Properties

Label 177.3.g.a.10.7
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.7
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.7

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.49154 - 0.594282i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(-1.03247 - 0.978012i) q^{4} +(-2.12045 + 2.49638i) q^{5} +(2.45698 + 1.30261i) q^{6} +(6.56905 + 3.95247i) q^{7} +(3.65540 + 7.90102i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(-1.49154 - 0.594282i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(-1.03247 - 0.978012i) q^{4} +(-2.12045 + 2.49638i) q^{5} +(2.45698 + 1.30261i) q^{6} +(6.56905 + 3.95247i) q^{7} +(3.65540 + 7.90102i) q^{8} +(2.92986 + 0.644911i) q^{9} +(4.64627 - 2.46330i) q^{10} +(-6.49916 - 0.352374i) q^{11} +(1.59467 + 1.87739i) q^{12} +(-4.42943 - 20.1231i) q^{13} +(-7.44909 - 9.79912i) q^{14} +(4.11868 - 3.90142i) q^{15} +(-0.448751 - 8.27673i) q^{16} +(20.4244 - 12.2890i) q^{17} +(-3.98673 - 2.70307i) q^{18} +(5.98783 - 21.5662i) q^{19} +(4.63080 - 0.503630i) q^{20} +(-10.5711 - 8.03592i) q^{21} +(9.48432 + 4.38792i) q^{22} +(-2.56095 + 1.73637i) q^{23} +(-4.81462 - 14.2893i) q^{24} +(2.30892 + 14.0838i) q^{25} +(-5.35215 + 32.6467i) q^{26} +(-4.92415 - 1.65914i) q^{27} +(-2.91682 - 10.5054i) q^{28} +(5.81698 + 14.5995i) q^{29} +(-8.46170 + 3.37145i) q^{30} +(45.1025 - 12.5226i) q^{31} +(6.86950 - 20.3880i) q^{32} +(11.1249 + 1.82384i) q^{33} +(-37.7668 + 6.19156i) q^{34} +(-23.7962 + 8.01787i) q^{35} +(-2.39428 - 3.53130i) q^{36} +(28.6902 - 62.0128i) q^{37} +(-21.7475 + 28.6083i) q^{38} +(3.85862 + 35.4794i) q^{39} +(-27.4750 - 7.62841i) q^{40} +(-4.63693 + 6.83896i) q^{41} +(10.9915 + 18.2680i) q^{42} +(16.3229 - 0.885000i) q^{43} +(6.36560 + 6.72008i) q^{44} +(-7.82256 + 5.94655i) q^{45} +(4.85164 - 1.06793i) q^{46} +(-6.71953 + 5.70762i) q^{47} +(-0.777260 + 14.3357i) q^{48} +(4.57844 + 8.63585i) q^{49} +(4.92590 - 22.3786i) q^{50} +(-37.4701 + 17.3355i) q^{51} +(-15.1074 + 25.1086i) q^{52} +(-22.7732 + 42.9549i) q^{53} +(6.35855 + 5.40100i) q^{54} +(14.6608 - 15.4772i) q^{55} +(-7.21600 + 66.3501i) q^{56} +(-14.3491 + 36.0135i) q^{57} -25.2326i q^{58} +(46.1579 - 36.7484i) q^{59} -8.06807 q^{60} +(-15.8347 - 6.30911i) q^{61} +(-74.7139 - 8.12563i) q^{62} +(16.6974 + 15.8166i) q^{63} +(-43.8268 + 51.5968i) q^{64} +(59.6273 + 31.6124i) q^{65} +(-15.5093 - 9.33165i) q^{66} +(23.6417 + 51.1006i) q^{67} +(-33.1064 - 7.28728i) q^{68} +(4.73486 - 2.51026i) q^{69} +(40.2577 + 2.18271i) q^{70} +(19.6460 + 23.1291i) q^{71} +(5.61436 + 25.5063i) q^{72} +(-9.54057 - 12.5504i) q^{73} +(-79.6455 + 75.4442i) q^{74} +(-1.33828 - 24.6832i) q^{75} +(-27.2743 + 16.4104i) q^{76} +(-41.3006 - 28.0025i) q^{77} +(15.3295 - 55.2119i) q^{78} +(79.9293 - 8.69284i) q^{79} +(21.6134 + 16.4301i) q^{80} +(8.16818 + 3.77900i) q^{81} +(10.9804 - 7.44491i) q^{82} +(-35.9500 - 106.696i) q^{83} +(3.05514 + 18.6355i) q^{84} +(-12.6309 + 77.0452i) q^{85} +(-24.8721 - 8.38038i) q^{86} +(-7.28222 - 26.2282i) q^{87} +(-20.9729 - 52.6381i) q^{88} +(150.628 - 60.0158i) q^{89} +(15.2016 - 4.22069i) q^{90} +(50.4388 - 149.697i) q^{91} +(4.34230 + 0.711884i) q^{92} +(-80.0069 + 13.1165i) q^{93} +(13.4143 - 4.51982i) q^{94} +(41.1406 + 60.6779i) q^{95} +(-15.6466 + 33.8195i) q^{96} +(-109.000 + 143.387i) q^{97} +(-1.69677 - 15.6016i) q^{98} +(-18.8144 - 5.22379i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.49154 0.594282i −0.745768 0.297141i −0.0338720 0.999426i \(-0.510784\pi\)
−0.711896 + 0.702285i \(0.752163\pi\)
\(3\) −1.72190 0.187268i −0.573966 0.0624225i
\(4\) −1.03247 0.978012i −0.258119 0.244503i
\(5\) −2.12045 + 2.49638i −0.424089 + 0.499276i −0.932164 0.362037i \(-0.882082\pi\)
0.508075 + 0.861313i \(0.330357\pi\)
\(6\) 2.45698 + 1.30261i 0.409497 + 0.217102i
\(7\) 6.56905 + 3.95247i 0.938436 + 0.564638i 0.900602 0.434646i \(-0.143126\pi\)
0.0378346 + 0.999284i \(0.487954\pi\)
\(8\) 3.65540 + 7.90102i 0.456925 + 0.987627i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) 4.64627 2.46330i 0.464627 0.246330i
\(11\) −6.49916 0.352374i −0.590833 0.0320340i −0.243701 0.969850i \(-0.578362\pi\)
−0.347132 + 0.937816i \(0.612844\pi\)
\(12\) 1.59467 + 1.87739i 0.132889 + 0.156449i
\(13\) −4.42943 20.1231i −0.340726 1.54793i −0.765984 0.642860i \(-0.777748\pi\)
0.425258 0.905072i \(-0.360183\pi\)
\(14\) −7.44909 9.79912i −0.532078 0.699937i
\(15\) 4.11868 3.90142i 0.274579 0.260095i
\(16\) −0.448751 8.27673i −0.0280470 0.517296i
\(17\) 20.4244 12.2890i 1.20144 0.722880i 0.233081 0.972457i \(-0.425119\pi\)
0.968355 + 0.249578i \(0.0802918\pi\)
\(18\) −3.98673 2.70307i −0.221485 0.150171i
\(19\) 5.98783 21.5662i 0.315149 1.13506i −0.621102 0.783730i \(-0.713315\pi\)
0.936250 0.351333i \(-0.114272\pi\)
\(20\) 4.63080 0.503630i 0.231540 0.0251815i
\(21\) −10.5711 8.03592i −0.503384 0.382663i
\(22\) 9.48432 + 4.38792i 0.431106 + 0.199451i
\(23\) −2.56095 + 1.73637i −0.111346 + 0.0754942i −0.615589 0.788067i \(-0.711082\pi\)
0.504243 + 0.863562i \(0.331771\pi\)
\(24\) −4.81462 14.2893i −0.200609 0.595387i
\(25\) 2.30892 + 14.0838i 0.0923567 + 0.563351i
\(26\) −5.35215 + 32.6467i −0.205852 + 1.25564i
\(27\) −4.92415 1.65914i −0.182376 0.0614496i
\(28\) −2.91682 10.5054i −0.104172 0.375194i
\(29\) 5.81698 + 14.5995i 0.200585 + 0.503431i 0.994517 0.104576i \(-0.0333485\pi\)
−0.793932 + 0.608007i \(0.791969\pi\)
\(30\) −8.46170 + 3.37145i −0.282057 + 0.112382i
\(31\) 45.1025 12.5226i 1.45492 0.403956i 0.552028 0.833826i \(-0.313854\pi\)
0.902891 + 0.429870i \(0.141441\pi\)
\(32\) 6.86950 20.3880i 0.214672 0.637124i
\(33\) 11.1249 + 1.82384i 0.337118 + 0.0552677i
\(34\) −37.7668 + 6.19156i −1.11079 + 0.182105i
\(35\) −23.7962 + 8.01787i −0.679891 + 0.229082i
\(36\) −2.39428 3.53130i −0.0665077 0.0980915i
\(37\) 28.6902 62.0128i 0.775410 1.67602i 0.0392356 0.999230i \(-0.487508\pi\)
0.736175 0.676792i \(-0.236630\pi\)
\(38\) −21.7475 + 28.6083i −0.572302 + 0.752850i
\(39\) 3.85862 + 35.4794i 0.0989390 + 0.909729i
\(40\) −27.4750 7.62841i −0.686876 0.190710i
\(41\) −4.63693 + 6.83896i −0.113096 + 0.166804i −0.880024 0.474929i \(-0.842474\pi\)
0.766928 + 0.641733i \(0.221784\pi\)
\(42\) 10.9915 + 18.2680i 0.261703 + 0.434954i
\(43\) 16.3229 0.885000i 0.379602 0.0205814i 0.136649 0.990620i \(-0.456367\pi\)
0.242953 + 0.970038i \(0.421884\pi\)
\(44\) 6.36560 + 6.72008i 0.144673 + 0.152729i
\(45\) −7.82256 + 5.94655i −0.173835 + 0.132146i
\(46\) 4.85164 1.06793i 0.105470 0.0232158i
\(47\) −6.71953 + 5.70762i −0.142969 + 0.121439i −0.716017 0.698083i \(-0.754037\pi\)
0.573048 + 0.819522i \(0.305761\pi\)
\(48\) −0.777260 + 14.3357i −0.0161929 + 0.298661i
\(49\) 4.57844 + 8.63585i 0.0934375 + 0.176242i
\(50\) 4.92590 22.3786i 0.0985181 0.447572i
\(51\) −37.4701 + 17.3355i −0.734707 + 0.339912i
\(52\) −15.1074 + 25.1086i −0.290526 + 0.482859i
\(53\) −22.7732 + 42.9549i −0.429684 + 0.810470i −0.999940 0.0109975i \(-0.996499\pi\)
0.570256 + 0.821467i \(0.306844\pi\)
\(54\) 6.35855 + 5.40100i 0.117751 + 0.100019i
\(55\) 14.6608 15.4772i 0.266560 0.281404i
\(56\) −7.21600 + 66.3501i −0.128857 + 1.18482i
\(57\) −14.3491 + 36.0135i −0.251738 + 0.631815i
\(58\) 25.2326i 0.435045i
\(59\) 46.1579 36.7484i 0.782338 0.622854i
\(60\) −8.06807 −0.134468
\(61\) −15.8347 6.30911i −0.259585 0.103428i 0.236715 0.971579i \(-0.423929\pi\)
−0.496300 + 0.868151i \(0.665308\pi\)
\(62\) −74.7139 8.12563i −1.20506 0.131059i
\(63\) 16.6974 + 15.8166i 0.265038 + 0.251058i
\(64\) −43.8268 + 51.5968i −0.684793 + 0.806201i
\(65\) 59.6273 + 31.6124i 0.917344 + 0.486345i
\(66\) −15.5093 9.33165i −0.234990 0.141389i
\(67\) 23.6417 + 51.1006i 0.352861 + 0.762696i 1.00000 0.000324288i \(0.000103224\pi\)
−0.647139 + 0.762372i \(0.724035\pi\)
\(68\) −33.1064 7.28728i −0.486859 0.107166i
\(69\) 4.73486 2.51026i 0.0686211 0.0363806i
\(70\) 40.2577 + 2.18271i 0.575110 + 0.0311816i
\(71\) 19.6460 + 23.1291i 0.276705 + 0.325762i 0.882906 0.469549i \(-0.155583\pi\)
−0.606202 + 0.795311i \(0.707308\pi\)
\(72\) 5.61436 + 25.5063i 0.0779772 + 0.354254i
\(73\) −9.54057 12.5504i −0.130693 0.171923i 0.726092 0.687598i \(-0.241335\pi\)
−0.856785 + 0.515674i \(0.827542\pi\)
\(74\) −79.6455 + 75.4442i −1.07629 + 1.01952i
\(75\) −1.33828 24.6832i −0.0178438 0.329109i
\(76\) −27.2743 + 16.4104i −0.358872 + 0.215926i
\(77\) −41.3006 28.0025i −0.536371 0.363669i
\(78\) 15.3295 55.2119i 0.196532 0.707845i
\(79\) 79.9293 8.69284i 1.01176 0.110036i 0.412808 0.910818i \(-0.364548\pi\)
0.598956 + 0.800782i \(0.295583\pi\)
\(80\) 21.6134 + 16.4301i 0.270168 + 0.205376i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) 10.9804 7.44491i 0.133907 0.0907915i
\(83\) −35.9500 106.696i −0.433133 1.28549i −0.912931 0.408113i \(-0.866187\pi\)
0.479799 0.877379i \(-0.340710\pi\)
\(84\) 3.05514 + 18.6355i 0.0363707 + 0.221851i
\(85\) −12.6309 + 77.0452i −0.148599 + 0.906414i
\(86\) −24.8721 8.38038i −0.289210 0.0974463i
\(87\) −7.28222 26.2282i −0.0837037 0.301473i
\(88\) −20.9729 52.6381i −0.238329 0.598160i
\(89\) 150.628 60.0158i 1.69245 0.674335i 0.693517 0.720440i \(-0.256060\pi\)
0.998937 + 0.0461050i \(0.0146809\pi\)
\(90\) 15.2016 4.22069i 0.168906 0.0468966i
\(91\) 50.4388 149.697i 0.554272 1.64502i
\(92\) 4.34230 + 0.711884i 0.0471989 + 0.00773787i
\(93\) −80.0069 + 13.1165i −0.860289 + 0.141037i
\(94\) 13.4143 4.51982i 0.142706 0.0480832i
\(95\) 41.1406 + 60.6779i 0.433059 + 0.638714i
\(96\) −15.6466 + 33.8195i −0.162985 + 0.352287i
\(97\) −109.000 + 143.387i −1.12371 + 1.47821i −0.266073 + 0.963953i \(0.585726\pi\)
−0.857635 + 0.514259i \(0.828067\pi\)
\(98\) −1.69677 15.6016i −0.0173140 0.159200i
\(99\) −18.8144 5.22379i −0.190044 0.0527656i
\(100\) 11.3902 16.7993i 0.113902 0.167993i
\(101\) −85.7351 142.493i −0.848862 1.41082i −0.910848 0.412743i \(-0.864571\pi\)
0.0619852 0.998077i \(-0.480257\pi\)
\(102\) 66.1901 3.58872i 0.648922 0.0351835i
\(103\) 69.0802 + 72.9271i 0.670681 + 0.708030i 0.969173 0.246383i \(-0.0792420\pi\)
−0.298491 + 0.954412i \(0.596483\pi\)
\(104\) 142.802 108.555i 1.37309 1.04380i
\(105\) 42.4761 9.34969i 0.404534 0.0890447i
\(106\) 59.4944 50.5350i 0.561268 0.476746i
\(107\) 1.96047 36.1588i 0.0183222 0.337932i −0.974973 0.222324i \(-0.928636\pi\)
0.993295 0.115608i \(-0.0368816\pi\)
\(108\) 3.46140 + 6.52890i 0.0320500 + 0.0604528i
\(109\) −8.04452 + 36.5466i −0.0738029 + 0.335290i −0.999026 0.0441344i \(-0.985947\pi\)
0.925223 + 0.379425i \(0.123878\pi\)
\(110\) −31.0649 + 14.3722i −0.282408 + 0.130656i
\(111\) −61.0145 + 101.407i −0.549680 + 0.913576i
\(112\) 29.7656 56.1439i 0.265765 0.501285i
\(113\) −109.553 93.0554i −0.969499 0.823500i 0.0148216 0.999890i \(-0.495282\pi\)
−0.984320 + 0.176391i \(0.943558\pi\)
\(114\) 42.8043 45.1880i 0.375476 0.396386i
\(115\) 1.09572 10.0750i 0.00952799 0.0876085i
\(116\) 8.27262 20.7627i 0.0713157 0.178989i
\(117\) 61.8145i 0.528329i
\(118\) −90.6851 + 27.3807i −0.768518 + 0.232040i
\(119\) 182.741 1.53564
\(120\) 45.8806 + 18.2805i 0.382339 + 0.152338i
\(121\) −78.1757 8.50212i −0.646080 0.0702655i
\(122\) 19.8686 + 18.8205i 0.162857 + 0.154267i
\(123\) 9.26503 10.9076i 0.0753255 0.0886800i
\(124\) −58.8145 31.1815i −0.474310 0.251463i
\(125\) −110.218 66.3160i −0.881744 0.530528i
\(126\) −15.5053 33.5141i −0.123058 0.265985i
\(127\) −207.441 45.6613i −1.63340 0.359538i −0.698819 0.715298i \(-0.746291\pi\)
−0.934577 + 0.355761i \(0.884222\pi\)
\(128\) 20.0002 10.6034i 0.156251 0.0828392i
\(129\) −28.2720 1.53287i −0.219163 0.0118827i
\(130\) −70.1496 82.5865i −0.539612 0.635281i
\(131\) 35.1701 + 159.780i 0.268474 + 1.21969i 0.897045 + 0.441939i \(0.145709\pi\)
−0.628571 + 0.777752i \(0.716360\pi\)
\(132\) −9.70245 12.7634i −0.0735034 0.0966921i
\(133\) 124.574 118.003i 0.936647 0.887240i
\(134\) −4.89420 90.2683i −0.0365239 0.673644i
\(135\) 14.5832 8.77444i 0.108024 0.0649959i
\(136\) 171.755 + 116.453i 1.26290 + 0.856269i
\(137\) 32.1210 115.689i 0.234460 0.844448i −0.748885 0.662700i \(-0.769411\pi\)
0.983345 0.181748i \(-0.0581756\pi\)
\(138\) −8.55401 + 0.930304i −0.0619856 + 0.00674134i
\(139\) 166.088 + 126.257i 1.19488 + 0.908322i 0.997406 0.0719866i \(-0.0229339\pi\)
0.197472 + 0.980309i \(0.436727\pi\)
\(140\) 32.4105 + 14.9947i 0.231504 + 0.107105i
\(141\) 12.6392 8.56958i 0.0896396 0.0607772i
\(142\) −15.5576 46.1732i −0.109560 0.325163i
\(143\) 21.6967 + 132.344i 0.151725 + 0.925484i
\(144\) 4.02298 24.5391i 0.0279373 0.170410i
\(145\) −48.7805 16.4361i −0.336417 0.113352i
\(146\) 6.77162 + 24.3892i 0.0463809 + 0.167049i
\(147\) −6.26639 15.7274i −0.0426285 0.106989i
\(148\) −90.2712 + 35.9673i −0.609940 + 0.243022i
\(149\) 28.5581 7.92912i 0.191665 0.0532156i −0.170369 0.985380i \(-0.554496\pi\)
0.362034 + 0.932165i \(0.382082\pi\)
\(150\) −12.6727 + 37.6112i −0.0844846 + 0.250741i
\(151\) 50.7417 + 8.31867i 0.336037 + 0.0550905i 0.327439 0.944872i \(-0.393815\pi\)
0.00859892 + 0.999963i \(0.497263\pi\)
\(152\) 192.283 31.5232i 1.26502 0.207389i
\(153\) 67.7660 22.8330i 0.442915 0.149235i
\(154\) 44.9599 + 66.3109i 0.291948 + 0.430591i
\(155\) −64.3760 + 139.147i −0.415329 + 0.897720i
\(156\) 30.7154 40.4054i 0.196893 0.259009i
\(157\) −10.1005 92.8727i −0.0643345 0.591546i −0.981287 0.192550i \(-0.938324\pi\)
0.916953 0.398996i \(-0.130641\pi\)
\(158\) −124.383 34.5349i −0.787237 0.218575i
\(159\) 47.2573 69.6992i 0.297215 0.438360i
\(160\) 36.3297 + 60.3805i 0.227061 + 0.377378i
\(161\) −23.6859 + 1.28421i −0.147118 + 0.00797648i
\(162\) −9.93734 10.4907i −0.0613416 0.0647575i
\(163\) 113.858 86.5523i 0.698513 0.530996i −0.194570 0.980889i \(-0.562331\pi\)
0.893082 + 0.449893i \(0.148538\pi\)
\(164\) 11.4761 2.52608i 0.0699762 0.0154029i
\(165\) −28.1427 + 23.9047i −0.170562 + 0.144877i
\(166\) −9.78670 + 180.505i −0.0589560 + 1.08738i
\(167\) 18.6581 + 35.1929i 0.111725 + 0.210736i 0.933069 0.359697i \(-0.117120\pi\)
−0.821344 + 0.570433i \(0.806775\pi\)
\(168\) 24.8504 112.897i 0.147919 0.672004i
\(169\) −231.940 + 107.307i −1.37242 + 0.634951i
\(170\) 64.6260 107.409i 0.380153 0.631819i
\(171\) 31.4518 59.3244i 0.183929 0.346926i
\(172\) −17.7185 15.0502i −0.103015 0.0875013i
\(173\) −153.719 + 162.279i −0.888549 + 0.938030i −0.998436 0.0559141i \(-0.982193\pi\)
0.109886 + 0.993944i \(0.464951\pi\)
\(174\) −4.72525 + 43.4480i −0.0271566 + 0.249701i
\(175\) −40.4983 + 101.643i −0.231419 + 0.580817i
\(176\) 53.9499i 0.306534i
\(177\) −86.3610 + 54.6331i −0.487915 + 0.308662i
\(178\) −260.334 −1.46255
\(179\) 89.6612 + 35.7243i 0.500901 + 0.199577i 0.606883 0.794791i \(-0.292420\pi\)
−0.105983 + 0.994368i \(0.533799\pi\)
\(180\) 13.8924 + 1.51089i 0.0771800 + 0.00839383i
\(181\) −54.1198 51.2650i −0.299004 0.283232i 0.523458 0.852051i \(-0.324642\pi\)
−0.822462 + 0.568820i \(0.807400\pi\)
\(182\) −164.193 + 193.304i −0.902162 + 1.06211i
\(183\) 26.0842 + 13.8290i 0.142537 + 0.0755681i
\(184\) −23.0803 13.8870i −0.125437 0.0754727i
\(185\) 93.9717 + 203.116i 0.507955 + 1.09793i
\(186\) 127.128 + 27.9830i 0.683484 + 0.150446i
\(187\) −137.072 + 72.6709i −0.733005 + 0.388614i
\(188\) 12.5199 + 0.678807i 0.0665950 + 0.00361068i
\(189\) −25.7893 30.3615i −0.136451 0.160643i
\(190\) −25.3029 114.952i −0.133173 0.605012i
\(191\) −79.1110 104.069i −0.414194 0.544863i 0.540931 0.841067i \(-0.318072\pi\)
−0.955125 + 0.296205i \(0.904279\pi\)
\(192\) 85.1276 80.6371i 0.443373 0.419985i
\(193\) 5.35284 + 98.7274i 0.0277349 + 0.511541i 0.979088 + 0.203438i \(0.0652115\pi\)
−0.951353 + 0.308103i \(0.900306\pi\)
\(194\) 247.789 149.090i 1.27726 0.768503i
\(195\) −96.7522 65.5996i −0.496165 0.336408i
\(196\) 3.71884 13.3941i 0.0189737 0.0683371i
\(197\) −213.949 + 23.2683i −1.08603 + 0.118113i −0.633582 0.773676i \(-0.718416\pi\)
−0.452451 + 0.891789i \(0.649450\pi\)
\(198\) 24.9579 + 18.9725i 0.126050 + 0.0958209i
\(199\) 199.778 + 92.4271i 1.00391 + 0.464458i 0.851778 0.523902i \(-0.175524\pi\)
0.152131 + 0.988360i \(0.451386\pi\)
\(200\) −102.836 + 69.7247i −0.514181 + 0.348623i
\(201\) −31.1390 92.4174i −0.154921 0.459788i
\(202\) 43.1960 + 263.484i 0.213842 + 1.30438i
\(203\) −19.4921 + 118.896i −0.0960200 + 0.585696i
\(204\) 55.6412 + 18.7477i 0.272751 + 0.0919005i
\(205\) −7.24029 26.0772i −0.0353185 0.127206i
\(206\) −59.6963 149.826i −0.289788 0.727313i
\(207\) −8.62303 + 3.43573i −0.0416571 + 0.0165977i
\(208\) −164.566 + 45.6915i −0.791182 + 0.219671i
\(209\) −46.5153 + 138.052i −0.222561 + 0.660538i
\(210\) −68.9109 11.2974i −0.328147 0.0537970i
\(211\) 70.3583 11.5347i 0.333452 0.0546666i 0.00726961 0.999974i \(-0.497686\pi\)
0.326182 + 0.945307i \(0.394238\pi\)
\(212\) 65.5232 22.0773i 0.309072 0.104138i
\(213\) −29.4971 43.5050i −0.138484 0.204249i
\(214\) −24.4126 + 52.7670i −0.114078 + 0.246575i
\(215\) −32.4025 + 42.6247i −0.150709 + 0.198254i
\(216\) −4.89085 44.9706i −0.0226428 0.208197i
\(217\) 345.776 + 96.0042i 1.59344 + 0.442416i
\(218\) 33.7177 49.7299i 0.154668 0.228119i
\(219\) 14.0776 + 23.3971i 0.0642813 + 0.106836i
\(220\) −30.2738 + 1.64140i −0.137608 + 0.00746089i
\(221\) −337.761 356.570i −1.52833 1.61344i
\(222\) 151.270 114.992i 0.681395 0.517983i
\(223\) −139.104 + 30.6191i −0.623785 + 0.137305i −0.515606 0.856826i \(-0.672433\pi\)
−0.108179 + 0.994131i \(0.534502\pi\)
\(224\) 125.709 106.778i 0.561200 0.476688i
\(225\) −2.31798 + 42.7526i −0.0103021 + 0.190011i
\(226\) 108.102 + 203.901i 0.478325 + 0.902217i
\(227\) −49.5544 + 225.128i −0.218301 + 0.991753i 0.732214 + 0.681075i \(0.238487\pi\)
−0.950515 + 0.310678i \(0.899444\pi\)
\(228\) 50.0367 23.1494i 0.219459 0.101533i
\(229\) 41.3185 68.6719i 0.180430 0.299877i −0.753421 0.657538i \(-0.771598\pi\)
0.933852 + 0.357661i \(0.116425\pi\)
\(230\) −7.62168 + 14.3760i −0.0331377 + 0.0625044i
\(231\) 65.8714 + 55.9517i 0.285158 + 0.242215i
\(232\) −94.0876 + 99.3271i −0.405550 + 0.428134i
\(233\) 33.7380 310.216i 0.144798 1.33140i −0.665947 0.745999i \(-0.731972\pi\)
0.810745 0.585399i \(-0.199062\pi\)
\(234\) −36.7353 + 92.1986i −0.156988 + 0.394011i
\(235\) 28.8772i 0.122882i
\(236\) −83.5973 7.20120i −0.354226 0.0305136i
\(237\) −139.258 −0.587586
\(238\) −272.564 108.600i −1.14523 0.456300i
\(239\) −34.3381 3.73450i −0.143674 0.0156255i 0.0359992 0.999352i \(-0.488539\pi\)
−0.179673 + 0.983726i \(0.557504\pi\)
\(240\) −34.1393 32.3384i −0.142247 0.134744i
\(241\) 15.4714 18.2144i 0.0641968 0.0755783i −0.729126 0.684379i \(-0.760073\pi\)
0.793323 + 0.608801i \(0.208349\pi\)
\(242\) 111.549 + 59.1397i 0.460947 + 0.244379i
\(243\) −13.3571 8.03669i −0.0549674 0.0330728i
\(244\) 10.1785 + 22.0005i 0.0417152 + 0.0901660i
\(245\) −31.2667 6.88232i −0.127619 0.0280911i
\(246\) −20.3013 + 10.7631i −0.0825258 + 0.0437524i
\(247\) −460.502 24.9677i −1.86438 0.101084i
\(248\) 263.809 + 310.580i 1.06375 + 1.25234i
\(249\) 41.9215 + 190.452i 0.168360 + 0.764865i
\(250\) 124.984 + 164.413i 0.499935 + 0.657653i
\(251\) 255.367 241.897i 1.01740 0.963732i 0.0180517 0.999837i \(-0.494254\pi\)
0.999348 + 0.0361049i \(0.0114950\pi\)
\(252\) −1.77080 32.6606i −0.00702700 0.129605i
\(253\) 17.2559 10.3825i 0.0682050 0.0410376i
\(254\) 282.270 + 191.384i 1.11130 + 0.753481i
\(255\) 36.1772 130.299i 0.141871 0.510975i
\(256\) 233.072 25.3481i 0.910438 0.0990161i
\(257\) −209.275 159.086i −0.814298 0.619013i 0.112891 0.993607i \(-0.463989\pi\)
−0.927189 + 0.374594i \(0.877782\pi\)
\(258\) 41.2578 + 19.0879i 0.159914 + 0.0739841i
\(259\) 433.571 293.968i 1.67402 1.13501i
\(260\) −30.6464 90.9553i −0.117871 0.349828i
\(261\) 7.62755 + 46.5260i 0.0292243 + 0.178260i
\(262\) 42.4966 259.218i 0.162201 0.989381i
\(263\) 234.171 + 78.9013i 0.890383 + 0.300005i 0.727065 0.686569i \(-0.240884\pi\)
0.163318 + 0.986574i \(0.447780\pi\)
\(264\) 26.2558 + 94.5649i 0.0994539 + 0.358201i
\(265\) −58.9424 147.934i −0.222424 0.558242i
\(266\) −255.934 + 101.973i −0.962157 + 0.383358i
\(267\) −270.606 + 75.1333i −1.01350 + 0.281398i
\(268\) 25.5676 75.8820i 0.0954016 0.283142i
\(269\) 351.335 + 57.5984i 1.30608 + 0.214120i 0.774330 0.632782i \(-0.218087\pi\)
0.531747 + 0.846903i \(0.321536\pi\)
\(270\) −26.9659 + 4.42084i −0.0998737 + 0.0163735i
\(271\) −91.8056 + 30.9329i −0.338766 + 0.114144i −0.483543 0.875321i \(-0.660650\pi\)
0.144777 + 0.989464i \(0.453754\pi\)
\(272\) −110.878 163.533i −0.407639 0.601223i
\(273\) −114.884 + 248.317i −0.420820 + 0.909587i
\(274\) −116.662 + 153.466i −0.425773 + 0.560094i
\(275\) −10.0433 92.3464i −0.0365210 0.335805i
\(276\) −7.34369 2.03896i −0.0266076 0.00738755i
\(277\) 126.492 186.562i 0.456650 0.673508i −0.527761 0.849393i \(-0.676968\pi\)
0.984411 + 0.175885i \(0.0562787\pi\)
\(278\) −172.694 287.020i −0.621201 1.03244i
\(279\) 140.220 7.60251i 0.502581 0.0272491i
\(280\) −150.334 158.706i −0.536907 0.566806i
\(281\) −336.473 + 255.780i −1.19741 + 0.910251i −0.997577 0.0695782i \(-0.977835\pi\)
−0.199838 + 0.979829i \(0.564042\pi\)
\(282\) −23.9445 + 5.27059i −0.0849097 + 0.0186900i
\(283\) −278.804 + 236.818i −0.985174 + 0.836814i −0.986596 0.163185i \(-0.947823\pi\)
0.00142148 + 0.999999i \(0.499548\pi\)
\(284\) 2.33650 43.0943i 0.00822713 0.151740i
\(285\) −59.4769 112.185i −0.208691 0.393633i
\(286\) 46.2884 210.290i 0.161847 0.735280i
\(287\) −57.4910 + 26.5982i −0.200317 + 0.0926765i
\(288\) 33.2751 55.3037i 0.115539 0.192027i
\(289\) 130.768 246.654i 0.452484 0.853475i
\(290\) 62.9902 + 53.5044i 0.217208 + 0.184498i
\(291\) 214.538 226.485i 0.737244 0.778299i
\(292\) −2.42405 + 22.2888i −0.00830154 + 0.0763314i
\(293\) −98.5640 + 247.377i −0.336396 + 0.844290i 0.659323 + 0.751860i \(0.270843\pi\)
−0.995719 + 0.0924304i \(0.970536\pi\)
\(294\) 27.1820i 0.0924559i
\(295\) −6.13732 + 193.151i −0.0208045 + 0.654748i
\(296\) 594.838 2.00959
\(297\) 31.4182 + 12.5182i 0.105785 + 0.0421487i
\(298\) −47.3076 5.14501i −0.158750 0.0172651i
\(299\) 46.2846 + 43.8431i 0.154798 + 0.146633i
\(300\) −22.7587 + 26.7937i −0.0758625 + 0.0893122i
\(301\) 110.724 + 58.7020i 0.367853 + 0.195023i
\(302\) −70.7393 42.5625i −0.234236 0.140935i
\(303\) 120.943 + 261.413i 0.399151 + 0.862751i
\(304\) −181.185 39.8818i −0.596002 0.131190i
\(305\) 49.3265 26.1513i 0.161726 0.0857418i
\(306\) −114.645 6.21585i −0.374656 0.0203132i
\(307\) 11.1266 + 13.0992i 0.0362430 + 0.0426685i 0.779985 0.625798i \(-0.215227\pi\)
−0.743742 + 0.668467i \(0.766951\pi\)
\(308\) 15.2550 + 69.3044i 0.0495294 + 0.225014i
\(309\) −105.292 138.509i −0.340751 0.448250i
\(310\) 178.711 169.284i 0.576489 0.546079i
\(311\) −3.01936 55.6889i −0.00970856 0.179064i −0.999366 0.0356111i \(-0.988662\pi\)
0.989657 0.143453i \(-0.0458205\pi\)
\(312\) −266.219 + 160.179i −0.853265 + 0.513393i
\(313\) 430.280 + 291.737i 1.37470 + 0.932067i 0.999988 + 0.00492347i \(0.00156720\pi\)
0.374707 + 0.927143i \(0.377743\pi\)
\(314\) −40.1273 + 144.526i −0.127794 + 0.460272i
\(315\) −74.8903 + 8.14482i −0.237747 + 0.0258566i
\(316\) −91.0267 69.1967i −0.288059 0.218977i
\(317\) 115.897 + 53.6195i 0.365604 + 0.169147i 0.594086 0.804402i \(-0.297514\pi\)
−0.228481 + 0.973548i \(0.573376\pi\)
\(318\) −111.907 + 75.8748i −0.351908 + 0.238600i
\(319\) −32.6610 96.9344i −0.102386 0.303869i
\(320\) −35.8732 218.817i −0.112104 0.683802i
\(321\) −10.1471 + 61.8945i −0.0316109 + 0.192818i
\(322\) 36.0916 + 12.1607i 0.112086 + 0.0377661i
\(323\) −142.728 514.061i −0.441883 1.59152i
\(324\) −4.73753 11.8903i −0.0146220 0.0366985i
\(325\) 273.182 108.846i 0.840561 0.334910i
\(326\) −221.259 + 61.4323i −0.678709 + 0.188443i
\(327\) 20.6958 61.4231i 0.0632900 0.187838i
\(328\) −70.9846 11.6373i −0.216416 0.0354797i
\(329\) −66.7001 + 10.9349i −0.202736 + 0.0332369i
\(330\) 56.1820 18.9299i 0.170249 0.0573634i
\(331\) 226.527 + 334.102i 0.684372 + 1.00937i 0.998205 + 0.0598946i \(0.0190765\pi\)
−0.313833 + 0.949478i \(0.601613\pi\)
\(332\) −67.2323 + 145.320i −0.202507 + 0.437712i
\(333\) 124.051 163.186i 0.372526 0.490049i
\(334\) −6.91471 63.5797i −0.0207027 0.190358i
\(335\) −177.698 49.3375i −0.530441 0.147276i
\(336\) −61.7673 + 91.1000i −0.183831 + 0.271131i
\(337\) −63.5738 105.660i −0.188646 0.313533i 0.748071 0.663618i \(-0.230980\pi\)
−0.936718 + 0.350086i \(0.886152\pi\)
\(338\) 409.717 22.2142i 1.21218 0.0657225i
\(339\) 171.213 + 180.748i 0.505054 + 0.533179i
\(340\) 88.3922 67.1940i 0.259977 0.197629i
\(341\) −297.541 + 65.4937i −0.872554 + 0.192064i
\(342\) −82.1669 + 69.7932i −0.240254 + 0.204074i
\(343\) 16.2807 300.280i 0.0474656 0.875451i
\(344\) 66.6590 + 125.732i 0.193776 + 0.365501i
\(345\) −3.77343 + 17.1429i −0.0109375 + 0.0496895i
\(346\) 325.717 150.693i 0.941379 0.435528i
\(347\) 313.156 520.470i 0.902468 1.49991i 0.0367829 0.999323i \(-0.488289\pi\)
0.865685 0.500590i \(-0.166883\pi\)
\(348\) −18.1328 + 34.2020i −0.0521057 + 0.0982817i
\(349\) 298.856 + 253.850i 0.856320 + 0.727365i 0.963738 0.266849i \(-0.0859825\pi\)
−0.107418 + 0.994214i \(0.534258\pi\)
\(350\) 120.809 127.537i 0.345169 0.364391i
\(351\) −11.5759 + 106.438i −0.0329797 + 0.303243i
\(352\) −51.8302 + 130.084i −0.147245 + 0.369557i
\(353\) 569.221i 1.61253i −0.591558 0.806263i \(-0.701487\pi\)
0.591558 0.806263i \(-0.298513\pi\)
\(354\) 161.278 30.1644i 0.455588 0.0852102i
\(355\) −99.3974 −0.279993
\(356\) −214.216 85.3515i −0.601731 0.239752i
\(357\) −314.661 34.2214i −0.881403 0.0958583i
\(358\) −112.503 106.568i −0.314253 0.297676i
\(359\) −176.355 + 207.621i −0.491239 + 0.578331i −0.950796 0.309817i \(-0.899732\pi\)
0.459557 + 0.888148i \(0.348008\pi\)
\(360\) −75.5784 40.0691i −0.209940 0.111303i
\(361\) −119.922 72.1545i −0.332193 0.199874i
\(362\) 50.2557 + 108.626i 0.138828 + 0.300072i
\(363\) 133.018 + 29.2796i 0.366442 + 0.0806600i
\(364\) −198.482 + 105.229i −0.545281 + 0.289090i
\(365\) 51.5609 + 2.79555i 0.141263 + 0.00765904i
\(366\) −30.6872 36.1278i −0.0838448 0.0987097i
\(367\) −19.9487 90.6279i −0.0543562 0.246943i 0.941606 0.336717i \(-0.109316\pi\)
−0.995962 + 0.0897742i \(0.971385\pi\)
\(368\) 15.5207 + 20.4171i 0.0421757 + 0.0554812i
\(369\) −17.9961 + 17.0468i −0.0487699 + 0.0461973i
\(370\) −19.4536 358.801i −0.0525774 0.969732i
\(371\) −319.377 + 192.162i −0.860853 + 0.517958i
\(372\) 95.4332 + 64.7053i 0.256541 + 0.173939i
\(373\) −68.0144 + 244.966i −0.182344 + 0.656745i 0.814698 + 0.579886i \(0.196903\pi\)
−0.997042 + 0.0768589i \(0.975511\pi\)
\(374\) 247.635 26.9319i 0.662124 0.0720104i
\(375\) 177.365 + 134.830i 0.472974 + 0.359546i
\(376\) −69.6585 32.2275i −0.185262 0.0857114i
\(377\) 268.022 181.723i 0.710933 0.482024i
\(378\) 20.4224 + 60.6114i 0.0540274 + 0.160348i
\(379\) −90.2582 550.551i −0.238148 1.45264i −0.787120 0.616800i \(-0.788429\pi\)
0.548972 0.835841i \(-0.315019\pi\)
\(380\) 16.8670 102.884i 0.0443870 0.270748i
\(381\) 348.642 + 117.471i 0.915070 + 0.308323i
\(382\) 56.1507 + 202.236i 0.146991 + 0.529415i
\(383\) 112.724 + 282.916i 0.294318 + 0.738683i 0.999558 + 0.0297145i \(0.00945981\pi\)
−0.705240 + 0.708968i \(0.749161\pi\)
\(384\) −36.4239 + 14.5126i −0.0948539 + 0.0377933i
\(385\) 157.481 43.7243i 0.409041 0.113570i
\(386\) 50.6880 150.437i 0.131316 0.389732i
\(387\) 48.3945 + 7.93388i 0.125050 + 0.0205010i
\(388\) 252.773 41.4401i 0.651477 0.106804i
\(389\) −634.754 + 213.874i −1.63176 + 0.549804i −0.978306 0.207163i \(-0.933577\pi\)
−0.653453 + 0.756967i \(0.726680\pi\)
\(390\) 105.325 + 155.342i 0.270063 + 0.398313i
\(391\) −30.9677 + 66.9356i −0.0792013 + 0.171191i
\(392\) −51.4960 + 67.7418i −0.131367 + 0.172811i
\(393\) −30.6378 281.710i −0.0779589 0.716820i
\(394\) 332.940 + 92.4403i 0.845025 + 0.234620i
\(395\) −147.785 + 217.967i −0.374140 + 0.551815i
\(396\) 14.3165 + 23.7941i 0.0361527 + 0.0600862i
\(397\) −67.6782 + 3.66940i −0.170474 + 0.00924283i −0.139178 0.990267i \(-0.544446\pi\)
−0.0312957 + 0.999510i \(0.509963\pi\)
\(398\) −243.048 256.583i −0.610674 0.644681i
\(399\) −236.602 + 179.860i −0.592987 + 0.450777i
\(400\) 115.532 25.4304i 0.288829 0.0635760i
\(401\) −393.510 + 334.250i −0.981322 + 0.833542i −0.986050 0.166447i \(-0.946771\pi\)
0.00472878 + 0.999989i \(0.498495\pi\)
\(402\) −8.47701 + 156.349i −0.0210871 + 0.388928i
\(403\) −451.773 852.134i −1.12102 2.11448i
\(404\) −50.8404 + 230.970i −0.125843 + 0.571708i
\(405\) −26.7540 + 12.3777i −0.0660593 + 0.0305623i
\(406\) 99.7311 165.754i 0.245643 0.408262i
\(407\) −208.314 + 392.922i −0.511828 + 0.965410i
\(408\) −273.936 232.683i −0.671412 0.570302i
\(409\) 375.300 396.199i 0.917604 0.968703i −0.0820061 0.996632i \(-0.526133\pi\)
0.999610 + 0.0279293i \(0.00889134\pi\)
\(410\) −4.69805 + 43.1978i −0.0114586 + 0.105361i
\(411\) −76.9739 + 193.190i −0.187284 + 0.470049i
\(412\) 142.857i 0.346739i
\(413\) 448.461 58.9645i 1.08586 0.142771i
\(414\) 14.9033 0.0359984
\(415\) 342.583 + 136.498i 0.825502 + 0.328910i
\(416\) −440.697 47.9287i −1.05937 0.115213i
\(417\) −262.343 248.504i −0.629119 0.595933i
\(418\) 151.421 178.267i 0.362252 0.426476i
\(419\) 395.399 + 209.627i 0.943672 + 0.500303i 0.867854 0.496818i \(-0.165499\pi\)
0.0758175 + 0.997122i \(0.475843\pi\)
\(420\) −52.9996 31.8888i −0.126190 0.0759257i
\(421\) −131.653 284.562i −0.312714 0.675920i 0.685947 0.727651i \(-0.259388\pi\)
−0.998661 + 0.0517313i \(0.983526\pi\)
\(422\) −111.797 24.6083i −0.264921 0.0583136i
\(423\) −23.3682 + 12.3890i −0.0552439 + 0.0292885i
\(424\) −422.633 22.9145i −0.996775 0.0540436i
\(425\) 220.233 + 259.279i 0.518196 + 0.610067i
\(426\) 18.1418 + 82.4189i 0.0425863 + 0.193472i
\(427\) −79.0823 104.031i −0.185204 0.243632i
\(428\) −37.3878 + 35.4156i −0.0873548 + 0.0827468i
\(429\) −12.5758 231.946i −0.0293141 0.540667i
\(430\) 73.6605 44.3201i 0.171304 0.103070i
\(431\) 276.010 + 187.139i 0.640393 + 0.434198i 0.837690 0.546146i \(-0.183906\pi\)
−0.197296 + 0.980344i \(0.563216\pi\)
\(432\) −11.5225 + 41.5004i −0.0266725 + 0.0960657i
\(433\) −437.193 + 47.5477i −1.00968 + 0.109810i −0.597983 0.801509i \(-0.704031\pi\)
−0.411702 + 0.911319i \(0.635065\pi\)
\(434\) −458.683 348.682i −1.05687 0.803415i
\(435\) 80.9171 + 37.4362i 0.186016 + 0.0860603i
\(436\) 44.0488 29.8658i 0.101029 0.0684996i
\(437\) 22.1123 + 65.6270i 0.0506003 + 0.150176i
\(438\) −7.09273 43.2637i −0.0161934 0.0987757i
\(439\) −35.3851 + 215.840i −0.0806039 + 0.491662i 0.915414 + 0.402513i \(0.131863\pi\)
−0.996018 + 0.0891491i \(0.971585\pi\)
\(440\) 175.877 + 59.2598i 0.399720 + 0.134681i
\(441\) 7.84483 + 28.2545i 0.0177887 + 0.0640692i
\(442\) 291.879 + 732.561i 0.660360 + 1.65738i
\(443\) −151.919 + 60.5300i −0.342932 + 0.136637i −0.535245 0.844697i \(-0.679781\pi\)
0.192313 + 0.981334i \(0.438401\pi\)
\(444\) 162.173 45.0272i 0.365255 0.101413i
\(445\) −169.577 + 503.286i −0.381072 + 1.13098i
\(446\) 225.675 + 36.9975i 0.505998 + 0.0829541i
\(447\) −50.6590 + 8.30512i −0.113331 + 0.0185797i
\(448\) −491.835 + 165.719i −1.09785 + 0.369907i
\(449\) 289.746 + 427.344i 0.645315 + 0.951768i 0.999860 + 0.0167293i \(0.00532535\pi\)
−0.354545 + 0.935039i \(0.615364\pi\)
\(450\) 28.8644 62.3895i 0.0641432 0.138643i
\(451\) 32.5460 42.8136i 0.0721641 0.0949303i
\(452\) 22.1017 + 203.222i 0.0488976 + 0.449606i
\(453\) −85.8141 23.8262i −0.189435 0.0525964i
\(454\) 207.702 306.337i 0.457492 0.674751i
\(455\) 266.748 + 443.339i 0.586260 + 0.974371i
\(456\) −336.995 + 18.2713i −0.739024 + 0.0400687i
\(457\) 219.657 + 231.889i 0.480650 + 0.507416i 0.920547 0.390632i \(-0.127744\pi\)
−0.439897 + 0.898048i \(0.644985\pi\)
\(458\) −102.439 + 77.8718i −0.223665 + 0.170026i
\(459\) −120.962 + 26.6257i −0.263534 + 0.0580081i
\(460\) −10.9847 + 9.33053i −0.0238799 + 0.0202838i
\(461\) −25.4192 + 468.829i −0.0551392 + 1.01698i 0.831794 + 0.555085i \(0.187314\pi\)
−0.886933 + 0.461898i \(0.847168\pi\)
\(462\) −64.9985 122.600i −0.140689 0.265368i
\(463\) −38.6230 + 175.466i −0.0834189 + 0.378976i −0.999771 0.0213973i \(-0.993188\pi\)
0.916352 + 0.400373i \(0.131120\pi\)
\(464\) 118.226 54.6971i 0.254797 0.117882i
\(465\) 136.907 227.541i 0.294423 0.489334i
\(466\) −234.677 + 442.648i −0.503599 + 0.949889i
\(467\) 120.236 + 102.129i 0.257464 + 0.218692i 0.766817 0.641866i \(-0.221839\pi\)
−0.509353 + 0.860558i \(0.670115\pi\)
\(468\) −60.4554 + 63.8220i −0.129178 + 0.136372i
\(469\) −46.6702 + 429.126i −0.0995101 + 0.914980i
\(470\) −17.1612 + 43.0714i −0.0365132 + 0.0916412i
\(471\) 161.809i 0.343543i
\(472\) 459.076 + 230.364i 0.972618 + 0.488060i
\(473\) −106.397 −0.224941
\(474\) 207.708 + 82.7585i 0.438203 + 0.174596i
\(475\) 317.559 + 34.5366i 0.668546 + 0.0727087i
\(476\) −188.675 178.723i −0.396376 0.375468i
\(477\) −94.4246 + 111.165i −0.197955 + 0.233051i
\(478\) 48.9972 + 25.9767i 0.102505 + 0.0543445i
\(479\) −123.456 74.2807i −0.257736 0.155075i 0.380822 0.924648i \(-0.375641\pi\)
−0.638558 + 0.769574i \(0.720469\pi\)
\(480\) −51.2487 110.772i −0.106768 0.230776i
\(481\) −1374.97 302.654i −2.85857 0.629219i
\(482\) −33.9006 + 17.9730i −0.0703333 + 0.0372883i
\(483\) 41.0252 + 2.22432i 0.0849384 + 0.00460523i
\(484\) 72.3993 + 85.2350i 0.149585 + 0.176105i
\(485\) −126.820 576.148i −0.261484 1.18793i
\(486\) 15.1465 + 19.9249i 0.0311656 + 0.0409977i
\(487\) 218.504 206.978i 0.448673 0.425006i −0.429707 0.902968i \(-0.641383\pi\)
0.878380 + 0.477963i \(0.158625\pi\)
\(488\) −8.03367 148.172i −0.0164624 0.303632i
\(489\) −212.260 + 127.712i −0.434069 + 0.261170i
\(490\) 42.5454 + 28.8465i 0.0868273 + 0.0588704i
\(491\) 18.2717 65.8087i 0.0372132 0.134030i −0.942610 0.333895i \(-0.891637\pi\)
0.979823 + 0.199866i \(0.0640505\pi\)
\(492\) −20.2337 + 2.20055i −0.0411254 + 0.00447266i
\(493\) 298.221 + 226.702i 0.604911 + 0.459841i
\(494\) 672.017 + 310.908i 1.36036 + 0.629369i
\(495\) 52.9355 35.8912i 0.106940 0.0725074i
\(496\) −123.886 367.681i −0.249771 0.741293i
\(497\) 37.6388 + 229.587i 0.0757321 + 0.461945i
\(498\) 50.6544 308.978i 0.101716 0.620439i
\(499\) 204.057 + 68.7548i 0.408932 + 0.137785i 0.516247 0.856440i \(-0.327329\pi\)
−0.107315 + 0.994225i \(0.534225\pi\)
\(500\) 48.9395 + 176.264i 0.0978790 + 0.352528i
\(501\) −25.5369 64.0927i −0.0509718 0.127930i
\(502\) −524.644 + 209.037i −1.04511 + 0.416409i
\(503\) 16.6309 4.61754i 0.0330634 0.00918000i −0.250957 0.967998i \(-0.580745\pi\)
0.284021 + 0.958818i \(0.408332\pi\)
\(504\) −63.9318 + 189.743i −0.126849 + 0.376474i
\(505\) 537.513 + 88.1208i 1.06438 + 0.174497i
\(506\) −31.9079 + 5.23103i −0.0630591 + 0.0103380i
\(507\) 419.471 141.336i 0.827360 0.278770i
\(508\) 169.521 + 250.024i 0.333702 + 0.492174i
\(509\) −226.931 + 490.503i −0.445837 + 0.963660i 0.546193 + 0.837659i \(0.316076\pi\)
−0.992030 + 0.126001i \(0.959786\pi\)
\(510\) −131.394 + 172.845i −0.257635 + 0.338913i
\(511\) −13.0674 120.153i −0.0255723 0.235133i
\(512\) −449.947 124.927i −0.878803 0.243999i
\(513\) −65.2663 + 96.2606i −0.127225 + 0.187643i
\(514\) 217.598 + 361.651i 0.423343 + 0.703601i
\(515\) −328.534 + 17.8126i −0.637931 + 0.0345876i
\(516\) 27.6910 + 29.2330i 0.0536648 + 0.0566532i
\(517\) 45.6825 34.7269i 0.0883608 0.0671701i
\(518\) −821.387 + 180.801i −1.58569 + 0.349036i
\(519\) 295.078 250.642i 0.568551 0.482932i
\(520\) −31.8085 + 586.673i −0.0611701 + 1.12822i
\(521\) −167.106 315.196i −0.320741 0.604982i 0.669745 0.742591i \(-0.266403\pi\)
−0.990487 + 0.137608i \(0.956058\pi\)
\(522\) 16.2728 73.9281i 0.0311739 0.141625i
\(523\) −750.887 + 347.397i −1.43573 + 0.664239i −0.974776 0.223185i \(-0.928355\pi\)
−0.460953 + 0.887424i \(0.652493\pi\)
\(524\) 119.954 199.365i 0.228920 0.380468i
\(525\) 88.7683 167.435i 0.169083 0.318924i
\(526\) −302.384 256.847i −0.574875 0.488303i
\(527\) 767.301 810.030i 1.45598 1.53706i
\(528\) 10.1031 92.8963i 0.0191346 0.175940i
\(529\) −192.260 + 482.535i −0.363440 + 0.912165i
\(530\) 255.678i 0.482411i
\(531\) 158.936 77.9000i 0.299314 0.146704i
\(532\) −244.028 −0.458699
\(533\) 158.160 + 63.0167i 0.296736 + 0.118230i
\(534\) 448.268 + 48.7521i 0.839454 + 0.0912961i
\(535\) 86.1090 + 81.5667i 0.160951 + 0.152461i
\(536\) −317.327 + 373.587i −0.592029 + 0.696990i
\(537\) −147.697 78.3042i −0.275042 0.145818i
\(538\) −489.799 294.702i −0.910406 0.547773i
\(539\) −26.7130 57.7391i −0.0495602 0.107123i
\(540\) −23.6383 5.20319i −0.0437747 0.00963554i
\(541\) −60.6406 + 32.1496i −0.112090 + 0.0594262i −0.523510 0.852020i \(-0.675378\pi\)
0.411420 + 0.911446i \(0.365033\pi\)
\(542\) 155.314 + 8.42089i 0.286558 + 0.0155367i
\(543\) 83.5884 + 98.4079i 0.153938 + 0.181230i
\(544\) −110.241 500.831i −0.202649 0.920645i
\(545\) −74.1764 97.5773i −0.136103 0.179041i
\(546\) 318.924 302.101i 0.584110 0.553298i
\(547\) −43.8027 807.893i −0.0800781 1.47695i −0.712141 0.702036i \(-0.752274\pi\)
0.632063 0.774917i \(-0.282208\pi\)
\(548\) −146.310 + 88.0316i −0.266989 + 0.160642i
\(549\) −42.3246 28.6968i −0.0770940 0.0522710i
\(550\) −39.8999 + 143.706i −0.0725453 + 0.261285i
\(551\) 349.687 38.0308i 0.634641 0.0690213i
\(552\) 37.1414 + 28.2342i 0.0672852 + 0.0511489i
\(553\) 559.418 + 258.814i 1.01161 + 0.468019i
\(554\) −299.537 + 203.091i −0.540681 + 0.366591i
\(555\) −123.772 367.343i −0.223013 0.661880i
\(556\) −48.0010 292.793i −0.0863327 0.526606i
\(557\) 44.7962 273.245i 0.0804240 0.490565i −0.915645 0.401987i \(-0.868320\pi\)
0.996069 0.0885776i \(-0.0282321\pi\)
\(558\) −213.661 71.9908i −0.382905 0.129016i
\(559\) −90.1100 324.547i −0.161199 0.580585i
\(560\) 77.0403 + 193.357i 0.137572 + 0.345280i
\(561\) 249.633 99.4627i 0.444978 0.177295i
\(562\) 653.868 181.546i 1.16347 0.323035i
\(563\) 280.762 833.272i 0.498689 1.48006i −0.342606 0.939479i \(-0.611309\pi\)
0.841295 0.540577i \(-0.181794\pi\)
\(564\) −21.4308 3.51340i −0.0379979 0.00622943i
\(565\) 464.604 76.1679i 0.822308 0.134810i
\(566\) 556.583 187.535i 0.983363 0.331334i
\(567\) 38.7208 + 57.1089i 0.0682907 + 0.100721i
\(568\) −110.929 + 239.770i −0.195298 + 0.422130i
\(569\) 461.308 606.840i 0.810734 1.06650i −0.185740 0.982599i \(-0.559468\pi\)
0.996474 0.0839034i \(-0.0267387\pi\)
\(570\) 22.0422 + 202.675i 0.0386705 + 0.355569i
\(571\) 44.6750 + 12.4040i 0.0782399 + 0.0217232i 0.306428 0.951894i \(-0.400866\pi\)
−0.228188 + 0.973617i \(0.573280\pi\)
\(572\) 107.033 157.862i 0.187121 0.275982i
\(573\) 116.732 + 194.011i 0.203721 + 0.338588i
\(574\) 101.557 5.50624i 0.176928 0.00959276i
\(575\) −30.3676 32.0587i −0.0528132 0.0557543i
\(576\) −161.682 + 122.907i −0.280697 + 0.213381i
\(577\) 559.831 123.228i 0.970245 0.213567i 0.298549 0.954394i \(-0.403497\pi\)
0.671696 + 0.740827i \(0.265566\pi\)
\(578\) −341.627 + 290.181i −0.591050 + 0.502042i
\(579\) 9.27140 171.001i 0.0160128 0.295338i
\(580\) 34.2900 + 64.6778i 0.0591207 + 0.111513i
\(581\) 185.554 842.982i 0.319371 1.45092i
\(582\) −454.587 + 210.314i −0.781077 + 0.361365i
\(583\) 163.143 271.146i 0.279834 0.465088i
\(584\) 64.2864 121.257i 0.110079 0.207632i
\(585\) 154.313 + 131.074i 0.263782 + 0.224059i
\(586\) 294.023 310.397i 0.501746 0.529687i
\(587\) −11.9620 + 109.989i −0.0203782 + 0.187374i −0.999903 0.0139507i \(-0.995559\pi\)
0.979524 + 0.201325i \(0.0645247\pi\)
\(588\) −8.91175 + 22.3668i −0.0151560 + 0.0380388i
\(589\) 1047.67i 1.77873i
\(590\) 123.940 284.444i 0.210068 0.482108i
\(591\) 372.755 0.630719
\(592\) −526.138 209.633i −0.888747 0.354109i
\(593\) −770.605 83.8083i −1.29950 0.141329i −0.567921 0.823083i \(-0.692252\pi\)
−0.731582 + 0.681754i \(0.761217\pi\)
\(594\) −39.4221 37.3426i −0.0663671 0.0628663i
\(595\) −387.492 + 456.190i −0.651246 + 0.766707i
\(596\) −37.2403 19.7436i −0.0624837 0.0331268i
\(597\) −326.689 196.562i −0.547217 0.329250i
\(598\) −42.9800 92.8997i −0.0718729 0.155351i
\(599\) 454.496 + 100.042i 0.758758 + 0.167015i 0.577467 0.816414i \(-0.304041\pi\)
0.181291 + 0.983429i \(0.441972\pi\)
\(600\) 190.131 100.801i 0.316884 0.168001i
\(601\) −608.218 32.9766i −1.01201 0.0548696i −0.459333 0.888264i \(-0.651911\pi\)
−0.552678 + 0.833395i \(0.686394\pi\)
\(602\) −130.263 153.357i −0.216383 0.254746i
\(603\) 36.3115 + 164.965i 0.0602180 + 0.273573i
\(604\) −44.2537 58.2148i −0.0732678 0.0963821i
\(605\) 186.992 177.128i 0.309078 0.292774i
\(606\) −25.0371 461.782i −0.0413153 0.762016i
\(607\) 881.817 530.572i 1.45275 0.874089i 0.452899 0.891562i \(-0.350390\pi\)
0.999847 + 0.0174729i \(0.00556208\pi\)
\(608\) −398.558 270.229i −0.655522 0.444455i
\(609\) 55.8288 201.077i 0.0916729 0.330176i
\(610\) −89.1135 + 9.69167i −0.146088 + 0.0158880i
\(611\) 144.619 + 109.936i 0.236692 + 0.179928i
\(612\) −92.2976 42.7014i −0.150813 0.0697736i
\(613\) −438.789 + 297.506i −0.715806 + 0.485328i −0.863912 0.503643i \(-0.831993\pi\)
0.148106 + 0.988971i \(0.452682\pi\)
\(614\) −8.81107 26.1503i −0.0143503 0.0425901i
\(615\) 7.58363 + 46.2581i 0.0123311 + 0.0752164i
\(616\) 70.2781 428.677i 0.114088 0.695905i
\(617\) 6.34642 + 2.13836i 0.0102859 + 0.00346573i 0.324440 0.945906i \(-0.394824\pi\)
−0.314154 + 0.949372i \(0.601721\pi\)
\(618\) 74.7333 + 269.165i 0.120928 + 0.435542i
\(619\) 359.475 + 902.215i 0.580735 + 1.45754i 0.866471 + 0.499227i \(0.166383\pi\)
−0.285736 + 0.958308i \(0.592238\pi\)
\(620\) 202.554 80.7048i 0.326699 0.130169i
\(621\) 15.4914 4.30116i 0.0249458 0.00692618i
\(622\) −28.5914 + 84.8563i −0.0459669 + 0.136425i
\(623\) 1226.70 + 201.107i 1.96902 + 0.322804i
\(624\) 291.922 47.8582i 0.467824 0.0766958i
\(625\) 61.1438 20.6017i 0.0978300 0.0329628i
\(626\) −468.403 690.843i −0.748248 1.10358i
\(627\) 105.947 229.001i 0.168975 0.365233i
\(628\) −80.4021 + 105.767i −0.128029 + 0.168419i
\(629\) −176.093 1619.15i −0.279957 2.57416i
\(630\) 116.542 + 32.3577i 0.184987 + 0.0513614i
\(631\) −436.079 + 643.168i −0.691092 + 1.01928i 0.306631 + 0.951829i \(0.400798\pi\)
−0.997722 + 0.0674553i \(0.978512\pi\)
\(632\) 360.856 + 599.747i 0.570975 + 0.948967i
\(633\) −123.310 + 6.68567i −0.194802 + 0.0105619i
\(634\) −140.999 148.851i −0.222396 0.234780i
\(635\) 553.856 421.030i 0.872214 0.663040i
\(636\) −116.959 + 25.7445i −0.183897 + 0.0404788i
\(637\) 153.500 130.384i 0.240974 0.204685i
\(638\) −8.89133 + 163.991i −0.0139362 + 0.257039i
\(639\) 42.6440 + 80.4350i 0.0667355 + 0.125876i
\(640\) −15.9391 + 72.4120i −0.0249048 + 0.113144i
\(641\) 117.428 54.3278i 0.183194 0.0847547i −0.326148 0.945319i \(-0.605751\pi\)
0.509342 + 0.860564i \(0.329889\pi\)
\(642\) 51.9176 86.2877i 0.0808685 0.134404i
\(643\) −424.577 + 800.837i −0.660306 + 1.24547i 0.296580 + 0.955008i \(0.404154\pi\)
−0.956886 + 0.290462i \(0.906191\pi\)
\(644\) 25.7111 + 21.8392i 0.0399241 + 0.0339118i
\(645\) 63.7759 67.3274i 0.0988774 0.104384i
\(646\) −92.6129 + 851.561i −0.143364 + 1.31821i
\(647\) −23.6075 + 59.2502i −0.0364876 + 0.0915769i −0.946091 0.323900i \(-0.895006\pi\)
0.909604 + 0.415477i \(0.136385\pi\)
\(648\) 78.3507i 0.120912i
\(649\) −312.937 + 222.569i −0.482184 + 0.342942i
\(650\) −472.146 −0.726379
\(651\) −577.412 230.062i −0.886962 0.353398i
\(652\) −202.204 21.9910i −0.310129 0.0337286i
\(653\) 632.539 + 599.173i 0.968667 + 0.917570i 0.996629 0.0820391i \(-0.0261432\pi\)
−0.0279623 + 0.999609i \(0.508902\pi\)
\(654\) −67.3712 + 79.3155i −0.103014 + 0.121278i
\(655\) −473.447 251.006i −0.722820 0.383215i
\(656\) 58.6850 + 35.3096i 0.0894589 + 0.0538256i
\(657\) −19.8587 42.9238i −0.0302263 0.0653330i
\(658\) 105.984 + 23.3288i 0.161070 + 0.0354542i
\(659\) −1084.91 + 575.182i −1.64629 + 0.872810i −0.652979 + 0.757376i \(0.726481\pi\)
−0.993315 + 0.115434i \(0.963174\pi\)
\(660\) 52.4357 + 2.84298i 0.0794481 + 0.00430755i
\(661\) 617.615 + 727.113i 0.934365 + 1.10002i 0.994800 + 0.101847i \(0.0324753\pi\)
−0.0604350 + 0.998172i \(0.519249\pi\)
\(662\) −139.322 632.947i −0.210456 0.956113i
\(663\) 514.815 + 677.228i 0.776493 + 1.02146i
\(664\) 711.594 674.058i 1.07168 1.01515i
\(665\) 30.4275 + 561.203i 0.0457557 + 0.843914i
\(666\) −282.005 + 169.677i −0.423431 + 0.254770i
\(667\) −40.2471 27.2882i −0.0603404 0.0409118i
\(668\) 15.1551 54.5837i 0.0226873 0.0817121i
\(669\) 245.257 26.6733i 0.366602 0.0398704i
\(670\) 235.722 + 179.191i 0.351824 + 0.267449i
\(671\) 100.689 + 46.5837i 0.150058 + 0.0694243i
\(672\) −236.454 + 160.320i −0.351866 + 0.238571i
\(673\) −69.0683 204.987i −0.102628 0.304588i 0.884022 0.467445i \(-0.154825\pi\)
−0.986650 + 0.162858i \(0.947929\pi\)
\(674\) 32.0304 + 195.377i 0.0475229 + 0.289877i
\(675\) 11.9975 73.1815i 0.0177741 0.108417i
\(676\) 344.419 + 116.048i 0.509496 + 0.171669i
\(677\) 146.044 + 526.004i 0.215723 + 0.776963i 0.989627 + 0.143660i \(0.0458873\pi\)
−0.773904 + 0.633303i \(0.781699\pi\)
\(678\) −147.956 371.341i −0.218224 0.547700i
\(679\) −1282.76 + 511.096i −1.88918 + 0.752719i
\(680\) −654.906 + 181.834i −0.963097 + 0.267403i
\(681\) 127.487 378.367i 0.187205 0.555605i
\(682\) 482.715 + 79.1371i 0.707793 + 0.116037i
\(683\) −267.592 + 43.8695i −0.391789 + 0.0642306i −0.354457 0.935072i \(-0.615334\pi\)
−0.0373323 + 0.999303i \(0.511886\pi\)
\(684\) −90.4932 + 30.4907i −0.132300 + 0.0445770i
\(685\) 220.694 + 325.499i 0.322181 + 0.475181i
\(686\) −202.734 + 438.202i −0.295531 + 0.638779i
\(687\) −84.0063 + 110.508i −0.122280 + 0.160857i
\(688\) −14.6498 134.703i −0.0212933 0.195789i
\(689\) 965.259 + 268.003i 1.40096 + 0.388974i
\(690\) 15.8159 23.3267i 0.0229216 0.0338069i
\(691\) −508.054 844.393i −0.735245 1.22199i −0.968365 0.249538i \(-0.919721\pi\)
0.233120 0.972448i \(-0.425106\pi\)
\(692\) 317.422 17.2101i 0.458702 0.0248701i
\(693\) −102.946 108.679i −0.148551 0.156824i
\(694\) −776.390 + 590.196i −1.11872 + 0.850426i
\(695\) −667.365 + 146.898i −0.960238 + 0.211364i
\(696\) 180.610 153.411i 0.259497 0.220419i
\(697\) −10.6628 + 196.665i −0.0152982 + 0.282159i
\(698\) −294.895 556.231i −0.422486 0.796893i
\(699\) −116.187 + 527.842i −0.166219 + 0.755139i
\(700\) 141.222 65.3361i 0.201745 0.0933372i
\(701\) 184.249 306.224i 0.262838 0.436840i −0.697132 0.716942i \(-0.745541\pi\)
0.959970 + 0.280103i \(0.0903686\pi\)
\(702\) 80.5202 151.877i 0.114701 0.216349i
\(703\) −1165.59 990.060i −1.65802 1.40834i
\(704\) 303.019 319.893i 0.430424 0.454393i
\(705\) −5.40776 + 49.7236i −0.00767059 + 0.0705299i
\(706\) −338.278 + 849.014i −0.479147 + 1.20257i
\(707\) 1274.91i 1.80326i
\(708\) 142.597 + 28.0548i 0.201409 + 0.0396254i
\(709\) −267.749 −0.377643 −0.188821 0.982011i \(-0.560467\pi\)
−0.188821 + 0.982011i \(0.560467\pi\)
\(710\) 148.255 + 59.0701i 0.208810 + 0.0831974i
\(711\) 239.788 + 26.0785i 0.337255 + 0.0366786i
\(712\) 1024.79 + 970.736i 1.43932 + 1.36339i
\(713\) −93.7612 + 110.384i −0.131502 + 0.154817i
\(714\) 448.990 + 238.040i 0.628838 + 0.333389i
\(715\) −376.388 226.465i −0.526417 0.316735i
\(716\) −57.6341 124.574i −0.0804946 0.173986i
\(717\) 58.4274 + 12.8608i 0.0814887 + 0.0179370i
\(718\) 386.425 204.869i 0.538196 0.285334i
\(719\) 1074.88 + 58.2783i 1.49496 + 0.0810546i 0.783379 0.621545i \(-0.213495\pi\)
0.711586 + 0.702599i \(0.247977\pi\)
\(720\) 52.7284 + 62.0767i 0.0732339 + 0.0862176i
\(721\) 165.549 + 752.099i 0.229611 + 1.04313i
\(722\) 135.987 + 178.888i 0.188348 + 0.247768i
\(723\) −30.0512 + 28.4660i −0.0415645 + 0.0393720i
\(724\) 5.73954 + 105.860i 0.00792754 + 0.146215i
\(725\) −192.185 + 115.634i −0.265083 + 0.159495i
\(726\) −181.001 122.722i −0.249313 0.169039i
\(727\) −369.558 + 1331.03i −0.508333 + 1.83085i 0.0465402 + 0.998916i \(0.485180\pi\)
−0.554873 + 0.831935i \(0.687233\pi\)
\(728\) 1367.13 148.685i 1.87793 0.204237i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) −75.2435 34.8114i −0.103073 0.0476868i
\(731\) 322.509 218.667i 0.441189 0.299134i
\(732\) −13.4064 39.7887i −0.0183147 0.0543562i
\(733\) −151.022 921.195i −0.206033 1.25675i −0.863920 0.503629i \(-0.831998\pi\)
0.657887 0.753117i \(-0.271450\pi\)
\(734\) −24.1043 + 147.030i −0.0328397 + 0.200313i
\(735\) 52.5492 + 17.7059i 0.0714956 + 0.0240897i
\(736\) 17.8085 + 64.1405i 0.0241964 + 0.0871474i
\(737\) −135.645 340.442i −0.184050 0.461930i
\(738\) 36.9724 14.7311i 0.0500981 0.0199609i
\(739\) −1223.08 + 339.587i −1.65505 + 0.459522i −0.964569 0.263830i \(-0.915014\pi\)
−0.690479 + 0.723352i \(0.742600\pi\)
\(740\) 101.627 301.618i 0.137334 0.407592i
\(741\) 788.261 + 129.229i 1.06378 + 0.174398i
\(742\) 590.560 96.8174i 0.795903 0.130482i
\(743\) −1200.57 + 404.520i −1.61585 + 0.544442i −0.974804 0.223064i \(-0.928394\pi\)
−0.641042 + 0.767506i \(0.721498\pi\)
\(744\) −396.091 584.190i −0.532380 0.785202i
\(745\) −40.7618 + 88.1052i −0.0547138 + 0.118262i
\(746\) 247.025 324.955i 0.331132 0.435597i
\(747\) −36.5192 335.789i −0.0488878 0.449516i
\(748\) 212.596 + 59.0271i 0.284220 + 0.0789132i
\(749\) 155.795 229.780i 0.208004 0.306782i
\(750\) −184.420 306.508i −0.245893 0.408678i
\(751\) 191.561 10.3861i 0.255074 0.0138297i 0.0738416 0.997270i \(-0.476474\pi\)
0.181233 + 0.983440i \(0.441991\pi\)
\(752\) 50.2558 + 53.0544i 0.0668295 + 0.0705511i
\(753\) −485.016 + 368.699i −0.644111 + 0.489641i
\(754\) −507.759 + 111.766i −0.673420 + 0.148231i
\(755\) −128.361 + 109.031i −0.170015 + 0.144412i
\(756\) −3.06712 + 56.5698i −0.00405704 + 0.0748277i
\(757\) 606.224 + 1143.46i 0.800825 + 1.51052i 0.858865 + 0.512202i \(0.171170\pi\)
−0.0580404 + 0.998314i \(0.518485\pi\)
\(758\) −192.559 + 874.805i −0.254036 + 1.15410i
\(759\) −31.6572 + 14.6462i −0.0417090 + 0.0192967i
\(760\) −329.032 + 546.855i −0.432936 + 0.719546i
\(761\) −228.770 + 431.507i −0.300618 + 0.567026i −0.987097 0.160124i \(-0.948811\pi\)
0.686479 + 0.727150i \(0.259155\pi\)
\(762\) −450.201 382.404i −0.590814 0.501842i
\(763\) −197.294 + 208.281i −0.258577 + 0.272976i
\(764\) −20.1004 + 184.820i −0.0263094 + 0.241911i
\(765\) −86.6941 + 217.586i −0.113326 + 0.284426i
\(766\) 488.968i 0.638340i
\(767\) −943.946 766.067i −1.23070 0.998783i
\(768\) −406.073 −0.528741
\(769\) 861.680 + 343.325i 1.12052 + 0.446456i 0.855508 0.517789i \(-0.173245\pi\)
0.265011 + 0.964245i \(0.414624\pi\)
\(770\) −260.872 28.3716i −0.338795 0.0368462i
\(771\) 330.558 + 313.121i 0.428739 + 0.406123i
\(772\) 91.0299 107.169i 0.117914 0.138820i
\(773\) 333.148 + 176.624i 0.430981 + 0.228492i 0.669753 0.742584i \(-0.266400\pi\)
−0.238772 +