255.998i −0.612130 + 0.514052i
\(499\) 7.05748 130.168i 0.0141433 0.260857i −0.982907 0.184104i \(-0.941062\pi\)
0.997050 0.0767534i \(-0.0244554\pi\)
\(500\) −35.4257 + 160.941i −0.0708514 + 0.321881i
\(501\) 85.3325 + 314.180i 0.170324 + 0.627107i
\(502\) 467.950 157.671i 0.932171 0.314085i
\(503\) −42.2693 + 192.031i −0.0840343 + 0.381772i −0.999801 0.0199384i \(-0.993653\pi\)
0.915767 + 0.401710i \(0.131584\pi\)
\(504\) −485.287 85.1719i −0.962871 0.168992i
\(505\) 571.520 541.372i 1.13172 1.07202i
\(506\) −722.393 + 762.621i −1.42765 + 1.50716i
\(507\) −2.84753 + 506.557i −0.00561643 + 0.999127i
\(508\) −4.25696 + 25.9663i −0.00837984 + 0.0511148i
\(509\) −633.697 429.657i −1.24498 0.844120i −0.252632 0.967562i \(-0.581296\pi\)
−0.992352 + 0.123442i \(0.960607\pi\)
\(510\) 2.84763 16.7785i 0.00558360 0.0328990i
\(511\) −423.113 + 254.579i −0.828009 + 0.498197i
\(512\) −56.3626 256.058i −0.110083 0.500113i
\(513\) 9.62172 570.499i 0.0187558 1.11208i
\(514\) −294.580 136.287i −0.573112 0.265150i
\(515\) 195.300 54.2249i 0.379224 0.105291i
\(516\) −150.225 + 100.627i −0.291134 + 0.195014i
\(517\) 574.907 62.5249i 1.11200 0.120938i
\(518\) −714.371 378.736i −1.37909 0.731150i
\(519\) −384.279 + 127.078i −0.740423 + 0.244852i
\(520\) −173.376 + 624.445i −0.333416 + 1.20086i
\(521\) 128.844 + 109.441i 0.247301 + 0.210059i 0.762460 0.647035i \(-0.223991\pi\)
−0.515159 + 0.857094i \(0.672267\pi\)
\(522\) −113.581 294.659i −0.217589 0.564482i
\(523\) −503.575 742.718i −0.962859 1.42011i −0.906742 0.421686i \(-0.861438\pi\)
−0.0561170 0.998424i \(-0.517872\pi\)
\(524\) −175.986 380.388i −0.335852 0.725932i
\(525\) −754.190 1003.78i −1.43655 1.91197i
\(526\) −39.4711 + 99.0650i −0.0750401 + 0.188336i
\(527\) −1.56960 + 2.06477i −0.00297837 + 0.00391797i
\(528\) −445.795 + 649.607i −0.844309 + 1.23032i
\(529\) 479.874 + 161.688i 0.907134 + 0.305649i
\(530\) 258.161i 0.487096i
\(531\) 92.5760 522.868i 0.174343 0.984685i
\(532\) −549.366 −1.03264
\(533\) −204.111 + 605.780i −0.382948 + 1.13655i
\(534\) −353.942 242.894i −0.662812 0.454857i
\(535\) 629.326 + 478.401i 1.17631 + 0.894207i
\(536\) −69.5742 27.7209i −0.129803 0.0517181i
\(537\) 412.082 309.617i 0.767379 0.576569i
\(538\) 407.382 188.475i 0.757216 0.350325i
\(539\) 1036.88 703.025i 1.92372 1.30431i
\(540\) 430.756 137.095i 0.797696 0.253879i
\(541\) −20.0194 + 23.5686i −0.0370044 + 0.0435650i −0.780353 0.625339i \(-0.784961\pi\)
0.743349 + 0.668904i \(0.233236\pi\)
\(542\) 1151.28 + 319.651i 2.12413 + 0.589761i
\(543\) 143.787 + 434.807i 0.264801 + 0.800749i
\(544\) −4.33834 + 8.18298i −0.00797490 + 0.0150422i
\(545\) −161.980 1489.38i −0.297211 2.73281i
\(546\) 915.184 + 1366.27i 1.67616 + 2.50232i
\(547\) 152.781 + 550.266i 0.279307 + 1.00597i 0.961501 + 0.274801i \(0.0886119\pi\)
−0.682195 + 0.731171i \(0.738974\pi\)
\(548\) 96.9665 209.590i 0.176946 0.382463i
\(549\) 16.6491 + 387.647i 0.0303263 + 0.706096i
\(550\) −1110.87 + 244.522i −2.01977 + 0.444585i
\(551\) 153.973 + 255.906i 0.279443 + 0.464438i
\(552\) 433.764 + 73.6181i 0.785804 + 0.133366i
\(553\) −144.939 + 213.769i −0.262095 + 0.386562i
\(554\) 722.920 + 118.517i 1.30491 + 0.213929i
\(555\) −629.209 3.53700i −1.13371 0.00637297i
\(556\) −167.967 159.107i −0.302100 0.286164i
\(557\) 152.228 + 160.705i 0.273300 + 0.288520i 0.848169 0.529726i \(-0.177705\pi\)
−0.574868 + 0.818246i \(0.694947\pi\)
\(558\) −193.265 33.9196i −0.346353 0.0607878i
\(559\) −499.905 110.037i −0.894284 0.196847i
\(560\) 592.579 + 1758.71i 1.05818 + 3.14056i
\(561\) 11.2435 3.05376i 0.0200418 0.00544343i
\(562\) 950.183 + 209.151i 1.69072 + 0.372155i
\(563\) 674.286 + 36.5587i 1.19767 + 0.0649355i 0.642156 0.766574i \(-0.278040\pi\)
0.555510 + 0.831510i \(0.312523\pi\)
\(564\) 183.643 + 218.681i 0.325608 + 0.387731i
\(565\) −14.6072 13.8367i −0.0258534 0.0244897i
\(566\) 317.375 17.2076i 0.560734 0.0304021i
\(567\) −380.348 + 895.503i −0.670807 + 1.57937i
\(568\) −222.507 + 328.173i −0.391738 + 0.577770i
\(569\) 82.1524 755.379i 0.144380 1.32756i −0.667884 0.744266i \(-0.732800\pi\)
0.812264 0.583290i \(-0.198235\pi\)
\(570\) −1078.99 + 564.300i −1.89297 + 0.990000i
\(571\) 222.065 48.8802i 0.388905 0.0856045i −0.0162136 0.999869i \(-0.505161\pi\)
0.405119 + 0.914264i \(0.367230\pi\)
\(572\) 516.182 84.6237i 0.902415 0.147944i
\(573\) 333.012 619.686i 0.581173 1.08148i
\(574\) 277.464 + 999.336i 0.483387 + 1.74100i
\(575\) 678.491 + 892.540i 1.17999 + 1.55224i
\(576\) 18.3274 + 0.206055i 0.0318183 + 0.000357734i
\(577\) 149.154 281.335i 0.258500 0.487583i −0.719961 0.694014i \(-0.755840\pi\)
0.978461 + 0.206432i \(0.0661852\pi\)
\(578\) −666.366 + 265.504i −1.15288 + 0.459350i
\(579\) 221.502 645.383i 0.382560 1.11465i
\(580\) −153.180 + 180.337i −0.264103 + 0.310926i
\(581\) −567.165 + 300.692i −0.976188 + 0.517542i
\(582\) −928.660 + 551.670i −1.59564 + 0.947887i
\(583\) −160.402 + 74.2098i −0.275132 + 0.127290i
\(584\) 142.806 121.301i 0.244531 0.207707i
\(585\) 1123.83 + 612.103i 1.92109 + 1.04633i
\(586\) −1088.69 827.602i −1.85784 1.41229i
\(587\) −314.059 + 521.969i −0.535023 + 0.889215i 0.464969 + 0.885327i \(0.346065\pi\)
−0.999992 + 0.00388858i \(0.998762\pi\)
\(588\) 573.374 + 232.196i 0.975125 + 0.394891i
\(589\) 185.571 0.315061
\(590\) −1074.40 + 360.216i −1.82102 + 0.610535i
\(591\) −55.7130 + 930.753i −0.0942690 + 1.57488i
\(592\) 513.178 + 172.910i 0.866854 + 0.292077i
\(593\) −466.817 + 775.856i −0.787212 + 1.30836i 0.159797 + 0.987150i \(0.448916\pi\)
−0.947009 + 0.321207i \(0.895911\pi\)
\(594\) 595.283 + 650.046i 1.00216 + 1.09435i
\(595\) 10.1582 25.4951i 0.0170726 0.0428490i
\(596\) −188.979 + 160.520i −0.317079 + 0.269329i
\(597\) −234.974 + 92.0951i −0.393592 + 0.154263i
\(598\) −824.070 1215.41i −1.37804 2.03246i
\(599\) −812.084 + 430.540i −1.35573 + 0.718764i −0.978285 0.207266i \(-0.933543\pi\)
−0.377449 + 0.926030i \(0.623199\pi\)
\(600\) 344.026 + 329.568i 0.573377 + 0.549280i
\(601\) −32.3489 + 116.510i −0.0538250 + 0.193860i −0.985575 0.169241i \(-0.945868\pi\)
0.931750 + 0.363101i \(0.118282\pi\)
\(602\) −771.503 + 307.395i −1.28157 + 0.510623i
\(603\) −84.3646 + 121.466i −0.139908 + 0.201436i
\(604\) −484.410 + 52.6827i −0.802003 + 0.0872230i
\(605\) −242.919 319.555i −0.401519 0.528190i
\(606\) 158.778 + 741.156i 0.262010 + 1.22303i
\(607\) 119.859 + 55.4525i 0.197461 + 0.0913550i 0.516127 0.856512i \(-0.327373\pi\)
−0.318667 + 0.947867i \(0.603235\pi\)
\(608\) 653.947 107.209i 1.07557 0.176331i
\(609\) −79.5620 503.002i −0.130644 0.825947i
\(610\) 709.495 426.889i 1.16311 0.699818i
\(611\) −87.4046 + 803.672i −0.143052 + 1.31534i
\(612\) 4.34269 + 3.77357i 0.00709589 + 0.00616597i
\(613\) 166.292 1014.34i 0.271276 1.65471i −0.402239 0.915535i \(-0.631768\pi\)
0.673515 0.739174i \(-0.264784\pi\)
\(614\) 1250.63 67.8072i 2.03686 0.110435i
\(615\) 551.740 + 589.062i 0.897138 + 0.957825i
\(616\) −522.591 + 495.024i −0.848361 + 0.803611i
\(617\) 77.4260 + 4.19792i 0.125488 + 0.00680375i 0.116776 0.993158i \(-0.462744\pi\)
0.00871201 + 0.999962i \(0.497227\pi\)
\(618\) −53.2663 + 187.747i −0.0861915 + 0.303798i
\(619\) −239.334 + 80.6409i −0.386645 + 0.130276i −0.505910 0.862587i \(-0.668843\pi\)
0.119264 + 0.992863i \(0.461946\pi\)
\(620\) 46.9437 + 139.324i 0.0757157 + 0.224716i
\(621\) 335.136 801.547i 0.539671 1.29074i
\(622\) 11.6591 215.040i 0.0187446 0.345723i
\(623\) −476.060 502.571i −0.764142 0.806694i
\(624\) −752.899 803.829i −1.20657 1.28819i
\(625\) −15.2697 281.633i −0.0244315 0.450613i
\(626\) 603.933 + 99.0097i 0.964748 + 0.158162i
\(627\) −660.777 508.196i −1.05387 0.810520i
\(628\) −525.863 57.1911i −0.837362 0.0910686i
\(629\) −4.12857 6.86173i −0.00656370 0.0109090i
\(630\) 2066.50 201.266i 3.28016 0.319469i
\(631\) 122.710 + 748.498i 0.194469 + 1.18621i 0.885938 + 0.463803i \(0.153515\pi\)
−0.691469 + 0.722406i \(0.743036\pi\)
\(632\) 41.1494 88.9431i 0.0651099 0.140733i
\(633\) 6.42243 + 29.9791i 0.0101460 + 0.0473604i
\(634\) −621.149 + 472.185i −0.979730 + 0.744772i
\(635\) 10.1687 + 93.4995i 0.0160137 + 0.147243i
\(636\) −74.5259 45.4133i −0.117179 0.0714045i
\(637\) 648.199 + 1626.86i 1.01758 + 2.55394i
\(638\) −444.547 123.428i −0.696782 0.193460i
\(639\) 532.006 + 574.431i 0.832560 + 0.898953i
\(640\) −472.827 891.846i −0.738792 1.39351i
\(641\) 14.1808 9.61480i 0.0221229 0.0149997i −0.550076 0.835115i \(-0.685401\pi\)
0.572198 + 0.820115i \(0.306091\pi\)
\(642\) −708.659 + 277.750i −1.10383 + 0.432632i
\(643\) −503.974 593.324i −0.783785 0.922743i 0.214760 0.976667i \(-0.431103\pi\)
−0.998545 + 0.0539241i \(0.982827\pi\)
\(644\) −777.076 309.615i −1.20664 0.480769i
\(645\) −421.158 + 490.213i −0.652958 + 0.760021i
\(646\) −13.2786 7.98948i −0.0205551 0.0123676i
\(647\) 354.244 1051.36i 0.547517 1.62497i −0.214003 0.976833i \(-0.568650\pi\)
0.761520 0.648141i \(-0.224453\pi\)
\(648\) 87.4480 358.669i 0.134951 0.553502i
\(649\) −532.655 564.008i −0.820732 0.869042i
\(650\) 1590.08i 2.44628i
\(651\) −293.291 118.773i −0.450524 0.182446i
\(652\) 354.365 + 213.214i 0.543504 + 0.327016i
\(653\) 390.959 514.298i 0.598712 0.787593i −0.392517 0.919745i \(-0.628396\pi\)
0.991229 + 0.132152i \(0.0421887\pi\)
\(654\) 1305.75 + 613.039i 1.99656 + 0.937369i
\(655\) −969.843 1141.79i −1.48068 1.74319i
\(656\) −291.661 630.415i −0.444605 0.960999i
\(657\) −169.622 328.822i −0.258177 0.500490i
\(658\) 614.368 + 1158.82i 0.933690 + 1.76113i
\(659\) −325.497 276.480i −0.493925 0.419544i 0.365495 0.930813i \(-0.380900\pi\)
−0.859421 + 0.511269i \(0.829176\pi\)
\(660\) 214.390 624.659i 0.324833 0.946453i
\(661\) 96.2578 + 241.589i 0.145624 + 0.365490i 0.983637 0.180161i \(-0.0576618\pi\)
−0.838013 + 0.545651i \(0.816283\pi\)
\(662\) 519.918 + 275.643i 0.785375 + 0.416380i
\(663\) 0.790320 + 16.2677i 0.00119204 + 0.0245365i
\(664\) 193.916 147.411i 0.292042 0.222005i
\(665\) −1892.03 + 525.321i −2.84516 + 0.789956i
\(666\) 318.160 515.574i 0.477717 0.774136i
\(667\) 73.5697 + 448.755i 0.110299 + 0.672796i
\(668\) 50.4899 + 229.378i 0.0755837 + 0.343380i
\(669\) 843.048 440.903i 1.26016 0.659048i
\(670\) 313.754 + 34.1228i 0.468289 + 0.0509295i
\(671\) 469.186 + 318.116i 0.699234 + 0.474092i
\(672\) −1102.17 249.109i −1.64013 0.370698i
\(673\) −2.30899 42.5868i −0.00343089 0.0632790i 0.996317 0.0857512i \(-0.0273290\pi\)
−0.999747 + 0.0224722i \(0.992846\pi\)
\(674\) 352.582 372.216i 0.523118 0.552249i
\(675\) 787.446 514.735i 1.16659 0.762571i
\(676\) −19.7850 + 364.913i −0.0292678 + 0.539813i
\(677\) 253.429 1151.34i 0.374342 1.70065i −0.293177 0.956058i \(-0.594713\pi\)
0.667519 0.744593i \(-0.267356\pi\)
\(678\) 18.6953 5.07772i 0.0275743 0.00748926i
\(679\) −1650.71 + 556.190i −2.43109 + 0.819131i
\(680\) −2.23864 + 10.1702i −0.00329211 + 0.0149562i
\(681\) −877.225 100.397i −1.28814 0.147425i
\(682\) −208.121 + 197.143i −0.305163 + 0.289066i
\(683\) 552.466 583.231i 0.808882 0.853926i −0.182732 0.983163i \(-0.558494\pi\)
0.991614 + 0.129237i \(0.0412527\pi\)
\(684\) 26.9048 410.751i 0.0393344 0.600513i
\(685\) 133.540 814.556i 0.194949 1.18913i
\(686\) 1142.22 + 774.448i 1.66505 + 1.12893i
\(687\) −141.480 24.0120i −0.205939 0.0349519i
\(688\) 476.593 286.757i 0.692723 0.416798i
\(689\) −53.1113 241.287i −0.0770846 0.350199i
\(690\) −1844.27 + 190.093i −2.67285 + 0.275497i
\(691\) 124.808 + 57.7423i 0.180619 + 0.0835634i 0.508115 0.861289i \(-0.330343\pi\)
−0.327495 + 0.944853i \(0.606205\pi\)
\(692\) −281.351 + 78.1167i −0.406577 + 0.112885i
\(693\) 719.079 + 1226.11i 1.03763 + 1.76928i
\(694\) 271.595 29.5377i 0.391347 0.0425616i
\(695\) −730.629 387.355i −1.05127 0.557345i
\(696\) 60.6702 + 183.465i 0.0871698 + 0.263599i
\(697\) −2.74803 + 9.89749i −0.00394265 + 0.0142001i
\(698\) 280.974 + 238.661i 0.402541 + 0.341921i
\(699\) 664.143 302.744i 0.950133 0.433111i
\(700\) −508.311 749.703i −0.726159 1.07100i
\(701\) 269.793 + 583.149i 0.384869 + 0.831881i 0.999086 + 0.0427439i \(0.0136100\pi\)
−0.614217 + 0.789137i \(0.710528\pi\)
\(702\) −1066.35 + 617.355i −1.51902 + 0.879423i
\(703\) −212.076 + 532.271i −0.301673 + 0.757142i
\(704\) 16.2050 21.3173i 0.0230185 0.0302803i
\(705\) 841.582 + 577.538i 1.19373 + 0.819204i
\(706\) −333.964 112.526i −0.473037 0.159385i
\(707\) 1222.33i 1.72889i
\(708\) 85.0122 373.525i 0.120074 0.527578i
\(709\) 493.671 0.696291 0.348146 0.937440i \(-0.386811\pi\)
0.348146 + 0.937440i \(0.386811\pi\)
\(710\) 533.502 1583.38i 0.751412 2.23011i
\(711\) −152.733 118.837i −0.214814 0.167141i
\(712\) 209.112 + 158.963i 0.293697 + 0.223263i
\(713\) 262.490 + 104.586i 0.368149 + 0.146684i
\(714\) 15.8730 + 21.1260i 0.0222311 + 0.0295883i
\(715\) 1696.83 785.036i 2.37319 1.09795i
\(716\) 307.775 208.677i 0.429854 0.291448i
\(717\) −1012.41 + 461.497i −1.41200 + 0.643650i
\(718\) −332.954 + 391.984i −0.463724 + 0.545938i
\(719\) 124.283 + 34.5071i 0.172856 + 0.0479932i 0.352878 0.935669i \(-0.385203\pi\)
−0.180022 + 0.983663i \(0.557617\pi\)
\(720\) −1343.98 + 356.929i −1.86664 + 0.495735i
\(721\) −147.415 + 278.055i −0.204460 + 0.385652i
\(722\) 22.9747 + 211.249i 0.0318209 + 0.292589i
\(723\) 256.113 171.556i 0.354237 0.237283i
\(724\) 88.3880 + 318.345i 0.122083 + 0.439703i
\(725\) −206.760 + 446.904i −0.285186 + 0.616420i
\(726\) 384.453 39.6264i 0.529549 0.0545818i
\(727\) 131.750 29.0004i 0.181225 0.0398906i −0.123431 0.992353i \(-0.539390\pi\)
0.304655 + 0.952463i \(0.401459\pi\)
\(728\) −518.780 862.219i −0.712610 1.18437i
\(729\) −650.924 328.236i −0.892900 0.450255i
\(730\) −443.105 + 653.531i −0.606993 + 0.895248i
\(731\) −8.11685 1.33069i −0.0111038 0.00182037i
\(732\) −1.57348 + 279.912i −0.00214956 + 0.382393i
\(733\) 443.183 + 419.805i 0.604615 + 0.572722i 0.927550 0.373699i \(-0.121911\pi\)
−0.322935 + 0.946421i \(0.604669\pi\)
\(734\) 380.819 + 402.025i 0.518826 + 0.547718i
\(735\) 2196.75 + 251.414i 2.98878 + 0.342059i
\(736\) 985.427 + 216.909i 1.33890 + 0.294713i
\(737\) 68.9890 + 204.752i 0.0936078 + 0.277818i
\(738\) −760.774 + 158.513i −1.03086 + 0.214788i
\(739\) 791.906 + 174.312i 1.07159 + 0.235875i 0.715526 0.698586i \(-0.246187\pi\)
0.356065 + 0.934461i \(0.384118\pi\)
\(740\) −453.269 24.5755i −0.612526 0.0332102i
\(741\) 892.378 749.398i 1.20429 1.01133i
\(742\) −291.014 275.663i −0.392202 0.371513i
\(743\) 1420.98 77.0432i 1.91249 0.103692i 0.940654 0.339366i \(-0.110213\pi\)
0.971832 + 0.235674i \(0.0757298\pi\)
\(744\) 117.114 + 26.4698i 0.157411 + 0.0355777i
\(745\) −497.356 + 733.546i −0.667592 + 0.984625i
\(746\) 88.4898 813.650i 0.118619 1.09068i
\(747\) −197.046 438.786i −0.263783 0.587397i
\(748\) 8.20867 1.80687i 0.0109742 0.00241560i
\(749\) −1211.27 + 198.578i −1.61719 + 0.265124i
\(750\) −499.573 268.465i −0.666097 0.357953i
\(751\) 48.6129 + 175.088i 0.0647310 + 0.233140i 0.988838 0.148993i \(-0.0476033\pi\)
−0.924107 + 0.382133i \(0.875190\pi\)
\(752\) −531.607 699.317i −0.706925 0.929943i
\(753\) 28.9532 + 595.961i 0.0384504 + 0.791449i
\(754\) 302.099 569.819i 0.400662 0.755728i
\(755\) −1617.95 + 644.649i −2.14298 + 0.853840i
\(756\) −305.418 + 631.962i −0.403993 + 0.835929i
\(757\) 635.778 748.496i 0.839866 0.988767i −0.160133 0.987095i \(-0.551192\pi\)
0.999999 0.00167105i \(-0.000531911\pi\)
\(758\) 316.776 167.944i 0.417910 0.221562i
\(759\) −648.255 1091.25i −0.854091 1.43774i
\(760\) 676.223 312.854i 0.889767 0.411650i
\(761\) −395.347 + 335.811i −0.519510 + 0.441275i −0.868383 0.495895i \(-0.834840\pi\)
0.348873 + 0.937170i \(0.386564\pi\)
\(762\) −81.9717 38.4850i −0.107574 0.0505053i
\(763\) 1851.88 + 1407.76i 2.42710 + 1.84504i
\(764\) 261.654 434.872i 0.342479 0.569205i
\(765\) 18.5648 + 8.84371i 0.0242677 + 0.0115604i
\(766\) −1190.30 −1.55392
\(767\) 930.073 557.708i 1.21261 0.727130i
\(768\) 945.796 + 56.6135i 1.23151 + 0.0737155i
\(769\) −489.429 164.908i −0.636449 0.214445i −0.0174640 0.999847i \(-0.505559\pi\)
−0.618985 + 0.785403i \(0.712456\pi\)
\(770\) 1563.87 2599.17i 2.03100 3.37555i
\(771\) 255.577 297.483i 0.331488 0.385841i
\(772\) 182.202 457.293i 0.236013 0.592349i
\(773\) −271.472 + 230.591i −0.351193 + 0.298306i −0.805567 0.592505i \(-0.798139\pi\)
0.454374 + 0.890811i \(0.349863\pi\)