Properties

Label 177.3.g.a.10.6
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.6
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.6

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.06048 - 0.820970i) q^{2} +(1.72190 + 0.187268i) q^{3} +(0.667604 + 0.632388i) q^{4} +(4.71743 - 5.55378i) q^{5} +(-3.39419 - 1.79949i) q^{6} +(8.57272 + 5.15803i) q^{7} +(2.86886 + 6.20094i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(-2.06048 - 0.820970i) q^{2} +(1.72190 + 0.187268i) q^{3} +(0.667604 + 0.632388i) q^{4} +(4.71743 - 5.55378i) q^{5} +(-3.39419 - 1.79949i) q^{6} +(8.57272 + 5.15803i) q^{7} +(2.86886 + 6.20094i) q^{8} +(2.92986 + 0.644911i) q^{9} +(-14.2797 + 7.57059i) q^{10} +(-9.85322 - 0.534226i) q^{11} +(1.03112 + 1.21393i) q^{12} +(0.252568 + 1.14743i) q^{13} +(-13.4293 - 17.6660i) q^{14} +(9.16297 - 8.67962i) q^{15} +(-1.01958 - 18.8051i) q^{16} +(21.8646 - 13.1555i) q^{17} +(-5.50747 - 3.73416i) q^{18} +(-5.87781 + 21.1699i) q^{19} +(6.66152 - 0.724484i) q^{20} +(13.7954 + 10.4870i) q^{21} +(19.8638 + 9.18996i) q^{22} +(29.3221 - 19.8809i) q^{23} +(3.77865 + 11.2146i) q^{24} +(-4.54585 - 27.7285i) q^{25} +(0.421593 - 2.57161i) q^{26} +(4.92415 + 1.65914i) q^{27} +(2.46130 + 8.86481i) q^{28} +(-15.5744 - 39.0887i) q^{29} +(-26.0058 + 10.3617i) q^{30} +(-16.5627 + 4.59860i) q^{31} +(-4.61115 + 13.6854i) q^{32} +(-16.8662 - 2.76507i) q^{33} +(-55.8518 + 9.15643i) q^{34} +(69.0877 - 23.2784i) q^{35} +(1.54815 + 2.28336i) q^{36} +(6.01201 - 12.9948i) q^{37} +(29.4910 - 38.7947i) q^{38} +(0.220020 + 2.02305i) q^{39} +(47.9723 + 13.3194i) q^{40} +(-6.55007 + 9.66063i) q^{41} +(-19.8156 - 32.9339i) q^{42} +(-28.9840 + 1.57147i) q^{43} +(-6.24021 - 6.58771i) q^{44} +(17.4031 - 13.2295i) q^{45} +(-76.7391 + 16.8916i) q^{46} +(-63.5192 + 53.9537i) q^{47} +(1.76596 - 32.5713i) q^{48} +(23.9341 + 45.1446i) q^{49} +(-13.3976 + 60.8659i) q^{50} +(40.1121 - 18.5579i) q^{51} +(-0.557005 + 0.925750i) q^{52} +(15.7517 - 29.7108i) q^{53} +(-8.78401 - 7.46121i) q^{54} +(-49.4488 + 52.2025i) q^{55} +(-7.39072 + 67.9566i) q^{56} +(-14.0854 + 35.3518i) q^{57} +93.3277i q^{58} +(-41.4288 + 42.0078i) q^{59} +11.6061 q^{60} +(64.7667 + 25.8054i) q^{61} +(37.9024 + 4.12213i) q^{62} +(21.7904 + 20.6410i) q^{63} +(-28.0316 + 33.0013i) q^{64} +(7.56404 + 4.01020i) q^{65} +(32.4824 + 19.5440i) q^{66} +(-19.5613 - 42.2811i) q^{67} +(22.9162 + 5.04425i) q^{68} +(54.2126 - 28.7417i) q^{69} +(-161.465 - 8.75437i) q^{70} +(-21.2533 - 25.0213i) q^{71} +(4.40631 + 20.0181i) q^{72} +(63.0095 + 82.8876i) q^{73} +(-23.0559 + 21.8397i) q^{74} +(-2.63484 - 48.5968i) q^{75} +(-17.3117 + 10.4161i) q^{76} +(-81.7133 - 55.4030i) q^{77} +(1.20752 - 4.34909i) q^{78} +(89.2685 - 9.70853i) q^{79} +(-109.249 - 83.0489i) q^{80} +(8.16818 + 3.77900i) q^{81} +(21.4274 - 14.5281i) q^{82} +(29.4391 + 87.3722i) q^{83} +(2.57802 + 15.7252i) q^{84} +(30.0818 - 183.491i) q^{85} +(61.0111 + 20.5570i) q^{86} +(-19.4974 - 70.2234i) q^{87} +(-24.9548 - 62.6318i) q^{88} +(-110.829 + 44.1584i) q^{89} +(-46.7198 + 12.9717i) q^{90} +(-3.75328 + 11.1393i) q^{91} +(32.1480 + 5.27039i) q^{92} +(-29.3804 + 4.81667i) q^{93} +(175.174 - 59.0232i) q^{94} +(89.8452 + 132.512i) q^{95} +(-10.5028 + 22.7013i) q^{96} +(-41.1357 + 54.1131i) q^{97} +(-12.2535 - 112.669i) q^{98} +(-28.5240 - 7.91966i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.06048 0.820970i −1.03024 0.410485i −0.207098 0.978320i \(-0.566402\pi\)
−0.823142 + 0.567835i \(0.807781\pi\)
\(3\) 1.72190 + 0.187268i 0.573966 + 0.0624225i
\(4\) 0.667604 + 0.632388i 0.166901 + 0.158097i
\(5\) 4.71743 5.55378i 0.943485 1.11076i −0.0502209 0.998738i \(-0.515993\pi\)
0.993706 0.112018i \(-0.0357316\pi\)
\(6\) −3.39419 1.79949i −0.565699 0.299915i
\(7\) 8.57272 + 5.15803i 1.22467 + 0.736862i 0.972968 0.230942i \(-0.0741808\pi\)
0.251706 + 0.967804i \(0.419008\pi\)
\(8\) 2.86886 + 6.20094i 0.358608 + 0.775118i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) −14.2797 + 7.57059i −1.42797 + 0.757059i
\(11\) −9.85322 0.534226i −0.895747 0.0485660i −0.399486 0.916739i \(-0.630811\pi\)
−0.496261 + 0.868173i \(0.665294\pi\)
\(12\) 1.03112 + 1.21393i 0.0859267 + 0.101161i
\(13\) 0.252568 + 1.14743i 0.0194283 + 0.0882638i 0.985337 0.170619i \(-0.0545767\pi\)
−0.965909 + 0.258883i \(0.916646\pi\)
\(14\) −13.4293 17.6660i −0.959237 1.26185i
\(15\) 9.16297 8.67962i 0.610864 0.578642i
\(16\) −1.01958 18.8051i −0.0637238 1.17532i
\(17\) 21.8646 13.1555i 1.28615 0.773852i 0.302364 0.953192i \(-0.402224\pi\)
0.983787 + 0.179341i \(0.0573965\pi\)
\(18\) −5.50747 3.73416i −0.305970 0.207453i
\(19\) −5.87781 + 21.1699i −0.309358 + 1.11421i 0.631491 + 0.775383i \(0.282443\pi\)
−0.940850 + 0.338825i \(0.889971\pi\)
\(20\) 6.66152 0.724484i 0.333076 0.0362242i
\(21\) 13.7954 + 10.4870i 0.656924 + 0.499381i
\(22\) 19.8638 + 9.18996i 0.902899 + 0.417725i
\(23\) 29.3221 19.8809i 1.27487 0.864385i 0.279469 0.960155i \(-0.409842\pi\)
0.995404 + 0.0957695i \(0.0305312\pi\)
\(24\) 3.77865 + 11.2146i 0.157444 + 0.467276i
\(25\) −4.54585 27.7285i −0.181834 1.10914i
\(26\) 0.421593 2.57161i 0.0162151 0.0989079i
\(27\) 4.92415 + 1.65914i 0.182376 + 0.0614496i
\(28\) 2.46130 + 8.86481i 0.0879036 + 0.316600i
\(29\) −15.5744 39.0887i −0.537048 1.34789i −0.907896 0.419194i \(-0.862313\pi\)
0.370849 0.928693i \(-0.379067\pi\)
\(30\) −26.0058 + 10.3617i −0.866861 + 0.345389i
\(31\) −16.5627 + 4.59860i −0.534280 + 0.148342i −0.524181 0.851607i \(-0.675628\pi\)
−0.0100989 + 0.999949i \(0.503215\pi\)
\(32\) −4.61115 + 13.6854i −0.144098 + 0.427669i
\(33\) −16.8662 2.76507i −0.511096 0.0837900i
\(34\) −55.8518 + 9.15643i −1.64270 + 0.269307i
\(35\) 69.0877 23.2784i 1.97394 0.665096i
\(36\) 1.54815 + 2.28336i 0.0430043 + 0.0634265i
\(37\) 6.01201 12.9948i 0.162487 0.351210i −0.809181 0.587559i \(-0.800089\pi\)
0.971668 + 0.236350i \(0.0759510\pi\)
\(38\) 29.4910 38.7947i 0.776079 1.02091i
\(39\) 0.220020 + 2.02305i 0.00564155 + 0.0518732i
\(40\) 47.9723 + 13.3194i 1.19931 + 0.332986i
\(41\) −6.55007 + 9.66063i −0.159758 + 0.235625i −0.899140 0.437660i \(-0.855807\pi\)
0.739383 + 0.673286i \(0.235118\pi\)
\(42\) −19.8156 32.9339i −0.471801 0.784140i
\(43\) −28.9840 + 1.57147i −0.674047 + 0.0365458i −0.387985 0.921666i \(-0.626829\pi\)
−0.286061 + 0.958211i \(0.592346\pi\)
\(44\) −6.24021 6.58771i −0.141823 0.149721i
\(45\) 17.4031 13.2295i 0.386736 0.293989i
\(46\) −76.7391 + 16.8916i −1.66824 + 0.367208i
\(47\) −63.5192 + 53.9537i −1.35147 + 1.14795i −0.376302 + 0.926497i \(0.622804\pi\)
−0.975171 + 0.221454i \(0.928920\pi\)
\(48\) 1.76596 32.5713i 0.0367909 0.678569i
\(49\) 23.9341 + 45.1446i 0.488452 + 0.921318i
\(50\) −13.3976 + 60.8659i −0.267952 + 1.21732i
\(51\) 40.1121 18.5579i 0.786513 0.363880i
\(52\) −0.557005 + 0.925750i −0.0107116 + 0.0178029i
\(53\) 15.7517 29.7108i 0.297202 0.560582i −0.689272 0.724503i \(-0.742069\pi\)
0.986473 + 0.163921i \(0.0524142\pi\)
\(54\) −8.78401 7.46121i −0.162667 0.138170i
\(55\) −49.4488 + 52.2025i −0.899069 + 0.949135i
\(56\) −7.39072 + 67.9566i −0.131977 + 1.21351i
\(57\) −14.0854 + 35.3518i −0.247113 + 0.620206i
\(58\) 93.3277i 1.60910i
\(59\) −41.4288 + 42.0078i −0.702183 + 0.711996i
\(60\) 11.6061 0.193435
\(61\) 64.7667 + 25.8054i 1.06175 + 0.423040i 0.834621 0.550825i \(-0.185687\pi\)
0.227129 + 0.973865i \(0.427066\pi\)
\(62\) 37.9024 + 4.12213i 0.611329 + 0.0664860i
\(63\) 21.7904 + 20.6410i 0.345879 + 0.327634i
\(64\) −28.0316 + 33.0013i −0.437993 + 0.515645i
\(65\) 7.56404 + 4.01020i 0.116370 + 0.0616954i
\(66\) 32.4824 + 19.5440i 0.492157 + 0.296121i
\(67\) −19.5613 42.2811i −0.291960 0.631060i 0.704981 0.709226i \(-0.250956\pi\)
−0.996940 + 0.0781660i \(0.975094\pi\)
\(68\) 22.9162 + 5.04425i 0.337004 + 0.0741801i
\(69\) 54.2126 28.7417i 0.785690 0.416547i
\(70\) −161.465 8.75437i −2.30664 0.125062i
\(71\) −21.2533 25.0213i −0.299342 0.352412i 0.591843 0.806054i \(-0.298401\pi\)
−0.891184 + 0.453641i \(0.850125\pi\)
\(72\) 4.40631 + 20.0181i 0.0611987 + 0.278029i
\(73\) 63.0095 + 82.8876i 0.863144 + 1.13545i 0.989653 + 0.143481i \(0.0458296\pi\)
−0.126509 + 0.991965i \(0.540377\pi\)
\(74\) −23.0559 + 21.8397i −0.311567 + 0.295132i
\(75\) −2.63484 48.5968i −0.0351313 0.647958i
\(76\) −17.3117 + 10.4161i −0.227785 + 0.137054i
\(77\) −81.7133 55.4030i −1.06121 0.719519i
\(78\) 1.20752 4.34909i 0.0154810 0.0557576i
\(79\) 89.2685 9.70853i 1.12998 0.122893i 0.476029 0.879429i \(-0.342076\pi\)
0.653951 + 0.756537i \(0.273110\pi\)
\(80\) −109.249 83.0489i −1.36561 1.03811i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) 21.4274 14.5281i 0.261310 0.177172i
\(83\) 29.4391 + 87.3722i 0.354688 + 1.05268i 0.965389 + 0.260816i \(0.0839915\pi\)
−0.610700 + 0.791862i \(0.709112\pi\)
\(84\) 2.57802 + 15.7252i 0.0306907 + 0.187205i
\(85\) 30.0818 183.491i 0.353904 2.15872i
\(86\) 61.0111 + 20.5570i 0.709431 + 0.239035i
\(87\) −19.4974 70.2234i −0.224108 0.807165i
\(88\) −24.9548 62.6318i −0.283577 0.711725i
\(89\) −110.829 + 44.1584i −1.24527 + 0.496162i −0.897333 0.441354i \(-0.854498\pi\)
−0.347940 + 0.937517i \(0.613119\pi\)
\(90\) −46.7198 + 12.9717i −0.519109 + 0.144130i
\(91\) −3.75328 + 11.1393i −0.0412448 + 0.122410i
\(92\) 32.1480 + 5.27039i 0.349434 + 0.0572868i
\(93\) −29.3804 + 4.81667i −0.315918 + 0.0517922i
\(94\) 175.174 59.0232i 1.86356 0.627906i
\(95\) 89.8452 + 132.512i 0.945739 + 1.39486i
\(96\) −10.5028 + 22.7013i −0.109404 + 0.236472i
\(97\) −41.1357 + 54.1131i −0.424079 + 0.557867i −0.957667 0.287878i \(-0.907050\pi\)
0.533588 + 0.845745i \(0.320843\pi\)
\(98\) −12.2535 112.669i −0.125035 1.14968i
\(99\) −28.5240 7.91966i −0.288122 0.0799965i
\(100\) 14.5003 21.3864i 0.145003 0.213864i
\(101\) −80.6858 134.101i −0.798869 1.32773i −0.941179 0.337908i \(-0.890281\pi\)
0.142310 0.989822i \(-0.454547\pi\)
\(102\) −97.8857 + 5.30721i −0.959664 + 0.0520315i
\(103\) −24.3303 25.6852i −0.236217 0.249371i 0.597100 0.802167i \(-0.296320\pi\)
−0.833317 + 0.552796i \(0.813561\pi\)
\(104\) −6.39056 + 4.85798i −0.0614477 + 0.0467113i
\(105\) 123.321 27.1451i 1.17449 0.258524i
\(106\) −56.8478 + 48.2869i −0.536300 + 0.455537i
\(107\) −10.9872 + 202.647i −0.102684 + 1.89389i 0.265456 + 0.964123i \(0.414477\pi\)
−0.368140 + 0.929770i \(0.620005\pi\)
\(108\) 2.23816 + 4.22162i 0.0207237 + 0.0390891i
\(109\) −3.18660 + 14.4769i −0.0292349 + 0.132815i −0.988978 0.148065i \(-0.952695\pi\)
0.959743 + 0.280881i \(0.0906265\pi\)
\(110\) 144.745 66.9661i 1.31586 0.608783i
\(111\) 12.7856 21.2498i 0.115185 0.191439i
\(112\) 88.2565 166.469i 0.788004 1.48633i
\(113\) 55.0952 + 46.7983i 0.487568 + 0.414144i 0.857160 0.515050i \(-0.172227\pi\)
−0.369592 + 0.929194i \(0.620503\pi\)
\(114\) 58.0455 61.2779i 0.509171 0.537525i
\(115\) 27.9107 256.635i 0.242702 2.23161i
\(116\) 14.3217 35.9449i 0.123463 0.309869i
\(117\) 3.52469i 0.0301256i
\(118\) 119.850 52.5443i 1.01568 0.445291i
\(119\) 255.295 2.14534
\(120\) 80.1091 + 31.9184i 0.667576 + 0.265987i
\(121\) −23.4902 2.55472i −0.194134 0.0211134i
\(122\) −112.265 106.343i −0.920205 0.871665i
\(123\) −13.0877 + 15.4080i −0.106404 + 0.125268i
\(124\) −13.9654 7.40399i −0.112624 0.0597096i
\(125\) −19.3472 11.6408i −0.154777 0.0931264i
\(126\) −27.9531 60.4196i −0.221850 0.479520i
\(127\) −92.7698 20.4202i −0.730471 0.160789i −0.165864 0.986149i \(-0.553041\pi\)
−0.564607 + 0.825360i \(0.690972\pi\)
\(128\) 135.888 72.0433i 1.06163 0.562838i
\(129\) −50.2018 2.72186i −0.389161 0.0210997i
\(130\) −12.2933 14.4728i −0.0945639 0.111329i
\(131\) −25.8363 117.375i −0.197224 0.895996i −0.966417 0.256980i \(-0.917273\pi\)
0.769193 0.639016i \(-0.220658\pi\)
\(132\) −9.51134 12.5119i −0.0720556 0.0947875i
\(133\) −159.584 + 151.166i −1.19988 + 1.13659i
\(134\) 5.59418 + 103.179i 0.0417476 + 0.769989i
\(135\) 32.4438 19.5208i 0.240325 0.144598i
\(136\) 144.303 + 97.8397i 1.06105 + 0.719410i
\(137\) −11.6223 + 41.8596i −0.0848341 + 0.305545i −0.993779 0.111372i \(-0.964476\pi\)
0.908945 + 0.416917i \(0.136889\pi\)
\(138\) −135.300 + 14.7148i −0.980436 + 0.106629i
\(139\) 142.841 + 108.585i 1.02763 + 0.781186i 0.976064 0.217483i \(-0.0697848\pi\)
0.0515688 + 0.998669i \(0.483578\pi\)
\(140\) 60.8442 + 28.1495i 0.434602 + 0.201068i
\(141\) −119.477 + 81.0077i −0.847357 + 0.574522i
\(142\) 23.2502 + 69.0042i 0.163734 + 0.485945i
\(143\) −1.87562 11.4408i −0.0131162 0.0800056i
\(144\) 9.14036 55.7537i 0.0634747 0.387179i
\(145\) −290.561 97.9015i −2.00387 0.675183i
\(146\) −61.7816 222.517i −0.423162 1.52409i
\(147\) 32.7580 + 82.2165i 0.222844 + 0.559296i
\(148\) 12.2314 4.87343i 0.0826444 0.0329286i
\(149\) 21.8734 6.07312i 0.146801 0.0407592i −0.193350 0.981130i \(-0.561935\pi\)
0.340152 + 0.940371i \(0.389522\pi\)
\(150\) −34.4675 + 102.296i −0.229784 + 0.681973i
\(151\) −27.1339 4.44837i −0.179694 0.0294594i 0.0712629 0.997458i \(-0.477297\pi\)
−0.250957 + 0.967998i \(0.580745\pi\)
\(152\) −148.136 + 24.2857i −0.974580 + 0.159774i
\(153\) 72.5443 24.4430i 0.474146 0.159758i
\(154\) 122.884 + 181.241i 0.797950 + 1.17689i
\(155\) −52.5935 + 113.679i −0.339313 + 0.733413i
\(156\) −1.13247 + 1.48974i −0.00725941 + 0.00954960i
\(157\) 5.24500 + 48.2270i 0.0334076 + 0.307178i 0.998906 + 0.0467682i \(0.0148922\pi\)
−0.965498 + 0.260410i \(0.916142\pi\)
\(158\) −191.906 53.2825i −1.21460 0.337231i
\(159\) 32.6867 48.2093i 0.205577 0.303203i
\(160\) 54.2530 + 90.1692i 0.339081 + 0.563558i
\(161\) 353.916 19.1888i 2.19824 0.119185i
\(162\) −13.7279 14.4924i −0.0847403 0.0894592i
\(163\) −83.9828 + 63.8421i −0.515232 + 0.391669i −0.830228 0.557424i \(-0.811790\pi\)
0.314996 + 0.949093i \(0.397997\pi\)
\(164\) −10.4821 + 2.30729i −0.0639154 + 0.0140688i
\(165\) −94.9216 + 80.6271i −0.575282 + 0.488649i
\(166\) 11.0713 204.197i 0.0666943 1.23010i
\(167\) −50.6574 95.5499i −0.303337 0.572155i 0.684246 0.729251i \(-0.260132\pi\)
−0.987583 + 0.157096i \(0.949787\pi\)
\(168\) −25.4521 + 115.630i −0.151501 + 0.688275i
\(169\) 152.127 70.3816i 0.900162 0.416459i
\(170\) −212.624 + 353.383i −1.25073 + 2.07873i
\(171\) −30.8739 + 58.2343i −0.180549 + 0.340552i
\(172\) −20.3436 17.2800i −0.118277 0.100465i
\(173\) −185.255 + 195.572i −1.07084 + 1.13047i −0.0798128 + 0.996810i \(0.525432\pi\)
−0.991027 + 0.133662i \(0.957326\pi\)
\(174\) −17.4773 + 160.701i −0.100444 + 0.923567i
\(175\) 104.054 261.156i 0.594594 1.49232i
\(176\) 185.835i 1.05588i
\(177\) −79.2029 + 64.5748i −0.447474 + 0.364829i
\(178\) 264.614 1.48660
\(179\) −60.2208 23.9942i −0.336429 0.134046i 0.195805 0.980643i \(-0.437268\pi\)
−0.532234 + 0.846597i \(0.678647\pi\)
\(180\) 19.9846 + 2.17345i 0.111025 + 0.0120747i
\(181\) −120.242 113.899i −0.664320 0.629278i 0.279340 0.960192i \(-0.409884\pi\)
−0.943661 + 0.330914i \(0.892643\pi\)
\(182\) 16.8786 19.8711i 0.0927397 0.109182i
\(183\) 106.689 + 56.5630i 0.583001 + 0.309087i
\(184\) 207.401 + 124.789i 1.12718 + 0.678201i
\(185\) −43.8088 94.6912i −0.236804 0.511844i
\(186\) 64.4921 + 14.1958i 0.346732 + 0.0763214i
\(187\) −222.464 + 117.943i −1.18965 + 0.630712i
\(188\) −76.5254 4.14909i −0.407050 0.0220696i
\(189\) 33.6554 + 39.6223i 0.178071 + 0.209642i
\(190\) −76.3360 346.798i −0.401768 1.82525i
\(191\) 9.48473 + 12.4770i 0.0496583 + 0.0653244i 0.820252 0.572002i \(-0.193833\pi\)
−0.770594 + 0.637327i \(0.780040\pi\)
\(192\) −54.4475 + 51.5755i −0.283581 + 0.268622i
\(193\) −4.72485 87.1447i −0.0244811 0.451527i −0.984917 0.173027i \(-0.944645\pi\)
0.960436 0.278501i \(-0.0898374\pi\)
\(194\) 129.184 77.7277i 0.665899 0.400658i
\(195\) 12.2735 + 8.32166i 0.0629412 + 0.0426752i
\(196\) −12.5704 + 45.2744i −0.0641346 + 0.230992i
\(197\) −296.261 + 32.2203i −1.50386 + 0.163555i −0.822657 0.568538i \(-0.807509\pi\)
−0.681205 + 0.732093i \(0.738544\pi\)
\(198\) 52.2714 + 39.7357i 0.263997 + 0.200685i
\(199\) 225.861 + 104.494i 1.13498 + 0.525098i 0.895171 0.445722i \(-0.147053\pi\)
0.239809 + 0.970820i \(0.422915\pi\)
\(200\) 158.901 107.738i 0.794506 0.538688i
\(201\) −25.7647 76.4668i −0.128182 0.380432i
\(202\) 56.1586 + 342.553i 0.278013 + 1.69580i
\(203\) 68.1063 415.430i 0.335499 2.04645i
\(204\) 38.5148 + 12.9771i 0.188798 + 0.0636135i
\(205\) 22.7536 + 81.9510i 0.110993 + 0.399761i
\(206\) 29.0454 + 72.8983i 0.140997 + 0.353875i
\(207\) 98.7310 39.3380i 0.476961 0.190039i
\(208\) 21.3200 5.91946i 0.102500 0.0284589i
\(209\) 69.2248 205.452i 0.331219 0.983024i
\(210\) −276.386 45.3112i −1.31613 0.215768i
\(211\) −191.870 + 31.4554i −0.909334 + 0.149078i −0.598255 0.801306i \(-0.704139\pi\)
−0.311080 + 0.950384i \(0.600691\pi\)
\(212\) 29.3047 9.87390i 0.138230 0.0465750i
\(213\) −31.9103 47.0641i −0.149813 0.220958i
\(214\) 189.006 408.529i 0.883204 1.90901i
\(215\) −128.002 + 168.384i −0.595360 + 0.783182i
\(216\) 3.83848 + 35.2942i 0.0177707 + 0.163399i
\(217\) −165.707 46.0083i −0.763626 0.212020i
\(218\) 18.4510 27.2132i 0.0846376 0.124831i
\(219\) 92.9738 + 154.524i 0.424538 + 0.705587i
\(220\) −66.0244 + 3.57974i −0.300111 + 0.0162715i
\(221\) 20.6173 + 21.7654i 0.0932908 + 0.0984859i
\(222\) −43.7898 + 33.2882i −0.197252 + 0.149947i
\(223\) 334.288 73.5823i 1.49905 0.329965i 0.611709 0.791083i \(-0.290482\pi\)
0.887339 + 0.461117i \(0.152551\pi\)
\(224\) −110.120 + 93.5366i −0.491606 + 0.417574i
\(225\) 4.56368 84.1722i 0.0202830 0.374099i
\(226\) −75.1025 141.658i −0.332312 0.626807i
\(227\) 79.6539 361.871i 0.350898 1.59415i −0.388876 0.921290i \(-0.627136\pi\)
0.739774 0.672856i \(-0.234933\pi\)
\(228\) −31.7595 + 14.6935i −0.139296 + 0.0644453i
\(229\) −55.7677 + 92.6866i −0.243527 + 0.404745i −0.954380 0.298596i \(-0.903482\pi\)
0.710853 + 0.703341i \(0.248309\pi\)
\(230\) −268.199 + 505.877i −1.16608 + 2.19947i
\(231\) −130.327 110.700i −0.564185 0.479223i
\(232\) 197.706 208.716i 0.852182 0.899638i
\(233\) −11.7960 + 108.462i −0.0506265 + 0.465503i 0.941194 + 0.337865i \(0.109705\pi\)
−0.991821 + 0.127637i \(0.959261\pi\)
\(234\) 2.89367 7.26256i 0.0123661 0.0310366i
\(235\) 607.295i 2.58423i
\(236\) −54.2233 + 1.84546i −0.229760 + 0.00781976i
\(237\) 155.529 0.656242
\(238\) −526.031 209.590i −2.21021 0.880629i
\(239\) 264.354 + 28.7502i 1.10608 + 0.120294i 0.642886 0.765962i \(-0.277737\pi\)
0.463196 + 0.886256i \(0.346702\pi\)
\(240\) −172.563 163.461i −0.719013 0.681085i
\(241\) −206.869 + 243.545i −0.858378 + 1.01056i 0.141410 + 0.989951i \(0.454836\pi\)
−0.999788 + 0.0206093i \(0.993439\pi\)
\(242\) 46.3038 + 24.5487i 0.191338 + 0.101441i
\(243\) 13.3571 + 8.03669i 0.0549674 + 0.0330728i
\(244\) 26.9195 + 58.1855i 0.110326 + 0.238465i
\(245\) 363.631 + 80.0412i 1.48421 + 0.326699i
\(246\) 39.6164 21.0033i 0.161042 0.0853792i
\(247\) −25.7756 1.39751i −0.104354 0.00565794i
\(248\) −76.0317 89.5114i −0.306579 0.360933i
\(249\) 34.3292 + 155.959i 0.137868 + 0.626341i
\(250\) 30.3077 + 39.8691i 0.121231 + 0.159476i
\(251\) −325.790 + 308.605i −1.29797 + 1.22950i −0.340743 + 0.940156i \(0.610679\pi\)
−0.957225 + 0.289344i \(0.906563\pi\)
\(252\) 1.49426 + 27.5600i 0.00592960 + 0.109365i
\(253\) −299.538 + 180.226i −1.18394 + 0.712355i
\(254\) 174.386 + 118.237i 0.686559 + 0.465498i
\(255\) 86.1598 310.319i 0.337881 1.21694i
\(256\) −166.957 + 18.1577i −0.652176 + 0.0709284i
\(257\) −304.991 231.848i −1.18674 0.902133i −0.189915 0.981801i \(-0.560821\pi\)
−0.996822 + 0.0796672i \(0.974614\pi\)
\(258\) 101.205 + 46.8225i 0.392268 + 0.181483i
\(259\) 118.567 80.3902i 0.457786 0.310387i
\(260\) 2.51378 + 7.46064i 0.00966839 + 0.0286948i
\(261\) −20.4220 124.569i −0.0782452 0.477275i
\(262\) −43.1266 + 263.061i −0.164605 + 1.00405i
\(263\) 127.527 + 42.9687i 0.484892 + 0.163379i 0.551121 0.834425i \(-0.314200\pi\)
−0.0662290 + 0.997804i \(0.521097\pi\)
\(264\) −31.2407 112.519i −0.118336 0.426208i
\(265\) −90.7002 227.640i −0.342265 0.859020i
\(266\) 452.923 180.461i 1.70272 0.678424i
\(267\) −199.106 + 55.2816i −0.745716 + 0.207047i
\(268\) 13.6788 40.5973i 0.0510404 0.151483i
\(269\) 164.442 + 26.9589i 0.611308 + 0.100219i 0.459480 0.888188i \(-0.348036\pi\)
0.151828 + 0.988407i \(0.451484\pi\)
\(270\) −82.8758 + 13.5868i −0.306948 + 0.0503215i
\(271\) −242.105 + 81.5745i −0.893375 + 0.301013i −0.728292 0.685267i \(-0.759686\pi\)
−0.165083 + 0.986280i \(0.552789\pi\)
\(272\) −269.682 397.751i −0.991478 1.46232i
\(273\) −8.54880 + 18.4779i −0.0313143 + 0.0676847i
\(274\) 58.3130 76.7094i 0.212821 0.279961i
\(275\) 29.9780 + 275.643i 0.109011 + 1.00234i
\(276\) 54.3685 + 15.0953i 0.196987 + 0.0546933i
\(277\) 150.137 221.436i 0.542012 0.799408i −0.453774 0.891117i \(-0.649923\pi\)
0.995786 + 0.0917091i \(0.0292330\pi\)
\(278\) −205.176 341.005i −0.738043 1.22664i
\(279\) −51.4920 + 2.79182i −0.184559 + 0.0100065i
\(280\) 342.551 + 361.627i 1.22340 + 1.29152i
\(281\) 80.9203 61.5140i 0.287973 0.218911i −0.451207 0.892419i \(-0.649006\pi\)
0.739180 + 0.673508i \(0.235213\pi\)
\(282\) 312.686 68.8273i 1.10881 0.244068i
\(283\) 385.649 327.574i 1.36272 1.15750i 0.391264 0.920278i \(-0.372038\pi\)
0.971455 0.237226i \(-0.0762381\pi\)
\(284\) 1.63439 30.1446i 0.00575491 0.106143i
\(285\) 129.889 + 244.997i 0.455751 + 0.859637i
\(286\) −5.52787 + 25.1134i −0.0193282 + 0.0878090i
\(287\) −105.982 + 49.0324i −0.369274 + 0.170845i
\(288\) −22.3359 + 37.1226i −0.0775552 + 0.128898i
\(289\) 169.623 319.943i 0.586931 1.10707i
\(290\) 518.322 + 440.266i 1.78732 + 1.51816i
\(291\) −80.9651 + 85.4738i −0.278230 + 0.293724i
\(292\) −10.3517 + 95.1826i −0.0354511 + 0.325968i
\(293\) −27.3550 + 68.6558i −0.0933617 + 0.234320i −0.968240 0.250023i \(-0.919562\pi\)
0.874878 + 0.484343i \(0.160941\pi\)
\(294\) 196.299i 0.667683i
\(295\) 37.8647 + 428.255i 0.128355 + 1.45171i
\(296\) 97.8273 0.330498
\(297\) −47.6324 18.9785i −0.160378 0.0639006i
\(298\) −50.0556 5.44387i −0.167972 0.0182680i
\(299\) 30.2177 + 28.6237i 0.101063 + 0.0957315i
\(300\) 28.9730 34.1097i 0.0965768 0.113699i
\(301\) −256.577 136.029i −0.852416 0.451923i
\(302\) 52.2568 + 31.4419i 0.173036 + 0.104112i
\(303\) −113.820 246.018i −0.375643 0.811939i
\(304\) 404.095 + 88.9480i 1.32926 + 0.292592i
\(305\) 448.850 237.965i 1.47164 0.780214i
\(306\) −169.543 9.19236i −0.554062 0.0300404i
\(307\) −222.511 261.960i −0.724791 0.853290i 0.269162 0.963095i \(-0.413253\pi\)
−0.993953 + 0.109805i \(0.964977\pi\)
\(308\) −19.5159 88.6618i −0.0633634 0.287863i
\(309\) −37.0843 48.7836i −0.120014 0.157876i
\(310\) 201.695 191.056i 0.650629 0.616309i
\(311\) 1.99501 + 36.7958i 0.00641482 + 0.118314i 0.999987 + 0.00511343i \(0.00162766\pi\)
−0.993572 + 0.113201i \(0.963890\pi\)
\(312\) −11.9136 + 7.16819i −0.0381847 + 0.0229750i
\(313\) 157.684 + 106.912i 0.503782 + 0.341572i 0.786459 0.617643i \(-0.211912\pi\)
−0.282677 + 0.959215i \(0.591223\pi\)
\(314\) 28.7857 103.677i 0.0916742 0.330181i
\(315\) 217.430 23.6469i 0.690254 0.0750696i
\(316\) 65.7356 + 49.9709i 0.208024 + 0.158136i
\(317\) −544.085 251.721i −1.71636 0.794072i −0.994815 0.101702i \(-0.967571\pi\)
−0.721543 0.692370i \(-0.756567\pi\)
\(318\) −106.929 + 72.4994i −0.336254 + 0.227986i
\(319\) 132.575 + 393.470i 0.415597 + 1.23345i
\(320\) 51.0453 + 311.362i 0.159516 + 0.973007i
\(321\) −56.8679 + 346.879i −0.177159 + 1.08062i
\(322\) −744.990 251.016i −2.31363 0.779554i
\(323\) 149.985 + 540.197i 0.464350 + 1.67244i
\(324\) 3.06331 + 7.68834i 0.00945467 + 0.0237294i
\(325\) 30.6683 12.2194i 0.0943640 0.0375981i
\(326\) 225.457 62.5979i 0.691587 0.192018i
\(327\) −8.19805 + 24.3309i −0.0250705 + 0.0744065i
\(328\) −78.6962 12.9016i −0.239928 0.0393341i
\(329\) −822.827 + 134.896i −2.50099 + 0.410017i
\(330\) 261.776 88.2028i 0.793262 0.267281i
\(331\) −19.1194 28.1991i −0.0577627 0.0851936i 0.797711 0.603040i \(-0.206044\pi\)
−0.855473 + 0.517847i \(0.826734\pi\)
\(332\) −35.5995 + 76.9470i −0.107227 + 0.231768i
\(333\) 25.9948 34.1956i 0.0780626 0.102690i
\(334\) 25.9348 + 238.467i 0.0776492 + 0.713973i
\(335\) −327.099 90.8185i −0.976414 0.271100i
\(336\) 183.143 270.116i 0.545068 0.803916i
\(337\) −149.173 247.927i −0.442650 0.735690i 0.552558 0.833475i \(-0.313652\pi\)
−0.995208 + 0.0977850i \(0.968824\pi\)
\(338\) −371.237 + 20.1279i −1.09833 + 0.0595499i
\(339\) 86.1045 + 90.8994i 0.253995 + 0.268140i
\(340\) 136.120 103.476i 0.400354 0.304341i
\(341\) 165.652 36.4628i 0.485784 0.106929i
\(342\) 111.424 94.6442i 0.325800 0.276737i
\(343\) −1.13571 + 20.9469i −0.00331110 + 0.0610696i
\(344\) −92.8957 175.220i −0.270046 0.509360i
\(345\) 96.1188 436.672i 0.278605 1.26572i
\(346\) 542.273 250.882i 1.56726 0.725093i
\(347\) 181.164 301.096i 0.522085 0.867712i −0.477857 0.878438i \(-0.658586\pi\)
0.999942 + 0.0107251i \(0.00341397\pi\)
\(348\) 31.3919 59.2114i 0.0902066 0.170148i
\(349\) −485.213 412.143i −1.39029 1.18093i −0.960594 0.277956i \(-0.910343\pi\)
−0.429701 0.902971i \(-0.641381\pi\)
\(350\) −428.802 + 452.681i −1.22515 + 1.29337i
\(351\) −0.660061 + 6.06916i −0.00188052 + 0.0172911i
\(352\) 52.7458 132.382i 0.149846 0.376085i
\(353\) 62.0187i 0.175690i 0.996134 + 0.0878451i \(0.0279981\pi\)
−0.996134 + 0.0878451i \(0.972002\pi\)
\(354\) 216.210 68.0319i 0.610763 0.192180i
\(355\) −239.224 −0.673869
\(356\) −101.915 40.6068i −0.286279 0.114064i
\(357\) 439.592 + 47.8085i 1.23135 + 0.133917i
\(358\) 104.385 + 98.8790i 0.291579 + 0.276198i
\(359\) 104.409 122.920i 0.290833 0.342396i −0.597269 0.802041i \(-0.703748\pi\)
0.888103 + 0.459645i \(0.152023\pi\)
\(360\) 131.962 + 69.9620i 0.366562 + 0.194339i
\(361\) −104.293 62.7508i −0.288899 0.173825i
\(362\) 154.248 + 333.402i 0.426100 + 0.921001i
\(363\) −39.9694 8.79792i −0.110108 0.0242367i
\(364\) −9.55009 + 5.06314i −0.0262365 + 0.0139097i
\(365\) 757.582 + 41.0749i 2.07557 + 0.112534i
\(366\) −173.394 204.136i −0.473755 0.557747i
\(367\) 128.096 + 581.944i 0.349034 + 1.58568i 0.744774 + 0.667317i \(0.232557\pi\)
−0.395739 + 0.918363i \(0.629512\pi\)
\(368\) −403.757 531.133i −1.09717 1.44330i
\(369\) −25.4211 + 24.0801i −0.0688917 + 0.0652577i
\(370\) 12.5285 + 231.075i 0.0338609 + 0.624527i
\(371\) 288.284 173.455i 0.777047 0.467533i
\(372\) −22.6605 15.3642i −0.0609153 0.0413016i
\(373\) 65.5368 236.042i 0.175702 0.632821i −0.822266 0.569103i \(-0.807291\pi\)
0.997968 0.0637176i \(-0.0202957\pi\)
\(374\) 555.211 60.3829i 1.48452 0.161451i
\(375\) −31.1339 23.6674i −0.0830237 0.0631130i
\(376\) −516.792 239.093i −1.37445 0.635886i
\(377\) 40.9180 27.7431i 0.108536 0.0735891i
\(378\) −36.8177 109.271i −0.0974013 0.289077i
\(379\) 16.3282 + 99.5974i 0.0430822 + 0.262790i 0.999581 0.0289465i \(-0.00921525\pi\)
−0.956499 + 0.291736i \(0.905767\pi\)
\(380\) −23.8178 + 145.282i −0.0626785 + 0.382322i
\(381\) −155.916 52.5342i −0.409228 0.137885i
\(382\) −9.29990 33.4952i −0.0243453 0.0876838i
\(383\) 36.9102 + 92.6375i 0.0963712 + 0.241873i 0.969257 0.246052i \(-0.0791333\pi\)
−0.872886 + 0.487925i \(0.837754\pi\)
\(384\) 247.477 98.6037i 0.644470 0.256780i
\(385\) −693.172 + 192.458i −1.80045 + 0.499892i
\(386\) −61.8078 + 183.439i −0.160124 + 0.475230i
\(387\) −85.9326 14.0879i −0.222048 0.0364029i
\(388\) −61.6828 + 10.1124i −0.158976 + 0.0260629i
\(389\) 411.650 138.701i 1.05823 0.356558i 0.264216 0.964463i \(-0.414887\pi\)
0.794009 + 0.607906i \(0.207990\pi\)
\(390\) −18.4575 27.2228i −0.0473270 0.0698021i
\(391\) 379.572 820.432i 0.970773 2.09829i
\(392\) −211.275 + 277.928i −0.538967 + 0.708999i
\(393\) −22.5068 206.947i −0.0572693 0.526582i
\(394\) 636.891 + 176.832i 1.61648 + 0.448812i
\(395\) 367.198 541.577i 0.929616 1.37108i
\(396\) −14.0345 23.3255i −0.0354406 0.0589027i
\(397\) 195.507 10.6001i 0.492460 0.0267004i 0.193763 0.981048i \(-0.437931\pi\)
0.298697 + 0.954348i \(0.403448\pi\)
\(398\) −379.595 400.734i −0.953757 1.00687i
\(399\) −303.096 + 230.407i −0.759639 + 0.577462i
\(400\) −516.800 + 113.756i −1.29200 + 0.284391i
\(401\) 420.737 357.377i 1.04922 0.891215i 0.0549899 0.998487i \(-0.482487\pi\)
0.994230 + 0.107272i \(0.0342115\pi\)
\(402\) −9.68940 + 178.710i −0.0241030 + 0.444553i
\(403\) −9.45978 17.8430i −0.0234734 0.0442755i
\(404\) 30.9376 140.551i 0.0765782 0.347898i
\(405\) 59.5205 27.5371i 0.146964 0.0679929i
\(406\) −481.387 + 800.072i −1.18568 + 1.97062i
\(407\) −66.1798 + 124.828i −0.162604 + 0.306704i
\(408\) 230.152 + 195.493i 0.564099 + 0.479150i
\(409\) −303.724 + 320.638i −0.742602 + 0.783956i −0.982384 0.186871i \(-0.940165\pi\)
0.239782 + 0.970827i \(0.422924\pi\)
\(410\) 20.3960 187.538i 0.0497464 0.457411i
\(411\) −27.8513 + 69.9015i −0.0677647 + 0.170077i
\(412\) 32.5338i 0.0789654i
\(413\) −571.835 + 146.430i −1.38459 + 0.354551i
\(414\) −235.729 −0.569393
\(415\) 624.123 + 248.673i 1.50391 + 0.599213i
\(416\) −16.8677 1.83447i −0.0405473 0.00440978i
\(417\) 225.623 + 213.722i 0.541062 + 0.512522i
\(418\) −311.306 + 366.498i −0.744752 + 0.876790i
\(419\) −274.480 145.520i −0.655083 0.347303i 0.107489 0.994206i \(-0.465719\pi\)
−0.762572 + 0.646903i \(0.776064\pi\)
\(420\) 99.4960 + 59.8648i 0.236895 + 0.142535i
\(421\) 125.945 + 272.225i 0.299156 + 0.646616i 0.997614 0.0690355i \(-0.0219922\pi\)
−0.698458 + 0.715651i \(0.746130\pi\)
\(422\) 421.167 + 92.7059i 0.998027 + 0.219682i
\(423\) −220.898 + 117.113i −0.522217 + 0.276862i
\(424\) 229.425 + 12.4390i 0.541096 + 0.0293374i
\(425\) −464.174 546.468i −1.09217 1.28581i
\(426\) 27.1122 + 123.172i 0.0636437 + 0.289136i
\(427\) 422.121 + 555.291i 0.988575 + 1.30045i
\(428\) −135.486 + 128.340i −0.316557 + 0.299859i
\(429\) −1.08714 20.0511i −0.00253413 0.0467392i
\(430\) 401.985 241.866i 0.934848 0.562479i
\(431\) −157.827 107.009i −0.366188 0.248282i 0.364190 0.931325i \(-0.381346\pi\)
−0.730378 + 0.683043i \(0.760656\pi\)
\(432\) 26.1796 94.2905i 0.0606010 0.218265i
\(433\) −455.601 + 49.5496i −1.05220 + 0.114433i −0.617837 0.786306i \(-0.711991\pi\)
−0.434360 + 0.900739i \(0.643025\pi\)
\(434\) 303.664 + 230.840i 0.699687 + 0.531888i
\(435\) −481.983 222.989i −1.10801 0.512619i
\(436\) −11.2824 + 7.64965i −0.0258770 + 0.0175451i
\(437\) 248.527 + 737.603i 0.568712 + 1.68788i
\(438\) −64.7113 394.721i −0.147743 0.901191i
\(439\) −101.136 + 616.900i −0.230377 + 1.40524i 0.577742 + 0.816219i \(0.303934\pi\)
−0.808119 + 0.589019i \(0.799514\pi\)
\(440\) −465.566 156.867i −1.05810 0.356517i
\(441\) 41.0095 + 147.703i 0.0929920 + 0.334927i
\(442\) −24.6127 61.7733i −0.0556849 0.139759i
\(443\) 334.921 133.445i 0.756029 0.301230i 0.0399061 0.999203i \(-0.487294\pi\)
0.716123 + 0.697974i \(0.245915\pi\)
\(444\) 21.9738 6.10100i 0.0494906 0.0137410i
\(445\) −277.583 + 823.836i −0.623781 + 1.85132i
\(446\) −749.202 122.825i −1.67983 0.275393i
\(447\) 38.8010 6.36111i 0.0868032 0.0142307i
\(448\) −410.528 + 138.323i −0.916358 + 0.308757i
\(449\) 39.6661 + 58.5031i 0.0883431 + 0.130296i 0.869293 0.494298i \(-0.164575\pi\)
−0.780950 + 0.624594i \(0.785264\pi\)
\(450\) −78.5063 + 169.689i −0.174458 + 0.377086i
\(451\) 69.7002 91.6891i 0.154546 0.203302i
\(452\) 7.18710 + 66.0843i 0.0159007 + 0.146204i
\(453\) −45.8887 12.7409i −0.101300 0.0281257i
\(454\) −461.211 + 680.235i −1.01588 + 1.49831i
\(455\) 44.1597 + 73.3939i 0.0970542 + 0.161305i
\(456\) −259.623 + 14.0764i −0.569349 + 0.0308692i
\(457\) 78.5063 + 82.8781i 0.171786 + 0.181352i 0.806204 0.591638i \(-0.201519\pi\)
−0.634417 + 0.772991i \(0.718760\pi\)
\(458\) 191.001 145.195i 0.417033 0.317020i
\(459\) 129.491 28.5032i 0.282116 0.0620984i
\(460\) 180.926 153.680i 0.393318 0.334087i
\(461\) −10.6606 + 196.623i −0.0231249 + 0.426514i 0.963933 + 0.266147i \(0.0857505\pi\)
−0.987057 + 0.160367i \(0.948732\pi\)
\(462\) 177.654 + 335.090i 0.384532 + 0.725304i
\(463\) 39.9925 181.688i 0.0863768 0.392414i −0.913520 0.406794i \(-0.866647\pi\)
0.999897 + 0.0143805i \(0.00457763\pi\)
\(464\) −719.187 + 332.731i −1.54997 + 0.717093i
\(465\) −111.849 + 185.895i −0.240536 + 0.399773i
\(466\) 113.350 213.800i 0.243239 0.458798i
\(467\) −198.641 168.727i −0.425356 0.361301i 0.408993 0.912538i \(-0.365880\pi\)
−0.834349 + 0.551237i \(0.814156\pi\)
\(468\) −2.22897 + 2.35310i −0.00476277 + 0.00502799i
\(469\) 50.3936 463.361i 0.107449 0.987977i
\(470\) 498.571 1251.32i 1.06079 2.66238i
\(471\) 84.0241i 0.178395i
\(472\) −379.341 136.383i −0.803689 0.288947i
\(473\) 286.425 0.605550
\(474\) −320.465 127.685i −0.676086 0.269377i
\(475\) 613.730 + 66.7471i 1.29206 + 0.140520i
\(476\) 170.436 + 161.446i 0.358059 + 0.339172i
\(477\) 65.3112 76.8902i 0.136921 0.161195i
\(478\) −521.092 276.266i −1.09015 0.577962i
\(479\) 641.648 + 386.067i 1.33956 + 0.805984i 0.991326 0.131424i \(-0.0419551\pi\)
0.348230 + 0.937409i \(0.386783\pi\)
\(480\) 76.5324 + 165.422i 0.159442 + 0.344629i
\(481\) 16.4290 + 3.61630i 0.0341559 + 0.00751829i
\(482\) 626.193 331.986i 1.29916 0.688769i
\(483\) 613.000 + 33.2359i 1.26915 + 0.0688114i
\(484\) −14.0666 16.5605i −0.0290632 0.0342159i
\(485\) 106.478 + 483.733i 0.219542 + 0.997388i
\(486\) −20.9241 27.5252i −0.0430537 0.0566362i
\(487\) 20.7262 19.6329i 0.0425589 0.0403139i −0.666125 0.745841i \(-0.732048\pi\)
0.708683 + 0.705527i \(0.249289\pi\)
\(488\) 25.7888 + 475.647i 0.0528459 + 0.974686i
\(489\) −156.565 + 94.2023i −0.320175 + 0.192643i
\(490\) −683.543 463.453i −1.39499 0.945823i
\(491\) −199.835 + 719.742i −0.406997 + 1.46587i 0.421990 + 0.906601i \(0.361332\pi\)
−0.828987 + 0.559269i \(0.811082\pi\)
\(492\) −18.4812 + 2.00995i −0.0375635 + 0.00408527i
\(493\) −854.758 649.770i −1.73379 1.31799i
\(494\) 51.9627 + 24.0405i 0.105188 + 0.0486650i
\(495\) −178.544 + 121.056i −0.360695 + 0.244557i
\(496\) 103.364 + 306.773i 0.208395 + 0.618495i
\(497\) −53.1377 324.125i −0.106917 0.652164i
\(498\) 57.3031 349.534i 0.115067 0.701875i
\(499\) −438.165 147.635i −0.878085 0.295861i −0.156076 0.987745i \(-0.549885\pi\)
−0.722009 + 0.691884i \(0.756781\pi\)
\(500\) −5.55474 20.0064i −0.0111095 0.0400127i
\(501\) −69.3334 174.014i −0.138390 0.347333i
\(502\) 924.639 368.410i 1.84191 0.733884i
\(503\) 96.1431 26.6940i 0.191139 0.0530696i −0.170639 0.985334i \(-0.554583\pi\)
0.361779 + 0.932264i \(0.382170\pi\)
\(504\) −65.4798 + 194.337i −0.129920 + 0.385589i
\(505\) −1125.40 184.499i −2.22851 0.365345i
\(506\) 765.151 125.440i 1.51216 0.247905i
\(507\) 275.128 92.7014i 0.542659 0.182843i
\(508\) −49.0200 72.2991i −0.0964961 0.142321i
\(509\) −43.3783 + 93.7606i −0.0852225 + 0.184205i −0.945501 0.325619i \(-0.894427\pi\)
0.860279 + 0.509824i \(0.170290\pi\)
\(510\) −432.294 + 568.673i −0.847635 + 1.11504i
\(511\) 112.626 + 1035.58i 0.220403 + 2.02657i
\(512\) −233.875 64.9349i −0.456786 0.126826i
\(513\) −64.0671 + 94.4919i −0.124887 + 0.184195i
\(514\) 438.088 + 728.108i 0.852311 + 1.41655i
\(515\) −257.427 + 13.9573i −0.499857 + 0.0271015i
\(516\) −31.7936 33.5641i −0.0616156 0.0650468i
\(517\) 654.692 497.684i 1.26633 0.962638i
\(518\) −310.302 + 68.3027i −0.599039 + 0.131858i
\(519\) −355.615 + 302.062i −0.685192 + 0.582008i
\(520\) −3.16684 + 58.4089i −0.00609007 + 0.112325i
\(521\) −101.628 191.691i −0.195063 0.367929i 0.766616 0.642106i \(-0.221939\pi\)
−0.961679 + 0.274178i \(0.911594\pi\)
\(522\) −60.1881 + 273.437i −0.115303 + 0.523826i
\(523\) 200.437 92.7322i 0.383246 0.177308i −0.218801 0.975770i \(-0.570214\pi\)
0.602046 + 0.798461i \(0.294352\pi\)
\(524\) 56.9784 94.6989i 0.108737 0.180723i
\(525\) 228.076 430.198i 0.434431 0.819424i
\(526\) −227.490 193.232i −0.432491 0.367361i
\(527\) −301.639 + 318.436i −0.572370 + 0.604244i
\(528\) −34.8009 + 319.989i −0.0659107 + 0.606039i
\(529\) 268.732 674.467i 0.508001 1.27499i
\(530\) 543.510i 1.02549i
\(531\) −148.472 + 96.3590i −0.279608 + 0.181467i
\(532\) −202.135 −0.379952
\(533\) −12.7392 5.07577i −0.0239010 0.00952303i
\(534\) 455.639 + 49.5537i 0.853256 + 0.0927972i
\(535\) 1073.62 + 1016.99i 2.00677 + 1.90092i
\(536\) 206.064 242.597i 0.384447 0.452606i
\(537\) −99.2008 52.5929i −0.184731 0.0979384i
\(538\) −316.697 190.550i −0.588656 0.354182i
\(539\) −211.711 457.606i −0.392785 0.848990i
\(540\) 34.0043 + 7.48492i 0.0629710 + 0.0138610i
\(541\) 395.847 209.865i 0.731696 0.387920i −0.0605158 0.998167i \(-0.519275\pi\)
0.792211 + 0.610247i \(0.208930\pi\)
\(542\) 565.822 + 30.6780i 1.04395 + 0.0566014i
\(543\) −185.715 218.640i −0.342016 0.402652i
\(544\) 79.2172 + 359.887i 0.145620 + 0.661558i
\(545\) 65.3688 + 85.9912i 0.119943 + 0.157782i
\(546\) 32.7845 31.0551i 0.0600448 0.0568775i
\(547\) −34.4276 634.980i −0.0629390 1.16084i −0.843985 0.536368i \(-0.819796\pi\)
0.781046 0.624474i \(-0.214687\pi\)
\(548\) −34.2306 + 20.5959i −0.0624646 + 0.0375837i
\(549\) 173.115 + 117.375i 0.315328 + 0.213798i
\(550\) 164.526 592.568i 0.299138 1.07740i
\(551\) 919.050 99.9527i 1.66797 0.181402i
\(552\) 333.754 + 253.713i 0.604627 + 0.459626i
\(553\) 815.350 + 377.221i 1.47441 + 0.682136i
\(554\) −491.147 + 333.006i −0.886547 + 0.601094i
\(555\) −57.7017 171.253i −0.103967 0.308563i
\(556\) 26.6934 + 162.823i 0.0480097 + 0.292847i
\(557\) −73.5853 + 448.850i −0.132110 + 0.805835i 0.834769 + 0.550600i \(0.185601\pi\)
−0.966879 + 0.255235i \(0.917847\pi\)
\(558\) 108.390 + 36.5209i 0.194248 + 0.0654497i
\(559\) −9.12359 32.8602i −0.0163213 0.0587839i
\(560\) −508.191 1275.46i −0.907485 2.27762i
\(561\) −405.148 + 161.426i −0.722188 + 0.287746i
\(562\) −217.236 + 60.3152i −0.386541 + 0.107322i
\(563\) 233.098 691.809i 0.414028 1.22879i −0.514488 0.857498i \(-0.672018\pi\)
0.928516 0.371293i \(-0.121085\pi\)
\(564\) −130.992 21.4750i −0.232255 0.0380763i
\(565\) 519.815 85.2193i 0.920026 0.150831i
\(566\) −1063.55 + 358.352i −1.87907 + 0.633131i
\(567\) 50.5313 + 74.5280i 0.0891204 + 0.131443i
\(568\) 94.1828 203.573i 0.165815 0.358403i
\(569\) 525.022 690.654i 0.922710 1.21380i −0.0538483 0.998549i \(-0.517149\pi\)
0.976558 0.215255i \(-0.0690582\pi\)
\(570\) −66.4987 611.446i −0.116664 1.07271i
\(571\) −268.593 74.5744i −0.470390 0.130603i 0.0242412 0.999706i \(-0.492283\pi\)
−0.494631 + 0.869103i \(0.664697\pi\)
\(572\) 5.98285 8.82404i 0.0104595 0.0154267i
\(573\) 13.9952 + 23.2602i 0.0244245 + 0.0405938i
\(574\) 258.627 14.0224i 0.450570 0.0244292i
\(575\) −684.559 722.680i −1.19054 1.25684i
\(576\) −103.412 + 78.6114i −0.179534 + 0.136478i
\(577\) 16.9818 3.73799i 0.0294313 0.00647831i −0.200230 0.979749i \(-0.564169\pi\)
0.229662 + 0.973271i \(0.426238\pi\)
\(578\) −612.168 + 519.980i −1.05911 + 0.899620i
\(579\) 8.18368 150.939i 0.0141342 0.260689i
\(580\) −132.068 249.107i −0.227704 0.429495i
\(581\) −198.295 + 900.865i −0.341300 + 1.55054i
\(582\) 236.998 109.647i 0.407214 0.188397i
\(583\) −171.077 + 284.332i −0.293443 + 0.487706i
\(584\) −333.216 + 628.511i −0.570575 + 1.07622i
\(585\) 19.5754 + 16.6275i 0.0334622 + 0.0284230i
\(586\) 112.729 119.006i 0.192370 0.203083i
\(587\) −16.4628 + 151.373i −0.0280457 + 0.257876i 0.971718 + 0.236144i \(0.0758836\pi\)
−0.999764 + 0.0217320i \(0.993082\pi\)
\(588\) −30.1233 + 75.6038i −0.0512301 + 0.128578i
\(589\) 377.661i 0.641190i
\(590\) 273.565 913.497i 0.463670 1.54830i
\(591\) −516.164 −0.873375
\(592\) −250.497 99.8070i −0.423136 0.168593i
\(593\) 610.274 + 66.3713i 1.02913 + 0.111925i 0.607074 0.794645i \(-0.292343\pi\)
0.422056 + 0.906570i \(0.361309\pi\)
\(594\) 82.5648 + 78.2095i 0.138998 + 0.131666i
\(595\) 1204.34 1417.85i 2.02409 2.38295i
\(596\) 18.4433 + 9.77804i 0.0309452 + 0.0164061i
\(597\) 369.341 + 222.225i 0.618662 + 0.372236i
\(598\) −38.7637 83.7865i −0.0648223 0.140111i
\(599\) −405.927 89.3514i −0.677675 0.149168i −0.137220 0.990541i \(-0.543817\pi\)
−0.540455 + 0.841373i \(0.681748\pi\)
\(600\) 293.787 155.756i 0.489645 0.259594i
\(601\) 168.732 + 9.14838i 0.280752 + 0.0152219i 0.193977 0.981006i \(-0.437861\pi\)
0.0867747 + 0.996228i \(0.472344\pi\)
\(602\) 416.997 + 490.927i 0.692686 + 0.815493i
\(603\) −30.0444 136.493i −0.0498248 0.226356i
\(604\) −15.3016 20.1289i −0.0253337 0.0333260i
\(605\) −125.002 + 118.408i −0.206615 + 0.195716i
\(606\) 32.5504 + 600.357i 0.0537136 + 0.990688i
\(607\) 783.903 471.659i 1.29144 0.777033i 0.306823 0.951767i \(-0.400734\pi\)
0.984616 + 0.174733i \(0.0559064\pi\)
\(608\) −262.616 178.058i −0.431934 0.292859i
\(609\) 195.069 702.573i 0.320310 1.15365i
\(610\) −1120.21 + 121.830i −1.83641 + 0.199721i
\(611\) −77.9510 59.2568i −0.127579 0.0969833i
\(612\) 63.8883 + 29.5579i 0.104393 + 0.0482972i
\(613\) −30.5880 + 20.7392i −0.0498989 + 0.0338323i −0.585882 0.810397i \(-0.699252\pi\)
0.535983 + 0.844229i \(0.319941\pi\)
\(614\) 243.418 + 722.438i 0.396446 + 1.17661i
\(615\) 23.8326 + 145.372i 0.0387521 + 0.236378i
\(616\) 109.127 665.642i 0.177153 1.08059i
\(617\) −609.618 205.404i −0.988036 0.332908i −0.221536 0.975152i \(-0.571107\pi\)
−0.766500 + 0.642244i \(0.778004\pi\)
\(618\) 36.3616 + 130.963i 0.0588376 + 0.211914i
\(619\) −327.284 821.422i −0.528731 1.32701i −0.914562 0.404445i \(-0.867465\pi\)
0.385832 0.922569i \(-0.373915\pi\)
\(620\) −107.001 + 42.6331i −0.172582 + 0.0687630i
\(621\) 177.371 49.2469i 0.285622 0.0793026i
\(622\) 26.0976 77.4549i 0.0419575 0.124526i
\(623\) −1177.88 193.103i −1.89066 0.309957i
\(624\) 37.8193 6.20016i 0.0606078 0.00993615i
\(625\) 509.774 171.763i 0.815639 0.274821i
\(626\) −237.132 349.744i −0.378806 0.558696i
\(627\) 157.673 340.804i 0.251471 0.543546i
\(628\) −26.9966 + 35.5134i −0.0429882 + 0.0565500i
\(629\) −39.5021 363.216i −0.0628014 0.577449i
\(630\) −467.424 129.780i −0.741942 0.205999i
\(631\) 142.276 209.842i 0.225478 0.332555i −0.698076 0.716023i \(-0.745960\pi\)
0.923554 + 0.383469i \(0.125271\pi\)
\(632\) 316.301 + 525.696i 0.500476 + 0.831798i
\(633\) −336.270 + 18.2320i −0.531233 + 0.0288026i
\(634\) 914.422 + 965.343i 1.44231 + 1.52262i
\(635\) −551.044 + 418.893i −0.867786 + 0.659673i
\(636\) 52.3087 11.5140i 0.0822464 0.0181038i
\(637\) −45.7552 + 38.8648i −0.0718292 + 0.0610123i
\(638\) 49.8581 919.578i 0.0781474 1.44134i
\(639\) −46.1326 87.0154i −0.0721950 0.136174i
\(640\) 240.929 1094.55i 0.376452 1.71024i
\(641\) 545.320 252.292i 0.850733 0.393591i 0.0544507 0.998516i \(-0.482659\pi\)
0.796282 + 0.604926i \(0.206797\pi\)
\(642\) 401.953 668.051i 0.626095 1.04058i
\(643\) −294.245 + 555.005i −0.457613 + 0.863149i 0.542126 + 0.840297i \(0.317619\pi\)
−0.999739 + 0.0228520i \(0.992725\pi\)
\(644\) 248.410 + 211.002i 0.385731 + 0.327642i
\(645\) −251.940 + 265.970i −0.390604 + 0.412356i
\(646\) 134.445 1236.20i 0.208119 1.91362i
\(647\) 323.035 810.757i 0.499281 1.25310i −0.436240 0.899830i \(-0.643690\pi\)
0.935521 0.353271i \(-0.114931\pi\)
\(648\) 61.4918i 0.0948948i
\(649\) 430.649 391.779i 0.663557 0.603666i
\(650\) −73.2232 −0.112651
\(651\) −276.714 110.253i −0.425060 0.169360i
\(652\) −96.4403 10.4885i −0.147915 0.0160867i
\(653\) 609.916 + 577.743i 0.934021 + 0.884752i 0.993541 0.113475i \(-0.0361982\pi\)
−0.0595196 + 0.998227i \(0.518957\pi\)
\(654\) 36.8669 43.4031i 0.0563714 0.0663655i
\(655\) −773.759 410.221i −1.18131 0.626291i
\(656\) 188.347 + 113.325i 0.287114 + 0.172751i
\(657\) 131.154 + 283.485i 0.199626 + 0.431484i
\(658\) 1806.16 + 397.567i 2.74493 + 0.604205i
\(659\) 628.307 333.107i 0.953425 0.505474i 0.0823387 0.996604i \(-0.473761\pi\)
0.871086 + 0.491131i \(0.163416\pi\)
\(660\) −114.358 6.20029i −0.173269 0.00939438i
\(661\) 563.107 + 662.940i 0.851901 + 1.00294i 0.999903 + 0.0139482i \(0.00444000\pi\)
−0.148002 + 0.988987i \(0.547284\pi\)
\(662\) 16.2446 + 73.8001i 0.0245387 + 0.111481i
\(663\) 31.4249 + 41.3387i 0.0473980 + 0.0623510i
\(664\) −457.333 + 433.209i −0.688755 + 0.652423i
\(665\) 86.7175 + 1599.41i 0.130402 + 2.40513i
\(666\) −81.6354 + 49.1184i −0.122576 + 0.0737514i
\(667\) −1233.79 836.531i −1.84976 1.25417i
\(668\) 26.6056 95.8246i 0.0398287 0.143450i
\(669\) 589.389 64.0999i 0.881000 0.0958145i
\(670\) 599.421 + 455.668i 0.894658 + 0.680102i
\(671\) −624.374 288.866i −0.930513 0.430501i
\(672\) −207.131 + 140.439i −0.308231 + 0.208986i
\(673\) 252.411 + 749.128i 0.375053 + 1.11312i 0.954526 + 0.298126i \(0.0963616\pi\)
−0.579474 + 0.814991i \(0.696742\pi\)
\(674\) 103.827 + 633.316i 0.154046 + 0.939638i
\(675\) 23.6209 144.081i 0.0349940 0.213454i
\(676\) 146.069 + 49.2165i 0.216079 + 0.0728055i
\(677\) 318.725 + 1147.94i 0.470790 + 1.69563i 0.693255 + 0.720692i \(0.256176\pi\)
−0.222465 + 0.974941i \(0.571410\pi\)
\(678\) −102.791 257.986i −0.151609 0.380510i
\(679\) −631.762 + 251.717i −0.930429 + 0.370717i
\(680\) 1224.12 339.875i 1.80017 0.499816i
\(681\) 204.923 608.188i 0.300914 0.893081i
\(682\) −371.258 60.8647i −0.544367 0.0892444i
\(683\) −1146.84 + 188.014i −1.67912 + 0.275277i −0.924582 0.380983i \(-0.875585\pi\)
−0.754534 + 0.656261i \(0.772137\pi\)
\(684\) −57.4383 + 19.3532i −0.0839741 + 0.0282942i
\(685\) 177.652 + 262.017i 0.259346 + 0.382507i
\(686\) 19.5369 42.2283i 0.0284794 0.0615572i
\(687\) −113.383 + 149.153i −0.165041 + 0.217108i
\(688\) 59.1031 + 543.444i 0.0859056 + 0.789889i
\(689\) 38.0695 + 10.5699i 0.0552532 + 0.0153410i
\(690\) −556.546 + 820.844i −0.806588 + 1.18963i
\(691\) −113.643 188.876i −0.164462 0.273338i 0.763657 0.645623i \(-0.223402\pi\)
−0.928119 + 0.372285i \(0.878574\pi\)
\(692\) −247.354 + 13.4112i −0.357449 + 0.0193803i
\(693\) −203.679 215.021i −0.293908 0.310275i
\(694\) −620.475 + 471.673i −0.894056 + 0.679644i
\(695\) 1276.90 281.067i 1.83726 0.404412i
\(696\) 379.516 322.363i 0.545281 0.463166i
\(697\) −16.1243 + 297.395i −0.0231338 + 0.426678i
\(698\) 661.414 + 1247.56i 0.947584 + 1.78733i
\(699\) −40.6229 + 184.552i −0.0581157 + 0.264022i
\(700\) 234.619 108.546i 0.335170 0.155066i
\(701\) −236.167 + 392.512i −0.336900 + 0.559932i −0.978279 0.207292i \(-0.933535\pi\)
0.641379 + 0.767224i \(0.278362\pi\)
\(702\) 6.34264 11.9635i 0.00903510 0.0170420i
\(703\) 239.761 + 203.655i 0.341054 + 0.289694i
\(704\) 293.831 310.194i 0.417374 0.440616i
\(705\) −113.727 + 1045.70i −0.161314 + 1.48326i
\(706\) 50.9155 127.788i 0.0721182 0.181003i
\(707\) 1565.79i 2.21469i
\(708\) −93.7125 6.97656i −0.132362 0.00985390i
\(709\) 6.99813 0.00987043 0.00493521 0.999988i \(-0.498429\pi\)
0.00493521 + 0.999988i \(0.498429\pi\)
\(710\) 492.915 + 196.395i 0.694247 + 0.276613i
\(711\) 267.805 + 29.1256i 0.376660 + 0.0409643i
\(712\) −591.778 560.562i −0.831148 0.787306i
\(713\) −394.228 + 464.121i −0.552914 + 0.650941i
\(714\) −866.521 459.401i −1.21362 0.643418i
\(715\) −72.3878 43.5543i −0.101242 0.0609151i
\(716\) −25.0300 54.1016i −0.0349582 0.0755608i
\(717\) 449.806 + 99.0098i 0.627344 + 0.138089i
\(718\) −316.047 + 167.557i −0.440177 + 0.233367i
\(719\) −1042.19 56.5061i −1.44951 0.0785899i −0.687511 0.726174i \(-0.741297\pi\)
−0.761994 + 0.647584i \(0.775780\pi\)
\(720\) −266.525 313.778i −0.370174 0.435802i
\(721\) −76.0918 345.689i −0.105536 0.479457i
\(722\) 163.376 + 214.918i 0.226283 + 0.297670i
\(723\) −401.815 + 380.620i −0.555761 + 0.526445i
\(724\) −8.24550 152.079i −0.0113888 0.210054i
\(725\) −1013.07 + 609.545i −1.39734 + 0.840752i
\(726\) 75.1332 + 50.9416i 0.103489 + 0.0701675i
\(727\) −210.985 + 759.898i −0.290213 + 1.04525i 0.664394 + 0.747382i \(0.268690\pi\)
−0.954607 + 0.297869i \(0.903724\pi\)
\(728\) −79.8420 + 8.68334i −0.109673 + 0.0119277i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) −1527.26 706.587i −2.09214 0.967927i
\(731\) −613.050 + 415.658i −0.838645 + 0.568616i
\(732\) 35.4563 + 105.231i 0.0484376 + 0.143758i
\(733\) −167.037 1018.88i −0.227881 1.39001i −0.814506 0.580155i \(-0.802992\pi\)
0.586625 0.809859i \(-0.300456\pi\)
\(734\) 213.821 1304.25i 0.291309 1.77690i
\(735\) 611.146 + 205.919i 0.831491 + 0.280162i
\(736\) 136.869 + 492.958i 0.185964 + 0.669780i
\(737\) 170.154 + 427.054i 0.230874 + 0.579450i
\(738\) 72.1486 28.7466i 0.0977624 0.0389521i
\(739\) 948.634 263.387i 1.28367 0.356410i 0.442301 0.896867i \(-0.354162\pi\)
0.841372 + 0.540457i \(0.181748\pi\)
\(740\) 30.6347 90.9204i 0.0413982 0.122865i
\(741\) −44.1212 7.23330i −0.0595427 0.00976154i
\(742\) −736.405 + 120.728i −0.992460 + 0.162706i
\(743\) −1078.00 + 363.221i −1.45088 + 0.488857i −0.930884 0.365315i \(-0.880961\pi\)
−0.519991 + 0.854172i \(0.674065\pi\)
\(744\) −114.156 168.368i −0.153436 0.226301i
\(745\) 69.4573 150.130i 0.0932313 0.201516i
\(746\) −328.821 + 432.556i −0.440779 + 0.579834i
\(747\) 29.9052 + 274.974i 0.0400338 + 0.368105i
\(748\) −223.104 61.9445i −0.298267 0.0828135i
\(749\) −1139.45 + 1680.56i −1.52129 + 2.24374i
\(750\) 44.7206 + 74.3262i 0.0596274 + 0.0991015i
\(751\) 719.248 38.9965i 0.957720 0.0519261i 0.431353 0.902183i \(-0.358036\pi\)
0.526367 + 0.850257i \(0.323554\pi\)
\(752\) 1079.37 + 1139.47i 1.43533 + 1.51526i
\(753\) −618.769 + 470.376i −0.821738 + 0.624669i
\(754\) −107.087 + 23.5716i −0.142025 + 0.0312621i
\(755\) −152.707 + 129.711i −0.202261 + 0.171802i
\(756\) −2.58813 + 47.7353i −0.00342346 + 0.0631419i
\(757\) −65.9803 124.452i −0.0871602 0.164402i 0.836100 0.548577i \(-0.184830\pi\)
−0.923260 + 0.384176i \(0.874486\pi\)
\(758\) 48.1226 218.623i 0.0634863 0.288421i
\(759\) −549.523 + 254.237i −0.724010 + 0.334963i
\(760\) −563.944 + 937.282i −0.742032 + 1.23327i
\(761\) 561.578 1059.25i 0.737947 1.39192i −0.175303 0.984515i \(-0.556090\pi\)
0.913249 0.407401i \(-0.133565\pi\)
\(762\) 278.133 + 236.248i 0.365004 + 0.310037i
\(763\) −101.990 + 107.669i −0.133670 + 0.141113i
\(764\) −1.55823 + 14.3277i −0.00203957 + 0.0187535i
\(765\) 206.471 518.203i 0.269897 0.677390i
\(766\) 221.180i 0.288747i
\(767\) −58.6645 36.9268i −0.0764857 0.0481445i
\(768\) −290.883 −0.378754
\(769\) 1037.96 + 413.563i 1.34976 + 0.537793i 0.929235 0.369488i \(-0.120467\pi\)
0.420524 + 0.907281i \(0.361846\pi\)
\(770\) 1586.27 + 172.517i 2.06009 + 0.224048i
\(771\) −481.746 456.334i −0.624833 0.591873i
\(772\) 51.9550 61.1661i 0.0672992 0.0792307i
\(773\) 304.659 + 161.520i 0.394126 + 0.208952i 0.653671 0.756779i \(-0.273228\pi\)
−0.259546 + 0.965731i \(0.583573\pi\)