Properties

Label 177.3.g.a.10.5
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.5
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.5

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.17964 - 0.868447i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(1.09264 + 1.03500i) q^{4} +(5.68569 - 6.69371i) q^{5} +(3.59048 + 1.90355i) q^{6} +(0.838143 + 0.504294i) q^{7} +(2.45800 + 5.31287i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(-2.17964 - 0.868447i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(1.09264 + 1.03500i) q^{4} +(5.68569 - 6.69371i) q^{5} +(3.59048 + 1.90355i) q^{6} +(0.838143 + 0.504294i) q^{7} +(2.45800 + 5.31287i) q^{8} +(2.92986 + 0.644911i) q^{9} +(-18.2059 + 9.65215i) q^{10} +(14.5900 + 0.791048i) q^{11} +(-1.68759 - 1.98678i) q^{12} +(-1.87807 - 8.53218i) q^{13} +(-1.38890 - 1.82706i) q^{14} +(-11.0437 + 10.4611i) q^{15} +(-1.06951 - 19.7260i) q^{16} +(-18.3342 + 11.0313i) q^{17} +(-5.82596 - 3.95010i) q^{18} +(8.04403 - 28.9720i) q^{19} +(13.1404 - 1.42910i) q^{20} +(-1.34876 - 1.02530i) q^{21} +(-31.1140 - 14.3949i) q^{22} +(14.5724 - 9.88034i) q^{23} +(-3.23749 - 9.60853i) q^{24} +(-8.43416 - 51.4461i) q^{25} +(-3.31622 + 20.2281i) q^{26} +(-4.92415 - 1.65914i) q^{27} +(0.393841 + 1.41849i) q^{28} +(-4.50953 - 11.3181i) q^{29} +(33.1562 - 13.2106i) q^{30} +(-50.7399 + 14.0879i) q^{31} +(-7.32319 + 21.7344i) q^{32} +(-24.9744 - 4.09434i) q^{33} +(49.5421 - 8.12201i) q^{34} +(8.14102 - 2.74303i) q^{35} +(2.53379 + 3.73706i) q^{36} +(-25.6122 + 55.3599i) q^{37} +(-42.6937 + 56.1626i) q^{38} +(1.63605 + 15.0432i) q^{39} +(49.5383 + 13.7542i) q^{40} +(8.03728 - 11.8541i) q^{41} +(2.04939 + 3.40611i) q^{42} +(6.41852 - 0.348002i) q^{43} +(15.1229 + 15.9650i) q^{44} +(20.9751 - 15.9449i) q^{45} +(-40.3431 + 8.88019i) q^{46} +(64.4342 - 54.7309i) q^{47} +(-1.85245 + 34.1665i) q^{48} +(-22.5038 - 42.4467i) q^{49} +(-26.2948 + 119.458i) q^{50} +(33.6355 - 15.5614i) q^{51} +(6.77876 - 11.2664i) q^{52} +(-16.5152 + 31.1509i) q^{53} +(9.29199 + 7.89269i) q^{54} +(88.2494 - 93.1637i) q^{55} +(-0.619097 + 5.69250i) q^{56} +(-19.2765 + 48.3804i) q^{57} +28.5855i q^{58} +(54.7905 + 21.8861i) q^{59} -22.8940 q^{60} +(16.8596 + 6.71749i) q^{61} +(122.829 + 13.3585i) q^{62} +(2.13042 + 2.01804i) q^{63} +(-16.3193 + 19.2126i) q^{64} +(-67.7901 - 35.9400i) q^{65} +(50.8794 + 30.6131i) q^{66} +(27.0791 + 58.5305i) q^{67} +(-31.4501 - 6.92268i) q^{68} +(-26.9425 + 14.2840i) q^{69} +(-20.1266 - 1.09123i) q^{70} +(-4.61515 - 5.43338i) q^{71} +(3.77526 + 17.1512i) q^{72} +(-66.5371 - 87.5280i) q^{73} +(103.903 - 98.4217i) q^{74} +(4.88857 + 90.1644i) q^{75} +(38.7752 - 23.3303i) q^{76} +(11.8296 + 8.02067i) q^{77} +(9.49826 - 34.2096i) q^{78} +(45.8528 - 4.98679i) q^{79} +(-138.121 - 104.997i) q^{80} +(8.16818 + 3.77900i) q^{81} +(-27.8130 + 18.8577i) q^{82} +(-6.50020 - 19.2919i) q^{83} +(-0.412517 - 2.51624i) q^{84} +(-30.4021 + 185.445i) q^{85} +(-14.2923 - 4.81563i) q^{86} +(5.64544 + 20.3330i) q^{87} +(31.6595 + 79.4593i) q^{88} +(-17.3479 + 6.91204i) q^{89} +(-59.5655 + 16.5383i) q^{90} +(2.72863 - 8.09829i) q^{91} +(26.1485 + 4.28683i) q^{92} +(90.0071 - 14.7559i) q^{93} +(-187.974 + 63.3358i) q^{94} +(-148.194 - 218.570i) q^{95} +(16.6799 - 36.0531i) q^{96} +(-25.4957 + 33.5390i) q^{97} +(12.1875 + 112.062i) q^{98} +(42.2366 + 11.7269i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.17964 0.868447i −1.08982 0.434223i −0.245135 0.969489i \(-0.578832\pi\)
−0.844684 + 0.535266i \(0.820212\pi\)
\(3\) −1.72190 0.187268i −0.573966 0.0624225i
\(4\) 1.09264 + 1.03500i 0.273159 + 0.258750i
\(5\) 5.68569 6.69371i 1.13714 1.33874i 0.204106 0.978949i \(-0.434571\pi\)
0.933032 0.359794i \(-0.117153\pi\)
\(6\) 3.59048 + 1.90355i 0.598413 + 0.317259i
\(7\) 0.838143 + 0.504294i 0.119735 + 0.0720420i 0.574161 0.818742i \(-0.305328\pi\)
−0.454427 + 0.890784i \(0.650156\pi\)
\(8\) 2.45800 + 5.31287i 0.307250 + 0.664109i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) −18.2059 + 9.65215i −1.82059 + 0.965215i
\(11\) 14.5900 + 0.791048i 1.32637 + 0.0719134i 0.703657 0.710540i \(-0.251549\pi\)
0.622709 + 0.782454i \(0.286032\pi\)
\(12\) −1.68759 1.98678i −0.140632 0.165565i
\(13\) −1.87807 8.53218i −0.144467 0.656322i −0.992070 0.125690i \(-0.959886\pi\)
0.847602 0.530632i \(-0.178045\pi\)
\(14\) −1.38890 1.82706i −0.0992068 0.130504i
\(15\) −11.0437 + 10.4611i −0.736246 + 0.697409i
\(16\) −1.06951 19.7260i −0.0668446 1.23288i
\(17\) −18.3342 + 11.0313i −1.07848 + 0.648902i −0.939900 0.341449i \(-0.889082\pi\)
−0.138583 + 0.990351i \(0.544255\pi\)
\(18\) −5.82596 3.95010i −0.323665 0.219450i
\(19\) 8.04403 28.9720i 0.423370 1.52484i −0.377504 0.926008i \(-0.623217\pi\)
0.800874 0.598833i \(-0.204369\pi\)
\(20\) 13.1404 1.42910i 0.657020 0.0714552i
\(21\) −1.34876 1.02530i −0.0642266 0.0488238i
\(22\) −31.1140 14.3949i −1.41427 0.654311i
\(23\) 14.5724 9.88034i 0.633583 0.429580i −0.201664 0.979455i \(-0.564635\pi\)
0.835247 + 0.549875i \(0.185325\pi\)
\(24\) −3.23749 9.60853i −0.134895 0.400355i
\(25\) −8.43416 51.4461i −0.337366 2.05784i
\(26\) −3.31622 + 20.2281i −0.127547 + 0.778003i
\(27\) −4.92415 1.65914i −0.182376 0.0614496i
\(28\) 0.393841 + 1.41849i 0.0140658 + 0.0506603i
\(29\) −4.50953 11.3181i −0.155501 0.390278i 0.830500 0.557019i \(-0.188055\pi\)
−0.986001 + 0.166741i \(0.946676\pi\)
\(30\) 33.1562 13.2106i 1.10521 0.440354i
\(31\) −50.7399 + 14.0879i −1.63677 + 0.454447i −0.959597 0.281376i \(-0.909209\pi\)
−0.677173 + 0.735824i \(0.736795\pi\)
\(32\) −7.32319 + 21.7344i −0.228850 + 0.679201i
\(33\) −24.9744 4.09434i −0.756799 0.124071i
\(34\) 49.5421 8.12201i 1.45712 0.238883i
\(35\) 8.14102 2.74303i 0.232601 0.0783723i
\(36\) 2.53379 + 3.73706i 0.0703831 + 0.103807i
\(37\) −25.6122 + 55.3599i −0.692223 + 1.49621i 0.167726 + 0.985834i \(0.446358\pi\)
−0.859949 + 0.510381i \(0.829504\pi\)
\(38\) −42.6937 + 56.1626i −1.12352 + 1.47796i
\(39\) 1.63605 + 15.0432i 0.0419500 + 0.385724i
\(40\) 49.5383 + 13.7542i 1.23846 + 0.343856i
\(41\) 8.03728 11.8541i 0.196031 0.289124i −0.716951 0.697123i \(-0.754463\pi\)
0.912982 + 0.407999i \(0.133773\pi\)
\(42\) 2.04939 + 3.40611i 0.0487949 + 0.0810977i
\(43\) 6.41852 0.348002i 0.149268 0.00809308i 0.0206465 0.999787i \(-0.493428\pi\)
0.128621 + 0.991694i \(0.458945\pi\)
\(44\) 15.1229 + 15.9650i 0.343701 + 0.362841i
\(45\) 20.9751 15.9449i 0.466114 0.354331i
\(46\) −40.3431 + 8.88019i −0.877024 + 0.193048i
\(47\) 64.4342 54.7309i 1.37094 1.16449i 0.402449 0.915443i \(-0.368159\pi\)
0.968492 0.249045i \(-0.0801167\pi\)
\(48\) −1.85245 + 34.1665i −0.0385928 + 0.711801i
\(49\) −22.5038 42.4467i −0.459262 0.866260i
\(50\) −26.2948 + 119.458i −0.525896 + 2.38917i
\(51\) 33.6355 15.5614i 0.659519 0.305126i
\(52\) 6.77876 11.2664i 0.130361 0.216661i
\(53\) −16.5152 + 31.1509i −0.311607 + 0.587753i −0.989008 0.147860i \(-0.952761\pi\)
0.677401 + 0.735614i \(0.263106\pi\)
\(54\) 9.29199 + 7.89269i 0.172074 + 0.146161i
\(55\) 88.2494 93.1637i 1.60453 1.69389i
\(56\) −0.619097 + 5.69250i −0.0110553 + 0.101652i
\(57\) −19.2765 + 48.3804i −0.338184 + 0.848779i
\(58\) 28.5855i 0.492854i
\(59\) 54.7905 + 21.8861i 0.928653 + 0.370951i
\(60\) −22.8940 −0.381567
\(61\) 16.8596 + 6.71749i 0.276387 + 0.110123i 0.504213 0.863579i \(-0.331782\pi\)
−0.227826 + 0.973702i \(0.573162\pi\)
\(62\) 122.829 + 13.3585i 1.98111 + 0.215459i
\(63\) 2.13042 + 2.01804i 0.0338162 + 0.0320324i
\(64\) −16.3193 + 19.2126i −0.254990 + 0.300197i
\(65\) −67.7901 35.9400i −1.04292 0.552924i
\(66\) 50.8794 + 30.6131i 0.770899 + 0.463835i
\(67\) 27.0791 + 58.5305i 0.404165 + 0.873589i 0.997635 + 0.0687330i \(0.0218957\pi\)
−0.593470 + 0.804856i \(0.702242\pi\)
\(68\) −31.4501 6.92268i −0.462501 0.101804i
\(69\) −26.9425 + 14.2840i −0.390471 + 0.207014i
\(70\) −20.1266 1.09123i −0.287523 0.0155891i
\(71\) −4.61515 5.43338i −0.0650021 0.0765264i 0.728700 0.684833i \(-0.240125\pi\)
−0.793702 + 0.608307i \(0.791849\pi\)
\(72\) 3.77526 + 17.1512i 0.0524341 + 0.238211i
\(73\) −66.5371 87.5280i −0.911467 1.19901i −0.979523 0.201333i \(-0.935473\pi\)
0.0680561 0.997681i \(-0.478320\pi\)
\(74\) 103.903 98.4217i 1.40409 1.33002i
\(75\) 4.88857 + 90.1644i 0.0651809 + 1.20219i
\(76\) 38.7752 23.3303i 0.510200 0.306977i
\(77\) 11.8296 + 8.02067i 0.153631 + 0.104165i
\(78\) 9.49826 34.2096i 0.121773 0.438585i
\(79\) 45.8528 4.98679i 0.580415 0.0631240i 0.186798 0.982398i \(-0.440189\pi\)
0.393617 + 0.919274i \(0.371224\pi\)
\(80\) −138.121 104.997i −1.72652 1.31246i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) −27.8130 + 18.8577i −0.339183 + 0.229972i
\(83\) −6.50020 19.2919i −0.0783157 0.232433i 0.901342 0.433108i \(-0.142583\pi\)
−0.979658 + 0.200675i \(0.935686\pi\)
\(84\) −0.412517 2.51624i −0.00491092 0.0299553i
\(85\) −30.4021 + 185.445i −0.357672 + 2.18170i
\(86\) −14.2923 4.81563i −0.166189 0.0559957i
\(87\) 5.64544 + 20.3330i 0.0648901 + 0.233713i
\(88\) 31.6595 + 79.4593i 0.359767 + 0.902947i
\(89\) −17.3479 + 6.91204i −0.194920 + 0.0776633i −0.465556 0.885019i \(-0.654146\pi\)
0.270635 + 0.962682i \(0.412766\pi\)
\(90\) −59.5655 + 16.5383i −0.661839 + 0.183759i
\(91\) 2.72863 8.09829i 0.0299850 0.0889922i
\(92\) 26.1485 + 4.28683i 0.284223 + 0.0465960i
\(93\) 90.0071 14.7559i 0.967818 0.158666i
\(94\) −187.974 + 63.3358i −1.99972 + 0.673786i
\(95\) −148.194 218.570i −1.55994 2.30074i
\(96\) 16.6799 36.0531i 0.173749 0.375553i
\(97\) −25.4957 + 33.5390i −0.262842 + 0.345763i −0.908516 0.417851i \(-0.862784\pi\)
0.645674 + 0.763613i \(0.276577\pi\)
\(98\) 12.1875 + 112.062i 0.124362 + 1.14349i
\(99\) 42.2366 + 11.7269i 0.426632 + 0.118454i
\(100\) 44.0313 64.9413i 0.440313 0.649413i
\(101\) 2.15275 + 3.57790i 0.0213144 + 0.0354248i 0.867331 0.497731i \(-0.165833\pi\)
−0.846017 + 0.533156i \(0.821006\pi\)
\(102\) −86.8273 + 4.70764i −0.851248 + 0.0461534i
\(103\) 11.4083 + 12.0436i 0.110760 + 0.116928i 0.779018 0.627002i \(-0.215718\pi\)
−0.668257 + 0.743930i \(0.732960\pi\)
\(104\) 40.7141 30.9500i 0.391482 0.297597i
\(105\) −14.5317 + 3.19866i −0.138397 + 0.0304635i
\(106\) 63.0500 53.5552i 0.594812 0.505237i
\(107\) 1.54308 28.4604i 0.0144213 0.265985i −0.982427 0.186649i \(-0.940237\pi\)
0.996848 0.0793359i \(-0.0252800\pi\)
\(108\) −3.66310 6.90933i −0.0339176 0.0639753i
\(109\) 36.8875 167.582i 0.338418 1.53745i −0.433163 0.901316i \(-0.642603\pi\)
0.771581 0.636131i \(-0.219466\pi\)
\(110\) −273.259 + 126.423i −2.48418 + 1.14930i
\(111\) 54.4688 90.5278i 0.490710 0.815566i
\(112\) 9.05131 17.0726i 0.0808152 0.152434i
\(113\) 134.875 + 114.564i 1.19359 + 1.01384i 0.999460 + 0.0328669i \(0.0104637\pi\)
0.194129 + 0.980976i \(0.437812\pi\)
\(114\) 84.0316 88.7111i 0.737119 0.778168i
\(115\) 16.7181 153.720i 0.145375 1.33670i
\(116\) 6.78692 17.0339i 0.0585079 0.146844i
\(117\) 26.2093i 0.224011i
\(118\) −100.416 95.2864i −0.850987 0.807512i
\(119\) −20.9297 −0.175880
\(120\) −82.7241 32.9603i −0.689367 0.274669i
\(121\) 91.9522 + 10.0004i 0.759935 + 0.0826479i
\(122\) −30.9141 29.2834i −0.253394 0.240028i
\(123\) −16.0593 + 18.9064i −0.130563 + 0.153711i
\(124\) −70.0212 37.1229i −0.564687 0.299378i
\(125\) −204.185 122.854i −1.63348 0.982833i
\(126\) −2.89098 6.24875i −0.0229443 0.0495932i
\(127\) 9.73353 + 2.14251i 0.0766420 + 0.0168702i 0.253126 0.967433i \(-0.418541\pi\)
−0.176484 + 0.984304i \(0.556472\pi\)
\(128\) 133.309 70.6759i 1.04148 0.552155i
\(129\) −11.1172 0.602758i −0.0861799 0.00467254i
\(130\) 116.546 + 137.208i 0.896507 + 1.05545i
\(131\) −5.12929 23.3026i −0.0391549 0.177883i 0.952985 0.303018i \(-0.0979944\pi\)
−0.992140 + 0.125136i \(0.960063\pi\)
\(132\) −23.0503 30.3221i −0.174623 0.229713i
\(133\) 21.3524 20.2261i 0.160545 0.152076i
\(134\) −8.19197 151.092i −0.0611341 1.12755i
\(135\) −39.1030 + 23.5275i −0.289652 + 0.174278i
\(136\) −103.674 70.2924i −0.762305 0.516856i
\(137\) −57.8761 + 208.451i −0.422453 + 1.52154i 0.380093 + 0.924948i \(0.375892\pi\)
−0.802546 + 0.596590i \(0.796522\pi\)
\(138\) 71.1297 7.73582i 0.515433 0.0560567i
\(139\) 135.185 + 102.765i 0.972552 + 0.739315i 0.965431 0.260660i \(-0.0839402\pi\)
0.00712099 + 0.999975i \(0.497733\pi\)
\(140\) 11.7342 + 5.42883i 0.0838158 + 0.0387773i
\(141\) −121.198 + 82.1746i −0.859563 + 0.582798i
\(142\) 5.34076 + 15.8508i 0.0376110 + 0.111625i
\(143\) −20.6518 125.970i −0.144418 0.880911i
\(144\) 9.58801 58.4843i 0.0665834 0.406141i
\(145\) −101.400 34.1655i −0.699308 0.235624i
\(146\) 69.0133 + 248.563i 0.472694 + 1.70249i
\(147\) 30.8004 + 77.3032i 0.209527 + 0.525872i
\(148\) −85.2824 + 33.9796i −0.576233 + 0.229592i
\(149\) 171.906 47.7293i 1.15373 0.320331i 0.362578 0.931953i \(-0.381897\pi\)
0.791150 + 0.611622i \(0.209483\pi\)
\(150\) 67.6477 200.771i 0.450984 1.33847i
\(151\) 82.9571 + 13.6001i 0.549385 + 0.0900671i 0.430080 0.902791i \(-0.358485\pi\)
0.119304 + 0.992858i \(0.461934\pi\)
\(152\) 173.697 28.4761i 1.14274 0.187343i
\(153\) −60.8309 + 20.4963i −0.397588 + 0.133963i
\(154\) −18.8187 27.7555i −0.122199 0.180231i
\(155\) −194.191 + 419.738i −1.25285 + 2.70798i
\(156\) −13.7822 + 18.1301i −0.0883471 + 0.116219i
\(157\) 22.5905 + 207.716i 0.143888 + 1.32303i 0.814041 + 0.580808i \(0.197263\pi\)
−0.670153 + 0.742223i \(0.733771\pi\)
\(158\) −104.273 28.9513i −0.659957 0.183236i
\(159\) 34.2710 50.5459i 0.215541 0.317899i
\(160\) 103.847 + 172.595i 0.649042 + 1.07872i
\(161\) 17.1964 0.932360i 0.106810 0.00579105i
\(162\) −14.5218 15.3305i −0.0896408 0.0946326i
\(163\) −14.4781 + 11.0060i −0.0888228 + 0.0675213i −0.648643 0.761093i \(-0.724663\pi\)
0.559820 + 0.828614i \(0.310870\pi\)
\(164\) 21.0508 4.63364i 0.128359 0.0282539i
\(165\) −169.403 + 143.892i −1.02668 + 0.872074i
\(166\) −2.58592 + 47.6945i −0.0155778 + 0.287316i
\(167\) −56.3845 106.353i −0.337632 0.636841i 0.655321 0.755350i \(-0.272533\pi\)
−0.992953 + 0.118509i \(0.962189\pi\)
\(168\) 2.13204 9.68596i 0.0126907 0.0576545i
\(169\) 84.1093 38.9131i 0.497688 0.230255i
\(170\) 227.314 377.800i 1.33714 2.22235i
\(171\) 42.2523 79.6962i 0.247089 0.466060i
\(172\) 7.37330 + 6.26293i 0.0428680 + 0.0364124i
\(173\) 27.3554 28.8788i 0.158124 0.166929i −0.642120 0.766604i \(-0.721945\pi\)
0.800244 + 0.599675i \(0.204703\pi\)
\(174\) 5.35315 49.2214i 0.0307652 0.282882i
\(175\) 18.8749 47.3725i 0.107857 0.270700i
\(176\) 288.649i 1.64005i
\(177\) −90.2451 47.9461i −0.509859 0.270882i
\(178\) 43.8149 0.246151
\(179\) −92.3944 36.8133i −0.516170 0.205661i 0.0974825 0.995237i \(-0.468921\pi\)
−0.613652 + 0.789576i \(0.710300\pi\)
\(180\) 39.4212 + 4.28731i 0.219007 + 0.0238184i
\(181\) −36.7475 34.8091i −0.203025 0.192316i 0.579431 0.815021i \(-0.303275\pi\)
−0.782456 + 0.622706i \(0.786033\pi\)
\(182\) −12.9804 + 15.2817i −0.0713206 + 0.0839652i
\(183\) −27.7726 14.7241i −0.151763 0.0804595i
\(184\) 88.3119 + 53.1355i 0.479956 + 0.288780i
\(185\) 224.940 + 486.200i 1.21589 + 2.62811i
\(186\) −208.998 46.0038i −1.12364 0.247332i
\(187\) −276.223 + 146.444i −1.47713 + 0.783123i
\(188\) 127.050 + 6.88843i 0.675796 + 0.0366406i
\(189\) −3.29045 3.87381i −0.0174098 0.0204964i
\(190\) 133.193 + 605.103i 0.701017 + 3.18475i
\(191\) 111.805 + 147.078i 0.585369 + 0.770040i 0.989480 0.144670i \(-0.0462121\pi\)
−0.404111 + 0.914710i \(0.632419\pi\)
\(192\) 31.6981 30.0261i 0.165094 0.156386i
\(193\) 4.07516 + 75.1619i 0.0211148 + 0.389440i 0.989921 + 0.141620i \(0.0452312\pi\)
−0.968806 + 0.247819i \(0.920286\pi\)
\(194\) 84.6982 50.9612i 0.436589 0.262687i
\(195\) 109.997 + 74.5800i 0.564088 + 0.382461i
\(196\) 19.3439 69.6704i 0.0986933 0.355461i
\(197\) −81.8468 + 8.90137i −0.415466 + 0.0451846i −0.313465 0.949600i \(-0.601490\pi\)
−0.102001 + 0.994784i \(0.532524\pi\)
\(198\) −81.8762 62.2407i −0.413516 0.314347i
\(199\) 300.122 + 138.851i 1.50815 + 0.697746i 0.987731 0.156164i \(-0.0499129\pi\)
0.520421 + 0.853910i \(0.325775\pi\)
\(200\) 252.596 171.264i 1.26298 0.856320i
\(201\) −35.6665 105.855i −0.177446 0.526639i
\(202\) −1.58500 9.66808i −0.00784654 0.0478618i
\(203\) 1.92800 11.7603i 0.00949753 0.0579324i
\(204\) 52.8574 + 17.8097i 0.259105 + 0.0873026i
\(205\) −33.6505 121.198i −0.164149 0.591210i
\(206\) −14.4068 36.1583i −0.0699358 0.175526i
\(207\) 49.0671 19.5501i 0.237039 0.0944450i
\(208\) −166.297 + 46.1722i −0.799506 + 0.221982i
\(209\) 140.281 416.339i 0.671200 1.99205i
\(210\) 34.4517 + 5.64806i 0.164056 + 0.0268955i
\(211\) 161.689 26.5076i 0.766300 0.125629i 0.234060 0.972222i \(-0.424799\pi\)
0.532240 + 0.846594i \(0.321350\pi\)
\(212\) −50.2863 + 16.9434i −0.237200 + 0.0799218i
\(213\) 6.92932 + 10.2200i 0.0325320 + 0.0479812i
\(214\) −28.0797 + 60.6932i −0.131213 + 0.283613i
\(215\) 34.1643 44.9424i 0.158904 0.209034i
\(216\) −3.28875 30.2395i −0.0152257 0.139998i
\(217\) −49.6317 13.7802i −0.228718 0.0635031i
\(218\) −225.937 + 333.233i −1.03641 + 1.52859i
\(219\) 98.1789 + 163.175i 0.448305 + 0.745089i
\(220\) 192.849 10.4560i 0.876586 0.0475271i
\(221\) 128.554 + 135.713i 0.581694 + 0.614087i
\(222\) −197.341 + 150.015i −0.888922 + 0.675741i
\(223\) −393.602 + 86.6383i −1.76503 + 0.388512i −0.974584 0.224021i \(-0.928082\pi\)
−0.790445 + 0.612533i \(0.790151\pi\)
\(224\) −17.0984 + 14.5235i −0.0763323 + 0.0648372i
\(225\) 8.46725 156.169i 0.0376322 0.694086i
\(226\) −194.487 366.841i −0.860560 1.62319i
\(227\) 14.0177 63.6830i 0.0617520 0.280542i −0.935619 0.353013i \(-0.885157\pi\)
0.997371 + 0.0724706i \(0.0230883\pi\)
\(228\) −71.1360 + 32.9110i −0.312000 + 0.144346i
\(229\) 15.9839 26.5654i 0.0697986 0.116006i −0.819992 0.572374i \(-0.806022\pi\)
0.889791 + 0.456368i \(0.150850\pi\)
\(230\) −169.937 + 320.535i −0.738857 + 1.39363i
\(231\) −18.8673 16.0261i −0.0816768 0.0693769i
\(232\) 49.0470 51.7783i 0.211410 0.223182i
\(233\) −42.1857 + 387.891i −0.181054 + 1.66477i 0.453024 + 0.891499i \(0.350345\pi\)
−0.634078 + 0.773269i \(0.718620\pi\)
\(234\) −22.7614 + 57.1268i −0.0972709 + 0.244131i
\(235\) 742.487i 3.15952i
\(236\) 37.2140 + 80.6217i 0.157686 + 0.341618i
\(237\) −79.8877 −0.337079
\(238\) 45.6192 + 18.1764i 0.191677 + 0.0763712i
\(239\) −177.562 19.3111i −0.742939 0.0807994i −0.271182 0.962528i \(-0.587414\pi\)
−0.471757 + 0.881729i \(0.656380\pi\)
\(240\) 218.168 + 206.660i 0.909034 + 0.861082i
\(241\) −25.4082 + 29.9128i −0.105428 + 0.124120i −0.812345 0.583177i \(-0.801810\pi\)
0.706917 + 0.707296i \(0.250085\pi\)
\(242\) −191.738 101.653i −0.792304 0.420053i
\(243\) −13.3571 8.03669i −0.0549674 0.0330728i
\(244\) 11.4688 + 24.7895i 0.0470035 + 0.101596i
\(245\) −412.076 90.7048i −1.68194 0.370224i
\(246\) 51.4226 27.2625i 0.209035 0.110823i
\(247\) −262.302 14.2216i −1.06195 0.0575772i
\(248\) −199.566 234.947i −0.804700 0.947366i
\(249\) 7.57993 + 34.4360i 0.0304415 + 0.138297i
\(250\) 338.357 + 445.101i 1.35343 + 1.78041i
\(251\) −165.999 + 157.242i −0.661350 + 0.626464i −0.942897 0.333083i \(-0.891911\pi\)
0.281548 + 0.959547i \(0.409152\pi\)
\(252\) 0.239101 + 4.40997i 0.000948815 + 0.0174999i
\(253\) 220.428 132.627i 0.871255 0.524217i
\(254\) −19.3549 13.1230i −0.0762004 0.0516652i
\(255\) 87.0771 313.623i 0.341479 1.22990i
\(256\) −251.702 + 27.3743i −0.983211 + 0.106931i
\(257\) 199.328 + 151.525i 0.775594 + 0.589591i 0.916315 0.400458i \(-0.131149\pi\)
−0.140721 + 0.990049i \(0.544942\pi\)
\(258\) 23.7080 + 10.9685i 0.0918916 + 0.0425136i
\(259\) −49.3844 + 33.4834i −0.190673 + 0.129280i
\(260\) −36.8720 109.432i −0.141815 0.420893i
\(261\) −5.91315 36.0686i −0.0226557 0.138194i
\(262\) −9.05708 + 55.2458i −0.0345690 + 0.210862i
\(263\) 436.820 + 147.182i 1.66091 + 0.559626i 0.984268 0.176684i \(-0.0565370\pi\)
0.676644 + 0.736310i \(0.263434\pi\)
\(264\) −39.6342 142.750i −0.150130 0.540718i
\(265\) 114.615 + 287.662i 0.432510 + 1.08552i
\(266\) −64.1059 + 25.5421i −0.241000 + 0.0960230i
\(267\) 31.1657 8.65312i 0.116726 0.0324087i
\(268\) −30.9915 + 91.9794i −0.115640 + 0.343207i
\(269\) 185.364 + 30.3889i 0.689086 + 0.112970i 0.496144 0.868240i \(-0.334749\pi\)
0.192942 + 0.981210i \(0.438197\pi\)
\(270\) 105.663 17.3225i 0.391343 0.0641575i
\(271\) −305.458 + 102.921i −1.12715 + 0.379781i −0.820275 0.571969i \(-0.806180\pi\)
−0.306874 + 0.951750i \(0.599283\pi\)
\(272\) 237.213 + 349.863i 0.872107 + 1.28626i
\(273\) −6.21497 + 13.4334i −0.0227655 + 0.0492067i
\(274\) 307.177 404.085i 1.12108 1.47476i
\(275\) −82.3582 757.271i −0.299484 2.75371i
\(276\) −44.2223 12.2783i −0.160226 0.0444864i
\(277\) −66.4300 + 97.9770i −0.239820 + 0.353708i −0.928484 0.371373i \(-0.878887\pi\)
0.688664 + 0.725081i \(0.258197\pi\)
\(278\) −205.408 341.391i −0.738877 1.22802i
\(279\) −157.746 + 8.55276i −0.565399 + 0.0306550i
\(280\) 34.5840 + 36.5098i 0.123514 + 0.130392i
\(281\) 44.6798 33.9647i 0.159003 0.120871i −0.522648 0.852549i \(-0.675056\pi\)
0.681650 + 0.731678i \(0.261263\pi\)
\(282\) 335.533 73.8564i 1.18983 0.261902i
\(283\) 131.116 111.371i 0.463308 0.393538i −0.385104 0.922873i \(-0.625835\pi\)
0.848413 + 0.529335i \(0.177559\pi\)
\(284\) 0.580863 10.7134i 0.00204529 0.0377232i
\(285\) 214.244 + 404.107i 0.751734 + 1.41792i
\(286\) −64.3851 + 292.505i −0.225123 + 1.02274i
\(287\) 12.7143 5.88228i 0.0443008 0.0204957i
\(288\) −35.4727 + 58.9561i −0.123169 + 0.204709i
\(289\) 79.0831 149.167i 0.273644 0.516148i
\(290\) 191.343 + 162.529i 0.659805 + 0.560443i
\(291\) 50.1817 52.9762i 0.172446 0.182049i
\(292\) 17.8907 164.502i 0.0612695 0.563364i
\(293\) 21.0343 52.7920i 0.0717893 0.180177i −0.888704 0.458482i \(-0.848393\pi\)
0.960493 + 0.278305i \(0.0897725\pi\)
\(294\) 195.241i 0.664087i
\(295\) 458.021 242.314i 1.55261 0.821404i
\(296\) −357.075 −1.20633
\(297\) −70.5310 28.1021i −0.237478 0.0946199i
\(298\) −416.142 45.2582i −1.39645 0.151873i
\(299\) −111.669 105.778i −0.373475 0.353774i
\(300\) −87.9787 + 103.577i −0.293262 + 0.345255i
\(301\) 5.55514 + 2.94515i 0.0184556 + 0.00978454i
\(302\) −169.005 101.687i −0.559620 0.336712i
\(303\) −3.03679 6.56392i −0.0100224 0.0216631i
\(304\) −580.105 127.691i −1.90824 0.420036i
\(305\) 140.824 74.6599i 0.461717 0.244787i
\(306\) 150.389 + 8.15387i 0.491469 + 0.0266466i
\(307\) 310.648 + 365.723i 1.01188 + 1.19128i 0.981445 + 0.191744i \(0.0614143\pi\)
0.0304379 + 0.999537i \(0.490310\pi\)
\(308\) 4.62406 + 21.0073i 0.0150132 + 0.0682056i
\(309\) −17.3886 22.8743i −0.0562737 0.0740269i
\(310\) 787.786 746.231i 2.54125 2.40720i
\(311\) 3.35606 + 61.8988i 0.0107912 + 0.199032i 0.998958 + 0.0456464i \(0.0145347\pi\)
−0.988166 + 0.153385i \(0.950982\pi\)
\(312\) −75.9014 + 45.6684i −0.243274 + 0.146373i
\(313\) −252.006 170.864i −0.805131 0.545892i 0.0877725 0.996141i \(-0.472025\pi\)
−0.892903 + 0.450248i \(0.851335\pi\)
\(314\) 131.151 472.364i 0.417679 1.50434i
\(315\) 25.6211 2.78646i 0.0813367 0.00884590i
\(316\) 55.2618 + 42.0089i 0.174879 + 0.132940i
\(317\) −310.454 143.631i −0.979349 0.453095i −0.136145 0.990689i \(-0.543471\pi\)
−0.843204 + 0.537594i \(0.819333\pi\)
\(318\) −118.595 + 80.4093i −0.372940 + 0.252859i
\(319\) −56.8410 168.698i −0.178185 0.528834i
\(320\) 35.8170 + 218.474i 0.111928 + 0.682731i
\(321\) −7.98673 + 48.7169i −0.0248808 + 0.151766i
\(322\) −38.2915 12.9019i −0.118918 0.0400681i
\(323\) 172.119 + 619.915i 0.532875 + 1.91924i
\(324\) 5.01358 + 12.5831i 0.0154740 + 0.0388369i
\(325\) −423.108 + 168.581i −1.30187 + 0.518712i
\(326\) 41.1151 11.4156i 0.126120 0.0350171i
\(327\) −94.8992 + 281.651i −0.290212 + 0.861317i
\(328\) 82.7349 + 13.5637i 0.252241 + 0.0413528i
\(329\) 81.6055 13.3785i 0.248041 0.0406643i
\(330\) 494.200 166.515i 1.49757 0.504592i
\(331\) 310.850 + 458.470i 0.939125 + 1.38511i 0.922817 + 0.385238i \(0.125881\pi\)
0.0163073 + 0.999867i \(0.494809\pi\)
\(332\) 12.8648 27.8068i 0.0387493 0.0837553i
\(333\) −110.743 + 145.679i −0.332560 + 0.437475i
\(334\) 30.5363 + 280.777i 0.0914261 + 0.840649i
\(335\) 545.750 + 151.527i 1.62910 + 0.452318i
\(336\) −18.7826 + 27.7022i −0.0559005 + 0.0824470i
\(337\) 90.5771 + 150.540i 0.268775 + 0.446707i 0.961622 0.274377i \(-0.0884716\pi\)
−0.692847 + 0.721084i \(0.743644\pi\)
\(338\) −217.122 + 11.7720i −0.642372 + 0.0348284i
\(339\) −210.788 222.526i −0.621792 0.656418i
\(340\) −225.154 + 171.158i −0.662217 + 0.503404i
\(341\) −751.440 + 165.404i −2.20364 + 0.485057i
\(342\) −161.307 + 137.015i −0.471657 + 0.400629i
\(343\) 5.13907 94.7845i 0.0149827 0.276340i
\(344\) 17.6256 + 33.2454i 0.0512372 + 0.0966436i
\(345\) −57.5736 + 261.560i −0.166880 + 0.758144i
\(346\) −84.7045 + 39.1885i −0.244811 + 0.113262i
\(347\) −30.9058 + 51.3659i −0.0890658 + 0.148029i −0.898187 0.439613i \(-0.855116\pi\)
0.809122 + 0.587641i \(0.199943\pi\)
\(348\) −14.8763 + 28.0596i −0.0427479 + 0.0806311i
\(349\) −466.057 395.873i −1.33541 1.13431i −0.979868 0.199645i \(-0.936021\pi\)
−0.355540 0.934661i \(-0.615703\pi\)
\(350\) −82.2810 + 86.8630i −0.235088 + 0.248180i
\(351\) −4.90815 + 45.1297i −0.0139833 + 0.128575i
\(352\) −124.038 + 311.313i −0.352382 + 0.884412i
\(353\) 272.264i 0.771288i −0.922648 0.385644i \(-0.873979\pi\)
0.922648 0.385644i \(-0.126021\pi\)
\(354\) 155.063 + 182.878i 0.438031 + 0.516605i
\(355\) −62.6098 −0.176366
\(356\) −26.1089 10.4027i −0.0733397 0.0292212i
\(357\) 36.0388 + 3.91946i 0.100949 + 0.0109789i
\(358\) 169.416 + 160.479i 0.473229 + 0.448266i
\(359\) 369.935 435.522i 1.03046 1.21315i 0.0537581 0.998554i \(-0.482880\pi\)
0.976702 0.214598i \(-0.0688441\pi\)
\(360\) 136.270 + 72.2458i 0.378528 + 0.200683i
\(361\) −465.344 279.988i −1.28904 0.775591i
\(362\) 49.8664 + 107.785i 0.137753 + 0.297747i
\(363\) −156.459 34.4393i −0.431018 0.0948742i
\(364\) 11.3631 6.02435i 0.0312174 0.0165504i
\(365\) −964.197 52.2772i −2.64164 0.143225i
\(366\) 47.7471 + 56.2122i 0.130456 + 0.153585i
\(367\) −147.209 668.776i −0.401113 1.82228i −0.552145 0.833748i \(-0.686191\pi\)
0.151032 0.988529i \(-0.451740\pi\)
\(368\) −210.485 276.889i −0.571971 0.752415i
\(369\) 31.1930 29.5475i 0.0845338 0.0800746i
\(370\) −68.0490 1255.09i −0.183916 3.39213i
\(371\) −29.5513 + 17.7804i −0.0796531 + 0.0479257i
\(372\) 113.617 + 77.0345i 0.305423 + 0.207082i
\(373\) 153.308 552.166i 0.411014 1.48034i −0.411404 0.911453i \(-0.634961\pi\)
0.822417 0.568885i \(-0.192625\pi\)
\(374\) 729.245 79.3101i 1.94985 0.212059i
\(375\) 328.579 + 249.779i 0.876211 + 0.666079i
\(376\) 449.157 + 207.802i 1.19457 + 0.552666i
\(377\) −88.0985 + 59.7323i −0.233683 + 0.158441i
\(378\) 3.80778 + 11.3011i 0.0100735 + 0.0298971i
\(379\) 46.1613 + 281.572i 0.121798 + 0.742933i 0.975141 + 0.221584i \(0.0711227\pi\)
−0.853344 + 0.521349i \(0.825429\pi\)
\(380\) 64.2978 392.199i 0.169205 1.03210i
\(381\) −16.3589 5.51196i −0.0429368 0.0144671i
\(382\) −115.966 417.673i −0.303577 1.09338i
\(383\) 0.238336 + 0.598179i 0.000622288 + 0.00156183i 0.929288 0.369357i \(-0.120422\pi\)
−0.928665 + 0.370919i \(0.879043\pi\)
\(384\) −242.779 + 96.7322i −0.632238 + 0.251907i
\(385\) 120.947 33.5809i 0.314149 0.0872231i
\(386\) 56.3917 167.365i 0.146093 0.433587i
\(387\) 19.0298 + 3.11978i 0.0491727 + 0.00806145i
\(388\) −62.5704 + 10.2579i −0.161264 + 0.0264379i
\(389\) 304.134 102.475i 0.781835 0.263431i 0.100049 0.994983i \(-0.468100\pi\)
0.681786 + 0.731552i \(0.261204\pi\)
\(390\) −174.985 258.084i −0.448680 0.661754i
\(391\) −158.180 + 341.901i −0.404554 + 0.874428i
\(392\) 170.200 223.894i 0.434183 0.571158i
\(393\) 4.46829 + 41.0853i 0.0113697 + 0.104543i
\(394\) 186.127 + 51.6778i 0.472403 + 0.131162i
\(395\) 227.325 335.279i 0.575506 0.848807i
\(396\) 34.0119 + 56.5281i 0.0858885 + 0.142748i
\(397\) 426.757 23.1381i 1.07496 0.0582824i 0.491851 0.870679i \(-0.336321\pi\)
0.583105 + 0.812397i \(0.301838\pi\)
\(398\) −533.573 563.286i −1.34063 1.41529i
\(399\) −40.5544 + 30.8287i −0.101640 + 0.0772648i
\(400\) −1005.81 + 221.395i −2.51452 + 0.553487i
\(401\) −390.485 + 331.681i −0.973777 + 0.827134i −0.984956 0.172803i \(-0.944717\pi\)
0.0111789 + 0.999938i \(0.496442\pi\)
\(402\) −14.1889 + 261.699i −0.0352958 + 0.650993i
\(403\) 215.494 + 406.464i 0.534723 + 1.00860i
\(404\) −1.35095 + 6.13745i −0.00334395 + 0.0151917i
\(405\) 71.7373 33.1892i 0.177129 0.0819487i
\(406\) −14.4155 + 23.9588i −0.0355062 + 0.0590118i
\(407\) −417.475 + 787.442i −1.02574 + 1.93475i
\(408\) 165.352 + 140.451i 0.405274 + 0.344243i
\(409\) 389.257 410.934i 0.951730 1.00473i −0.0482529 0.998835i \(-0.515365\pi\)
0.999983 0.00589375i \(-0.00187605\pi\)
\(410\) −31.9082 + 293.391i −0.0778249 + 0.715588i
\(411\) 138.693 348.092i 0.337452 0.846940i
\(412\) 24.9669i 0.0605993i
\(413\) 34.8852 + 45.9742i 0.0844679 + 0.111318i
\(414\) −123.927 −0.299340
\(415\) −166.093 66.1774i −0.400223 0.159464i
\(416\) 199.196 + 21.6638i 0.478836 + 0.0520765i
\(417\) −213.530 202.266i −0.512061 0.485050i
\(418\) −667.329 + 785.641i −1.59648 + 1.87952i
\(419\) 348.476 + 184.750i 0.831685 + 0.440932i 0.829124 0.559065i \(-0.188840\pi\)
0.00256140 + 0.999997i \(0.499185\pi\)
\(420\) −19.1885 11.5453i −0.0456868 0.0274889i
\(421\) 69.3168 + 149.826i 0.164648 + 0.355881i 0.972285 0.233799i \(-0.0751159\pi\)
−0.807637 + 0.589680i \(0.799254\pi\)
\(422\) −375.445 82.6416i −0.889679 0.195833i
\(423\) 224.080 118.800i 0.529740 0.280850i
\(424\) −206.095 11.1742i −0.486074 0.0263541i
\(425\) 722.153 + 850.184i 1.69918 + 2.00043i
\(426\) −6.22789 28.2936i −0.0146195 0.0664169i
\(427\) 10.7432 + 14.1324i 0.0251597 + 0.0330970i
\(428\) 31.1425 29.4998i 0.0727629 0.0689247i
\(429\) 11.9701 + 220.775i 0.0279023 + 0.514628i
\(430\) −113.496 + 68.2882i −0.263944 + 0.158810i
\(431\) 451.309 + 305.995i 1.04712 + 0.709965i 0.958207 0.286074i \(-0.0923504\pi\)
0.0889128 + 0.996039i \(0.471661\pi\)
\(432\) −27.4618 + 98.9084i −0.0635689 + 0.228955i
\(433\) 100.096 10.8861i 0.231169 0.0251412i 0.00819880 0.999966i \(-0.497390\pi\)
0.222970 + 0.974825i \(0.428425\pi\)
\(434\) 96.2118 + 73.1383i 0.221686 + 0.168521i
\(435\) 168.202 + 77.8184i 0.386670 + 0.178893i
\(436\) 213.752 144.927i 0.490256 0.332402i
\(437\) −169.032 501.670i −0.386801 1.14799i
\(438\) −72.2859 440.924i −0.165036 1.00668i
\(439\) −21.2820 + 129.815i −0.0484784 + 0.295705i −0.999927 0.0121033i \(-0.996147\pi\)
0.951448 + 0.307808i \(0.0995956\pi\)
\(440\) 711.884 + 239.862i 1.61792 + 0.545140i
\(441\) −38.5588 138.876i −0.0874348 0.314912i
\(442\) −162.342 407.448i −0.367290 0.921828i
\(443\) 87.6172 34.9099i 0.197781 0.0788033i −0.269144 0.963100i \(-0.586741\pi\)
0.466926 + 0.884297i \(0.345362\pi\)
\(444\) 153.211 42.5388i 0.345070 0.0958081i
\(445\) −52.3676 + 155.422i −0.117680 + 0.349262i
\(446\) 933.149 + 152.982i 2.09226 + 0.343009i
\(447\) −304.942 + 49.9927i −0.682197 + 0.111840i
\(448\) −23.3667 + 7.87317i −0.0521579 + 0.0175740i
\(449\) 54.9124 + 80.9897i 0.122299 + 0.180378i 0.883910 0.467657i \(-0.154902\pi\)
−0.761611 + 0.648035i \(0.775591\pi\)
\(450\) −154.080 + 333.039i −0.342401 + 0.740087i
\(451\) 126.641 166.594i 0.280801 0.369387i
\(452\) 28.7958 + 264.773i 0.0637076 + 0.585782i
\(453\) −140.297 38.9532i −0.309706 0.0859894i
\(454\) −85.8588 + 126.632i −0.189116 + 0.278926i
\(455\) −38.6935 64.3090i −0.0850406 0.141339i
\(456\) −304.421 + 16.5052i −0.667589 + 0.0361956i
\(457\) 41.6644 + 43.9846i 0.0911694 + 0.0962463i 0.769983 0.638064i \(-0.220264\pi\)
−0.678814 + 0.734310i \(0.737506\pi\)
\(458\) −57.9097 + 44.0218i −0.126440 + 0.0961175i
\(459\) 108.583 23.9009i 0.236564 0.0520717i
\(460\) 177.367 150.657i 0.385581 0.327515i
\(461\) −45.3601 + 836.618i −0.0983951 + 1.81479i 0.367580 + 0.929992i \(0.380187\pi\)
−0.465975 + 0.884798i \(0.654296\pi\)
\(462\) 27.2062 + 51.3163i 0.0588878 + 0.111074i
\(463\) −40.6761 + 184.793i −0.0878534 + 0.399122i −0.999941 0.0108737i \(-0.996539\pi\)
0.912087 + 0.409996i \(0.134470\pi\)
\(464\) −218.437 + 101.060i −0.470770 + 0.217801i
\(465\) 412.981 686.379i 0.888131 1.47608i
\(466\) 428.812 808.825i 0.920198 1.73568i
\(467\) −132.710 112.725i −0.284175 0.241381i 0.493949 0.869491i \(-0.335553\pi\)
−0.778124 + 0.628110i \(0.783829\pi\)
\(468\) 27.1266 28.6372i 0.0579629 0.0611907i
\(469\) −6.82042 + 62.7127i −0.0145425 + 0.133716i
\(470\) −644.811 + 1618.35i −1.37194 + 3.44330i
\(471\) 361.896i 0.768356i
\(472\) 18.3968 + 344.891i 0.0389763 + 0.730701i
\(473\) 93.9217 0.198566
\(474\) 174.126 + 69.3782i 0.367355 + 0.146368i
\(475\) −1558.34 169.480i −3.28072 0.356799i
\(476\) −22.8686 21.6623i −0.0480432 0.0455090i
\(477\) −68.4768 + 80.6171i −0.143557 + 0.169009i
\(478\) 370.251 + 196.295i 0.774583 + 0.410658i
\(479\) 497.834 + 299.537i 1.03932 + 0.625337i 0.929579 0.368623i \(-0.120171\pi\)
0.109740 + 0.993960i \(0.464998\pi\)
\(480\) −146.492 316.637i −0.305192 0.659661i
\(481\) 520.443 + 114.558i 1.08200 + 0.238167i
\(482\) 81.3584 43.1335i 0.168793 0.0894885i
\(483\) −29.7850 1.61489i −0.0616666 0.00334347i
\(484\) 90.1199 + 106.097i 0.186198 + 0.219209i
\(485\) 79.5399 + 361.353i 0.164000 + 0.745058i
\(486\) 22.1342 + 29.1170i 0.0455435 + 0.0599115i
\(487\) 261.031 247.262i 0.535998 0.507724i −0.371129 0.928581i \(-0.621029\pi\)
0.907127 + 0.420857i \(0.138271\pi\)
\(488\) 5.75174 + 106.085i 0.0117864 + 0.217387i
\(489\) 26.9909 16.2399i 0.0551961 0.0332104i
\(490\) 819.404 + 555.570i 1.67225 + 1.13382i
\(491\) −146.418 + 527.349i −0.298203 + 1.07403i 0.650925 + 0.759142i \(0.274381\pi\)
−0.949129 + 0.314889i \(0.898033\pi\)
\(492\) −37.1151 + 4.03651i −0.0754372 + 0.00820429i
\(493\) 207.532 + 157.762i 0.420957 + 0.320003i
\(494\) 559.371 + 258.793i 1.13233 + 0.523872i
\(495\) 318.641 216.044i 0.643719 0.436452i
\(496\) 332.164 + 985.829i 0.669686 + 1.98756i
\(497\) −1.12814 6.88134i −0.00226990 0.0138458i
\(498\) 13.3843 81.6407i 0.0268761 0.163937i
\(499\) −129.523 43.6414i −0.259566 0.0874578i 0.186510 0.982453i \(-0.440282\pi\)
−0.446076 + 0.894995i \(0.647179\pi\)
\(500\) −95.9461 345.567i −0.191892 0.691133i
\(501\) 77.1720 + 193.687i 0.154036 + 0.386601i
\(502\) 498.374 198.570i 0.992777 0.395558i
\(503\) 776.338 215.549i 1.54341 0.428527i 0.611512 0.791235i \(-0.290562\pi\)
0.931903 + 0.362708i \(0.118148\pi\)
\(504\) −5.48502 + 16.2790i −0.0108830 + 0.0322995i
\(505\) 36.1893 + 5.93294i 0.0716621 + 0.0117484i
\(506\) −595.632 + 97.6488i −1.17714 + 0.192982i
\(507\) −152.115 + 51.2534i −0.300029 + 0.101092i
\(508\) 8.41771 + 12.4152i 0.0165703 + 0.0244394i
\(509\) −210.912 + 455.878i −0.414365 + 0.895635i 0.582218 + 0.813033i \(0.302185\pi\)
−0.996583 + 0.0826020i \(0.973677\pi\)
\(510\) −462.162 + 607.964i −0.906200 + 1.19209i
\(511\) −11.6277 106.915i −0.0227549 0.209227i
\(512\) −9.14921 2.54027i −0.0178696 0.00496146i
\(513\) −87.6786 + 129.316i −0.170913 + 0.252078i
\(514\) −302.871 503.375i −0.589242 0.979328i
\(515\) 145.481 7.88774i 0.282487 0.0153160i
\(516\) −11.5232 12.1649i −0.0223318 0.0235754i
\(517\) 983.391 747.554i 1.90211 1.44595i
\(518\) 136.719 30.0940i 0.263936 0.0580966i
\(519\) −52.5113 + 44.6035i −0.101178 + 0.0859412i
\(520\) 24.3170 448.501i 0.0467635 0.862502i
\(521\) −411.710 776.567i −0.790230 1.49053i −0.869638 0.493690i \(-0.835648\pi\)
0.0794075 0.996842i \(-0.474697\pi\)
\(522\) −18.4351 + 83.7517i −0.0353164 + 0.160444i
\(523\) −42.9872 + 19.8880i −0.0821935 + 0.0380268i −0.460555 0.887631i \(-0.652350\pi\)
0.378362 + 0.925658i \(0.376488\pi\)
\(524\) 18.5138 30.7701i 0.0353316 0.0587216i
\(525\) −41.3720 + 78.0359i −0.0788038 + 0.148640i
\(526\) −824.289 700.158i −1.56709 1.33110i
\(527\) 774.868 818.018i 1.47034 1.55222i
\(528\) −54.0546 + 497.024i −0.102376 + 0.941333i
\(529\) −81.0690 + 203.468i −0.153250 + 0.384627i
\(530\) 726.537i 1.37082i
\(531\) 146.414 + 99.4583i 0.275733 + 0.187304i
\(532\) 44.2645 0.0832039
\(533\) −116.236 46.3126i −0.218079 0.0868905i
\(534\) −75.4447 8.20511i −0.141282 0.0153654i
\(535\) −181.732 172.146i −0.339686 0.321768i
\(536\) −244.405 + 287.736i −0.455979 + 0.536820i
\(537\) 152.200 + 80.6912i 0.283426 + 0.150263i
\(538\) −377.635 227.216i −0.701924 0.422334i
\(539\) −294.754 637.100i −0.546854 1.18200i
\(540\) −67.0763 14.7646i −0.124215 0.0273419i
\(541\) −739.970 + 392.307i −1.36778 + 0.725152i −0.980446 0.196786i \(-0.936950\pi\)
−0.387336 + 0.921939i \(0.626605\pi\)
\(542\) 755.168 + 40.9440i 1.39330 + 0.0755424i
\(543\) 56.7569 + 66.8193i 0.104525 + 0.123056i
\(544\) −105.495 479.269i −0.193925 0.881008i
\(545\) −912.013 1199.73i −1.67342 2.20134i
\(546\) 25.2126 23.8826i 0.0461769 0.0437411i
\(547\) 0.0691017 + 1.27451i 0.000126329 + 0.00232999i 0.998596 0.0529739i \(-0.0168700\pi\)
−0.998470 + 0.0553039i \(0.982387\pi\)
\(548\) −278.984 + 167.859i −0.509095 + 0.306312i
\(549\) 45.0642 + 30.5543i 0.0820841 + 0.0556544i
\(550\) −478.139 + 1722.10i −0.869344 + 3.13109i
\(551\) −364.181 + 39.6071i −0.660946 + 0.0718822i
\(552\) −142.114 108.032i −0.257452 0.195710i
\(553\) 40.9460 + 18.9436i 0.0740434 + 0.0342561i
\(554\) 229.881 155.863i 0.414948 0.281342i
\(555\) −296.274 879.311i −0.533828 1.58434i
\(556\) 41.3462 + 252.201i 0.0743637 + 0.453598i
\(557\) 73.5016 448.340i 0.131960 0.804919i −0.835049 0.550176i \(-0.814561\pi\)
0.967009 0.254744i \(-0.0819911\pi\)
\(558\) 351.257 + 118.352i 0.629493 + 0.212101i
\(559\) −15.0237 54.1104i −0.0268760 0.0967986i
\(560\) −62.8160 157.656i −0.112171 0.281529i
\(561\) 503.052 200.434i 0.896705 0.357280i
\(562\) −126.882 + 35.2287i −0.225769 + 0.0626845i
\(563\) 149.919 444.943i 0.266285 0.790307i −0.728194 0.685371i \(-0.759640\pi\)
0.994479 0.104935i \(-0.0334636\pi\)
\(564\) −217.477 35.6535i −0.385597 0.0632154i
\(565\) 1533.72 251.441i 2.71455 0.445028i
\(566\) −382.506 + 128.881i −0.675805 + 0.227705i
\(567\) 4.94037 + 7.28651i 0.00871318 + 0.0128510i
\(568\) 17.5228 37.8749i 0.0308500 0.0666812i
\(569\) −353.491 + 465.009i −0.621249 + 0.817239i −0.993848 0.110754i \(-0.964674\pi\)
0.372599 + 0.927992i \(0.378467\pi\)
\(570\) −116.029 1066.87i −0.203559 1.87170i
\(571\) −663.991 184.356i −1.16286 0.322866i −0.368096 0.929788i \(-0.619990\pi\)
−0.794761 + 0.606922i \(0.792404\pi\)
\(572\) 107.814 159.014i 0.188487 0.277997i
\(573\) −164.975 274.190i −0.287914 0.478517i
\(574\) −32.8211 + 1.77951i −0.0571796 + 0.00310019i
\(575\) −631.211 666.362i −1.09776 1.15889i
\(576\) −60.2038 + 45.7658i −0.104521 + 0.0794545i
\(577\) −138.559 + 30.4991i −0.240137 + 0.0528581i −0.333408 0.942783i \(-0.608199\pi\)
0.0932711 + 0.995641i \(0.470268\pi\)
\(578\) −301.916 + 256.450i −0.522346 + 0.443685i
\(579\) 7.05838 130.184i 0.0121906 0.224843i
\(580\) −75.4316 142.279i −0.130055 0.245309i
\(581\) 4.28070 19.4474i 0.00736781 0.0334723i
\(582\) −155.385 + 71.8888i −0.266985 + 0.123520i
\(583\) −265.599 + 441.428i −0.455572 + 0.757167i
\(584\) 301.477 568.647i 0.516228 0.973710i
\(585\) −175.438 149.018i −0.299893 0.254732i
\(586\) −91.6941 + 96.8003i −0.156475 + 0.165188i
\(587\) 44.7938 411.872i 0.0763097 0.701656i −0.892023 0.451991i \(-0.850714\pi\)
0.968332 0.249665i \(-0.0803205\pi\)
\(588\) −46.3552 + 116.343i −0.0788353 + 0.197862i
\(589\) 1583.36i 2.68822i
\(590\) −1208.76 + 130.390i −2.04874 + 0.221000i
\(591\) 142.599 0.241284
\(592\) 1119.42 + 446.019i 1.89092 + 0.753411i
\(593\) −438.648 47.7058i −0.739710 0.0804483i −0.269497 0.963001i \(-0.586857\pi\)
−0.470213 + 0.882553i \(0.655823\pi\)
\(594\) 129.327 + 122.505i 0.217722 + 0.206237i
\(595\) −119.000 + 140.098i −0.200000 + 0.235458i
\(596\) 237.230 + 125.771i 0.398037 + 0.211026i
\(597\) −490.777 295.291i −0.822073 0.494625i
\(598\) 151.535 + 327.537i 0.253403 + 0.547721i
\(599\) 571.096 + 125.708i 0.953416 + 0.209863i 0.664329 0.747440i \(-0.268717\pi\)
0.289087 + 0.957303i \(0.406648\pi\)
\(600\) −467.016 + 247.596i −0.778360 + 0.412660i
\(601\) −286.560 15.5368i −0.476805 0.0258516i −0.185829 0.982582i \(-0.559497\pi\)
−0.290976 + 0.956730i \(0.593980\pi\)
\(602\) −9.55048 11.2437i −0.0158646 0.0186772i
\(603\) 41.5910 + 188.950i 0.0689735 + 0.313350i
\(604\) 76.5658 + 100.721i 0.126765 + 0.166756i
\(605\) 589.751 558.642i 0.974796 0.923376i
\(606\) 0.918691 + 16.9443i 0.00151599 + 0.0279608i
\(607\) −666.545 + 401.047i −1.09810 + 0.660704i −0.944856 0.327485i \(-0.893799\pi\)
−0.153242 + 0.988189i \(0.548971\pi\)
\(608\) 570.782 + 387.000i 0.938786 + 0.636513i
\(609\) −5.52214 + 19.8889i −0.00906755 + 0.0326584i
\(610\) −371.783 + 40.4338i −0.609480 + 0.0662849i
\(611\) −587.986 446.976i −0.962334 0.731548i
\(612\) −87.6798 40.5650i −0.143268 0.0662827i
\(613\) 869.532 589.557i 1.41849 0.961758i 0.419957 0.907544i \(-0.362045\pi\)
0.998529 0.0542136i \(-0.0172652\pi\)
\(614\) −359.489 1066.93i −0.585487 1.73766i
\(615\) 35.2462 + 214.992i 0.0573108 + 0.349581i
\(616\) −13.5357 + 82.5639i −0.0219735 + 0.134032i
\(617\) 182.490 + 61.4880i 0.295770 + 0.0996564i 0.463274 0.886215i \(-0.346674\pi\)
−0.167505 + 0.985871i \(0.553571\pi\)
\(618\) 18.0357 + 64.9587i 0.0291840 + 0.105111i
\(619\) −141.651 355.516i −0.228838 0.574340i 0.769058 0.639179i \(-0.220726\pi\)
−0.997896 + 0.0648396i \(0.979346\pi\)
\(620\) −646.609 + 257.633i −1.04292 + 0.415536i
\(621\) −88.1496 + 24.4746i −0.141948 + 0.0394116i
\(622\) 46.4408 137.831i 0.0746637 0.221594i
\(623\) −18.0257 2.95517i −0.0289337 0.00474345i
\(624\) 294.994 48.3617i 0.472746 0.0775028i
\(625\) −748.187 + 252.093i −1.19710 + 0.403350i
\(626\) 400.895 + 591.276i 0.640407 + 0.944530i
\(627\) −319.516 + 690.622i −0.509595 + 1.10147i
\(628\) −190.303 + 250.339i −0.303030 + 0.398629i
\(629\) −141.114 1297.52i −0.224346 2.06283i
\(630\) −58.2645 16.1771i −0.0924834 0.0256779i
\(631\) 512.473 755.841i 0.812160 1.19785i −0.165199 0.986260i \(-0.552827\pi\)
0.977359 0.211587i \(-0.0678631\pi\)
\(632\) 139.200 + 231.353i 0.220254 + 0.366064i
\(633\) −283.376 + 15.3642i −0.447672 + 0.0242721i
\(634\) 551.940 + 582.676i 0.870568 + 0.919047i
\(635\) 69.6832 52.9718i 0.109737 0.0834201i
\(636\) 89.7608 19.7579i 0.141133 0.0310658i
\(637\) −319.899 + 271.725i −0.502197 + 0.426570i
\(638\) −22.6125 + 417.064i −0.0354428 + 0.653705i
\(639\) −10.0177 18.8954i −0.0156772 0.0295703i
\(640\) 284.869 1294.17i 0.445108 2.02214i
\(641\) −694.356 + 321.243i −1.08324 + 0.501160i −0.878542 0.477666i \(-0.841483\pi\)
−0.204697 + 0.978825i \(0.565621\pi\)
\(642\) 59.7162 99.2491i 0.0930159 0.154594i
\(643\) −469.545 + 885.656i −0.730241 + 1.37738i 0.188322 + 0.982107i \(0.439695\pi\)
−0.918563 + 0.395274i \(0.870650\pi\)
\(644\) 19.7544 + 16.7795i 0.0306745 + 0.0260551i
\(645\) −67.2437 + 70.9883i −0.104254 + 0.110059i
\(646\) 163.207 1500.67i 0.252643 2.32301i
\(647\) −259.221 + 650.596i −0.400651 + 1.00556i 0.580835 + 0.814021i \(0.302726\pi\)
−0.981486 + 0.191536i \(0.938653\pi\)
\(648\) 52.6853i 0.0813044i
\(649\) 782.081 + 362.660i 1.20506 + 0.558799i
\(650\) 1068.62 1.64404
\(651\) 82.8801 + 33.0225i 0.127312 + 0.0507257i
\(652\) −27.2105 2.95932i −0.0417339 0.00453884i
\(653\) −394.690 373.870i −0.604425 0.572542i 0.323071 0.946375i \(-0.395285\pi\)
−0.927496 + 0.373833i \(0.878043\pi\)
\(654\) 451.444 531.481i 0.690282 0.812663i
\(655\) −185.145 98.1574i −0.282663 0.149859i
\(656\) −242.430 145.865i −0.369558 0.222356i
\(657\) −138.497 299.356i −0.210802 0.455640i
\(658\) −189.489 41.7097i −0.287977 0.0633886i
\(659\) −607.524 + 322.089i −0.921887 + 0.488754i −0.860552 0.509363i \(-0.829881\pi\)
−0.0613359 + 0.998117i \(0.519536\pi\)
\(660\) −334.024 18.1103i −0.506097 0.0274398i
\(661\) 374.138 + 440.470i 0.566019 + 0.666369i 0.968487 0.249065i \(-0.0801234\pi\)
−0.402468 + 0.915434i \(0.631848\pi\)
\(662\) −279.384 1269.25i −0.422030 1.91730i
\(663\) −195.943 257.758i −0.295540 0.388776i
\(664\) 86.5180 81.9542i 0.130298 0.123425i
\(665\) −13.9844 257.927i −0.0210291 0.387859i
\(666\) 367.893 221.354i 0.552392 0.332363i
\(667\) −177.541 120.376i −0.266178 0.180473i
\(668\) 48.4671 174.563i 0.0725555 0.261321i
\(669\) 693.966 75.4734i 1.03732 0.112815i
\(670\) −1057.94 804.228i −1.57902 1.20034i
\(671\) 240.668 + 111.345i 0.358671 + 0.165939i
\(672\) 32.1615 21.8061i 0.0478594 0.0324495i
\(673\) −285.458 847.210i −0.424158 1.25886i −0.920505 0.390732i \(-0.872222\pi\)
0.496347 0.868124i \(-0.334674\pi\)
\(674\) −66.6890 406.785i −0.0989450 0.603538i
\(675\) −43.8252 + 267.322i −0.0649262 + 0.396032i
\(676\) 132.176 + 44.5353i 0.195527 + 0.0658806i
\(677\) −291.667 1050.49i −0.430823 1.55168i −0.786811 0.617193i \(-0.788270\pi\)
0.355989 0.934490i \(-0.384144\pi\)
\(678\) 266.189 + 668.083i 0.392609 + 0.985373i
\(679\) −38.2825 + 15.2532i −0.0563808 + 0.0224642i
\(680\) −1059.97 + 294.300i −1.55878 + 0.432794i
\(681\) −36.0628 + 107.031i −0.0529557 + 0.157167i
\(682\) 1781.51 + 292.064i 2.61219 + 0.428246i
\(683\) 149.292 24.4752i 0.218583 0.0358348i −0.0514955 0.998673i \(-0.516399\pi\)
0.270078 + 0.962838i \(0.412950\pi\)
\(684\) 128.652 43.3479i 0.188088 0.0633741i
\(685\) 1066.24 + 1572.59i 1.55656 + 2.29575i
\(686\) −93.5166 + 202.133i −0.136322 + 0.294654i
\(687\) −32.4974 + 42.7496i −0.0473034 + 0.0622266i
\(688\) −13.7294 126.240i −0.0199555 0.183488i
\(689\) 296.802 + 82.4067i 0.430772 + 0.119603i
\(690\) 352.640 520.105i 0.511073 0.753776i
\(691\) 25.8895 + 43.0287i 0.0374667 + 0.0622702i 0.875025 0.484078i \(-0.160845\pi\)
−0.837558 + 0.546348i \(0.816017\pi\)
\(692\) 59.7791 3.24113i 0.0863859 0.00468371i
\(693\) 29.4865 + 31.1285i 0.0425490 + 0.0449185i
\(694\) 111.972 85.1190i 0.161343 0.122650i
\(695\) 1456.50 320.599i 2.09568 0.461294i
\(696\) −94.1503 + 79.9720i −0.135273 + 0.114902i
\(697\) −16.5907 + 305.997i −0.0238030 + 0.439021i
\(698\) 672.042 + 1267.61i 0.962810 + 1.81605i
\(699\) 145.279 660.008i 0.207838 0.944218i
\(700\) 69.6540 32.2254i 0.0995057 0.0460362i
\(701\) 131.463 218.494i 0.187537 0.311689i −0.748797 0.662799i \(-0.769368\pi\)
0.936334 + 0.351111i \(0.114196\pi\)
\(702\) 49.8908 94.1040i 0.0710695 0.134051i
\(703\) 1397.86 + 1187.35i 1.98842 + 1.68898i
\(704\) −253.298 + 267.403i −0.359798 + 0.379834i
\(705\) −139.044 + 1278.49i −0.197225 + 1.81346i
\(706\) −236.447 + 593.438i −0.334911 + 0.840564i
\(707\) 4.08441i 0.00577710i
\(708\) −48.9808 145.791i −0.0691820 0.205920i
\(709\) −118.732 −0.167464 −0.0837319 0.996488i \(-0.526684\pi\)
−0.0837319 + 0.996488i \(0.526684\pi\)
\(710\) 136.467 + 54.3733i 0.192207 + 0.0765821i
\(711\) 137.558 + 14.9604i 0.193472 + 0.0210413i
\(712\) −79.3639 75.1775i −0.111466 0.105586i
\(713\) −600.210 + 706.622i −0.841809 + 0.991054i
\(714\) −75.1478 39.8408i −0.105249 0.0557995i
\(715\) −960.629 577.991i −1.34354 0.808379i
\(716\) −62.8517 135.852i −0.0877817 0.189737i
\(717\) 302.128 + 66.5033i 0.421378 + 0.0927522i
\(718\) −1184.55 + 628.010i −1.64979 + 0.874666i
\(719\) −384.686 20.8571i −0.535030 0.0290085i −0.215355 0.976536i \(-0.569091\pi\)
−0.319675 + 0.947527i \(0.603574\pi\)
\(720\) −336.962 396.703i −0.468003 0.550976i
\(721\) 3.48828 + 15.8474i 0.00483812 + 0.0219798i
\(722\) 771.126 + 1014.40i 1.06804 + 1.40499i
\(723\) 49.3520 46.7487i 0.0682600 0.0646594i
\(724\) −4.12426 76.0674i −0.00569649 0.105066i
\(725\) −544.236 + 327.456i −0.750670 + 0.451663i
\(726\) 311.116 + 210.942i 0.428535 + 0.290554i
\(727\) −90.6873 + 326.626i −0.124742 + 0.449279i −0.999369 0.0355165i \(-0.988692\pi\)
0.874627 + 0.484796i \(0.161106\pi\)
\(728\) 49.7321 5.40870i 0.0683134 0.00742953i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) 2056.20 + 951.299i 2.81671 + 1.30315i
\(731\) −113.840 + 77.1852i −0.155731 + 0.105589i
\(732\) −15.1059 44.8327i −0.0206365 0.0612469i
\(733\) −37.2681 227.325i −0.0508432 0.310130i 0.949146 0.314837i \(-0.101950\pi\)
−0.999989 + 0.00470725i \(0.998502\pi\)
\(734\) −259.935 + 1585.53i −0.354134 + 2.16012i
\(735\) 692.567 + 233.353i 0.942268 + 0.317487i
\(736\) 108.027 + 389.079i 0.146776 + 0.528640i
\(737\) 348.784 + 875.382i 0.473248 + 1.18776i
\(738\) −93.6498 + 37.3135i −0.126897 + 0.0505603i
\(739\) −947.579 + 263.094i −1.28224 + 0.356014i −0.840835 0.541292i \(-0.817935\pi\)
−0.441410 + 0.897305i \(0.645522\pi\)
\(740\) −257.440 + 764.054i −0.347891 + 1.03251i
\(741\) 448.993 + 73.6087i 0.605929 + 0.0993369i
\(742\) 79.8525 13.0911i 0.107618 0.0176431i
\(743\) −385.737 + 129.970i −0.519162 + 0.174926i −0.566670 0.823945i \(-0.691768\pi\)
0.0475083 + 0.998871i \(0.484872\pi\)
\(744\) 299.633 + 441.926i 0.402733 + 0.593987i
\(745\) 657.915 1422.06i 0.883108 1.90881i
\(746\) −813.683 + 1070.38i −1.09073 + 1.43483i
\(747\) −6.60312 60.7147i −0.00883952 0.0812780i
\(748\) −453.381 125.881i −0.606124 0.168290i
\(749\) 15.6457 23.0757i 0.0208888 0.0308087i
\(750\) −499.263 829.782i −0.665685 1.10638i
\(751\) 1054.78 57.1885i 1.40450 0.0761498i 0.663762 0.747944i \(-0.268959\pi\)
0.740738 + 0.671794i \(0.234476\pi\)
\(752\) −1148.54 1212.50i −1.52731 1.61236i
\(753\) 315.279 239.669i 0.418698 0.318286i
\(754\) 243.897 53.6858i 0.323471 0.0712013i
\(755\) 562.704 477.965i 0.745303 0.633066i
\(756\) 0.414136 7.63829i 0.000547799 0.0101036i
\(757\) −282.197 532.279i −0.372783 0.703143i 0.624158 0.781298i \(-0.285442\pi\)
−0.996941 + 0.0781549i \(0.975097\pi\)
\(758\) 143.915 653.813i 0.189862 0.862550i
\(759\) −404.390 + 187.091i −0.532794 + 0.246497i
\(760\) 796.975 1324.58i 1.04865 1.74287i
\(761\) 452.728 853.935i 0.594911 1.12212i −0.385043 0.922899i \(-0.625813\pi\)
0.979954 0.199223i \(-0.0638419\pi\)
\(762\) 30.8697 + 26.2209i 0.0405114 + 0.0344107i
\(763\) 115.427 121.855i 0.151281 0.159705i
\(764\) −30.0626 + 276.421i −0.0393490 + 0.361808i
\(765\) −208.669 + 523.721i −0.272770 + 0.684602i
\(766\) 1.51080i 0.00197232i
\(767\) 83.8355 508.586i 0.109303 0.663085i
\(768\) 438.532 0.571005
\(769\) −416.938 166.123i −0.542182 0.216025i 0.0829363 0.996555i \(-0.473570\pi\)
−0.625119 + 0.780530i \(0.714949\pi\)
\(770\) −292.785 31.8423i −0.380240 0.0413536i
\(771\) −314.846 298.238i −0.408361 0.386820i
\(772\) −73.3399 + 86.3424i −0.0949999 + 0.111842i
\(773\) 965.174 + 511.703i 1.24861 + 0.661970i 0.955748 0.294186i \(-0.0950484\pi\)
0.292859 + 0.956156i