Properties

Label 177.3.g.a.10.4
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.4
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.4

$q$-expansion

\(f(q)\) \(=\) \(q+(-2.31503 - 0.922394i) q^{2} +(1.72190 + 0.187268i) q^{3} +(1.60459 + 1.51995i) q^{4} +(-0.698140 + 0.821913i) q^{5} +(-3.81352 - 2.02180i) q^{6} +(-4.78757 - 2.88058i) q^{7} +(1.87281 + 4.04801i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(-2.31503 - 0.922394i) q^{2} +(1.72190 + 0.187268i) q^{3} +(1.60459 + 1.51995i) q^{4} +(-0.698140 + 0.821913i) q^{5} +(-3.81352 - 2.02180i) q^{6} +(-4.78757 - 2.88058i) q^{7} +(1.87281 + 4.04801i) q^{8} +(2.92986 + 0.644911i) q^{9} +(2.37434 - 1.25880i) q^{10} +(-14.3132 - 0.776037i) q^{11} +(2.47830 + 2.91768i) q^{12} +(-0.277910 - 1.26256i) q^{13} +(8.42635 + 11.0847i) q^{14} +(-1.35604 + 1.28451i) q^{15} +(-1.08039 - 19.9266i) q^{16} +(-14.0617 + 8.46063i) q^{17} +(-6.18787 - 4.19548i) q^{18} +(4.12045 - 14.8405i) q^{19} +(-2.36949 + 0.257698i) q^{20} +(-7.70426 - 5.85663i) q^{21} +(32.4196 + 14.9989i) q^{22} +(-37.5540 + 25.4623i) q^{23} +(2.46673 + 7.32098i) q^{24} +(3.85641 + 23.5230i) q^{25} +(-0.521205 + 3.17921i) q^{26} +(4.92415 + 1.65914i) q^{27} +(-3.30374 - 11.8990i) q^{28} +(3.61980 + 9.08501i) q^{29} +(4.32411 - 1.72288i) q^{30} +(-52.3426 + 14.5329i) q^{31} +(-10.1823 + 30.2201i) q^{32} +(-24.5005 - 4.01665i) q^{33} +(40.3573 - 6.61624i) q^{34} +(5.70998 - 1.92392i) q^{35} +(3.72099 + 5.48805i) q^{36} +(12.7192 - 27.4921i) q^{37} +(-23.2278 + 30.5556i) q^{38} +(-0.242096 - 2.22604i) q^{39} +(-4.63460 - 1.28679i) q^{40} +(-31.7822 + 46.8753i) q^{41} +(12.4335 + 20.6646i) q^{42} +(-4.45720 + 0.241662i) q^{43} +(-21.7872 - 23.0004i) q^{44} +(-2.57551 + 1.95785i) q^{45} +(110.425 - 24.3064i) q^{46} +(41.4091 - 35.1732i) q^{47} +(1.87128 - 34.5138i) q^{48} +(-8.32897 - 15.7101i) q^{49} +(12.7698 - 58.0138i) q^{50} +(-25.7972 + 11.9350i) q^{51} +(1.47309 - 2.44830i) q^{52} +(39.7793 - 75.0316i) q^{53} +(-9.86919 - 8.38297i) q^{54} +(10.6304 - 11.2224i) q^{55} +(2.69444 - 24.7749i) q^{56} +(9.87413 - 24.7822i) q^{57} -24.3710i q^{58} +(25.5895 - 53.1618i) q^{59} -4.12828 q^{60} +(41.6129 + 16.5801i) q^{61} +(134.580 + 14.6365i) q^{62} +(-12.1692 - 11.5273i) q^{63} +(-0.229215 + 0.269853i) q^{64} +(1.23173 + 0.653024i) q^{65} +(53.0144 + 31.8977i) q^{66} +(10.0579 + 21.7398i) q^{67} +(-35.4229 - 7.79717i) q^{68} +(-69.4324 + 36.8108i) q^{69} +(-14.9934 - 0.812919i) q^{70} +(-60.0103 - 70.6496i) q^{71} +(2.87647 + 13.0679i) q^{72} +(-21.9535 - 28.8793i) q^{73} +(-54.8039 + 51.9131i) q^{74} +(2.23523 + 41.2264i) q^{75} +(29.1684 - 17.5500i) q^{76} +(66.2897 + 44.9456i) q^{77} +(-1.49282 + 5.37667i) q^{78} +(20.5319 - 2.23298i) q^{79} +(17.1322 + 13.0235i) q^{80} +(8.16818 + 3.77900i) q^{81} +(116.814 - 79.2022i) q^{82} +(11.7672 + 34.9239i) q^{83} +(-3.46041 - 21.1075i) q^{84} +(2.86311 - 17.4642i) q^{85} +(10.5415 + 3.55184i) q^{86} +(4.53159 + 16.3213i) q^{87} +(-23.6644 - 59.3932i) q^{88} +(7.46385 - 2.97387i) q^{89} +(7.76831 - 2.15686i) q^{90} +(-2.30639 + 6.84513i) q^{91} +(-98.9600 - 16.2237i) q^{92} +(-92.8502 + 15.2220i) q^{93} +(-128.307 + 43.2317i) q^{94} +(9.32096 + 13.7474i) q^{95} +(-23.1922 + 50.1291i) q^{96} +(-20.8583 + 27.4387i) q^{97} +(4.79095 + 44.0520i) q^{98} +(-41.4351 - 11.5044i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.31503 0.922394i −1.15752 0.461197i −0.289230 0.957260i \(-0.593399\pi\)
−0.868287 + 0.496063i \(0.834779\pi\)
\(3\) 1.72190 + 0.187268i 0.573966 + 0.0624225i
\(4\) 1.60459 + 1.51995i 0.401147 + 0.379987i
\(5\) −0.698140 + 0.821913i −0.139628 + 0.164383i −0.827531 0.561420i \(-0.810255\pi\)
0.687903 + 0.725802i \(0.258531\pi\)
\(6\) −3.81352 2.02180i −0.635586 0.336966i
\(7\) −4.78757 2.88058i −0.683938 0.411512i 0.130747 0.991416i \(-0.458263\pi\)
−0.814685 + 0.579904i \(0.803090\pi\)
\(8\) 1.87281 + 4.04801i 0.234101 + 0.506002i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) 2.37434 1.25880i 0.237434 0.125880i
\(11\) −14.3132 0.776037i −1.30120 0.0705488i −0.609528 0.792765i \(-0.708641\pi\)
−0.691668 + 0.722216i \(0.743124\pi\)
\(12\) 2.47830 + 2.91768i 0.206525 + 0.243140i
\(13\) −0.277910 1.26256i −0.0213777 0.0971199i 0.964724 0.263264i \(-0.0847992\pi\)
−0.986101 + 0.166145i \(0.946868\pi\)
\(14\) 8.42635 + 11.0847i 0.601882 + 0.791762i
\(15\) −1.35604 + 1.28451i −0.0904028 + 0.0856341i
\(16\) −1.08039 19.9266i −0.0675241 1.24541i
\(17\) −14.0617 + 8.46063i −0.827157 + 0.497684i −0.865102 0.501596i \(-0.832746\pi\)
0.0379450 + 0.999280i \(0.487919\pi\)
\(18\) −6.18787 4.19548i −0.343770 0.233082i
\(19\) 4.12045 14.8405i 0.216866 0.781079i −0.772423 0.635108i \(-0.780956\pi\)
0.989289 0.145971i \(-0.0466307\pi\)
\(20\) −2.36949 + 0.257698i −0.118475 + 0.0128849i
\(21\) −7.70426 5.85663i −0.366870 0.278887i
\(22\) 32.4196 + 14.9989i 1.47362 + 0.681769i
\(23\) −37.5540 + 25.4623i −1.63278 + 1.10705i −0.723989 + 0.689811i \(0.757693\pi\)
−0.908795 + 0.417243i \(0.862996\pi\)
\(24\) 2.46673 + 7.32098i 0.102780 + 0.305041i
\(25\) 3.85641 + 23.5230i 0.154256 + 0.940922i
\(26\) −0.521205 + 3.17921i −0.0200463 + 0.122277i
\(27\) 4.92415 + 1.65914i 0.182376 + 0.0614496i
\(28\) −3.30374 11.8990i −0.117991 0.424964i
\(29\) 3.61980 + 9.08501i 0.124821 + 0.313276i 0.978086 0.208200i \(-0.0667606\pi\)
−0.853266 + 0.521477i \(0.825381\pi\)
\(30\) 4.32411 1.72288i 0.144137 0.0574294i
\(31\) −52.3426 + 14.5329i −1.68847 + 0.468802i −0.973184 0.230028i \(-0.926118\pi\)
−0.715288 + 0.698830i \(0.753705\pi\)
\(32\) −10.1823 + 30.2201i −0.318198 + 0.944378i
\(33\) −24.5005 4.01665i −0.742438 0.121717i
\(34\) 40.3573 6.61624i 1.18698 0.194595i
\(35\) 5.70998 1.92392i 0.163142 0.0549690i
\(36\) 3.72099 + 5.48805i 0.103361 + 0.152446i
\(37\) 12.7192 27.4921i 0.343762 0.743030i −0.656171 0.754613i \(-0.727825\pi\)
0.999933 + 0.0115824i \(0.00368689\pi\)
\(38\) −23.2278 + 30.5556i −0.611257 + 0.804095i
\(39\) −0.242096 2.22604i −0.00620760 0.0570780i
\(40\) −4.63460 1.28679i −0.115865 0.0321698i
\(41\) −31.7822 + 46.8753i −0.775177 + 1.14330i 0.210981 + 0.977490i \(0.432334\pi\)
−0.986158 + 0.165810i \(0.946976\pi\)
\(42\) 12.4335 + 20.6646i 0.296036 + 0.492015i
\(43\) −4.45720 + 0.241662i −0.103656 + 0.00562005i −0.105894 0.994377i \(-0.533770\pi\)
0.00223803 + 0.999997i \(0.499288\pi\)
\(44\) −21.7872 23.0004i −0.495163 0.522737i
\(45\) −2.57551 + 1.95785i −0.0572336 + 0.0435079i
\(46\) 110.425 24.3064i 2.40054 0.528400i
\(47\) 41.4091 35.1732i 0.881045 0.748366i −0.0877732 0.996140i \(-0.527975\pi\)
0.968818 + 0.247775i \(0.0796992\pi\)
\(48\) 1.87128 34.5138i 0.0389851 0.719038i
\(49\) −8.32897 15.7101i −0.169979 0.320615i
\(50\) 12.7698 58.0138i 0.255396 1.16028i
\(51\) −25.7972 + 11.9350i −0.505827 + 0.234020i
\(52\) 1.47309 2.44830i 0.0283287 0.0470826i
\(53\) 39.7793 75.0316i 0.750552 1.41569i −0.153447 0.988157i \(-0.549037\pi\)
0.903999 0.427535i \(-0.140618\pi\)
\(54\) −9.86919 8.38297i −0.182763 0.155240i
\(55\) 10.6304 11.2224i 0.193280 0.204043i
\(56\) 2.69444 24.7749i 0.0481149 0.442409i
\(57\) 9.87413 24.7822i 0.173230 0.434775i
\(58\) 24.3710i 0.420189i
\(59\) 25.5895 53.1618i 0.433720 0.901047i
\(60\) −4.12828 −0.0688047
\(61\) 41.6129 + 16.5801i 0.682179 + 0.271805i 0.685376 0.728190i \(-0.259638\pi\)
−0.00319614 + 0.999995i \(0.501017\pi\)
\(62\) 134.580 + 14.6365i 2.17064 + 0.236072i
\(63\) −12.1692 11.5273i −0.193162 0.182973i
\(64\) −0.229215 + 0.269853i −0.00358148 + 0.00421645i
\(65\) 1.23173 + 0.653024i 0.0189498 + 0.0100465i
\(66\) 53.0144 + 31.8977i 0.803249 + 0.483299i
\(67\) 10.0579 + 21.7398i 0.150118 + 0.324475i 0.968016 0.250888i \(-0.0807227\pi\)
−0.817898 + 0.575363i \(0.804861\pi\)
\(68\) −35.4229 7.79717i −0.520925 0.114664i
\(69\) −69.4324 + 36.8108i −1.00627 + 0.533489i
\(70\) −14.9934 0.812919i −0.214192 0.0116131i
\(71\) −60.0103 70.6496i −0.845215 0.995065i −0.999975 0.00711234i \(-0.997736\pi\)
0.154759 0.987952i \(-0.450540\pi\)
\(72\) 2.87647 + 13.0679i 0.0399509 + 0.181499i
\(73\) −21.9535 28.8793i −0.300732 0.395607i 0.620762 0.783999i \(-0.286823\pi\)
−0.921494 + 0.388393i \(0.873030\pi\)
\(74\) −54.8039 + 51.9131i −0.740594 + 0.701528i
\(75\) 2.23523 + 41.2264i 0.0298031 + 0.549686i
\(76\) 29.1684 17.5500i 0.383795 0.230922i
\(77\) 66.2897 + 44.9456i 0.860906 + 0.583709i
\(78\) −1.49282 + 5.37667i −0.0191388 + 0.0689316i
\(79\) 20.5319 2.23298i 0.259898 0.0282656i 0.0227574 0.999741i \(-0.492755\pi\)
0.237140 + 0.971475i \(0.423790\pi\)
\(80\) 17.1322 + 13.0235i 0.214152 + 0.162794i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) 116.814 79.2022i 1.42457 0.965880i
\(83\) 11.7672 + 34.9239i 0.141774 + 0.420770i 0.994892 0.100948i \(-0.0321877\pi\)
−0.853118 + 0.521718i \(0.825291\pi\)
\(84\) −3.46041 21.1075i −0.0411953 0.251280i
\(85\) 2.86311 17.4642i 0.0336836 0.205461i
\(86\) 10.5415 + 3.55184i 0.122575 + 0.0413004i
\(87\) 4.53159 + 16.3213i 0.0520873 + 0.187601i
\(88\) −23.6644 59.3932i −0.268914 0.674923i
\(89\) 7.46385 2.97387i 0.0838635 0.0334143i −0.327829 0.944737i \(-0.606317\pi\)
0.411693 + 0.911323i \(0.364938\pi\)
\(90\) 7.76831 2.15686i 0.0863146 0.0239651i
\(91\) −2.30639 + 6.84513i −0.0253450 + 0.0752212i
\(92\) −98.9600 16.2237i −1.07565 0.176344i
\(93\) −92.8502 + 15.2220i −0.998389 + 0.163678i
\(94\) −128.307 + 43.2317i −1.36497 + 0.459911i
\(95\) 9.32096 + 13.7474i 0.0981154 + 0.144709i
\(96\) −23.1922 + 50.1291i −0.241585 + 0.522178i
\(97\) −20.8583 + 27.4387i −0.215034 + 0.282873i −0.890945 0.454110i \(-0.849957\pi\)
0.675911 + 0.736983i \(0.263750\pi\)
\(98\) 4.79095 + 44.0520i 0.0488872 + 0.449511i
\(99\) −41.4351 11.5044i −0.418536 0.116206i
\(100\) −29.5658 + 43.6063i −0.295658 + 0.436063i
\(101\) −50.3136 83.6219i −0.498155 0.827939i 0.501145 0.865363i \(-0.332912\pi\)
−0.999299 + 0.0374241i \(0.988085\pi\)
\(102\) 70.7301 3.83487i 0.693432 0.0375968i
\(103\) 52.4443 + 55.3647i 0.509168 + 0.537522i 0.929000 0.370080i \(-0.120670\pi\)
−0.419832 + 0.907602i \(0.637911\pi\)
\(104\) 4.59038 3.48952i 0.0441383 0.0335531i
\(105\) 10.1923 2.24349i 0.0970694 0.0213666i
\(106\) −161.299 + 137.009i −1.52169 + 1.29253i
\(107\) −5.67009 + 104.579i −0.0529915 + 0.977370i 0.844283 + 0.535897i \(0.180027\pi\)
−0.897275 + 0.441473i \(0.854456\pi\)
\(108\) 5.37943 + 10.1467i 0.0498095 + 0.0939508i
\(109\) −9.18212 + 41.7148i −0.0842397 + 0.382705i −0.999811 0.0194514i \(-0.993808\pi\)
0.915571 + 0.402156i \(0.131739\pi\)
\(110\) −34.9612 + 16.1748i −0.317829 + 0.147043i
\(111\) 27.0496 44.9567i 0.243690 0.405015i
\(112\) −52.2277 + 98.5119i −0.466319 + 0.879570i
\(113\) 1.84649 + 1.56842i 0.0163406 + 0.0138798i 0.655519 0.755178i \(-0.272450\pi\)
−0.639179 + 0.769058i \(0.720726\pi\)
\(114\) −45.7179 + 48.2638i −0.401034 + 0.423367i
\(115\) 5.29018 48.6424i 0.0460015 0.422977i
\(116\) −8.00045 + 20.0796i −0.0689694 + 0.173100i
\(117\) 3.87835i 0.0331483i
\(118\) −108.277 + 99.4678i −0.917599 + 0.842947i
\(119\) 91.6927 0.770527
\(120\) −7.73933 3.08363i −0.0644944 0.0256969i
\(121\) 83.9734 + 9.13265i 0.693995 + 0.0754765i
\(122\) −81.0420 76.7670i −0.664278 0.629238i
\(123\) −63.5040 + 74.7627i −0.516293 + 0.607827i
\(124\) −106.078 56.2388i −0.855464 0.453538i
\(125\) −45.1270 27.1520i −0.361016 0.217216i
\(126\) 17.5394 + 37.9108i 0.139202 + 0.300879i
\(127\) 69.1365 + 15.2181i 0.544382 + 0.119828i 0.478644 0.878009i \(-0.341129\pi\)
0.0657386 + 0.997837i \(0.479060\pi\)
\(128\) 113.478 60.1624i 0.886549 0.470018i
\(129\) −7.72010 0.418571i −0.0598457 0.00324474i
\(130\) −2.24916 2.64792i −0.0173012 0.0203686i
\(131\) 23.1544 + 105.191i 0.176751 + 0.802988i 0.978651 + 0.205529i \(0.0658916\pi\)
−0.801900 + 0.597458i \(0.796177\pi\)
\(132\) −33.2081 43.6844i −0.251576 0.330943i
\(133\) −62.4762 + 59.1806i −0.469746 + 0.444967i
\(134\) −3.23173 59.6058i −0.0241174 0.444819i
\(135\) −4.80141 + 2.88891i −0.0355660 + 0.0213994i
\(136\) −60.5836 41.0767i −0.445467 0.302034i
\(137\) 31.3825 113.029i 0.229069 0.825033i −0.756246 0.654287i \(-0.772969\pi\)
0.985315 0.170745i \(-0.0546175\pi\)
\(138\) 194.692 21.1741i 1.41081 0.153435i
\(139\) −136.742 103.949i −0.983757 0.747833i −0.0160400 0.999871i \(-0.505106\pi\)
−0.967717 + 0.252039i \(0.918899\pi\)
\(140\) 12.0864 + 5.59177i 0.0863316 + 0.0399412i
\(141\) 77.8890 52.8101i 0.552404 0.374539i
\(142\) 73.7591 + 218.909i 0.519430 + 1.54161i
\(143\) 2.99798 + 18.2869i 0.0209649 + 0.127880i
\(144\) 9.68548 59.0788i 0.0672603 0.410269i
\(145\) −9.99422 3.36744i −0.0689256 0.0232238i
\(146\) 24.1849 + 87.1062i 0.165650 + 0.596618i
\(147\) −11.3996 28.6110i −0.0775486 0.194632i
\(148\) 62.1957 24.7810i 0.420241 0.167439i
\(149\) −80.4469 + 22.3360i −0.539912 + 0.149906i −0.526770 0.850008i \(-0.676597\pi\)
−0.0131418 + 0.999914i \(0.504183\pi\)
\(150\) 32.8524 97.5024i 0.219016 0.650016i
\(151\) −152.206 24.9529i −1.00799 0.165251i −0.364902 0.931046i \(-0.618897\pi\)
−0.643085 + 0.765795i \(0.722346\pi\)
\(152\) 67.7914 11.1138i 0.445996 0.0731173i
\(153\) −46.6551 + 15.7199i −0.304935 + 0.102745i
\(154\) −112.005 165.196i −0.727308 1.07270i
\(155\) 24.5977 53.1671i 0.158695 0.343013i
\(156\) 2.99500 3.93985i 0.0191987 0.0252555i
\(157\) 31.1161 + 286.108i 0.198192 + 1.82234i 0.496683 + 0.867932i \(0.334551\pi\)
−0.298492 + 0.954412i \(0.596483\pi\)
\(158\) −49.5918 13.7691i −0.313872 0.0871461i
\(159\) 82.5468 121.747i 0.519162 0.765707i
\(160\) −17.7296 29.4668i −0.110810 0.184168i
\(161\) 253.139 13.7248i 1.57229 0.0852471i
\(162\) −15.4239 16.2828i −0.0952091 0.100511i
\(163\) 159.310 121.104i 0.977362 0.742971i 0.0109422 0.999940i \(-0.496517\pi\)
0.966420 + 0.256969i \(0.0827238\pi\)
\(164\) −122.245 + 26.9082i −0.745399 + 0.164075i
\(165\) 20.4061 17.3331i 0.123673 0.105049i
\(166\) 4.97205 91.7040i 0.0299521 0.552434i
\(167\) −63.0461 118.918i −0.377522 0.712081i 0.619836 0.784731i \(-0.287199\pi\)
−0.997357 + 0.0726503i \(0.976854\pi\)
\(168\) 9.27908 42.1553i 0.0552326 0.250924i
\(169\) 151.863 70.2595i 0.898600 0.415737i
\(170\) −22.7370 + 37.7892i −0.133747 + 0.222290i
\(171\) 21.6431 40.8233i 0.126568 0.238733i
\(172\) −7.51929 6.38694i −0.0437168 0.0371334i
\(173\) −120.438 + 127.145i −0.696175 + 0.734943i −0.974214 0.225627i \(-0.927557\pi\)
0.278039 + 0.960570i \(0.410316\pi\)
\(174\) 4.56390 41.9643i 0.0262293 0.241174i
\(175\) 49.2973 123.727i 0.281699 0.707011i
\(176\) 286.050i 1.62529i
\(177\) 54.0180 86.7471i 0.305186 0.490097i
\(178\) −20.0221 −0.112484
\(179\) −94.1346 37.5066i −0.525891 0.209534i 0.0920558 0.995754i \(-0.470656\pi\)
−0.617947 + 0.786220i \(0.712035\pi\)
\(180\) −7.10847 0.773093i −0.0394915 0.00429496i
\(181\) 138.730 + 131.412i 0.766465 + 0.726035i 0.967312 0.253588i \(-0.0816107\pi\)
−0.200847 + 0.979623i \(0.564369\pi\)
\(182\) 11.6533 13.7193i 0.0640290 0.0753808i
\(183\) 68.5483 + 36.3420i 0.374581 + 0.198590i
\(184\) −173.403 104.333i −0.942408 0.567028i
\(185\) 13.7164 + 29.6474i 0.0741425 + 0.160256i
\(186\) 228.992 + 50.4050i 1.23114 + 0.270994i
\(187\) 207.833 110.186i 1.11140 0.589229i
\(188\) 119.906 + 6.50111i 0.637798 + 0.0345804i
\(189\) −18.7954 22.1277i −0.0994466 0.117078i
\(190\) −8.89784 40.4233i −0.0468307 0.212754i
\(191\) −120.898 159.038i −0.632973 0.832662i 0.362066 0.932153i \(-0.382072\pi\)
−0.995038 + 0.0994910i \(0.968279\pi\)
\(192\) −0.445219 + 0.421734i −0.00231885 + 0.00219653i
\(193\) 13.2844 + 245.017i 0.0688312 + 1.26952i 0.805227 + 0.592967i \(0.202043\pi\)
−0.736396 + 0.676551i \(0.763474\pi\)
\(194\) 73.5970 44.2818i 0.379366 0.228257i
\(195\) 1.99863 + 1.35510i 0.0102494 + 0.00694925i
\(196\) 10.5140 37.8679i 0.0536427 0.193203i
\(197\) 184.892 20.1083i 0.938540 0.102072i 0.373955 0.927447i \(-0.378002\pi\)
0.564585 + 0.825375i \(0.309036\pi\)
\(198\) 85.3120 + 64.8525i 0.430869 + 0.327538i
\(199\) −286.794 132.685i −1.44118 0.666759i −0.465314 0.885146i \(-0.654059\pi\)
−0.975862 + 0.218386i \(0.929921\pi\)
\(200\) −87.9993 + 59.6650i −0.439996 + 0.298325i
\(201\) 13.2475 + 39.3173i 0.0659081 + 0.195608i
\(202\) 39.3454 + 239.996i 0.194779 + 1.18810i
\(203\) 8.84010 53.9222i 0.0435473 0.265627i
\(204\) −59.5344 20.0595i −0.291835 0.0983308i
\(205\) −16.3390 58.8478i −0.0797024 0.287062i
\(206\) −70.3421 176.545i −0.341467 0.857017i
\(207\) −126.449 + 50.3819i −0.610865 + 0.243391i
\(208\) −24.8582 + 6.90184i −0.119511 + 0.0331819i
\(209\) −70.4933 + 209.217i −0.337289 + 1.00104i
\(210\) −25.6649 4.20754i −0.122214 0.0200359i
\(211\) −388.120 + 63.6290i −1.83943 + 0.301559i −0.978358 0.206921i \(-0.933656\pi\)
−0.861073 + 0.508481i \(0.830207\pi\)
\(212\) 177.873 59.9325i 0.839026 0.282701i
\(213\) −90.1012 132.889i −0.423010 0.623894i
\(214\) 109.589 236.873i 0.512099 1.10688i
\(215\) 2.91312 3.83215i 0.0135494 0.0178239i
\(216\) 2.50578 + 23.0403i 0.0116008 + 0.106668i
\(217\) 292.457 + 81.2003i 1.34773 + 0.374195i
\(218\) 59.7344 88.1016i 0.274011 0.404136i
\(219\) −32.3934 53.8383i −0.147915 0.245837i
\(220\) 34.1149 1.84965i 0.155068 0.00840752i
\(221\) 14.5899 + 15.4024i 0.0660177 + 0.0696941i
\(222\) −104.088 + 79.1260i −0.468867 + 0.356423i
\(223\) 49.0930 10.8062i 0.220148 0.0484582i −0.103527 0.994627i \(-0.533013\pi\)
0.323675 + 0.946168i \(0.395082\pi\)
\(224\) 135.800 115.350i 0.606251 0.514954i
\(225\) −3.87154 + 71.4063i −0.0172068 + 0.317361i
\(226\) −2.82798 5.33413i −0.0125132 0.0236023i
\(227\) −54.4433 + 247.339i −0.239838 + 1.08960i 0.690625 + 0.723213i \(0.257335\pi\)
−0.930464 + 0.366384i \(0.880596\pi\)
\(228\) 53.5115 24.7571i 0.234700 0.108584i
\(229\) −49.7275 + 82.6477i −0.217151 + 0.360907i −0.946215 0.323538i \(-0.895128\pi\)
0.729065 + 0.684445i \(0.239955\pi\)
\(230\) −57.1144 + 107.729i −0.248323 + 0.468387i
\(231\) 105.727 + 89.8056i 0.457694 + 0.388769i
\(232\) −29.9970 + 31.6675i −0.129298 + 0.136498i
\(233\) −17.2528 + 158.637i −0.0740463 + 0.680844i 0.897013 + 0.442005i \(0.145733\pi\)
−0.971059 + 0.238840i \(0.923233\pi\)
\(234\) −3.57737 + 8.97851i −0.0152879 + 0.0383697i
\(235\) 58.5905i 0.249321i
\(236\) 121.864 46.4081i 0.516372 0.196645i
\(237\) 35.7720 0.150937
\(238\) −212.272 84.5768i −0.891898 0.355365i
\(239\) 313.306 + 34.0741i 1.31090 + 0.142569i 0.736742 0.676174i \(-0.236363\pi\)
0.574160 + 0.818743i \(0.305329\pi\)
\(240\) 27.0609 + 25.6335i 0.112754 + 0.106806i
\(241\) −145.812 + 171.663i −0.605029 + 0.712296i −0.976347 0.216210i \(-0.930630\pi\)
0.371317 + 0.928506i \(0.378906\pi\)
\(242\) −185.977 98.5989i −0.768501 0.407433i
\(243\) 13.3571 + 8.03669i 0.0549674 + 0.0330728i
\(244\) 41.5708 + 89.8537i 0.170372 + 0.368253i
\(245\) 18.7271 + 4.12216i 0.0764373 + 0.0168251i
\(246\) 215.974 114.502i 0.877945 0.465457i
\(247\) −19.8821 1.07798i −0.0804944 0.00436428i
\(248\) −156.857 184.666i −0.632488 0.744623i
\(249\) 13.7219 + 62.3390i 0.0551078 + 0.250357i
\(250\) 79.4257 + 104.483i 0.317703 + 0.417931i
\(251\) −76.1121 + 72.0972i −0.303235 + 0.287240i −0.824153 0.566367i \(-0.808348\pi\)
0.520918 + 0.853607i \(0.325590\pi\)
\(252\) −2.00570 36.9930i −0.00795914 0.146798i
\(253\) 557.276 335.302i 2.20267 1.32530i
\(254\) −146.016 99.0015i −0.574867 0.389770i
\(255\) 8.20045 29.5353i 0.0321586 0.115825i
\(256\) −316.791 + 34.4531i −1.23747 + 0.134583i
\(257\) 299.577 + 227.733i 1.16567 + 0.886120i 0.995066 0.0992194i \(-0.0316346\pi\)
0.170605 + 0.985339i \(0.445428\pi\)
\(258\) 17.4862 + 8.08998i 0.0677760 + 0.0313565i
\(259\) −140.087 + 94.9816i −0.540878 + 0.366724i
\(260\) 0.983864 + 2.92001i 0.00378409 + 0.0112308i
\(261\) 4.74648 + 28.9523i 0.0181858 + 0.110928i
\(262\) 43.4247 264.879i 0.165743 1.01099i
\(263\) −454.185 153.033i −1.72694 0.581874i −0.731905 0.681407i \(-0.761369\pi\)
−0.995034 + 0.0995330i \(0.968265\pi\)
\(264\) −29.6253 106.701i −0.112217 0.404169i
\(265\) 33.8980 + 85.0777i 0.127917 + 0.321048i
\(266\) 199.222 79.3775i 0.748956 0.298412i
\(267\) 13.4089 3.72296i 0.0502206 0.0139437i
\(268\) −16.9046 + 50.1710i −0.0630768 + 0.187205i
\(269\) −461.248 75.6177i −1.71467 0.281107i −0.777224 0.629224i \(-0.783373\pi\)
−0.937451 + 0.348117i \(0.886821\pi\)
\(270\) 13.7801 2.25914i 0.0510376 0.00836719i
\(271\) 298.822 100.685i 1.10266 0.371531i 0.291630 0.956531i \(-0.405802\pi\)
0.811033 + 0.585001i \(0.198906\pi\)
\(272\) 183.783 + 271.060i 0.675673 + 0.996544i
\(273\) −5.25324 + 11.3547i −0.0192426 + 0.0415923i
\(274\) −176.909 + 232.720i −0.645654 + 0.849343i
\(275\) −36.9426 339.682i −0.134337 1.23521i
\(276\) −167.361 46.4675i −0.606380 0.168361i
\(277\) 119.082 175.633i 0.429900 0.634055i −0.549617 0.835417i \(-0.685226\pi\)
0.979517 + 0.201362i \(0.0645368\pi\)
\(278\) 220.681 + 366.775i 0.793817 + 1.31933i
\(279\) −162.729 + 8.82292i −0.583258 + 0.0316234i
\(280\) 18.4818 + 19.5109i 0.0660063 + 0.0696820i
\(281\) −243.124 + 184.818i −0.865209 + 0.657715i −0.940629 0.339437i \(-0.889763\pi\)
0.0754199 + 0.997152i \(0.475970\pi\)
\(282\) −229.027 + 50.4127i −0.812154 + 0.178769i
\(283\) −19.6499 + 16.6908i −0.0694344 + 0.0589781i −0.681431 0.731882i \(-0.738642\pi\)
0.611997 + 0.790860i \(0.290366\pi\)
\(284\) 11.0918 204.576i 0.0390556 0.720338i
\(285\) 13.4753 + 25.4171i 0.0472818 + 0.0891829i
\(286\) 9.92727 45.1000i 0.0347107 0.157692i
\(287\) 287.188 132.867i 1.00065 0.462952i
\(288\) −49.3221 + 81.9740i −0.171257 + 0.284632i
\(289\) −9.22167 + 17.3939i −0.0319089 + 0.0601865i
\(290\) 20.0308 + 17.0143i 0.0690719 + 0.0586702i
\(291\) −41.0543 + 43.3405i −0.141080 + 0.148936i
\(292\) 8.66871 79.7074i 0.0296874 0.272971i
\(293\) 203.159 509.892i 0.693377 1.74024i 0.0212890 0.999773i \(-0.493223\pi\)
0.672088 0.740471i \(-0.265398\pi\)
\(294\) 76.7503i 0.261055i
\(295\) 25.8294 + 58.1467i 0.0875571 + 0.197108i
\(296\) 135.109 0.456450
\(297\) −69.1926 27.5688i −0.232972 0.0928244i
\(298\) 206.840 + 22.4952i 0.694093 + 0.0754872i
\(299\) 42.5843 + 40.3379i 0.142422 + 0.134910i
\(300\) −59.0754 + 69.5489i −0.196918 + 0.231830i
\(301\) 22.0353 + 11.6824i 0.0732069 + 0.0388118i
\(302\) 329.345 + 198.161i 1.09055 + 0.656161i
\(303\) −70.9752 153.410i −0.234242 0.506305i
\(304\) −300.172 66.0728i −0.987407 0.217345i
\(305\) −42.6791 + 22.6270i −0.139931 + 0.0741869i
\(306\) 122.508 + 6.64220i 0.400353 + 0.0217065i
\(307\) −220.738 259.872i −0.719015 0.846490i 0.274334 0.961635i \(-0.411543\pi\)
−0.993349 + 0.115145i \(0.963267\pi\)
\(308\) 38.0529 + 172.876i 0.123548 + 0.561286i
\(309\) 79.9356 + 105.154i 0.258691 + 0.340303i
\(310\) −105.986 + 100.395i −0.341889 + 0.323854i
\(311\) −13.2912 245.143i −0.0427371 0.788240i −0.938832 0.344376i \(-0.888090\pi\)
0.896095 0.443863i \(-0.146392\pi\)
\(312\) 8.55764 5.14896i 0.0274283 0.0165031i
\(313\) 374.462 + 253.891i 1.19636 + 0.811155i 0.986045 0.166478i \(-0.0532394\pi\)
0.210319 + 0.977633i \(0.432550\pi\)
\(314\) 191.869 691.051i 0.611049 2.20080i
\(315\) 17.9702 1.95438i 0.0570483 0.00620437i
\(316\) 36.3393 + 27.6244i 0.114998 + 0.0874190i
\(317\) −293.455 135.767i −0.925725 0.428286i −0.101684 0.994817i \(-0.532423\pi\)
−0.824040 + 0.566531i \(0.808285\pi\)
\(318\) −303.398 + 205.709i −0.954081 + 0.646883i
\(319\) −44.7604 132.844i −0.140315 0.416440i
\(320\) −0.0617715 0.376790i −0.000193036 0.00117747i
\(321\) −29.3475 + 179.012i −0.0914252 + 0.557669i
\(322\) −598.684 201.720i −1.85927 0.626460i
\(323\) 67.6196 + 243.544i 0.209349 + 0.754006i
\(324\) 7.36268 + 18.4789i 0.0227243 + 0.0570338i
\(325\) 28.6275 11.4062i 0.0880846 0.0350961i
\(326\) −480.514 + 133.414i −1.47397 + 0.409245i
\(327\) −23.6225 + 70.1091i −0.0722401 + 0.214401i
\(328\) −249.274 40.8664i −0.759982 0.124593i
\(329\) −299.568 + 49.1117i −0.910542 + 0.149276i
\(330\) −63.2287 + 21.3042i −0.191602 + 0.0645582i
\(331\) 210.733 + 310.808i 0.636656 + 0.938997i 0.999973 + 0.00733137i \(0.00233367\pi\)
−0.363318 + 0.931665i \(0.618356\pi\)
\(332\) −34.2009 + 73.9241i −0.103015 + 0.222663i
\(333\) 54.9955 72.3453i 0.165152 0.217253i
\(334\) 36.2650 + 333.451i 0.108578 + 0.998358i
\(335\) −24.8901 6.91070i −0.0742988 0.0206290i
\(336\) −108.379 + 159.847i −0.322556 + 0.475734i
\(337\) 61.5950 + 102.372i 0.182774 + 0.303774i 0.934675 0.355503i \(-0.115690\pi\)
−0.751901 + 0.659276i \(0.770863\pi\)
\(338\) −416.376 + 22.5752i −1.23188 + 0.0667907i
\(339\) 2.88575 + 3.04644i 0.00851252 + 0.00898656i
\(340\) 31.1387 23.6710i 0.0915845 0.0696207i
\(341\) 760.466 167.391i 2.23011 0.490883i
\(342\) −87.7598 + 74.5438i −0.256608 + 0.217964i
\(343\) −20.2009 + 372.585i −0.0588949 + 1.08625i
\(344\) −9.32574 17.5902i −0.0271097 0.0511344i
\(345\) 18.2183 82.7665i 0.0528066 0.239903i
\(346\) 396.096 183.254i 1.14479 0.529635i
\(347\) −207.356 + 344.628i −0.597567 + 0.993164i 0.399508 + 0.916730i \(0.369181\pi\)
−0.997075 + 0.0764341i \(0.975647\pi\)
\(348\) −17.5362 + 33.0768i −0.0503914 + 0.0950483i
\(349\) −152.559 129.585i −0.437133 0.371304i 0.401629 0.915802i \(-0.368444\pi\)
−0.838762 + 0.544499i \(0.816720\pi\)
\(350\) −228.250 + 240.960i −0.652142 + 0.688458i
\(351\) 0.726289 6.67812i 0.00206920 0.0190260i
\(352\) 169.193 424.643i 0.480663 1.20637i
\(353\) 42.2481i 0.119683i −0.998208 0.0598415i \(-0.980940\pi\)
0.998208 0.0598415i \(-0.0190595\pi\)
\(354\) −205.068 + 150.997i −0.579289 + 0.426544i
\(355\) 99.9634 0.281587
\(356\) 16.4965 + 6.57282i 0.0463386 + 0.0184630i
\(357\) 157.885 + 17.1711i 0.442256 + 0.0480983i
\(358\) 183.329 + 173.658i 0.512092 + 0.485079i
\(359\) −125.573 + 147.836i −0.349786 + 0.411800i −0.908716 0.417415i \(-0.862936\pi\)
0.558930 + 0.829215i \(0.311212\pi\)
\(360\) −12.7489 6.75902i −0.0354135 0.0187751i
\(361\) 106.063 + 63.8160i 0.293803 + 0.176775i
\(362\) −199.951 432.188i −0.552352 1.19389i
\(363\) 142.883 + 31.4510i 0.393618 + 0.0866418i
\(364\) −14.1050 + 7.47802i −0.0387501 + 0.0205440i
\(365\) 39.0628 + 2.11793i 0.107021 + 0.00580254i
\(366\) −125.170 147.362i −0.341995 0.402627i
\(367\) −7.13532 32.4161i −0.0194423 0.0883272i 0.965900 0.258914i \(-0.0833647\pi\)
−0.985343 + 0.170587i \(0.945434\pi\)
\(368\) 547.948 + 720.813i 1.48899 + 1.95873i
\(369\) −123.348 + 116.841i −0.334276 + 0.316643i
\(370\) −4.40723 81.2867i −0.0119114 0.219694i
\(371\) −406.581 + 244.632i −1.09591 + 0.659384i
\(372\) −172.123 116.702i −0.462696 0.313716i
\(373\) −111.396 + 401.211i −0.298648 + 1.07563i 0.650164 + 0.759794i \(0.274700\pi\)
−0.948812 + 0.315840i \(0.897714\pi\)
\(374\) −582.774 + 63.3805i −1.55822 + 0.169467i
\(375\) −72.6194 55.2038i −0.193652 0.147210i
\(376\) 219.933 + 101.752i 0.584928 + 0.270617i
\(377\) 10.4644 7.09503i 0.0277570 0.0188197i
\(378\) 23.1016 + 68.5631i 0.0611153 + 0.181384i
\(379\) −74.8808 456.753i −0.197575 1.20515i −0.880278 0.474457i \(-0.842644\pi\)
0.682704 0.730695i \(-0.260804\pi\)
\(380\) −5.93900 + 36.2263i −0.0156289 + 0.0953323i
\(381\) 116.196 + 39.1510i 0.304977 + 0.102759i
\(382\) 133.187 + 479.695i 0.348656 + 1.25574i
\(383\) −201.393 505.458i −0.525829 1.31973i −0.916806 0.399332i \(-0.869242\pi\)
0.390977 0.920400i \(-0.372137\pi\)
\(384\) 206.664 82.3426i 0.538189 0.214434i
\(385\) −83.2208 + 23.1062i −0.216158 + 0.0600160i
\(386\) 195.248 579.476i 0.505824 1.50123i
\(387\) −13.2148 2.16646i −0.0341468 0.00559809i
\(388\) −75.1744 + 12.3242i −0.193748 + 0.0317634i
\(389\) −37.3900 + 12.5982i −0.0961182 + 0.0323860i −0.366950 0.930241i \(-0.619598\pi\)
0.270832 + 0.962627i \(0.412701\pi\)
\(390\) −3.37695 4.98064i −0.00865886 0.0127709i
\(391\) 312.646 675.773i 0.799605 1.72832i
\(392\) 47.9962 63.1379i 0.122439 0.161066i
\(393\) 20.1705 + 185.465i 0.0513245 + 0.471921i
\(394\) −446.580 123.992i −1.13345 0.314701i
\(395\) −12.4988 + 18.4344i −0.0316426 + 0.0466693i
\(396\) −49.0002 81.4389i −0.123738 0.205654i
\(397\) 136.584 7.40535i 0.344040 0.0186533i 0.118690 0.992931i \(-0.462130\pi\)
0.225349 + 0.974278i \(0.427648\pi\)
\(398\) 541.550 + 571.708i 1.36068 + 1.43645i
\(399\) −118.660 + 90.2032i −0.297394 + 0.226073i
\(400\) 464.567 102.259i 1.16142 0.255647i
\(401\) 77.3748 65.7228i 0.192955 0.163897i −0.545701 0.837980i \(-0.683737\pi\)
0.738656 + 0.674083i \(0.235461\pi\)
\(402\) 5.59753 103.240i 0.0139242 0.256817i
\(403\) 32.8951 + 62.0468i 0.0816257 + 0.153962i
\(404\) 46.3682 210.653i 0.114773 0.521418i
\(405\) −8.80854 + 4.07527i −0.0217495 + 0.0100624i
\(406\) −70.2027 + 116.678i −0.172913 + 0.287384i
\(407\) −203.387 + 383.628i −0.499722 + 0.942576i
\(408\) −96.6264 82.0752i −0.236829 0.201165i
\(409\) −232.451 + 245.395i −0.568340 + 0.599989i −0.945285 0.326247i \(-0.894216\pi\)
0.376945 + 0.926236i \(0.376975\pi\)
\(410\) −16.4555 + 151.306i −0.0401353 + 0.369038i
\(411\) 75.2042 188.748i 0.182979 0.459242i
\(412\) 168.550i 0.409102i
\(413\) −275.649 + 180.803i −0.667430 + 0.437780i
\(414\) 339.206 0.819337
\(415\) −36.9196 14.7101i −0.0889629 0.0354461i
\(416\) 40.9844 + 4.45733i 0.0985203 + 0.0107147i
\(417\) −215.990 204.596i −0.517961 0.490639i
\(418\) 356.175 419.321i 0.852093 1.00316i
\(419\) 369.229 + 195.753i 0.881215 + 0.467191i 0.846612 0.532211i \(-0.178639\pi\)
0.0346029 + 0.999401i \(0.488983\pi\)
\(420\) 19.7644 + 11.8919i 0.0470581 + 0.0283139i
\(421\) 46.3806 + 100.250i 0.110168 + 0.238123i 0.954816 0.297199i \(-0.0960523\pi\)
−0.844648 + 0.535322i \(0.820190\pi\)
\(422\) 957.202 + 210.696i 2.26825 + 0.499280i
\(423\) 144.007 76.3474i 0.340441 0.180490i
\(424\) 378.228 + 20.5069i 0.892047 + 0.0483654i
\(425\) −253.247 298.146i −0.595876 0.701519i
\(426\) 86.0110 + 390.752i 0.201904 + 0.917258i
\(427\) −151.464 199.248i −0.354718 0.466623i
\(428\) −168.052 + 159.187i −0.392645 + 0.371933i
\(429\) 1.73767 + 32.0495i 0.00405052 + 0.0747075i
\(430\) −10.2787 + 6.18450i −0.0239040 + 0.0143826i
\(431\) −563.636 382.154i −1.30774 0.886669i −0.309798 0.950802i \(-0.600261\pi\)
−0.997941 + 0.0641331i \(0.979572\pi\)
\(432\) 27.7409 99.9139i 0.0642152 0.231282i
\(433\) 143.150 15.5686i 0.330602 0.0359551i 0.0586869 0.998276i \(-0.481309\pi\)
0.271915 + 0.962321i \(0.412343\pi\)
\(434\) −602.149 457.742i −1.38744 1.05470i
\(435\) −16.5784 7.66999i −0.0381113 0.0176322i
\(436\) −78.1378 + 52.9788i −0.179215 + 0.121511i
\(437\) 223.133 + 662.237i 0.510603 + 1.51542i
\(438\) 25.3318 + 154.517i 0.0578351 + 0.352779i
\(439\) 44.1654 269.397i 0.100605 0.613660i −0.887611 0.460593i \(-0.847637\pi\)
0.988216 0.153067i \(-0.0489150\pi\)
\(440\) 65.3371 + 22.0146i 0.148493 + 0.0500333i
\(441\) −14.2711 51.3999i −0.0323608 0.116553i
\(442\) −19.5691 49.1147i −0.0442740 0.111119i
\(443\) 5.32447 2.12146i 0.0120191 0.00478885i −0.364121 0.931352i \(-0.618630\pi\)
0.376140 + 0.926563i \(0.377251\pi\)
\(444\) 111.735 31.0231i 0.251656 0.0698719i
\(445\) −2.76655 + 8.21081i −0.00621696 + 0.0184513i
\(446\) −123.619 20.2664i −0.277174 0.0454403i
\(447\) −142.704 + 23.3951i −0.319248 + 0.0523381i
\(448\) 1.87471 0.631665i 0.00418463 0.00140997i
\(449\) −242.965 358.347i −0.541125 0.798100i 0.454578 0.890707i \(-0.349790\pi\)
−0.995703 + 0.0926072i \(0.970480\pi\)
\(450\) 74.8275 161.737i 0.166283 0.359415i
\(451\) 491.281 646.269i 1.08931 1.43297i
\(452\) 0.578936 + 5.32323i 0.00128083 + 0.0117771i
\(453\) −257.410 71.4696i −0.568234 0.157769i
\(454\) 354.182 522.379i 0.780136 1.15061i
\(455\) −4.01592 6.67451i −0.00882620 0.0146693i
\(456\) 118.811 6.44175i 0.260551 0.0141266i
\(457\) 189.715 + 200.280i 0.415131 + 0.438248i 0.899703 0.436503i \(-0.143783\pi\)
−0.484572 + 0.874751i \(0.661025\pi\)
\(458\) 191.354 145.464i 0.417805 0.317607i
\(459\) −83.2791 + 18.3311i −0.181436 + 0.0399371i
\(460\) 82.4224 70.0102i 0.179179 0.152196i
\(461\) −2.87721 + 53.0671i −0.00624125 + 0.115113i 0.993753 + 0.111605i \(0.0355993\pi\)
−0.999994 + 0.00350761i \(0.998883\pi\)
\(462\) −161.926 305.425i −0.350489 0.661093i
\(463\) 174.091 790.904i 0.376007 1.70822i −0.285587 0.958353i \(-0.592189\pi\)
0.661594 0.749862i \(-0.269880\pi\)
\(464\) 177.122 81.9454i 0.381729 0.176607i
\(465\) 52.3112 86.9419i 0.112497 0.186972i
\(466\) 186.266 351.335i 0.399713 0.753939i
\(467\) −77.4191 65.7604i −0.165780 0.140815i 0.560656 0.828049i \(-0.310549\pi\)
−0.726436 + 0.687234i \(0.758825\pi\)
\(468\) 5.89489 6.22316i 0.0125959 0.0132973i
\(469\) 14.4705 133.054i 0.0308538 0.283696i
\(470\) 54.0435 135.639i 0.114986 0.288594i
\(471\) 498.476i 1.05833i
\(472\) 263.124 + 4.02469i 0.557466 + 0.00852688i
\(473\) 63.9841 0.135273
\(474\) −82.8134 32.9959i −0.174712 0.0696116i
\(475\) 364.984 + 39.6944i 0.768387 + 0.0835671i
\(476\) 147.129 + 139.368i 0.309095 + 0.292790i
\(477\) 164.936 194.178i 0.345779 0.407082i
\(478\) −693.884 367.874i −1.45164 0.769611i
\(479\) 507.067 + 305.092i 1.05859 + 0.636935i 0.934728 0.355364i \(-0.115643\pi\)
0.123867 + 0.992299i \(0.460471\pi\)
\(480\) −25.0104 54.0591i −0.0521050 0.112623i
\(481\) −38.2452 8.41841i −0.0795119 0.0175019i
\(482\) 495.901 262.910i 1.02884 0.545457i
\(483\) 438.449 + 23.7720i 0.907762 + 0.0492174i
\(484\) 120.862 + 142.289i 0.249714 + 0.293986i
\(485\) −7.99018 36.2998i −0.0164746 0.0748449i
\(486\) −23.5091 30.9257i −0.0483726 0.0636331i
\(487\) −563.672 + 533.939i −1.15744 + 1.09638i −0.163488 + 0.986545i \(0.552275\pi\)
−0.993949 + 0.109838i \(0.964967\pi\)
\(488\) 10.8166 + 199.501i 0.0221652 + 0.408814i
\(489\) 296.994 178.696i 0.607350 0.365431i
\(490\) −39.5517 26.8167i −0.0807178 0.0547280i
\(491\) −139.214 + 501.403i −0.283531 + 1.02119i 0.675378 + 0.737472i \(0.263981\pi\)
−0.958909 + 0.283715i \(0.908433\pi\)
\(492\) −215.533 + 23.4406i −0.438075 + 0.0476436i
\(493\) −127.765 97.1247i −0.259159 0.197007i
\(494\) 45.0335 + 20.8347i 0.0911609 + 0.0421755i
\(495\) 38.3831 26.0244i 0.0775416 0.0525745i
\(496\) 346.140 + 1027.31i 0.697863 + 2.07118i
\(497\) 83.7913 + 511.104i 0.168594 + 1.02838i
\(498\) 25.7346 156.974i 0.0516758 0.315209i
\(499\) −787.948 265.490i −1.57905 0.532045i −0.612933 0.790135i \(-0.710010\pi\)
−0.966121 + 0.258090i \(0.916907\pi\)
\(500\) −31.1407 112.159i −0.0622813 0.224317i
\(501\) −86.2895 216.570i −0.172235 0.432276i
\(502\) 242.704 96.7021i 0.483474 0.192634i
\(503\) 123.668 34.3363i 0.245861 0.0682630i −0.142412 0.989808i \(-0.545486\pi\)
0.388273 + 0.921545i \(0.373072\pi\)
\(504\) 23.8720 70.8494i 0.0473650 0.140574i
\(505\) 103.856 + 17.0263i 0.205655 + 0.0337154i
\(506\) −1599.39 + 262.207i −3.16086 + 0.518196i
\(507\) 274.651 92.5406i 0.541717 0.182526i
\(508\) 87.8050 + 129.503i 0.172844 + 0.254927i
\(509\) −29.7262 + 64.2521i −0.0584012 + 0.126232i −0.934579 0.355756i \(-0.884223\pi\)
0.876178 + 0.481989i \(0.160085\pi\)
\(510\) −46.2275 + 60.8113i −0.0906422 + 0.119238i
\(511\) 21.9145 + 201.500i 0.0428855 + 0.394325i
\(512\) 270.129 + 75.0009i 0.527595 + 0.146486i
\(513\) 44.9122 66.2405i 0.0875481 0.129124i
\(514\) −483.472 803.538i −0.940608 1.56330i
\(515\) −82.1184 + 4.45233i −0.159453 + 0.00864531i
\(516\) −11.7514 12.4058i −0.0227740 0.0240422i
\(517\) −619.990 + 471.304i −1.19921 + 0.911614i
\(518\) 411.918 90.6699i 0.795208 0.175038i
\(519\) −231.193 + 196.377i −0.445458 + 0.378375i
\(520\) −0.336646 + 6.20907i −0.000647396 + 0.0119405i
\(521\) −105.647 199.272i −0.202778 0.382480i 0.761177 0.648544i \(-0.224622\pi\)
−0.963955 + 0.266064i \(0.914277\pi\)
\(522\) 15.7171 71.4036i 0.0301094 0.136789i
\(523\) −462.833 + 214.129i −0.884958 + 0.409425i −0.809085 0.587692i \(-0.800037\pi\)
−0.0758736 + 0.997117i \(0.524175\pi\)
\(524\) −122.732 + 203.982i −0.234222 + 0.389279i
\(525\) 108.055 203.813i 0.205819 0.388216i
\(526\) 910.297 + 773.213i 1.73060 + 1.46999i
\(527\) 613.068 647.208i 1.16332 1.22810i
\(528\) −53.5679 + 492.549i −0.101454 + 0.932858i
\(529\) 566.175 1420.99i 1.07027 2.68619i
\(530\) 228.225i 0.430613i
\(531\) 109.258 139.254i 0.205760 0.262248i
\(532\) −190.200 −0.357519
\(533\) 68.0154 + 27.0998i 0.127609 + 0.0508440i
\(534\) −34.4761 3.74950i −0.0645619 0.00702153i
\(535\) −81.9961 77.6708i −0.153264 0.145179i
\(536\) −69.1666 + 81.4292i −0.129042 + 0.151920i
\(537\) −155.066 82.2109i −0.288764 0.153093i
\(538\) 998.054 + 600.509i 1.85512 + 1.11619i
\(539\) 107.022 + 231.325i 0.198557 + 0.429174i
\(540\) −12.0953 2.66237i −0.0223987 0.00493032i
\(541\) −179.950 + 95.4035i −0.332625 + 0.176347i −0.626347 0.779544i \(-0.715451\pi\)
0.293722 + 0.955891i \(0.405106\pi\)
\(542\) −784.653 42.5427i −1.44770 0.0784920i
\(543\) 214.270 + 252.258i 0.394604 + 0.464564i
\(544\) −112.500 511.094i −0.206802 0.939511i
\(545\) −27.8756 36.6697i −0.0511478 0.0672838i
\(546\) 22.6349 21.4409i 0.0414559 0.0392691i
\(547\) 22.3523 + 412.264i 0.0408634 + 0.753682i 0.945126 + 0.326705i \(0.105939\pi\)
−0.904263 + 0.426976i \(0.859579\pi\)
\(548\) 222.155 133.666i 0.405392 0.243916i
\(549\) 111.227 + 75.4141i 0.202600 + 0.137366i
\(550\) −227.797 + 820.450i −0.414176 + 1.49173i
\(551\) 149.741 16.2854i 0.271763 0.0295560i
\(552\) −279.044 212.124i −0.505515 0.384282i
\(553\) −104.730 48.4533i −0.189386 0.0876191i
\(554\) −437.682 + 296.756i −0.790040 + 0.535660i
\(555\) 18.0662 + 53.6184i 0.0325516 + 0.0966098i
\(556\) −61.4184 374.636i −0.110465 0.673806i
\(557\) 78.2877 477.534i 0.140552 0.857332i −0.818584 0.574387i \(-0.805240\pi\)
0.959136 0.282945i \(-0.0913114\pi\)
\(558\) 384.862 + 129.675i 0.689716 + 0.232392i
\(559\) 1.54381 + 5.56032i 0.00276174 + 0.00994690i
\(560\) −44.5060 111.702i −0.0794750 0.199467i
\(561\) 378.501 150.808i 0.674689 0.268821i
\(562\) 733.314 203.604i 1.30483 0.362284i
\(563\) −234.144 + 694.915i −0.415886 + 1.23431i 0.511201 + 0.859461i \(0.329201\pi\)
−0.927087 + 0.374846i \(0.877696\pi\)
\(564\) 205.248 + 33.6488i 0.363915 + 0.0596609i
\(565\) −2.57821 + 0.422676i −0.00456320 + 0.000748099i
\(566\) 60.8857 20.5148i 0.107572 0.0362452i
\(567\) −28.2200 41.6213i −0.0497707 0.0734063i
\(568\) 173.603 375.236i 0.305638 0.660626i
\(569\) −224.983 + 295.960i −0.395401 + 0.520141i −0.950115 0.311900i \(-0.899035\pi\)
0.554714 + 0.832041i \(0.312828\pi\)
\(570\) −7.75119 71.2710i −0.0135986 0.125037i
\(571\) −327.724 90.9923i −0.573948 0.159356i −0.0315865 0.999501i \(-0.510056\pi\)
−0.542362 + 0.840145i \(0.682470\pi\)
\(572\) −22.9845 + 33.8997i −0.0401828 + 0.0592651i
\(573\) −178.391 296.488i −0.311328 0.517431i
\(574\) −787.405 + 42.6919i −1.37179 + 0.0743761i
\(575\) −743.774 785.192i −1.29352 1.36555i
\(576\) −0.845599 + 0.642808i −0.00146805 + 0.00111599i
\(577\) −1069.65 + 235.447i −1.85381 + 0.408055i −0.994619 0.103600i \(-0.966964\pi\)
−0.859191 + 0.511655i \(0.829033\pi\)
\(578\) 37.3925 31.7615i 0.0646929 0.0549507i
\(579\) −23.0093 + 424.382i −0.0397397 + 0.732956i
\(580\) −10.9183 20.5940i −0.0188246 0.0355070i
\(581\) 44.2648 201.097i 0.0761873 0.346122i
\(582\) 135.019 62.4665i 0.231992 0.107331i
\(583\) −627.594 + 1043.07i −1.07649 + 1.78914i
\(584\) 75.7890 142.953i 0.129776 0.244783i
\(585\) 3.18767 + 2.70763i 0.00544901 + 0.00462843i
\(586\) −940.642 + 993.023i −1.60519 + 1.69458i
\(587\) 31.5550 290.143i 0.0537564 0.494282i −0.936051 0.351866i \(-0.885547\pi\)
0.989807 0.142416i \(-0.0454871\pi\)
\(588\) 25.1954 63.2357i 0.0428493 0.107544i
\(589\) 836.673i 1.42050i
\(590\) −6.16166 158.436i −0.0104435 0.268536i
\(591\) 322.131 0.545061
\(592\) −561.565 223.748i −0.948589 0.377952i
\(593\) 866.680 + 94.2571i 1.46152 + 0.158950i 0.804063 0.594544i \(-0.202668\pi\)
0.657455 + 0.753494i \(0.271633\pi\)
\(594\) 134.754 + 127.646i 0.226858 + 0.214892i
\(595\) −64.0143 + 75.3635i −0.107587 + 0.126661i
\(596\) −163.034 86.4349i −0.273546 0.145025i
\(597\) −468.983 282.177i −0.785565 0.472659i
\(598\) −61.3765 132.663i −0.102636 0.221845i
\(599\) 1049.46 + 231.003i 1.75201 + 0.385647i 0.971040 0.238917i \(-0.0767924\pi\)
0.780973 + 0.624564i \(0.214723\pi\)
\(600\) −162.699 + 86.2576i −0.271165 + 0.143763i
\(601\) −245.815 13.3277i −0.409010 0.0221759i −0.151513 0.988455i \(-0.548415\pi\)
−0.257496 + 0.966279i \(0.582897\pi\)
\(602\) −40.2367 47.3703i −0.0668383 0.0786881i
\(603\) 15.4480 + 70.1812i 0.0256186 + 0.116387i
\(604\) −206.301 271.384i −0.341558 0.449311i
\(605\) −66.1314 + 62.6430i −0.109308 + 0.103542i
\(606\) 22.8052 + 420.617i 0.0376324 + 0.694088i
\(607\) −22.5132 + 13.5458i −0.0370893 + 0.0223159i −0.533978 0.845499i \(-0.679303\pi\)
0.496888 + 0.867814i \(0.334476\pi\)
\(608\) 406.526 + 275.631i 0.668628 + 0.453341i
\(609\) 25.3196 91.1931i 0.0415758 0.149742i
\(610\) 119.674 13.0154i 0.196188 0.0213367i
\(611\) −55.9162 42.5064i −0.0915159 0.0695686i
\(612\) −98.7557 45.6893i −0.161366 0.0746556i
\(613\) −4.62179 + 3.13365i −0.00753963 + 0.00511199i −0.564951 0.825124i \(-0.691105\pi\)
0.557411 + 0.830236i \(0.311795\pi\)
\(614\) 271.310 + 805.220i 0.441873 + 1.31143i
\(615\) −17.1138 104.390i −0.0278273 0.169739i
\(616\) −57.7921 + 352.516i −0.0938184 + 0.572267i
\(617\) −686.452 231.293i −1.11256 0.374866i −0.297782 0.954634i \(-0.596247\pi\)
−0.814782 + 0.579768i \(0.803143\pi\)
\(618\) −88.0607 317.166i −0.142493 0.513214i
\(619\) 99.5124 + 249.757i 0.160763 + 0.403485i 0.987188 0.159562i \(-0.0510082\pi\)
−0.826425 + 0.563047i \(0.809629\pi\)
\(620\) 120.280 47.9241i 0.194001 0.0772969i
\(621\) −227.167 + 63.0726i −0.365809 + 0.101566i
\(622\) −195.348 + 579.773i −0.314065 + 0.932111i
\(623\) −44.3002 7.26264i −0.0711078 0.0116575i
\(624\) −44.0958 + 7.22913i −0.0706663 + 0.0115851i
\(625\) −510.910 + 172.146i −0.817456 + 0.275433i
\(626\) −632.704 933.169i −1.01071 1.49068i
\(627\) −160.562 + 347.049i −0.256079 + 0.553507i
\(628\) −384.940 + 506.380i −0.612962 + 0.806338i
\(629\) 53.7472 + 494.198i 0.0854487 + 0.785688i
\(630\) −43.4043 12.0512i −0.0688958 0.0191288i
\(631\) −286.157 + 422.049i −0.453497 + 0.668858i −0.983866 0.178909i \(-0.942743\pi\)
0.530369 + 0.847767i \(0.322054\pi\)
\(632\) 47.4915 + 78.9315i 0.0751448 + 0.124892i
\(633\) −680.218 + 36.8804i −1.07459 + 0.0582628i
\(634\) 554.127 + 584.985i 0.874018 + 0.922689i
\(635\) −60.7749 + 46.1999i −0.0957085 + 0.0727557i
\(636\) 317.503 69.8878i 0.499219 0.109886i
\(637\) −17.5202 + 14.8818i −0.0275043 + 0.0233624i
\(638\) −18.9128 + 348.826i −0.0296438 + 0.546749i
\(639\) −130.259 245.695i −0.203848 0.384499i
\(640\) −29.7754 + 135.271i −0.0465241 + 0.211361i
\(641\) −203.539 + 94.1671i −0.317533 + 0.146906i −0.572181 0.820127i \(-0.693903\pi\)
0.254648 + 0.967034i \(0.418040\pi\)
\(642\) 233.060 387.348i 0.363022 0.603346i
\(643\) −308.857 + 582.565i −0.480337 + 0.906011i 0.518369 + 0.855157i \(0.326539\pi\)
−0.998706 + 0.0508543i \(0.983806\pi\)
\(644\) 427.044 + 362.735i 0.663112 + 0.563253i
\(645\) 5.73373 6.05303i 0.00888951 0.00938454i
\(646\) 68.1016 626.184i 0.105420 0.969325i
\(647\) 67.5578 169.557i 0.104417 0.262067i −0.867481 0.497471i \(-0.834262\pi\)
0.971898 + 0.235404i \(0.0756414\pi\)
\(648\) 40.1423i 0.0619479i
\(649\) −407.522 + 741.055i −0.627923 + 1.14184i
\(650\) −76.7946 −0.118146
\(651\) 488.375 + 194.586i 0.750192 + 0.298904i
\(652\) 439.699 + 47.8202i 0.674385 + 0.0733438i
\(653\) −266.283 252.237i −0.407785 0.386274i 0.456129 0.889914i \(-0.349235\pi\)
−0.863914 + 0.503639i \(0.831994\pi\)
\(654\) 119.355 140.516i 0.182500 0.214856i
\(655\) −102.623 54.4074i −0.156677 0.0830647i
\(656\) 968.400 + 582.667i 1.47622 + 0.888212i
\(657\) −45.6960 98.7703i −0.0695525 0.150335i
\(658\) 738.811 + 162.625i 1.12281 + 0.247150i
\(659\) 770.548 408.519i 1.16927 0.619907i 0.233443 0.972370i \(-0.425001\pi\)
0.935826 + 0.352464i \(0.114656\pi\)
\(660\) 59.0887 + 3.20370i 0.0895283 + 0.00485408i
\(661\) −420.623 495.196i −0.636344 0.749162i 0.345590 0.938386i \(-0.387679\pi\)
−0.981934 + 0.189224i \(0.939403\pi\)
\(662\) −201.167 913.910i −0.303877 1.38053i
\(663\) 22.2380 + 29.2536i 0.0335414 + 0.0441230i
\(664\) −119.335 + 113.040i −0.179721 + 0.170241i
\(665\) −5.02423 92.6664i −0.00755523 0.139348i
\(666\) −194.047 + 116.754i −0.291362 + 0.175307i
\(667\) −367.263 249.010i −0.550619 0.373329i
\(668\) 79.5853 286.640i 0.119140 0.429102i
\(669\) 86.5567 9.41361i 0.129382 0.0140712i
\(670\) 51.2470 + 38.9570i 0.0764881 + 0.0581447i
\(671\) −582.746 269.607i −0.868473 0.401799i
\(672\) 255.435 173.189i 0.380112 0.257722i
\(673\) 90.6626 + 269.077i 0.134714 + 0.399817i 0.993685 0.112208i \(-0.0357921\pi\)
−0.858971 + 0.512025i \(0.828896\pi\)
\(674\) −48.1675 293.809i −0.0714651 0.435918i
\(675\) −20.0385 + 122.229i −0.0296866 + 0.181080i
\(676\) 350.469 + 118.087i 0.518445 + 0.174685i
\(677\) 133.119 + 479.452i 0.196631 + 0.708201i 0.994441 + 0.105292i \(0.0335778\pi\)
−0.797810 + 0.602909i \(0.794008\pi\)
\(678\) −3.87058 9.71441i −0.00570881 0.0143280i
\(679\) 178.900 71.2803i 0.263476 0.104978i
\(680\) 76.0573 21.1172i 0.111849 0.0310547i
\(681\) −140.064 + 415.696i −0.205674 + 0.610420i
\(682\) −1914.91 313.933i −2.80778 0.460312i
\(683\) 345.097 56.5758i 0.505266 0.0828342i 0.0962426 0.995358i \(-0.469318\pi\)
0.409024 + 0.912524i \(0.365869\pi\)
\(684\) 96.7776 32.6082i 0.141488 0.0476728i
\(685\) 70.9911 + 104.704i 0.103637 + 0.152853i
\(686\) 390.435 843.912i 0.569148 1.23019i
\(687\) −101.103 + 132.999i −0.147166 + 0.193593i
\(688\) 9.63100 + 88.5555i 0.0139985 + 0.128714i
\(689\) −105.787 29.3716i −0.153537 0.0426293i
\(690\) −118.519 + 174.803i −0.171767 + 0.253337i
\(691\) −171.125 284.412i −0.247648 0.411594i 0.707952 0.706260i \(-0.249619\pi\)
−0.955600 + 0.294666i \(0.904792\pi\)
\(692\) −386.508 + 20.9558i −0.558537 + 0.0302830i
\(693\) 165.234 + 174.435i 0.238433 + 0.251710i
\(694\) 797.918 606.562i 1.14974 0.874008i
\(695\) 180.902 39.8196i 0.260291 0.0572943i
\(696\) −57.5821 + 48.9107i −0.0827330 + 0.0702740i
\(697\) 50.3170 928.043i 0.0721908 1.33148i
\(698\) 233.652 + 440.714i 0.334744 + 0.631395i
\(699\) −59.4150 + 269.925i −0.0850001 + 0.386159i
\(700\) 267.160 123.601i 0.381657 0.176573i
\(701\) −389.285 + 646.997i −0.555328 + 0.922962i 0.444305 + 0.895876i \(0.353451\pi\)
−0.999633 + 0.0270869i \(0.991377\pi\)
\(702\) −7.84124 + 14.7901i −0.0111699 + 0.0210686i
\(703\) −355.588 302.039i −0.505815 0.429643i
\(704\) 3.49020 3.68456i 0.00495767 0.00523375i
\(705\) −10.9721 + 100.887i −0.0155633 + 0.143102i
\(706\) −38.9694 + 97.8058i −0.0551974 + 0.138535i
\(707\) 545.278i 0.771256i
\(708\) 218.528 57.0889i 0.308655 0.0806340i
\(709\) 316.689 0.446670 0.223335 0.974742i \(-0.428306\pi\)
0.223335 + 0.974742i \(0.428306\pi\)
\(710\) −231.419 92.2056i −0.325942 0.129867i
\(711\) 61.5957 + 6.69894i 0.0866325 + 0.00942186i
\(712\) 26.0166 + 24.6443i 0.0365402 + 0.0346127i
\(713\) 1595.64 1878.53i 2.23792 2.63468i
\(714\) −349.672 185.384i −0.489736 0.259642i
\(715\) −17.1232 10.3027i −0.0239486 0.0144094i
\(716\) −94.0391 203.262i −0.131340 0.283886i
\(717\) 533.099 + 117.344i 0.743514 + 0.163660i
\(718\) 427.070 226.418i 0.594805 0.315346i
\(719\) 1033.56 + 56.0382i 1.43750 + 0.0779391i 0.756333 0.654187i \(-0.226989\pi\)
0.681169 + 0.732126i \(0.261472\pi\)
\(720\) 41.7958 + 49.2059i 0.0580498 + 0.0683415i
\(721\) −91.5977 416.132i −0.127043 0.577160i
\(722\) −186.676 245.568i −0.258554 0.340122i
\(723\) −283.220 + 268.281i −0.391730 + 0.371066i
\(724\) 22.8653 + 421.725i 0.0315819 + 0.582493i
\(725\) −199.748 + 120.184i −0.275514 + 0.165771i
\(726\) −301.769 204.605i −0.415660 0.281825i
\(727\) 301.274 1085.09i 0.414407 1.49256i −0.402301 0.915507i \(-0.631789\pi\)
0.816708 0.577051i \(-0.195797\pi\)
\(728\) −32.0286 + 3.48332i −0.0439953 + 0.00478478i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) −88.4782 40.9344i −0.121203 0.0560745i
\(731\) 60.6311 41.1089i 0.0829426 0.0562365i
\(732\) 54.7539 + 162.504i 0.0748004 + 0.222000i
\(733\) −192.120 1171.88i −0.262101 1.59875i −0.709695 0.704509i \(-0.751167\pi\)
0.447594 0.894237i \(-0.352281\pi\)
\(734\) −13.3819 + 81.6259i −0.0182315 + 0.111207i
\(735\) 31.4743 + 10.6049i 0.0428221 + 0.0144285i
\(736\) −387.084 1394.15i −0.525930 1.89423i
\(737\) −127.090 318.971i −0.172442 0.432796i
\(738\) 393.329 156.716i 0.532965 0.212353i
\(739\) 94.5612 26.2548i 0.127958 0.0355275i −0.202959 0.979187i \(-0.565056\pi\)
0.330917 + 0.943660i \(0.392642\pi\)
\(740\) −23.0534 + 68.4200i −0.0311532 + 0.0924595i
\(741\) −34.0331 5.57944i −0.0459286 0.00752962i
\(742\) 1166.89 191.303i 1.57263 0.257820i
\(743\) 809.849 272.870i 1.08997 0.367254i 0.283768 0.958893i \(-0.408415\pi\)
0.806203 + 0.591639i \(0.201519\pi\)
\(744\) −235.510 347.351i −0.316545 0.466869i
\(745\) 37.8049 81.7140i 0.0507448 0.109683i
\(746\) 627.960 826.067i 0.841769 1.10733i
\(747\) 11.9535 + 109.911i 0.0160021 + 0.147137i
\(748\) 500.962 + 139.092i 0.669736 + 0.185951i
\(749\) 328.393 484.344i 0.438442 0.646654i
\(750\) 117.197 + 194.782i 0.156262 + 0.259710i
\(751\) 736.029 39.9064i 0.980066 0.0531376i 0.442862 0.896590i \(-0.353963\pi\)
0.537204 + 0.843452i \(0.319481\pi\)
\(752\) −745.618 787.140i −0.991514 1.04673i
\(753\) −144.559 + 109.891i −0.191977 + 0.145937i
\(754\) −30.7698 + 6.77295i −0.0408088 + 0.00898269i
\(755\) 126.770 107.680i 0.167907 0.142622i
\(756\) 3.47398 64.0738i 0.00459521 0.0847537i
\(757\) 611.021 + 1152.51i 0.807161 + 1.52247i 0.852041 + 0.523475i \(0.175365\pi\)
−0.0448794 + 0.998992i \(0.514290\pi\)
\(758\) −247.954 + 1126.47i −0.327117 + 1.48611i
\(759\) 1022.36 472.996i 1.34699 0.623183i
\(760\) −38.1932 + 63.4776i −0.0502543 + 0.0835232i
\(761\) 297.429 561.010i 0.390839 0.737201i −0.607530 0.794297i \(-0.707839\pi\)
0.998369 + 0.0570963i \(0.0181842\pi\)
\(762\) −232.885 197.815i −0.305624 0.259599i
\(763\) 164.123 173.263i 0.215102 0.227081i
\(764\) 47.7386 438.949i 0.0624851 0.574541i
\(765\) 19.6513 49.3212i 0.0256880 0.0644721i
\(766\) 1355.91i 1.77012i
\(767\) −74.2315 17.5340i −0.0967816 0.0228606i
\(768\) −551.934 −0.718664
\(769\) 560.432 + 223.297i 0.728780 + 0.290373i 0.704865 0.709341i \(-0.251008\pi\)
0.0239152 + 0.999714i \(0.492387\pi\)
\(770\) 213.972 + 23.2709i 0.277886 + 0.0302219i
\(771\) 473.195 + 448.234i 0.613741 + 0.581367i
\(772\) −351.097 + 413.343i −0.454788 + 0.535418i
\(773\) −696.764 369.401i −0.901377 0.477880i −0.0478061 0.998857i \(-0.515223\pi\)