Properties

Label 177.3.g.a.10.8
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.8
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.8

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.45950 - 0.581520i) q^{2} +(1.72190 + 0.187268i) q^{3} +(-1.11199 - 1.05334i) q^{4} +(-2.61612 + 3.07994i) q^{5} +(-2.40422 - 1.27464i) q^{6} +(-1.72503 - 1.03791i) q^{7} +(3.64916 + 7.88752i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(-1.45950 - 0.581520i) q^{2} +(1.72190 + 0.187268i) q^{3} +(-1.11199 - 1.05334i) q^{4} +(-2.61612 + 3.07994i) q^{5} +(-2.40422 - 1.27464i) q^{6} +(-1.72503 - 1.03791i) q^{7} +(3.64916 + 7.88752i) q^{8} +(2.92986 + 0.644911i) q^{9} +(5.60928 - 2.97385i) q^{10} +(20.6277 + 1.11840i) q^{11} +(-1.71748 - 2.02198i) q^{12} +(1.53510 + 6.97403i) q^{13} +(1.91412 + 2.51798i) q^{14} +(-5.08146 + 4.81342i) q^{15} +(-0.407516 - 7.51619i) q^{16} +(6.88982 - 4.14547i) q^{17} +(-3.90112 - 2.64502i) q^{18} +(-2.17048 + 7.81737i) q^{19} +(6.15332 - 0.669214i) q^{20} +(-2.77595 - 2.11022i) q^{21} +(-29.4558 - 13.6277i) q^{22} +(23.1399 - 15.6893i) q^{23} +(4.80639 + 14.2649i) q^{24} +(1.40263 + 8.55569i) q^{25} +(1.81505 - 11.0713i) q^{26} +(4.92415 + 1.65914i) q^{27} +(0.824947 + 2.97119i) q^{28} +(15.4520 + 38.7815i) q^{29} +(10.2155 - 4.07023i) q^{30} +(2.83849 - 0.788103i) q^{31} +(7.32385 - 21.7364i) q^{32} +(35.3093 + 5.78867i) q^{33} +(-12.4664 + 2.04376i) q^{34} +(7.70959 - 2.59766i) q^{35} +(-2.57868 - 3.80327i) q^{36} +(3.58245 - 7.74334i) q^{37} +(7.71378 - 10.1473i) q^{38} +(1.33727 + 12.2960i) q^{39} +(-33.8397 - 9.39554i) q^{40} +(-13.3440 + 19.6810i) q^{41} +(2.82438 + 4.69415i) q^{42} +(19.6128 - 1.06338i) q^{43} +(-21.7598 - 22.9716i) q^{44} +(-9.65116 + 7.33662i) q^{45} +(-42.8964 + 9.44222i) q^{46} +(-1.59298 + 1.35309i) q^{47} +(0.705838 - 13.0184i) q^{48} +(-21.0536 - 39.7112i) q^{49} +(2.92815 - 13.3027i) q^{50} +(12.6399 - 5.84783i) q^{51} +(5.63898 - 9.37206i) q^{52} +(-33.9932 + 64.1180i) q^{53} +(-6.22200 - 5.28501i) q^{54} +(-57.4091 + 60.6061i) q^{55} +(1.89168 - 17.3937i) q^{56} +(-5.20129 + 13.0542i) q^{57} -65.5874i q^{58} +(24.8967 + 53.4898i) q^{59} +10.7207 q^{60} +(-76.4249 - 30.4505i) q^{61} +(-4.60109 - 0.500398i) q^{62} +(-4.38473 - 4.15344i) q^{63} +(-42.8214 + 50.4133i) q^{64} +(-25.4956 - 13.5169i) q^{65} +(-48.1679 - 28.9817i) q^{66} +(-17.7291 - 38.3208i) q^{67} +(-12.0280 - 2.64756i) q^{68} +(42.7827 - 22.6819i) q^{69} +(-12.7628 - 0.691977i) q^{70} +(-63.6327 - 74.9142i) q^{71} +(5.60477 + 25.4627i) q^{72} +(-27.6076 - 36.3171i) q^{73} +(-9.73151 + 9.21818i) q^{74} +(0.812988 + 14.9947i) q^{75} +(10.6479 - 6.40662i) q^{76} +(-34.4225 - 23.3390i) q^{77} +(5.19863 - 18.7238i) q^{78} +(36.6316 - 3.98393i) q^{79} +(24.2155 + 18.4081i) q^{80} +(8.16818 + 3.77900i) q^{81} +(30.9206 - 20.9647i) q^{82} +(16.4242 + 48.7452i) q^{83} +(0.864066 + 5.27057i) q^{84} +(-5.25683 + 32.0652i) q^{85} +(-29.2434 - 9.85325i) q^{86} +(19.3442 + 69.6714i) q^{87} +(66.4522 + 166.783i) q^{88} +(35.0851 - 13.9792i) q^{89} +(18.3523 - 5.09549i) q^{90} +(4.59036 - 13.6237i) q^{91} +(-42.2575 - 6.92777i) q^{92} +(5.03517 - 0.825475i) q^{93} +(3.11181 - 1.04849i) q^{94} +(-18.3987 - 27.1361i) q^{95} +(16.6815 - 36.0564i) q^{96} +(74.8346 - 98.4432i) q^{97} +(7.63490 + 70.2018i) q^{98} +(59.7150 + 16.5798i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.45950 0.581520i −0.729752 0.290760i −0.0244838 0.999700i \(-0.507794\pi\)
−0.705268 + 0.708940i \(0.749174\pi\)
\(3\) 1.72190 + 0.187268i 0.573966 + 0.0624225i
\(4\) −1.11199 1.05334i −0.277998 0.263334i
\(5\) −2.61612 + 3.07994i −0.523224 + 0.615987i −0.958771 0.284179i \(-0.908279\pi\)
0.435547 + 0.900166i \(0.356555\pi\)
\(6\) −2.40422 1.27464i −0.400703 0.212439i
\(7\) −1.72503 1.03791i −0.246432 0.148273i 0.386979 0.922088i \(-0.373518\pi\)
−0.633412 + 0.773815i \(0.718346\pi\)
\(8\) 3.64916 + 7.88752i 0.456144 + 0.985940i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) 5.60928 2.97385i 0.560928 0.297385i
\(11\) 20.6277 + 1.11840i 1.87524 + 0.101673i 0.956242 0.292578i \(-0.0945132\pi\)
0.919003 + 0.394251i \(0.128996\pi\)
\(12\) −1.71748 2.02198i −0.143124 0.168498i
\(13\) 1.53510 + 6.97403i 0.118085 + 0.536464i 0.998105 + 0.0615285i \(0.0195975\pi\)
−0.880021 + 0.474935i \(0.842471\pi\)
\(14\) 1.91412 + 2.51798i 0.136723 + 0.179856i
\(15\) −5.08146 + 4.81342i −0.338764 + 0.320895i
\(16\) −0.407516 7.51619i −0.0254697 0.469762i
\(17\) 6.88982 4.14547i 0.405283 0.243851i −0.298287 0.954476i \(-0.596415\pi\)
0.703571 + 0.710625i \(0.251588\pi\)
\(18\) −3.90112 2.64502i −0.216729 0.146946i
\(19\) −2.17048 + 7.81737i −0.114236 + 0.411440i −0.998451 0.0556396i \(-0.982280\pi\)
0.884215 + 0.467080i \(0.154694\pi\)
\(20\) 6.15332 0.669214i 0.307666 0.0334607i
\(21\) −2.77595 2.11022i −0.132188 0.100487i
\(22\) −29.4558 13.6277i −1.33890 0.619442i
\(23\) 23.1399 15.6893i 1.00608 0.682142i 0.0573946 0.998352i \(-0.481721\pi\)
0.948689 + 0.316210i \(0.102410\pi\)
\(24\) 4.80639 + 14.2649i 0.200266 + 0.594370i
\(25\) 1.40263 + 8.55569i 0.0561054 + 0.342228i
\(26\) 1.81505 11.0713i 0.0698096 0.425820i
\(27\) 4.92415 + 1.65914i 0.182376 + 0.0614496i
\(28\) 0.824947 + 2.97119i 0.0294624 + 0.106114i
\(29\) 15.4520 + 38.7815i 0.532826 + 1.33729i 0.911324 + 0.411690i \(0.135061\pi\)
−0.378498 + 0.925602i \(0.623559\pi\)
\(30\) 10.2155 4.07023i 0.340517 0.135674i
\(31\) 2.83849 0.788103i 0.0915642 0.0254227i −0.221444 0.975173i \(-0.571077\pi\)
0.313008 + 0.949750i \(0.398663\pi\)
\(32\) 7.32385 21.7364i 0.228870 0.679263i
\(33\) 35.3093 + 5.78867i 1.06998 + 0.175414i
\(34\) −12.4664 + 2.04376i −0.366658 + 0.0601106i
\(35\) 7.70959 2.59766i 0.220274 0.0742190i
\(36\) −2.57868 3.80327i −0.0716300 0.105646i
\(37\) 3.58245 7.74334i 0.0968230 0.209280i −0.853111 0.521729i \(-0.825287\pi\)
0.949934 + 0.312449i \(0.101149\pi\)
\(38\) 7.71378 10.1473i 0.202994 0.267034i
\(39\) 1.33727 + 12.2960i 0.0342891 + 0.315283i
\(40\) −33.8397 9.39554i −0.845992 0.234889i
\(41\) −13.3440 + 19.6810i −0.325465 + 0.480024i −0.954858 0.297062i \(-0.903993\pi\)
0.629394 + 0.777087i \(0.283303\pi\)
\(42\) 2.82438 + 4.69415i 0.0672471 + 0.111766i
\(43\) 19.6128 1.06338i 0.456113 0.0247297i 0.175348 0.984506i \(-0.443895\pi\)
0.280764 + 0.959777i \(0.409412\pi\)
\(44\) −21.7598 22.9716i −0.494541 0.522081i
\(45\) −9.65116 + 7.33662i −0.214470 + 0.163036i
\(46\) −42.8964 + 9.44222i −0.932531 + 0.205266i
\(47\) −1.59298 + 1.35309i −0.0338932 + 0.0287891i −0.664173 0.747579i \(-0.731216\pi\)
0.630280 + 0.776368i \(0.282940\pi\)
\(48\) 0.705838 13.0184i 0.0147050 0.271217i
\(49\) −21.0536 39.7112i −0.429665 0.810433i
\(50\) 2.92815 13.3027i 0.0585630 0.266055i
\(51\) 12.6399 5.84783i 0.247841 0.114663i
\(52\) 5.63898 9.37206i 0.108442 0.180232i
\(53\) −33.9932 + 64.1180i −0.641381 + 1.20977i 0.323286 + 0.946301i \(0.395212\pi\)
−0.964667 + 0.263471i \(0.915133\pi\)
\(54\) −6.22200 5.28501i −0.115222 0.0978706i
\(55\) −57.4091 + 60.6061i −1.04380 + 1.10193i
\(56\) 1.89168 17.3937i 0.0337800 0.310602i
\(57\) −5.20129 + 13.0542i −0.0912506 + 0.229022i
\(58\) 65.5874i 1.13082i
\(59\) 24.8967 + 53.4898i 0.421977 + 0.906606i
\(60\) 10.7207 0.178678
\(61\) −76.4249 30.4505i −1.25287 0.499188i −0.353111 0.935581i \(-0.614876\pi\)
−0.899756 + 0.436393i \(0.856256\pi\)
\(62\) −4.60109 0.500398i −0.0742111 0.00807094i
\(63\) −4.38473 4.15344i −0.0695989 0.0659275i
\(64\) −42.8214 + 50.4133i −0.669085 + 0.787708i
\(65\) −25.4956 13.5169i −0.392240 0.207952i
\(66\) −48.1679 28.9817i −0.729816 0.439116i
\(67\) −17.7291 38.3208i −0.264613 0.571952i 0.729036 0.684475i \(-0.239969\pi\)
−0.993649 + 0.112524i \(0.964107\pi\)
\(68\) −12.0280 2.64756i −0.176882 0.0389348i
\(69\) 42.7827 22.6819i 0.620039 0.328724i
\(70\) −12.7628 0.691977i −0.182325 0.00988539i
\(71\) −63.6327 74.9142i −0.896235 1.05513i −0.998178 0.0603392i \(-0.980782\pi\)
0.101943 0.994790i \(-0.467494\pi\)
\(72\) 5.60477 + 25.4627i 0.0778440 + 0.353649i
\(73\) −27.6076 36.3171i −0.378186 0.497495i 0.567141 0.823621i \(-0.308050\pi\)
−0.945326 + 0.326126i \(0.894257\pi\)
\(74\) −9.73151 + 9.21818i −0.131507 + 0.124570i
\(75\) 0.812988 + 14.9947i 0.0108398 + 0.199929i
\(76\) 10.6479 6.40662i 0.140104 0.0842976i
\(77\) −34.4225 23.3390i −0.447046 0.303105i
\(78\) 5.19863 18.7238i 0.0666491 0.240048i
\(79\) 36.6316 3.98393i 0.463691 0.0504295i 0.126708 0.991940i \(-0.459559\pi\)
0.336983 + 0.941511i \(0.390593\pi\)
\(80\) 24.2155 + 18.4081i 0.302694 + 0.230102i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) 30.9206 20.9647i 0.377080 0.255667i
\(83\) 16.4242 + 48.7452i 0.197881 + 0.587291i 0.999951 0.00993995i \(-0.00316404\pi\)
−0.802069 + 0.597231i \(0.796267\pi\)
\(84\) 0.864066 + 5.27057i 0.0102865 + 0.0627449i
\(85\) −5.25683 + 32.0652i −0.0618450 + 0.377238i
\(86\) −29.2434 9.85325i −0.340040 0.114573i
\(87\) 19.3442 + 69.6714i 0.222347 + 0.800820i
\(88\) 66.4522 + 166.783i 0.755139 + 1.89526i
\(89\) 35.0851 13.9792i 0.394215 0.157069i −0.164603 0.986360i \(-0.552634\pi\)
0.558818 + 0.829290i \(0.311255\pi\)
\(90\) 18.3523 5.09549i 0.203914 0.0566166i
\(91\) 4.59036 13.6237i 0.0504435 0.149711i
\(92\) −42.2575 6.92777i −0.459321 0.0753019i
\(93\) 5.03517 0.825475i 0.0541417 0.00887608i
\(94\) 3.11181 1.04849i 0.0331043 0.0111541i
\(95\) −18.3987 27.1361i −0.193671 0.285643i
\(96\) 16.6815 36.0564i 0.173765 0.375587i
\(97\) 74.8346 98.4432i 0.771491 1.01488i −0.227663 0.973740i \(-0.573108\pi\)
0.999153 0.0411387i \(-0.0130985\pi\)
\(98\) 7.63490 + 70.2018i 0.0779072 + 0.716345i
\(99\) 59.7150 + 16.5798i 0.603182 + 0.167473i
\(100\) 7.45230 10.9913i 0.0745230 0.109913i
\(101\) 93.7819 + 155.867i 0.928534 + 1.54323i 0.836840 + 0.547448i \(0.184400\pi\)
0.0916937 + 0.995787i \(0.470772\pi\)
\(102\) −21.8486 + 1.18460i −0.214202 + 0.0116137i
\(103\) 32.9985 + 34.8361i 0.320373 + 0.338214i 0.866212 0.499676i \(-0.166548\pi\)
−0.545839 + 0.837890i \(0.683789\pi\)
\(104\) −49.4060 + 37.5575i −0.475058 + 0.361129i
\(105\) 13.7616 3.02915i 0.131063 0.0288491i
\(106\) 86.8991 73.8127i 0.819802 0.696346i
\(107\) 7.96589 146.922i 0.0744476 1.37310i −0.687838 0.725864i \(-0.741440\pi\)
0.762286 0.647240i \(-0.224077\pi\)
\(108\) −3.72799 7.03174i −0.0345185 0.0651087i
\(109\) 10.4589 47.5153i 0.0959533 0.435920i −0.904011 0.427509i \(-0.859391\pi\)
0.999965 0.00841181i \(-0.00267759\pi\)
\(110\) 119.033 55.0703i 1.08211 0.500639i
\(111\) 7.61869 12.6624i 0.0686369 0.114075i
\(112\) −7.09818 + 13.3886i −0.0633766 + 0.119541i
\(113\) 14.8444 + 12.6090i 0.131367 + 0.111584i 0.710661 0.703535i \(-0.248396\pi\)
−0.579294 + 0.815118i \(0.696672\pi\)
\(114\) 15.1826 16.0281i 0.133181 0.140597i
\(115\) −12.2149 + 112.315i −0.106217 + 0.976648i
\(116\) 23.6675 59.4009i 0.204030 0.512077i
\(117\) 21.4229i 0.183102i
\(118\) −5.23144 92.5465i −0.0443342 0.784292i
\(119\) −16.1878 −0.136032
\(120\) −56.5090 22.5152i −0.470908 0.187627i
\(121\) 303.960 + 33.0576i 2.51207 + 0.273204i
\(122\) 93.8349 + 88.8852i 0.769139 + 0.728567i
\(123\) −26.6627 + 31.3897i −0.216770 + 0.255201i
\(124\) −3.98652 2.11352i −0.0321494 0.0170445i
\(125\) −116.586 70.1472i −0.932684 0.561178i
\(126\) 3.98423 + 8.61176i 0.0316208 + 0.0683473i
\(127\) −30.7718 6.77339i −0.242298 0.0533338i 0.0921611 0.995744i \(-0.470623\pi\)
−0.334459 + 0.942410i \(0.608554\pi\)
\(128\) 10.7536 5.70118i 0.0840123 0.0445405i
\(129\) 33.9705 + 1.84182i 0.263337 + 0.0142777i
\(130\) 29.3506 + 34.5542i 0.225774 + 0.265801i
\(131\) −4.16884 18.9392i −0.0318232 0.144574i 0.958030 0.286668i \(-0.0925476\pi\)
−0.989853 + 0.142094i \(0.954617\pi\)
\(132\) −33.1663 43.6296i −0.251260 0.330527i
\(133\) 11.8579 11.2324i 0.0891571 0.0844541i
\(134\) 3.59138 + 66.2391i 0.0268014 + 0.494322i
\(135\) −17.9922 + 10.8256i −0.133276 + 0.0801893i
\(136\) 57.8395 + 39.2161i 0.425290 + 0.288354i
\(137\) 66.8643 240.823i 0.488060 1.75783i −0.150853 0.988556i \(-0.548202\pi\)
0.638913 0.769279i \(-0.279384\pi\)
\(138\) −75.6315 + 8.22542i −0.548054 + 0.0596045i
\(139\) 129.095 + 98.1352i 0.928738 + 0.706008i 0.955922 0.293622i \(-0.0948608\pi\)
−0.0271835 + 0.999630i \(0.508654\pi\)
\(140\) −11.3092 5.23221i −0.0807802 0.0373729i
\(141\) −2.99634 + 2.03157i −0.0212506 + 0.0144083i
\(142\) 49.3081 + 146.341i 0.347240 + 1.03057i
\(143\) 23.8658 + 145.575i 0.166894 + 1.01801i
\(144\) 3.65331 22.2842i 0.0253702 0.154751i
\(145\) −159.869 53.8660i −1.10254 0.371490i
\(146\) 19.1742 + 69.0593i 0.131330 + 0.473009i
\(147\) −28.8154 72.3213i −0.196023 0.491982i
\(148\) −12.1400 + 4.83702i −0.0820271 + 0.0326826i
\(149\) −231.551 + 64.2897i −1.55403 + 0.431474i −0.935220 0.354066i \(-0.884799\pi\)
−0.618810 + 0.785541i \(0.712385\pi\)
\(150\) 7.53315 22.3576i 0.0502210 0.149051i
\(151\) −263.522 43.2022i −1.74518 0.286107i −0.797030 0.603940i \(-0.793597\pi\)
−0.948147 + 0.317833i \(0.897045\pi\)
\(152\) −69.5801 + 11.4071i −0.457764 + 0.0750465i
\(153\) 22.8597 7.70232i 0.149410 0.0503420i
\(154\) 36.6677 + 54.0808i 0.238102 + 0.351174i
\(155\) −4.99853 + 10.8041i −0.0322486 + 0.0697041i
\(156\) 11.4648 15.0817i 0.0734925 0.0966777i
\(157\) 11.2860 + 103.773i 0.0718853 + 0.660974i 0.973540 + 0.228517i \(0.0733877\pi\)
−0.901655 + 0.432457i \(0.857647\pi\)
\(158\) −55.7807 15.4874i −0.353043 0.0980218i
\(159\) −70.5400 + 104.039i −0.443648 + 0.654332i
\(160\) 47.7867 + 79.4221i 0.298667 + 0.496388i
\(161\) −56.2011 + 3.04714i −0.349075 + 0.0189263i
\(162\) −9.72393 10.2654i −0.0600243 0.0633668i
\(163\) −102.030 + 77.5608i −0.625948 + 0.475833i −0.869419 0.494075i \(-0.835507\pi\)
0.243471 + 0.969908i \(0.421714\pi\)
\(164\) 35.5692 7.82938i 0.216885 0.0477401i
\(165\) −110.202 + 93.6066i −0.667892 + 0.567313i
\(166\) 4.37514 80.6948i 0.0263563 0.486113i
\(167\) −39.3970 74.3106i −0.235910 0.444974i 0.737085 0.675800i \(-0.236202\pi\)
−0.972995 + 0.230827i \(0.925857\pi\)
\(168\) 6.51455 29.5959i 0.0387771 0.176166i
\(169\) 107.100 49.5496i 0.633726 0.293193i
\(170\) 26.3189 43.7424i 0.154817 0.257308i
\(171\) −11.4007 + 21.5040i −0.0666709 + 0.125755i
\(172\) −22.9295 19.4765i −0.133311 0.113235i
\(173\) 156.663 165.387i 0.905564 0.955993i −0.0936508 0.995605i \(-0.529854\pi\)
0.999215 + 0.0396125i \(0.0126123\pi\)
\(174\) 12.2824 112.935i 0.0705884 0.649050i
\(175\) 6.46049 16.2146i 0.0369171 0.0926549i
\(176\) 155.497i 0.883507i
\(177\) 32.8526 + 96.7662i 0.185608 + 0.546702i
\(178\) −59.3360 −0.333349
\(179\) 55.8243 + 22.2424i 0.311867 + 0.124259i 0.520820 0.853666i \(-0.325626\pi\)
−0.208953 + 0.977926i \(0.567005\pi\)
\(180\) 18.4600 + 2.00764i 0.102555 + 0.0111536i
\(181\) −210.726 199.610i −1.16423 1.10282i −0.993064 0.117576i \(-0.962488\pi\)
−0.171167 0.985242i \(-0.554754\pi\)
\(182\) −14.6221 + 17.2145i −0.0803412 + 0.0945849i
\(183\) −125.893 66.7445i −0.687942 0.364724i
\(184\) 208.191 + 125.264i 1.13147 + 0.680783i
\(185\) 14.4769 + 31.2912i 0.0782534 + 0.169142i
\(186\) −7.82889 1.72327i −0.0420908 0.00926489i
\(187\) 146.757 77.8058i 0.784798 0.416074i
\(188\) 3.19664 + 0.173317i 0.0170034 + 0.000921898i
\(189\) −6.77225 7.97291i −0.0358320 0.0421847i
\(190\) 11.0729 + 50.3045i 0.0582782 + 0.264761i
\(191\) 116.344 + 153.048i 0.609131 + 0.801298i 0.992493 0.122300i \(-0.0390271\pi\)
−0.383362 + 0.923598i \(0.625234\pi\)
\(192\) −83.1749 + 78.7875i −0.433203 + 0.410351i
\(193\) −2.37844 43.8677i −0.0123235 0.227294i −0.998207 0.0598598i \(-0.980935\pi\)
0.985883 0.167434i \(-0.0535481\pi\)
\(194\) −166.468 + 100.161i −0.858083 + 0.516291i
\(195\) −41.3695 28.0492i −0.212151 0.143842i
\(196\) −18.4179 + 66.3351i −0.0939687 + 0.338445i
\(197\) 71.2864 7.75287i 0.361860 0.0393547i 0.0746167 0.997212i \(-0.476227\pi\)
0.287243 + 0.957858i \(0.407261\pi\)
\(198\) −77.5128 58.9237i −0.391479 0.297595i
\(199\) −15.0353 6.95609i −0.0755545 0.0349552i 0.381748 0.924266i \(-0.375322\pi\)
−0.457302 + 0.889311i \(0.651184\pi\)
\(200\) −62.3648 + 42.2844i −0.311824 + 0.211422i
\(201\) −23.3514 69.3045i −0.116176 0.344799i
\(202\) −46.2355 282.024i −0.228889 1.39616i
\(203\) 13.5968 82.9369i 0.0669794 0.408556i
\(204\) −20.2152 6.81129i −0.0990941 0.0333887i
\(205\) −25.7066 92.5867i −0.125398 0.451642i
\(206\) −27.9036 70.0326i −0.135454 0.339964i
\(207\) 77.9150 31.0442i 0.376401 0.149972i
\(208\) 51.7925 14.3801i 0.249003 0.0691352i
\(209\) −53.5150 + 158.827i −0.256052 + 0.759937i
\(210\) −21.8466 3.58157i −0.104031 0.0170551i
\(211\) 102.214 16.7571i 0.484426 0.0794176i 0.0853800 0.996348i \(-0.472790\pi\)
0.399046 + 0.916931i \(0.369341\pi\)
\(212\) 105.338 35.4925i 0.496877 0.167417i
\(213\) −95.5400 140.911i −0.448544 0.661553i
\(214\) −97.0644 + 209.801i −0.453572 + 0.980380i
\(215\) −48.0345 + 63.1882i −0.223416 + 0.293899i
\(216\) 4.88249 + 44.8938i 0.0226041 + 0.207842i
\(217\) −5.71446 1.58661i −0.0263339 0.00731157i
\(218\) −42.8959 + 63.2668i −0.196770 + 0.290215i
\(219\) −40.7364 67.7043i −0.186011 0.309152i
\(220\) 127.677 6.92246i 0.580351 0.0314657i
\(221\) 39.4872 + 41.6861i 0.178675 + 0.188625i
\(222\) −18.4829 + 14.0504i −0.0832564 + 0.0632899i
\(223\) −88.9950 + 19.5893i −0.399081 + 0.0878443i −0.409976 0.912096i \(-0.634463\pi\)
0.0108953 + 0.999941i \(0.496532\pi\)
\(224\) −35.1944 + 29.8944i −0.157118 + 0.133457i
\(225\) −1.40814 + 25.9716i −0.00625839 + 0.115429i
\(226\) −14.3331 27.0352i −0.0634210 0.119625i
\(227\) −39.9474 + 181.483i −0.175980 + 0.799483i 0.803074 + 0.595879i \(0.203196\pi\)
−0.979053 + 0.203604i \(0.934735\pi\)
\(228\) 19.5343 9.03753i 0.0856768 0.0396383i
\(229\) −102.453 + 170.278i −0.447392 + 0.743571i −0.995693 0.0927097i \(-0.970447\pi\)
0.548301 + 0.836281i \(0.315275\pi\)
\(230\) 83.1409 156.820i 0.361482 0.681827i
\(231\) −54.9014 46.6337i −0.237668 0.201877i
\(232\) −249.503 + 263.397i −1.07544 + 1.13533i
\(233\) 21.4096 196.858i 0.0918866 0.844884i −0.853975 0.520314i \(-0.825815\pi\)
0.945862 0.324570i \(-0.105220\pi\)
\(234\) 12.4579 31.2669i 0.0532387 0.133619i
\(235\) 8.44611i 0.0359409i
\(236\) 28.6578 85.7049i 0.121431 0.363156i
\(237\) 63.8220 0.269291
\(238\) 23.6261 + 9.41350i 0.0992694 + 0.0395525i
\(239\) 255.608 + 27.7990i 1.06949 + 0.116314i 0.625890 0.779912i \(-0.284736\pi\)
0.443599 + 0.896225i \(0.353702\pi\)
\(240\) 38.2493 + 36.2317i 0.159372 + 0.150965i
\(241\) 197.155 232.109i 0.818073 0.963109i −0.181723 0.983350i \(-0.558167\pi\)
0.999795 + 0.0202404i \(0.00644315\pi\)
\(242\) −424.407 225.007i −1.75375 0.929779i
\(243\) 13.3571 + 8.03669i 0.0549674 + 0.0330728i
\(244\) 52.9094 + 114.362i 0.216842 + 0.468696i
\(245\) 177.387 + 39.0458i 0.724027 + 0.159370i
\(246\) 57.1681 30.3086i 0.232391 0.123206i
\(247\) −57.8505 3.13656i −0.234212 0.0126986i
\(248\) 16.5743 + 19.5127i 0.0668317 + 0.0786804i
\(249\) 19.1523 + 87.0099i 0.0769170 + 0.349437i
\(250\) 129.365 + 170.177i 0.517461 + 0.680708i
\(251\) −206.197 + 195.320i −0.821502 + 0.778168i −0.977800 0.209542i \(-0.932803\pi\)
0.156298 + 0.987710i \(0.450044\pi\)
\(252\) 0.500826 + 9.23719i 0.00198740 + 0.0366555i
\(253\) 494.870 297.753i 1.95601 1.17689i
\(254\) 40.9728 + 27.7802i 0.161310 + 0.109371i
\(255\) −15.0565 + 54.2286i −0.0590451 + 0.212661i
\(256\) 244.019 26.5387i 0.953200 0.103667i
\(257\) −306.897 233.297i −1.19415 0.907772i −0.196798 0.980444i \(-0.563054\pi\)
−0.997356 + 0.0726722i \(0.976847\pi\)
\(258\) −48.5090 22.4426i −0.188019 0.0869870i
\(259\) −14.2168 + 9.63920i −0.0548909 + 0.0372170i
\(260\) 14.1131 + 41.8861i 0.0542811 + 0.161101i
\(261\) 20.2615 + 123.590i 0.0776302 + 0.473523i
\(262\) −4.92910 + 30.0662i −0.0188133 + 0.114756i
\(263\) −220.226 74.2027i −0.837361 0.282140i −0.132232 0.991219i \(-0.542214\pi\)
−0.705129 + 0.709079i \(0.749111\pi\)
\(264\) 83.1910 + 299.627i 0.315117 + 1.13495i
\(265\) −108.549 272.437i −0.409618 1.02806i
\(266\) −23.8385 + 9.49813i −0.0896185 + 0.0357073i
\(267\) 63.0308 17.5004i 0.236070 0.0655446i
\(268\) −20.6500 + 61.2872i −0.0770524 + 0.228683i
\(269\) −338.489 55.4924i −1.25832 0.206291i −0.504524 0.863398i \(-0.668332\pi\)
−0.753798 + 0.657106i \(0.771780\pi\)
\(270\) 32.5550 5.33712i 0.120574 0.0197671i
\(271\) −473.982 + 159.703i −1.74901 + 0.589310i −0.997517 0.0704301i \(-0.977563\pi\)
−0.751494 + 0.659740i \(0.770666\pi\)
\(272\) −33.9658 50.0958i −0.124874 0.184176i
\(273\) 10.4554 22.5990i 0.0382982 0.0827801i
\(274\) −237.632 + 312.600i −0.867271 + 1.14088i
\(275\) 19.3644 + 178.053i 0.0704160 + 0.647465i
\(276\) −71.4658 19.8424i −0.258934 0.0718927i
\(277\) 271.319 400.165i 0.979490 1.44464i 0.0856122 0.996329i \(-0.472715\pi\)
0.893878 0.448311i \(-0.147974\pi\)
\(278\) −131.347 218.300i −0.472470 0.785251i
\(279\) 8.82464 0.478458i 0.0316295 0.00171490i
\(280\) 48.6226 + 51.3303i 0.173652 + 0.183322i
\(281\) −47.6965 + 36.2579i −0.169738 + 0.129032i −0.686595 0.727040i \(-0.740895\pi\)
0.516856 + 0.856072i \(0.327102\pi\)
\(282\) 5.55456 1.22265i 0.0196970 0.00433564i
\(283\) −30.8898 + 26.2380i −0.109151 + 0.0927139i −0.700300 0.713849i \(-0.746950\pi\)
0.591149 + 0.806563i \(0.298675\pi\)
\(284\) −8.15070 + 150.331i −0.0286996 + 0.529334i
\(285\) −26.5990 50.1711i −0.0933300 0.176039i
\(286\) 49.8225 226.346i 0.174204 0.791419i
\(287\) 43.4460 20.1003i 0.151380 0.0700358i
\(288\) 35.4759 58.9615i 0.123180 0.204727i
\(289\) −105.085 + 198.212i −0.363617 + 0.685855i
\(290\) 202.005 + 171.584i 0.696568 + 0.591671i
\(291\) 147.293 155.495i 0.506161 0.534347i
\(292\) −7.55472 + 69.4645i −0.0258723 + 0.237892i
\(293\) 182.272 457.469i 0.622090 1.56133i −0.192504 0.981296i \(-0.561661\pi\)
0.814594 0.580032i \(-0.196960\pi\)
\(294\) 122.310i 0.416021i
\(295\) −229.878 63.2556i −0.779247 0.214426i
\(296\) 74.1487 0.250502
\(297\) 99.7183 + 39.7314i 0.335752 + 0.133776i
\(298\) 375.335 + 40.8201i 1.25951 + 0.136980i
\(299\) 144.939 + 137.294i 0.484747 + 0.459177i
\(300\) 14.8904 17.5304i 0.0496347 0.0584345i
\(301\) −34.9364 18.5221i −0.116068 0.0615352i
\(302\) 359.488 + 216.297i 1.19036 + 0.716215i
\(303\) 132.294 + 285.949i 0.436614 + 0.943726i
\(304\) 59.6413 + 13.1280i 0.196188 + 0.0431843i
\(305\) 293.722 155.722i 0.963024 0.510563i
\(306\) −37.8428 2.05178i −0.123669 0.00670516i
\(307\) −173.538 204.305i −0.565271 0.665488i 0.403056 0.915175i \(-0.367948\pi\)
−0.968327 + 0.249687i \(0.919672\pi\)
\(308\) 13.6938 + 62.2114i 0.0444603 + 0.201985i
\(309\) 50.2963 + 66.1637i 0.162771 + 0.214122i
\(310\) 13.5782 12.8619i 0.0438006 0.0414902i
\(311\) 20.7825 + 383.310i 0.0668247 + 1.23251i 0.819097 + 0.573656i \(0.194475\pi\)
−0.752272 + 0.658853i \(0.771042\pi\)
\(312\) −92.1053 + 55.4179i −0.295209 + 0.177622i
\(313\) −397.371 269.424i −1.26956 0.860781i −0.274646 0.961545i \(-0.588561\pi\)
−0.994910 + 0.100765i \(0.967871\pi\)
\(314\) 43.8741 158.020i 0.139726 0.503249i
\(315\) 24.2633 2.63879i 0.0770263 0.00837712i
\(316\) −44.9306 34.1553i −0.142185 0.108086i
\(317\) 144.559 + 66.8799i 0.456021 + 0.210978i 0.634432 0.772978i \(-0.281234\pi\)
−0.178412 + 0.983956i \(0.557096\pi\)
\(318\) 163.454 110.825i 0.514006 0.348505i
\(319\) 275.365 + 817.254i 0.863213 + 2.56192i
\(320\) −43.2437 263.775i −0.135136 0.824296i
\(321\) 41.2302 251.493i 0.128443 0.783468i
\(322\) 83.7978 + 28.2347i 0.260241 + 0.0876856i
\(323\) 17.4524 + 62.8579i 0.0540322 + 0.194606i
\(324\) −5.10240 12.8061i −0.0157482 0.0395249i
\(325\) −57.5145 + 22.9159i −0.176968 + 0.0705103i
\(326\) 194.016 53.8682i 0.595140 0.165240i
\(327\) 26.9073 79.8579i 0.0822852 0.244214i
\(328\) −203.929 33.4324i −0.621734 0.101928i
\(329\) 4.15232 0.680738i 0.0126210 0.00206911i
\(330\) 215.275 72.5345i 0.652348 0.219801i
\(331\) 2.66683 + 3.93328i 0.00805688 + 0.0118830i 0.831696 0.555231i \(-0.187370\pi\)
−0.823639 + 0.567114i \(0.808060\pi\)
\(332\) 33.0815 71.5045i 0.0996431 0.215375i
\(333\) 15.4899 20.3766i 0.0465161 0.0611909i
\(334\) 14.2870 + 131.367i 0.0427754 + 0.393314i
\(335\) 164.407 + 45.6474i 0.490767 + 0.136261i
\(336\) −14.7296 + 21.7245i −0.0438381 + 0.0646563i
\(337\) −311.405 517.559i −0.924050 1.53578i −0.842218 0.539138i \(-0.818750\pi\)
−0.0818329 0.996646i \(-0.526077\pi\)
\(338\) −185.127 + 10.0373i −0.547712 + 0.0296961i
\(339\) 23.1993 + 24.4912i 0.0684346 + 0.0722455i
\(340\) 39.6211 30.1191i 0.116533 0.0885857i
\(341\) 59.4329 13.0822i 0.174290 0.0383641i
\(342\) 29.1444 24.7555i 0.0852176 0.0723845i
\(343\) −10.2395 + 188.857i −0.0298529 + 0.550604i
\(344\) 79.9577 + 150.816i 0.232435 + 0.438420i
\(345\) −42.0657 + 191.107i −0.121930 + 0.553932i
\(346\) −324.825 + 150.280i −0.938802 + 0.434336i
\(347\) −211.379 + 351.314i −0.609160 + 1.01243i 0.386759 + 0.922181i \(0.373595\pi\)
−0.995919 + 0.0902512i \(0.971233\pi\)
\(348\) 51.8768 97.8501i 0.149071 0.281178i
\(349\) 79.9581 + 67.9171i 0.229106 + 0.194605i 0.754585 0.656202i \(-0.227838\pi\)
−0.525479 + 0.850807i \(0.676114\pi\)
\(350\) −18.8582 + 19.9084i −0.0538807 + 0.0568811i
\(351\) −4.01182 + 36.8881i −0.0114297 + 0.105094i
\(352\) 175.384 440.181i 0.498251 1.25051i
\(353\) 449.951i 1.27465i 0.770596 + 0.637324i \(0.219959\pi\)
−0.770596 + 0.637324i \(0.780041\pi\)
\(354\) 8.32295 160.335i 0.0235112 0.452924i
\(355\) 397.202 1.11888
\(356\) −53.7392 21.4117i −0.150953 0.0601451i
\(357\) −27.8737 3.03144i −0.0780775 0.00849144i
\(358\) −68.5414 64.9258i −0.191456 0.181357i
\(359\) −26.2435 + 30.8962i −0.0731017 + 0.0860619i −0.797497 0.603323i \(-0.793843\pi\)
0.724396 + 0.689385i \(0.242119\pi\)
\(360\) −93.0863 49.3512i −0.258573 0.137087i
\(361\) 252.925 + 152.180i 0.700624 + 0.421551i
\(362\) 191.478 + 413.873i 0.528945 + 1.14330i
\(363\) 517.197 + 113.844i 1.42479 + 0.313619i
\(364\) −19.4548 + 10.3143i −0.0534472 + 0.0283359i
\(365\) 184.079 + 9.98048i 0.504326 + 0.0273438i
\(366\) 144.929 + 170.623i 0.395980 + 0.466184i
\(367\) −53.9392 245.048i −0.146973 0.667706i −0.991272 0.131833i \(-0.957914\pi\)
0.844299 0.535873i \(-0.180017\pi\)
\(368\) −127.353 167.530i −0.346069 0.455246i
\(369\) −51.7887 + 49.0569i −0.140349 + 0.132945i
\(370\) −2.93258 54.0883i −0.00792590 0.146185i
\(371\) 125.188 75.3232i 0.337434 0.203027i
\(372\) −6.46859 4.38581i −0.0173887 0.0117898i
\(373\) −55.1450 + 198.614i −0.147842 + 0.532478i 0.852116 + 0.523352i \(0.175319\pi\)
−0.999958 + 0.00912613i \(0.997095\pi\)
\(374\) −259.439 + 28.2156i −0.693686 + 0.0754429i
\(375\) −187.612 142.619i −0.500299 0.380317i
\(376\) −16.4855 7.62702i −0.0438445 0.0202846i
\(377\) −246.743 + 167.296i −0.654490 + 0.443756i
\(378\) 5.24772 + 15.5747i 0.0138829 + 0.0412029i
\(379\) −4.19954 25.6160i −0.0110806 0.0675885i 0.980707 0.195481i \(-0.0626269\pi\)
−0.991788 + 0.127893i \(0.959179\pi\)
\(380\) −8.12418 + 49.5553i −0.0213794 + 0.130409i
\(381\) −51.7175 17.4257i −0.135741 0.0457366i
\(382\) −80.8042 291.030i −0.211529 0.761860i
\(383\) −226.019 567.265i −0.590128 1.48111i −0.855935 0.517084i \(-0.827018\pi\)
0.265807 0.964026i \(-0.414362\pi\)
\(384\) 19.5842 7.80305i 0.0510005 0.0203205i
\(385\) 161.936 44.9614i 0.420614 0.116783i
\(386\) −22.0386 + 65.4082i −0.0570948 + 0.169451i
\(387\) 58.1487 + 9.53300i 0.150255 + 0.0246331i
\(388\) −186.910 + 30.6423i −0.481726 + 0.0789749i
\(389\) 332.703 112.101i 0.855277 0.288176i 0.142696 0.989767i \(-0.454423\pi\)
0.712581 + 0.701590i \(0.247526\pi\)
\(390\) 44.0678 + 64.9951i 0.112994 + 0.166654i
\(391\) 94.3906 204.022i 0.241408 0.521795i
\(392\) 236.395 310.973i 0.603050 0.793298i
\(393\) −3.63161 33.3921i −0.00924074 0.0849672i
\(394\) −108.551 30.1391i −0.275511 0.0764952i
\(395\) −83.5625 + 123.245i −0.211551 + 0.312014i
\(396\) −48.9386 81.3366i −0.123582 0.205396i
\(397\) −541.375 + 29.3525i −1.36366 + 0.0739357i −0.721384 0.692535i \(-0.756494\pi\)
−0.642279 + 0.766471i \(0.722011\pi\)
\(398\) 17.8990 + 18.8958i 0.0449725 + 0.0474768i
\(399\) 22.5215 17.1204i 0.0564450 0.0429084i
\(400\) 63.7346 14.0290i 0.159336 0.0350726i
\(401\) −197.339 + 167.621i −0.492118 + 0.418009i −0.858779 0.512346i \(-0.828777\pi\)
0.366661 + 0.930354i \(0.380501\pi\)
\(402\) −6.22046 + 114.730i −0.0154738 + 0.285397i
\(403\) 9.85362 + 18.5859i 0.0244507 + 0.0461189i
\(404\) 59.8952 272.107i 0.148256 0.673532i
\(405\) −33.0080 + 15.2711i −0.0815013 + 0.0377065i
\(406\) −68.0741 + 113.140i −0.167670 + 0.278670i
\(407\) 82.5579 155.721i 0.202845 0.382606i
\(408\) 92.2497 + 78.3576i 0.226102 + 0.192053i
\(409\) −100.378 + 105.967i −0.245422 + 0.259089i −0.837055 0.547118i \(-0.815725\pi\)
0.591633 + 0.806207i \(0.298483\pi\)
\(410\) −16.3221 + 150.080i −0.0398101 + 0.366048i
\(411\) 160.232 402.152i 0.389859 0.978471i
\(412\) 73.4960i 0.178388i
\(413\) 12.5704 118.112i 0.0304367 0.285985i
\(414\) −131.770 −0.318285
\(415\) −193.100 76.9379i −0.465300 0.185393i
\(416\) 162.833 + 17.7092i 0.391426 + 0.0425702i
\(417\) 203.910 + 193.154i 0.488993 + 0.463199i
\(418\) 170.466 200.688i 0.407814 0.480116i
\(419\) −12.3607 6.55321i −0.0295004 0.0156401i 0.453593 0.891209i \(-0.350142\pi\)
−0.483093 + 0.875569i \(0.660487\pi\)
\(420\) −18.4935 11.1272i −0.0440322 0.0264933i
\(421\) −271.836 587.565i −0.645692 1.39564i −0.903139 0.429348i \(-0.858743\pi\)
0.257447 0.966292i \(-0.417119\pi\)
\(422\) −158.926 34.9823i −0.376603 0.0828965i
\(423\) −5.53983 + 2.93703i −0.0130965 + 0.00694334i
\(424\) −629.778 34.1456i −1.48533 0.0805320i
\(425\) 45.1312 + 53.1326i 0.106191 + 0.125018i
\(426\) 57.4985 + 261.218i 0.134973 + 0.613189i
\(427\) 100.230 + 131.850i 0.234731 + 0.308783i
\(428\) −163.617 + 154.986i −0.382282 + 0.362116i
\(429\) 13.8330 + 255.134i 0.0322447 + 0.594719i
\(430\) 106.852 64.2905i 0.248492 0.149513i
\(431\) 56.0608 + 38.0101i 0.130071 + 0.0881906i 0.624488 0.781035i \(-0.285308\pi\)
−0.494416 + 0.869225i \(0.664618\pi\)
\(432\) 10.4637 37.6870i 0.0242216 0.0872383i
\(433\) −287.172 + 31.2318i −0.663215 + 0.0721290i −0.433534 0.901137i \(-0.642734\pi\)
−0.229681 + 0.973266i \(0.573768\pi\)
\(434\) 7.41763 + 5.63873i 0.0170913 + 0.0129925i
\(435\) −265.190 122.690i −0.609632 0.282046i
\(436\) −61.6799 + 41.8200i −0.141468 + 0.0959174i
\(437\) 72.4239 + 214.947i 0.165730 + 0.491869i
\(438\) 20.0835 + 122.504i 0.0458527 + 0.279689i
\(439\) −40.5659 + 247.441i −0.0924053 + 0.563648i 0.899526 + 0.436868i \(0.143912\pi\)
−0.991931 + 0.126779i \(0.959536\pi\)
\(440\) −687.527 231.655i −1.56256 0.526488i
\(441\) −36.0738 129.926i −0.0818000 0.294617i
\(442\) −33.3904 83.8036i −0.0755439 0.189601i
\(443\) 648.335 258.320i 1.46351 0.583116i 0.503729 0.863862i \(-0.331961\pi\)
0.959782 + 0.280746i \(0.0905818\pi\)
\(444\) −21.8097 + 6.05543i −0.0491209 + 0.0136383i
\(445\) −48.7319 + 144.631i −0.109510 + 0.325014i
\(446\) 141.280 + 23.1617i 0.316771 + 0.0519320i
\(447\) −410.746 + 67.3383i −0.918894 + 0.150645i
\(448\) 126.193 42.5193i 0.281680 0.0949092i
\(449\) −218.637 322.466i −0.486943 0.718187i 0.502264 0.864714i \(-0.332501\pi\)
−0.989207 + 0.146528i \(0.953190\pi\)
\(450\) 17.1582 37.0868i 0.0381292 0.0824150i
\(451\) −297.268 + 391.049i −0.659131 + 0.867072i
\(452\) −3.22542 29.6573i −0.00713589 0.0656134i
\(453\) −445.667 123.739i −0.983812 0.273154i
\(454\) 163.839 241.645i 0.360879 0.532257i
\(455\) 29.9512 + 49.7792i 0.0658268 + 0.109405i
\(456\) −121.946 + 6.61171i −0.267425 + 0.0144994i
\(457\) 399.884 + 422.153i 0.875020 + 0.923748i 0.997637 0.0687062i \(-0.0218871\pi\)
−0.122616 + 0.992454i \(0.539128\pi\)
\(458\) 248.550 188.943i 0.542686 0.412539i
\(459\) 40.8044 8.98173i 0.0888985 0.0195680i
\(460\) 131.888 112.027i 0.286713 0.243536i
\(461\) −18.1851 + 335.404i −0.0394470 + 0.727557i 0.910187 + 0.414197i \(0.135937\pi\)
−0.949634 + 0.313360i \(0.898545\pi\)
\(462\) 53.0104 + 99.9883i 0.114741 + 0.216425i
\(463\) 10.6114 48.2081i 0.0229188 0.104121i −0.963773 0.266725i \(-0.914058\pi\)
0.986691 + 0.162604i \(0.0519894\pi\)
\(464\) 285.192 131.944i 0.614638 0.284362i
\(465\) −10.6302 + 17.6676i −0.0228607 + 0.0379948i
\(466\) −145.724 + 274.865i −0.312713 + 0.589839i
\(467\) −245.519 208.546i −0.525737 0.446565i 0.344794 0.938678i \(-0.387949\pi\)
−0.870531 + 0.492113i \(0.836225\pi\)
\(468\) 22.5656 23.8222i 0.0482170 0.0509021i
\(469\) −9.19054 + 84.5056i −0.0195960 + 0.180183i
\(470\) −4.91158 + 12.3271i −0.0104502 + 0.0262280i
\(471\) 180.800i 0.383864i
\(472\) −331.050 + 391.565i −0.701377 + 0.829588i
\(473\) 405.757 0.857837
\(474\) −93.1484 37.1137i −0.196516 0.0782990i
\(475\) −69.9274 7.60506i −0.147215 0.0160107i
\(476\) 18.0007 + 17.0512i 0.0378166 + 0.0358218i
\(477\) −140.946 + 165.934i −0.295484 + 0.347870i
\(478\) −356.895 189.214i −0.746642 0.395845i
\(479\) 408.495 + 245.783i 0.852808 + 0.513118i 0.873588 0.486666i \(-0.161787\pi\)
−0.0207796 + 0.999784i \(0.506615\pi\)
\(480\) 67.4106 + 145.706i 0.140439 + 0.303553i
\(481\) 59.5017 + 13.0973i 0.123704 + 0.0272294i
\(482\) −422.725 + 224.115i −0.877024 + 0.464969i
\(483\) −97.3432 5.27779i −0.201539 0.0109271i
\(484\) −303.181 356.932i −0.626407 0.737463i
\(485\) 107.422 + 488.025i 0.221490 + 1.00624i
\(486\) −14.8212 19.4970i −0.0304964 0.0401173i
\(487\) −36.0074 + 34.1080i −0.0739371 + 0.0700370i −0.723776 0.690035i \(-0.757595\pi\)
0.649839 + 0.760072i \(0.274836\pi\)
\(488\) −38.7077 713.921i −0.0793191 1.46295i
\(489\) −190.209 + 114.445i −0.388976 + 0.234039i
\(490\) −236.191 160.141i −0.482022 0.326819i
\(491\) 154.447 556.269i 0.314557 1.13293i −0.622174 0.782879i \(-0.713750\pi\)
0.936730 0.350051i \(-0.113836\pi\)
\(492\) 62.7127 6.82042i 0.127465 0.0138626i
\(493\) 267.228 + 203.142i 0.542045 + 0.412052i
\(494\) 82.6090 + 38.2190i 0.167225 + 0.0773664i
\(495\) −207.286 + 140.544i −0.418760 + 0.283927i
\(496\) −7.08026 21.0135i −0.0142747 0.0423658i
\(497\) 32.0136 + 195.274i 0.0644137 + 0.392906i
\(498\) 22.6451 138.129i 0.0454720 0.277367i
\(499\) −578.886 195.050i −1.16009 0.390881i −0.327546 0.944835i \(-0.606222\pi\)
−0.832547 + 0.553954i \(0.813118\pi\)
\(500\) 55.7538 + 200.807i 0.111508 + 0.401614i
\(501\) −53.9216 135.333i −0.107628 0.270126i
\(502\) 414.528 165.163i 0.825753 0.329010i
\(503\) −301.859 + 83.8108i −0.600118 + 0.166622i −0.554285 0.832327i \(-0.687008\pi\)
−0.0458332 + 0.998949i \(0.514594\pi\)
\(504\) 16.7597 49.7412i 0.0332535 0.0986928i
\(505\) −725.404 118.924i −1.43644 0.235493i
\(506\) −895.415 + 146.796i −1.76959 + 0.290110i
\(507\) 193.694 65.2630i 0.382039 0.128724i
\(508\) 27.0834 + 39.9451i 0.0533138 + 0.0786320i
\(509\) 133.754 289.104i 0.262777 0.567984i −0.730610 0.682795i \(-0.760764\pi\)
0.993387 + 0.114811i \(0.0366263\pi\)
\(510\) 53.5100 70.3913i 0.104922 0.138022i
\(511\) 9.92972 + 91.3023i 0.0194319 + 0.178674i
\(512\) −418.491 116.193i −0.817365 0.226940i
\(513\) −23.6579 + 34.8928i −0.0461167 + 0.0680171i
\(514\) 312.251 + 518.965i 0.607493 + 1.00966i
\(515\) −193.621 + 10.4978i −0.375963 + 0.0203841i
\(516\) −35.8349 37.8304i −0.0694474 0.0733148i
\(517\) −34.3728 + 26.1295i −0.0664850 + 0.0505406i
\(518\) 26.3548 5.80113i 0.0508780 0.0111991i
\(519\) 300.729 255.441i 0.579438 0.492179i
\(520\) 13.5775 250.422i 0.0261106 0.481581i
\(521\) 129.023 + 243.364i 0.247646 + 0.467110i 0.975906 0.218191i \(-0.0700156\pi\)
−0.728260 + 0.685301i \(0.759671\pi\)
\(522\) 42.2980 192.162i 0.0810307 0.368126i
\(523\) 585.607 270.931i 1.11971 0.518032i 0.229373 0.973338i \(-0.426332\pi\)
0.890335 + 0.455306i \(0.150470\pi\)
\(524\) −15.3137 + 25.4515i −0.0292246 + 0.0485716i
\(525\) 14.1608 26.7101i 0.0269729 0.0508763i
\(526\) 278.270 + 236.365i 0.529031 + 0.449363i
\(527\) 16.2896 17.1967i 0.0309101 0.0326314i
\(528\) 29.1196 267.750i 0.0551508 0.507103i
\(529\) 93.5003 234.668i 0.176749 0.443607i
\(530\) 460.747i 0.869333i
\(531\) 38.4476 + 172.774i 0.0724061 + 0.325374i
\(532\) −25.0174 −0.0470252
\(533\) −157.740 62.8495i −0.295948 0.117916i
\(534\) −102.171 11.1117i −0.191331 0.0208085i
\(535\) 431.671 + 408.901i 0.806862 + 0.764300i
\(536\) 237.560 279.677i 0.443208 0.521785i
\(537\) 91.9584 + 48.7533i 0.171245 + 0.0907882i
\(538\) 461.756 + 277.829i 0.858282 + 0.516411i
\(539\) −389.873 842.697i −0.723327 1.56345i
\(540\) 31.4102 + 6.91391i 0.0581670 + 0.0128035i
\(541\) 683.800 362.528i 1.26396 0.670107i 0.304647 0.952465i \(-0.401461\pi\)
0.959309 + 0.282358i \(0.0911166\pi\)
\(542\) 784.649 + 42.5424i 1.44769 + 0.0784916i
\(543\) −325.468 383.170i −0.599388 0.705654i
\(544\) −39.6476 180.121i −0.0728816 0.331104i
\(545\) 118.982 + 156.519i 0.218316 + 0.287190i
\(546\) −28.4015 + 26.9033i −0.0520173 + 0.0492734i
\(547\) 31.6129 + 583.065i 0.0577932 + 1.06593i 0.873299 + 0.487184i \(0.161976\pi\)
−0.815506 + 0.578748i \(0.803541\pi\)
\(548\) −328.021 + 197.364i −0.598578 + 0.360152i
\(549\) −204.277 138.503i −0.372088 0.252282i
\(550\) 75.2788 271.130i 0.136871 0.492963i
\(551\) −336.707 + 36.6191i −0.611084 + 0.0664594i
\(552\) 335.025 + 254.679i 0.606929 + 0.461376i
\(553\) −67.3255 31.1481i −0.121746 0.0563257i
\(554\) −628.695 + 426.266i −1.13483 + 0.769433i
\(555\) 19.0679 + 56.5914i 0.0343565 + 0.101966i
\(556\) −40.1830 245.106i −0.0722717 0.440838i
\(557\) −93.5475 + 570.614i −0.167949 + 1.02444i 0.759504 + 0.650503i \(0.225442\pi\)
−0.927453 + 0.373940i \(0.878007\pi\)
\(558\) −13.1578 4.43339i −0.0235803 0.00794514i
\(559\) 37.5237 + 135.148i 0.0671265 + 0.241768i
\(560\) −22.6663 56.8881i −0.0404755 0.101586i
\(561\) 267.272 106.491i 0.476420 0.189823i
\(562\) 90.6979 25.1821i 0.161384 0.0448081i
\(563\) 52.7202 156.468i 0.0936415 0.277918i −0.890589 0.454809i \(-0.849707\pi\)
0.984230 + 0.176891i \(0.0566040\pi\)
\(564\) 5.47183 + 0.897061i 0.00970183 + 0.00159053i
\(565\) −77.6696 + 12.7333i −0.137468 + 0.0225368i
\(566\) 60.3418 20.3315i 0.106611 0.0359214i
\(567\) −10.1681 14.9968i −0.0179331 0.0264493i
\(568\) 358.682 775.278i 0.631482 1.36493i
\(569\) 184.524 242.737i 0.324295 0.426603i −0.604838 0.796348i \(-0.706762\pi\)
0.929133 + 0.369746i \(0.120555\pi\)
\(570\) 9.64593 + 88.6928i 0.0169227 + 0.155601i
\(571\) 398.229 + 110.568i 0.697424 + 0.193639i 0.598106 0.801417i \(-0.295920\pi\)
0.0993181 + 0.995056i \(0.468334\pi\)
\(572\) 126.801 187.017i 0.221680 0.326953i
\(573\) 171.671 + 285.320i 0.299601 + 0.497941i
\(574\) −75.0984 + 4.07172i −0.130833 + 0.00709358i
\(575\) 166.689 + 175.972i 0.289894 + 0.306038i
\(576\) −157.973 + 120.088i −0.274259 + 0.208486i
\(577\) 897.838 197.629i 1.55605 0.342512i 0.648085 0.761568i \(-0.275570\pi\)
0.907960 + 0.419056i \(0.137639\pi\)
\(578\) 268.637 228.182i 0.464769 0.394779i
\(579\) 4.11958 75.9811i 0.00711498 0.131228i
\(580\) 121.034 + 228.294i 0.208679 + 0.393611i
\(581\) 22.2612 101.134i 0.0383153 0.174068i
\(582\) −305.398 + 141.292i −0.524739 + 0.242770i
\(583\) −772.910 + 1284.59i −1.32575 + 2.20341i
\(584\) 185.708 350.282i 0.317993 0.599798i
\(585\) −65.9813 56.0450i −0.112789 0.0958035i
\(586\) −532.054 + 561.683i −0.907943 + 0.958504i
\(587\) −7.24664 + 66.6317i −0.0123452 + 0.113512i −0.998689 0.0511865i \(-0.983700\pi\)
0.986344 + 0.164699i \(0.0526652\pi\)
\(588\) −44.1361 + 110.773i −0.0750614 + 0.188390i
\(589\) 23.9001i 0.0405774i
\(590\) 298.723 + 226.000i 0.506311 + 0.383051i
\(591\) 124.200 0.210152
\(592\) −59.6603 23.7708i −0.100778 0.0401534i
\(593\) 358.569 + 38.9967i 0.604670 + 0.0657618i 0.405333 0.914169i \(-0.367156\pi\)
0.199337 + 0.979931i \(0.436121\pi\)
\(594\) −122.435 115.976i −0.206119 0.195246i
\(595\) 42.3491 49.8573i 0.0711750 0.0837937i
\(596\) 325.201 + 172.411i 0.545640 + 0.289280i
\(597\) −24.5867 14.7933i −0.0411837 0.0247794i
\(598\) −131.701 284.666i −0.220235 0.476031i
\(599\) 777.556 + 171.153i 1.29809 + 0.285731i 0.809674 0.586880i \(-0.199644\pi\)
0.488416 + 0.872611i \(0.337575\pi\)
\(600\) −115.304 + 61.1304i −0.192174 + 0.101884i
\(601\) 913.753 + 49.5422i 1.52039 + 0.0824330i 0.795297 0.606220i \(-0.207315\pi\)
0.725091 + 0.688653i \(0.241798\pi\)
\(602\) 40.2189 + 47.3493i 0.0668087 + 0.0786533i
\(603\) −27.2302 123.708i −0.0451579 0.205155i
\(604\) 247.528 + 325.618i 0.409815 + 0.539102i
\(605\) −897.012 + 849.695i −1.48266 + 1.40445i
\(606\) −26.7988 494.275i −0.0442225 0.815636i
\(607\) 543.746 327.161i 0.895792 0.538980i 0.00838367 0.999965i \(-0.497331\pi\)
0.887408 + 0.460985i \(0.152504\pi\)
\(608\) 154.025 + 104.432i 0.253331 + 0.171763i
\(609\) 38.9437 140.263i 0.0639470 0.230316i
\(610\) −519.244 + 56.4712i −0.851220 + 0.0925758i
\(611\) −11.8819 9.03235i −0.0194466 0.0147829i
\(612\) −33.5329 15.5140i −0.0547924 0.0253497i
\(613\) 249.855 169.406i 0.407593 0.276355i −0.340113 0.940385i \(-0.610465\pi\)
0.747707 + 0.664029i \(0.231155\pi\)
\(614\) 134.472 + 399.100i 0.219010 + 0.649999i
\(615\) −26.9256 164.239i −0.0437814 0.267055i
\(616\) 58.4741 356.676i 0.0949255 0.579020i
\(617\) −459.363 154.777i −0.744510 0.250855i −0.0786199 0.996905i \(-0.525051\pi\)
−0.665890 + 0.746050i \(0.731948\pi\)
\(618\) −34.9322 125.814i −0.0565246 0.203583i
\(619\) 402.488 + 1010.17i 0.650224 + 1.63194i 0.769175 + 0.639038i \(0.220667\pi\)
−0.118952 + 0.992900i \(0.537953\pi\)
\(620\) 16.9387 6.74901i 0.0273205 0.0108855i
\(621\) 139.975 38.8639i 0.225403 0.0625828i
\(622\) 192.570 571.528i 0.309599 0.918856i
\(623\) −75.0320 12.3009i −0.120437 0.0197446i
\(624\) 91.8743 15.0620i 0.147235 0.0241379i
\(625\) 315.649 106.355i 0.505039 0.170167i
\(626\) 423.289 + 624.305i 0.676181 + 0.997292i
\(627\) −121.890 + 263.462i −0.194403 + 0.420194i
\(628\) 96.7579 127.283i 0.154073 0.202680i
\(629\) −7.41732 68.2011i −0.0117922 0.108428i
\(630\) −36.9469 10.2583i −0.0586459 0.0162829i
\(631\) 214.643 316.574i 0.340163 0.501702i −0.618679 0.785644i \(-0.712332\pi\)
0.958842 + 0.283942i \(0.0916422\pi\)
\(632\) 165.098 + 274.395i 0.261231 + 0.434169i
\(633\) 179.140 9.71269i 0.283002 0.0153439i
\(634\) −172.092 181.675i −0.271438 0.286554i
\(635\) 101.364 77.0553i 0.159629 0.121347i
\(636\) 188.028 41.3881i 0.295641 0.0650756i
\(637\) 244.628 207.789i 0.384031 0.326199i
\(638\) 73.3529 1352.92i 0.114973 2.12056i
\(639\) −138.122 260.526i −0.216153 0.407708i
\(640\) −10.5734 + 48.0353i −0.0165209 + 0.0750551i
\(641\) 762.815 352.916i 1.19004 0.550571i 0.277963 0.960592i \(-0.410341\pi\)
0.912076 + 0.410021i \(0.134479\pi\)
\(642\) −206.424 + 343.079i −0.321533 + 0.534391i
\(643\) 151.276 285.336i 0.235265 0.443757i −0.737565 0.675276i \(-0.764025\pi\)
0.972830 + 0.231519i \(0.0743694\pi\)
\(644\) 65.7050 + 55.8103i 0.102026 + 0.0866620i
\(645\) −94.5435 + 99.8084i −0.146579 + 0.154742i
\(646\) 11.0812 101.890i 0.0171536 0.157725i
\(647\) 173.238 434.795i 0.267756 0.672018i −0.732203 0.681087i \(-0.761508\pi\)
0.999959 + 0.00906924i \(0.00288687\pi\)
\(648\) 78.2168i 0.120705i
\(649\) 453.738 + 1131.21i 0.699134 + 1.74301i
\(650\) 97.2686 0.149644
\(651\) −9.54259 3.80211i −0.0146584 0.00584042i
\(652\) 195.154 + 21.2243i 0.299316 + 0.0325526i
\(653\) −743.419 704.204i −1.13847 1.07841i −0.996067 0.0886046i \(-0.971759\pi\)
−0.142401 0.989809i \(-0.545482\pi\)
\(654\) −85.7102 + 100.906i −0.131055 + 0.154290i
\(655\) 69.2378 + 36.7076i 0.105707 + 0.0560421i
\(656\) 153.364 + 92.2760i 0.233786 + 0.140665i
\(657\) −57.4650 124.209i −0.0874657 0.189054i
\(658\) −6.45619 1.42112i −0.00981184 0.00215975i
\(659\) 810.780 429.848i 1.23032 0.652274i 0.278943 0.960308i \(-0.410016\pi\)
0.951375 + 0.308034i \(0.0996710\pi\)
\(660\) 221.143 + 11.9900i 0.335066 + 0.0181667i
\(661\) −118.506 139.516i −0.179283 0.211069i 0.665179 0.746684i \(-0.268355\pi\)
−0.844462 + 0.535616i \(0.820080\pi\)
\(662\) −1.60497 7.29145i −0.00242442 0.0110143i
\(663\) 60.1864 + 79.1738i 0.0907789 + 0.119418i
\(664\) −324.544 + 307.425i −0.488771 + 0.462989i
\(665\) 3.57337 + 65.9069i 0.00537348 + 0.0991081i
\(666\) −34.4569 + 20.7320i −0.0517371 + 0.0311292i
\(667\) 966.010 + 654.971i 1.44829 + 0.981965i
\(668\) −34.4649 + 124.131i −0.0515941 + 0.185825i
\(669\) −156.909 + 17.0648i −0.234542 + 0.0255080i
\(670\) −213.408 162.228i −0.318519 0.242132i
\(671\) −1542.41 713.596i −2.29868 1.06348i
\(672\) −66.1994 + 44.8843i −0.0985110 + 0.0667921i
\(673\) 17.4230 + 51.7096i 0.0258886 + 0.0768345i 0.959818 0.280622i \(-0.0905407\pi\)
−0.933930 + 0.357456i \(0.883644\pi\)
\(674\) 153.526 + 936.468i 0.227784 + 1.38942i
\(675\) −7.28830 + 44.4567i −0.0107975 + 0.0658617i
\(676\) −171.287 57.7132i −0.253383 0.0853745i
\(677\) −41.2744 148.657i −0.0609667 0.219582i 0.926791 0.375577i \(-0.122555\pi\)
−0.987758 + 0.155995i \(0.950142\pi\)
\(678\) −19.6174 49.2359i −0.0289342 0.0726194i
\(679\) −231.267 + 92.1453i −0.340600 + 0.135707i
\(680\) −272.098 + 75.5477i −0.400144 + 0.111100i
\(681\) −102.771 + 305.014i −0.150912 + 0.447891i
\(682\) −94.3501 15.4679i −0.138343 0.0226802i
\(683\) −1233.50 + 202.222i −1.80600 + 0.296079i −0.968252 0.249977i \(-0.919577\pi\)
−0.837749 + 0.546055i \(0.816129\pi\)
\(684\) 35.3285 11.9036i 0.0516499 0.0174029i
\(685\) 566.796 + 835.961i 0.827439 + 1.22038i
\(686\) 124.769 269.683i 0.181879 0.393124i
\(687\) −208.301 + 274.015i −0.303203 + 0.398857i
\(688\) −15.9851 146.980i −0.0232341 0.213634i
\(689\) −499.343 138.642i −0.724737 0.201222i
\(690\) 172.527 254.459i 0.250040 0.368781i
\(691\) −131.577 218.683i −0.190416 0.316473i 0.746912 0.664923i \(-0.231536\pi\)
−0.937327 + 0.348450i \(0.886708\pi\)
\(692\) −348.416 + 18.8906i −0.503491 + 0.0272985i
\(693\) −85.8016 90.5797i −0.123812 0.130707i
\(694\) 512.804 389.823i 0.738911 0.561705i
\(695\) −639.977 + 140.870i −0.920830 + 0.202690i
\(696\) −478.945 + 406.819i −0.688139 + 0.584510i
\(697\) −10.3512 + 190.916i −0.0148510 + 0.273911i
\(698\) −77.2041 145.622i −0.110608 0.208628i
\(699\) 73.7302 334.960i 0.105480 0.479199i
\(700\) −24.2635 + 11.2255i −0.0346621 + 0.0160364i
\(701\) −293.870 + 488.416i −0.419215 + 0.696742i −0.992450 0.122650i \(-0.960861\pi\)
0.573235 + 0.819391i \(0.305688\pi\)
\(702\) 27.3064 51.5054i 0.0388981 0.0733695i
\(703\) 52.7569 + 44.8121i 0.0750454 + 0.0637441i
\(704\) −939.690 + 992.018i −1.33479 + 1.40912i
\(705\) 1.58168 14.5433i 0.00224352 0.0206289i
\(706\) 261.655 656.705i 0.370616 0.930177i
\(707\) 366.212i 0.517980i
\(708\) 65.3955 142.208i 0.0923666 0.200859i
\(709\) −781.596 −1.10239 −0.551196 0.834376i \(-0.685828\pi\)
−0.551196 + 0.834376i \(0.685828\pi\)
\(710\) −579.718 230.981i −0.816504 0.325325i
\(711\) 109.895 + 11.9518i 0.154564 + 0.0168098i
\(712\) 238.292 + 225.722i 0.334680 + 0.317026i
\(713\) 53.3177 62.7705i 0.0747794 0.0880371i
\(714\) 38.9189 + 20.6335i 0.0545082 + 0.0288984i
\(715\) −510.797 307.337i −0.714402 0.429841i
\(716\) −38.6475 83.5352i −0.0539770 0.116669i
\(717\) 434.925 + 95.7341i 0.606589 + 0.133520i
\(718\) 56.2693 29.8321i 0.0783694 0.0415488i
\(719\) −605.524 32.8306i −0.842176 0.0456614i −0.371998 0.928233i \(-0.621327\pi\)
−0.470177 + 0.882572i \(0.655810\pi\)
\(720\) 59.0764 + 69.5501i 0.0820506 + 0.0965974i
\(721\) −20.7664 94.3427i −0.0288022 0.130850i
\(722\) −280.650 369.188i −0.388712 0.511341i
\(723\) 382.948 362.748i 0.529665 0.501726i
\(724\) 24.0692 + 443.930i 0.0332448 + 0.613163i
\(725\) −310.129 + 186.598i −0.427764 + 0.257377i
\(726\) −688.649 466.916i −0.948553 0.643135i
\(727\) −245.483 + 884.149i −0.337665 + 1.21616i 0.578608 + 0.815606i \(0.303596\pi\)
−0.916273 + 0.400554i \(0.868818\pi\)
\(728\) 124.208 13.5084i 0.170616 0.0185556i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) −262.860 121.612i −0.360083 0.166592i
\(731\) 130.721 88.6309i 0.178825 0.121246i
\(732\) 69.6884 + 206.828i 0.0952027 + 0.282551i
\(733\) 85.5043 + 521.553i 0.116650 + 0.711532i 0.978791 + 0.204863i \(0.0656750\pi\)
−0.862141 + 0.506669i \(0.830877\pi\)
\(734\) −63.7759 + 389.016i −0.0868881 + 0.529994i
\(735\) 298.130 + 100.452i 0.405619 + 0.136669i
\(736\) −171.555 617.885i −0.233091 0.839518i
\(737\) −322.852 810.297i −0.438062 1.09945i
\(738\) 104.113 41.4826i 0.141075 0.0562094i
\(739\) 858.993 238.498i 1.16237 0.322731i 0.367803 0.929904i \(-0.380110\pi\)
0.794570 + 0.607173i \(0.207696\pi\)
\(740\) 16.8620 50.0447i 0.0227865 0.0676280i
\(741\) −99.0252 16.2344i −0.133637 0.0219087i
\(742\) −226.515 + 37.1352i −0.305276 + 0.0500474i
\(743\) −119.416 + 40.2360i −0.160722 + 0.0541534i −0.398512 0.917163i \(-0.630473\pi\)
0.237791 + 0.971316i \(0.423577\pi\)
\(744\) 24.8851 + 36.7028i 0.0334477 + 0.0493317i
\(745\) 407.756 881.350i 0.547324 1.18302i
\(746\) 195.983 257.811i 0.262711 0.345591i
\(747\) 16.6842 + 153.409i 0.0223349 + 0.205366i
\(748\) −245.149 68.0653i −0.327739 0.0909963i
\(749\) −166.234 + 245.177i −0.221941 + 0.327339i
\(750\) 190.885 + 317.253i 0.254513 + 0.423004i
\(751\) −229.017 + 12.4170i −0.304950 + 0.0165339i −0.205979 0.978556i \(-0.566038\pi\)
−0.0989709 + 0.995090i \(0.531555\pi\)
\(752\) 10.8192 + 11.4217i 0.0143873 + 0.0151885i
\(753\) −391.627 + 297.707i −0.520089 + 0.395362i
\(754\) 457.408 100.683i 0.606642 0.133532i
\(755\) 822.465 698.608i 1.08936 0.925308i
\(756\) −0.867456 + 15.9993i −0.00114743 + 0.0211631i
\(757\) 229.900 + 433.637i 0.303699 + 0.572836i 0.987647 0.156694i \(-0.0500836\pi\)
−0.683949 + 0.729530i \(0.739739\pi\)
\(758\) −8.76699 + 39.8288i −0.0115659 + 0.0525446i
\(759\) 907.875 420.028i 1.19615 0.553396i
\(760\) 146.897 244.144i 0.193285 0.321243i
\(761\) −556.630 + 1049.92i −0.731445 + 1.37965i 0.186304 + 0.982492i \(0.440349\pi\)
−0.917749 + 0.397160i \(0.869996\pi\)
\(762\) 65.3486 + 55.5076i 0.0857593 + 0.0728446i
\(763\) −67.3588 + 71.1098i −0.0882815 + 0.0931976i
\(764\) 31.8371 292.738i 0.0416717 0.383165i
\(765\) −36.0810 + 90.5565i −0.0471647 + 0.118375i
\(766\) 959.361i 1.25243i
\(767\) −334.820 + 255.742i −0.436532 + 0.333432i
\(768\) 425.146 0.553575
\(769\) −955.333 380.639i −1.24231 0.494980i −0.345924 0.938263i \(-0.612434\pi\)
−0.896382 + 0.443283i \(0.853814\pi\)
\(770\) −262.493 28.5478i −0.340899 0.0370751i
\(771\) −484.757 459.186i −0.628738 0.595572i
\(772\) −43.5627 + 51.2859i −0.0564283 + 0.0664326i
\(773\) 197.453 + 104.683i 0.255437 + 0.135424i 0.591207 0.806520i \(-0.298652\pi\)