Properties

Label 177.3.g.a.10.17
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.17
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.17

$q$-expansion

\(f(q)\) \(=\) \(q+(2.78888 + 1.11119i) q^{2} +(1.72190 + 0.187268i) q^{3} +(3.63913 + 3.44717i) q^{4} +(-3.64648 + 4.29297i) q^{5} +(4.59408 + 2.43563i) q^{6} +(3.88004 + 2.33454i) q^{7} +(1.27644 + 2.75897i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(2.78888 + 1.11119i) q^{2} +(1.72190 + 0.187268i) q^{3} +(3.63913 + 3.44717i) q^{4} +(-3.64648 + 4.29297i) q^{5} +(4.59408 + 2.43563i) q^{6} +(3.88004 + 2.33454i) q^{7} +(1.27644 + 2.75897i) q^{8} +(2.92986 + 0.644911i) q^{9} +(-14.9399 + 7.92064i) q^{10} +(6.59997 + 0.357840i) q^{11} +(5.62066 + 6.61716i) q^{12} +(-1.02564 - 4.65955i) q^{13} +(8.22684 + 10.8222i) q^{14} +(-7.08280 + 6.70919i) q^{15} +(-0.591425 - 10.9082i) q^{16} +(-12.2257 + 7.35597i) q^{17} +(7.45442 + 5.05422i) q^{18} +(5.79495 - 20.8715i) q^{19} +(-28.0686 + 3.05264i) q^{20} +(6.24384 + 4.74645i) q^{21} +(18.0089 + 8.33181i) q^{22} +(7.28314 - 4.93809i) q^{23} +(1.68123 + 4.98971i) q^{24} +(-1.08822 - 6.63783i) q^{25} +(2.31725 - 14.1346i) q^{26} +(4.92415 + 1.65914i) q^{27} +(6.07241 + 21.8708i) q^{28} +(-19.2637 - 48.3483i) q^{29} +(-27.2083 + 10.8408i) q^{30} +(6.84490 - 1.90048i) q^{31} +(14.3543 - 42.6021i) q^{32} +(11.2975 + 1.85213i) q^{33} +(-42.2700 + 6.92981i) q^{34} +(-24.1706 + 8.14403i) q^{35} +(8.43903 + 12.4466i) q^{36} +(-1.82822 + 3.95163i) q^{37} +(39.3537 - 51.7689i) q^{38} +(-0.893472 - 8.21534i) q^{39} +(-16.4987 - 4.58084i) q^{40} +(-44.2995 + 65.3369i) q^{41} +(12.1391 + 20.1754i) q^{42} +(23.0978 - 1.25233i) q^{43} +(22.7846 + 24.0534i) q^{44} +(-13.4523 + 10.2262i) q^{45} +(25.7990 - 5.67879i) q^{46} +(-17.6521 + 14.9938i) q^{47} +(1.02438 - 18.8935i) q^{48} +(-13.3474 - 25.1759i) q^{49} +(4.34099 - 19.7213i) q^{50} +(-22.4290 + 10.3767i) q^{51} +(12.3298 - 20.4923i) q^{52} +(-22.5971 + 42.6227i) q^{53} +(11.8892 + 10.0988i) q^{54} +(-25.6029 + 27.0286i) q^{55} +(-1.48831 + 13.6848i) q^{56} +(13.8869 - 34.8534i) q^{57} -156.243i q^{58} +(57.7490 + 12.0850i) q^{59} -48.9029 q^{60} +(-17.7867 - 7.08687i) q^{61} +(21.2014 + 2.30579i) q^{62} +(9.86240 + 9.34216i) q^{63} +(59.0828 - 69.5576i) q^{64} +(23.7433 + 12.5879i) q^{65} +(29.4492 + 17.7190i) q^{66} +(-24.0072 - 51.8907i) q^{67} +(-69.8482 - 15.3747i) q^{68} +(13.4656 - 7.13899i) q^{69} +(-76.4585 - 4.14546i) q^{70} +(25.8762 + 30.4638i) q^{71} +(1.96049 + 8.90660i) q^{72} +(34.3243 + 45.1528i) q^{73} +(-9.48971 + 8.98914i) q^{74} +(-0.630747 - 11.6334i) q^{75} +(93.0362 - 55.9780i) q^{76} +(24.7728 + 16.7963i) q^{77} +(6.63703 - 23.9044i) q^{78} +(0.508070 - 0.0552559i) q^{79} +(48.9852 + 37.2376i) q^{80} +(8.16818 + 3.77900i) q^{81} +(-196.148 + 132.992i) q^{82} +(24.1224 + 71.5926i) q^{83} +(6.36036 + 38.7965i) q^{84} +(13.0019 - 79.3080i) q^{85} +(65.8087 + 22.1735i) q^{86} +(-24.1161 - 86.8584i) q^{87} +(7.43718 + 18.6659i) q^{88} +(-47.6126 + 18.9706i) q^{89} +(-48.8800 + 13.5715i) q^{90} +(6.89837 - 20.4736i) q^{91} +(43.5267 + 7.13584i) q^{92} +(12.1421 - 1.99060i) q^{93} +(-65.8907 + 22.2012i) q^{94} +(68.4697 + 100.985i) q^{95} +(32.6946 - 70.6683i) q^{96} +(22.7055 - 29.8685i) q^{97} +(-9.24910 - 85.0440i) q^{98} +(19.1062 + 5.30482i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.78888 + 1.11119i 1.39444 + 0.555596i 0.941823 0.336109i \(-0.109111\pi\)
0.452617 + 0.891705i \(0.350490\pi\)
\(3\) 1.72190 + 0.187268i 0.573966 + 0.0624225i
\(4\) 3.63913 + 3.44717i 0.909782 + 0.861791i
\(5\) −3.64648 + 4.29297i −0.729297 + 0.858594i −0.994406 0.105624i \(-0.966316\pi\)
0.265110 + 0.964218i \(0.414592\pi\)
\(6\) 4.59408 + 2.43563i 0.765679 + 0.405938i
\(7\) 3.88004 + 2.33454i 0.554291 + 0.333506i 0.764987 0.644046i \(-0.222745\pi\)
−0.210696 + 0.977552i \(0.567573\pi\)
\(8\) 1.27644 + 2.75897i 0.159555 + 0.344872i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) −14.9399 + 7.92064i −1.49399 + 0.792064i
\(11\) 6.59997 + 0.357840i 0.599998 + 0.0325309i 0.351637 0.936137i \(-0.385625\pi\)
0.248361 + 0.968668i \(0.420108\pi\)
\(12\) 5.62066 + 6.61716i 0.468389 + 0.551430i
\(13\) −1.02564 4.65955i −0.0788958 0.358427i 0.920589 0.390534i \(-0.127709\pi\)
−0.999484 + 0.0321065i \(0.989778\pi\)
\(14\) 8.22684 + 10.8222i 0.587632 + 0.773016i
\(15\) −7.08280 + 6.70919i −0.472187 + 0.447279i
\(16\) −0.591425 10.9082i −0.0369641 0.681762i
\(17\) −12.2257 + 7.35597i −0.719160 + 0.432704i −0.827541 0.561405i \(-0.810261\pi\)
0.108381 + 0.994109i \(0.465433\pi\)
\(18\) 7.45442 + 5.05422i 0.414134 + 0.280790i
\(19\) 5.79495 20.8715i 0.304997 1.09850i −0.639178 0.769059i \(-0.720725\pi\)
0.944176 0.329443i \(-0.106861\pi\)
\(20\) −28.0686 + 3.05264i −1.40343 + 0.152632i
\(21\) 6.24384 + 4.74645i 0.297326 + 0.226021i
\(22\) 18.0089 + 8.33181i 0.818587 + 0.378719i
\(23\) 7.28314 4.93809i 0.316658 0.214700i −0.392495 0.919754i \(-0.628388\pi\)
0.709153 + 0.705055i \(0.249078\pi\)
\(24\) 1.68123 + 4.98971i 0.0700512 + 0.207904i
\(25\) −1.08822 6.63783i −0.0435287 0.265513i
\(26\) 2.31725 14.1346i 0.0891251 0.543639i
\(27\) 4.92415 + 1.65914i 0.182376 + 0.0614496i
\(28\) 6.07241 + 21.8708i 0.216872 + 0.781101i
\(29\) −19.2637 48.3483i −0.664267 1.66718i −0.742160 0.670222i \(-0.766199\pi\)
0.0778934 0.996962i \(-0.475181\pi\)
\(30\) −27.2083 + 10.8408i −0.906943 + 0.361359i
\(31\) 6.84490 1.90048i 0.220803 0.0613057i −0.155365 0.987857i \(-0.549655\pi\)
0.376168 + 0.926551i \(0.377242\pi\)
\(32\) 14.3543 42.6021i 0.448572 1.33131i
\(33\) 11.2975 + 1.85213i 0.342347 + 0.0561250i
\(34\) −42.2700 + 6.92981i −1.24323 + 0.203818i
\(35\) −24.1706 + 8.14403i −0.690589 + 0.232686i
\(36\) 8.43903 + 12.4466i 0.234417 + 0.345740i
\(37\) −1.82822 + 3.95163i −0.0494114 + 0.106801i −0.930709 0.365761i \(-0.880809\pi\)
0.881297 + 0.472562i \(0.156671\pi\)
\(38\) 39.3537 51.7689i 1.03562 1.36234i
\(39\) −0.893472 8.21534i −0.0229095 0.210650i
\(40\) −16.4987 4.58084i −0.412468 0.114521i
\(41\) −44.2995 + 65.3369i −1.08048 + 1.59358i −0.316203 + 0.948692i \(0.602408\pi\)
−0.764274 + 0.644892i \(0.776902\pi\)
\(42\) 12.1391 + 20.1754i 0.289027 + 0.480366i
\(43\) 23.0978 1.25233i 0.537159 0.0291239i 0.216436 0.976297i \(-0.430557\pi\)
0.320723 + 0.947173i \(0.396074\pi\)
\(44\) 22.7846 + 24.0534i 0.517832 + 0.546669i
\(45\) −13.4523 + 10.2262i −0.298939 + 0.227248i
\(46\) 25.7990 5.67879i 0.560848 0.123452i
\(47\) −17.6521 + 14.9938i −0.375577 + 0.319018i −0.815216 0.579156i \(-0.803382\pi\)
0.439640 + 0.898174i \(0.355106\pi\)
\(48\) 1.02438 18.8935i 0.0213412 0.393616i
\(49\) −13.3474 25.1759i −0.272396 0.513793i
\(50\) 4.34099 19.7213i 0.0868199 0.394427i
\(51\) −22.4290 + 10.3767i −0.439784 + 0.203466i
\(52\) 12.3298 20.4923i 0.237111 0.394082i
\(53\) −22.5971 + 42.6227i −0.426361 + 0.804202i −0.999888 0.0149850i \(-0.995230\pi\)
0.573527 + 0.819187i \(0.305575\pi\)
\(54\) 11.8892 + 10.0988i 0.220171 + 0.187015i
\(55\) −25.6029 + 27.0286i −0.465507 + 0.491430i
\(56\) −1.48831 + 13.6848i −0.0265770 + 0.244372i
\(57\) 13.8869 34.8534i 0.243629 0.611463i
\(58\) 156.243i 2.69385i
\(59\) 57.7490 + 12.0850i 0.978797 + 0.204831i
\(60\) −48.9029 −0.815049
\(61\) −17.7867 7.08687i −0.291585 0.116178i 0.219759 0.975554i \(-0.429473\pi\)
−0.511344 + 0.859376i \(0.670852\pi\)
\(62\) 21.2014 + 2.30579i 0.341958 + 0.0371902i
\(63\) 9.86240 + 9.34216i 0.156546 + 0.148288i
\(64\) 59.0828 69.5576i 0.923169 1.08684i
\(65\) 23.7433 + 12.5879i 0.365282 + 0.193660i
\(66\) 29.4492 + 17.7190i 0.446200 + 0.268470i
\(67\) −24.0072 51.8907i −0.358316 0.774488i −0.999972 0.00749492i \(-0.997614\pi\)
0.641656 0.766993i \(-0.278248\pi\)
\(68\) −69.8482 15.3747i −1.02718 0.226099i
\(69\) 13.4656 7.13899i 0.195153 0.103464i
\(70\) −76.4585 4.14546i −1.09226 0.0592209i
\(71\) 25.8762 + 30.4638i 0.364453 + 0.429067i 0.913572 0.406677i \(-0.133313\pi\)
−0.549119 + 0.835744i \(0.685037\pi\)
\(72\) 1.96049 + 8.90660i 0.0272290 + 0.123703i
\(73\) 34.3243 + 45.1528i 0.470196 + 0.618532i 0.968664 0.248376i \(-0.0798969\pi\)
−0.498468 + 0.866908i \(0.666104\pi\)
\(74\) −9.48971 + 8.98914i −0.128239 + 0.121475i
\(75\) −0.630747 11.6334i −0.00840996 0.155113i
\(76\) 93.0362 55.9780i 1.22416 0.736553i
\(77\) 24.7728 + 16.7963i 0.321724 + 0.218134i
\(78\) 6.63703 23.9044i 0.0850901 0.306467i
\(79\) 0.508070 0.0552559i 0.00643126 0.000699442i −0.104903 0.994482i \(-0.533453\pi\)
0.111334 + 0.993783i \(0.464488\pi\)
\(80\) 48.9852 + 37.2376i 0.612315 + 0.465470i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) −196.148 + 132.992i −2.39205 + 1.62185i
\(83\) 24.1224 + 71.5926i 0.290631 + 0.862561i 0.989142 + 0.146962i \(0.0469496\pi\)
−0.698511 + 0.715599i \(0.746154\pi\)
\(84\) 6.36036 + 38.7965i 0.0757186 + 0.461863i
\(85\) 13.0019 79.3080i 0.152963 0.933036i
\(86\) 65.8087 + 22.1735i 0.765217 + 0.257832i
\(87\) −24.1161 86.8584i −0.277197 0.998372i
\(88\) 7.43718 + 18.6659i 0.0845134 + 0.212113i
\(89\) −47.6126 + 18.9706i −0.534974 + 0.213153i −0.621949 0.783057i \(-0.713659\pi\)
0.0869758 + 0.996210i \(0.472280\pi\)
\(90\) −48.8800 + 13.5715i −0.543111 + 0.150794i
\(91\) 6.89837 20.4736i 0.0758063 0.224985i
\(92\) 43.5267 + 7.13584i 0.473117 + 0.0775635i
\(93\) 12.1421 1.99060i 0.130560 0.0214043i
\(94\) −65.8907 + 22.2012i −0.700965 + 0.236182i
\(95\) 68.4697 + 100.985i 0.720733 + 1.06300i
\(96\) 32.6946 70.6683i 0.340569 0.736128i
\(97\) 22.7055 29.8685i 0.234077 0.307923i −0.664025 0.747710i \(-0.731153\pi\)
0.898102 + 0.439787i \(0.144946\pi\)
\(98\) −9.24910 85.0440i −0.0943785 0.867796i
\(99\) 19.1062 + 5.30482i 0.192992 + 0.0535840i
\(100\) 18.9215 27.9072i 0.189215 0.279072i
\(101\) −45.3531 75.3775i −0.449041 0.746311i 0.546815 0.837253i \(-0.315840\pi\)
−0.995856 + 0.0909416i \(0.971012\pi\)
\(102\) −74.0822 + 4.01662i −0.726297 + 0.0393787i
\(103\) −84.1928 88.8813i −0.817406 0.862925i 0.175172 0.984538i \(-0.443952\pi\)
−0.992578 + 0.121613i \(0.961193\pi\)
\(104\) 11.5464 8.77735i 0.111023 0.0843976i
\(105\) −43.1444 + 9.49681i −0.410899 + 0.0904458i
\(106\) −110.383 + 93.7599i −1.04135 + 0.884527i
\(107\) −7.18087 + 132.443i −0.0671109 + 1.23779i 0.750051 + 0.661380i \(0.230029\pi\)
−0.817162 + 0.576408i \(0.804454\pi\)
\(108\) 12.2003 + 23.0122i 0.112966 + 0.213076i
\(109\) −15.8673 + 72.0858i −0.145571 + 0.661338i 0.846152 + 0.532942i \(0.178914\pi\)
−0.991723 + 0.128396i \(0.959017\pi\)
\(110\) −101.437 + 46.9299i −0.922158 + 0.426636i
\(111\) −3.88802 + 6.46194i −0.0350272 + 0.0582157i
\(112\) 23.1709 43.7049i 0.206883 0.390222i
\(113\) 76.3075 + 64.8162i 0.675288 + 0.573595i 0.918037 0.396494i \(-0.129773\pi\)
−0.242749 + 0.970089i \(0.578049\pi\)
\(114\) 77.4577 81.7711i 0.679453 0.717290i
\(115\) −5.35876 + 49.2730i −0.0465979 + 0.428461i
\(116\) 96.5615 242.351i 0.832427 2.08923i
\(117\) 14.3133i 0.122336i
\(118\) 147.626 + 97.8740i 1.25107 + 0.829440i
\(119\) −64.6090 −0.542933
\(120\) −27.5512 10.9774i −0.229594 0.0914785i
\(121\) −76.8591 8.35893i −0.635199 0.0690821i
\(122\) −41.7301 39.5289i −0.342050 0.324007i
\(123\) −88.5148 + 104.208i −0.719632 + 0.847216i
\(124\) 31.4607 + 16.6794i 0.253715 + 0.134511i
\(125\) −88.1947 53.0650i −0.705557 0.424520i
\(126\) 17.1241 + 37.0132i 0.135906 + 0.293756i
\(127\) −28.8132 6.34226i −0.226875 0.0499390i 0.100078 0.994980i \(-0.468091\pi\)
−0.326953 + 0.945041i \(0.606022\pi\)
\(128\) 83.1924 44.1058i 0.649940 0.344577i
\(129\) 40.0066 + 2.16910i 0.310129 + 0.0168147i
\(130\) 52.2297 + 61.4896i 0.401767 + 0.472997i
\(131\) 44.0523 + 200.131i 0.336277 + 1.52772i 0.776665 + 0.629913i \(0.216910\pi\)
−0.440389 + 0.897807i \(0.645159\pi\)
\(132\) 34.7283 + 45.6844i 0.263093 + 0.346094i
\(133\) 71.2101 67.4538i 0.535414 0.507171i
\(134\) −9.29269 171.393i −0.0693484 1.27906i
\(135\) −25.0785 + 15.0892i −0.185766 + 0.111772i
\(136\) −35.9003 24.3410i −0.263973 0.178978i
\(137\) −25.8351 + 93.0496i −0.188577 + 0.679194i 0.807433 + 0.589959i \(0.200856\pi\)
−0.996011 + 0.0892351i \(0.971558\pi\)
\(138\) 45.4867 4.94697i 0.329614 0.0358476i
\(139\) 47.6662 + 36.2349i 0.342922 + 0.260683i 0.762432 0.647068i \(-0.224005\pi\)
−0.419510 + 0.907751i \(0.637798\pi\)
\(140\) −116.034 53.6829i −0.828813 0.383450i
\(141\) −33.2030 + 22.5122i −0.235482 + 0.159661i
\(142\) 38.3144 + 113.713i 0.269820 + 0.800797i
\(143\) −5.10185 31.1199i −0.0356773 0.217622i
\(144\) 5.30202 32.3409i 0.0368196 0.224590i
\(145\) 277.803 + 93.6027i 1.91588 + 0.645536i
\(146\) 45.5529 + 164.067i 0.312006 + 1.12374i
\(147\) −18.2682 45.8498i −0.124274 0.311903i
\(148\) −20.2751 + 8.07833i −0.136994 + 0.0545833i
\(149\) 252.801 70.1900i 1.69665 0.471074i 0.721466 0.692450i \(-0.243469\pi\)
0.975188 + 0.221377i \(0.0710550\pi\)
\(150\) 11.1679 33.1452i 0.0744528 0.220968i
\(151\) −66.1719 10.8483i −0.438225 0.0718433i −0.0613687 0.998115i \(-0.519547\pi\)
−0.376856 + 0.926272i \(0.622995\pi\)
\(152\) 64.9809 10.6531i 0.427506 0.0700860i
\(153\) −40.5636 + 13.6675i −0.265122 + 0.0893299i
\(154\) 50.4243 + 74.3703i 0.327431 + 0.482924i
\(155\) −16.8011 + 36.3150i −0.108394 + 0.234290i
\(156\) 25.0682 32.9766i 0.160693 0.211389i
\(157\) 23.1999 + 213.319i 0.147770 + 1.35872i 0.799681 + 0.600426i \(0.205002\pi\)
−0.651911 + 0.758296i \(0.726032\pi\)
\(158\) 1.47835 + 0.410461i 0.00935662 + 0.00259785i
\(159\) −46.8918 + 69.1602i −0.294917 + 0.434970i
\(160\) 130.547 + 216.970i 0.815917 + 1.35606i
\(161\) 39.7871 2.15719i 0.247125 0.0133987i
\(162\) 18.5809 + 19.6156i 0.114697 + 0.121084i
\(163\) 40.9596 31.1367i 0.251286 0.191022i −0.471947 0.881627i \(-0.656449\pi\)
0.723233 + 0.690605i \(0.242655\pi\)
\(164\) −386.439 + 85.0616i −2.35633 + 0.518668i
\(165\) −49.1471 + 41.7460i −0.297861 + 0.253006i
\(166\) −12.2787 + 226.468i −0.0739682 + 1.36426i
\(167\) −87.6095 165.249i −0.524608 0.989515i −0.994293 0.106681i \(-0.965978\pi\)
0.469685 0.882834i \(-0.344367\pi\)
\(168\) −5.12545 + 23.2851i −0.0305086 + 0.138602i
\(169\) 132.721 61.4032i 0.785330 0.363332i
\(170\) 124.387 206.733i 0.731689 1.21608i
\(171\) 30.4387 57.4134i 0.178004 0.335751i
\(172\) 88.3729 + 75.0647i 0.513796 + 0.436422i
\(173\) −31.5318 + 33.2878i −0.182265 + 0.192415i −0.810725 0.585427i \(-0.800927\pi\)
0.628460 + 0.777842i \(0.283686\pi\)
\(174\) 29.2593 269.035i 0.168157 1.54618i
\(175\) 11.2740 28.2955i 0.0644226 0.161689i
\(176\) 72.2054i 0.410258i
\(177\) 97.1748 + 31.6237i 0.549010 + 0.178665i
\(178\) −153.866 −0.864416
\(179\) −194.348 77.4351i −1.08574 0.432599i −0.242509 0.970149i \(-0.577970\pi\)
−0.843231 + 0.537551i \(0.819350\pi\)
\(180\) −84.2058 9.15793i −0.467810 0.0508774i
\(181\) 230.149 + 218.009i 1.27154 + 1.20447i 0.967802 + 0.251712i \(0.0809936\pi\)
0.303739 + 0.952755i \(0.401765\pi\)
\(182\) 41.9889 49.4331i 0.230708 0.271611i
\(183\) −29.2997 15.5337i −0.160108 0.0848838i
\(184\) 22.9206 + 13.7908i 0.124568 + 0.0749502i
\(185\) −10.2977 22.2581i −0.0556631 0.120314i
\(186\) 36.0748 + 7.94067i 0.193951 + 0.0426918i
\(187\) −83.3216 + 44.1743i −0.445570 + 0.236226i
\(188\) −115.925 6.28525i −0.616620 0.0334322i
\(189\) 15.2326 + 17.9332i 0.0805956 + 0.0948844i
\(190\) 78.7398 + 357.719i 0.414420 + 1.88273i
\(191\) −199.786 262.814i −1.04600 1.37599i −0.923533 0.383518i \(-0.874712\pi\)
−0.122467 0.992473i \(-0.539081\pi\)
\(192\) 114.760 108.707i 0.597710 0.566181i
\(193\) −16.6357 306.828i −0.0861954 1.58978i −0.647431 0.762124i \(-0.724157\pi\)
0.561236 0.827656i \(-0.310326\pi\)
\(194\) 96.5125 58.0697i 0.497487 0.299328i
\(195\) 38.5262 + 26.1214i 0.197571 + 0.133956i
\(196\) 38.2125 137.629i 0.194962 0.702188i
\(197\) −132.309 + 14.3894i −0.671617 + 0.0730428i −0.437573 0.899183i \(-0.644162\pi\)
−0.234045 + 0.972226i \(0.575196\pi\)
\(198\) 47.3903 + 36.0252i 0.239345 + 0.181945i
\(199\) −300.148 138.863i −1.50828 0.697806i −0.520531 0.853843i \(-0.674266\pi\)
−0.987751 + 0.156037i \(0.950128\pi\)
\(200\) 16.9246 11.4751i 0.0846228 0.0573757i
\(201\) −31.6205 93.8462i −0.157316 0.466896i
\(202\) −42.7256 260.615i −0.211513 1.29017i
\(203\) 38.1272 232.565i 0.187819 1.14564i
\(204\) −117.392 39.5540i −0.575452 0.193892i
\(205\) −118.952 428.427i −0.580254 2.08989i
\(206\) −136.040 341.434i −0.660386 1.65745i
\(207\) 24.5232 9.77095i 0.118470 0.0472027i
\(208\) −50.2207 + 13.9437i −0.241446 + 0.0670371i
\(209\) 45.7152 135.678i 0.218733 0.649176i
\(210\) −130.877 21.4563i −0.623226 0.102173i
\(211\) 59.4750 9.75043i 0.281872 0.0462105i −0.0191877 0.999816i \(-0.506108\pi\)
0.301060 + 0.953605i \(0.402660\pi\)
\(212\) −229.161 + 77.2134i −1.08095 + 0.364214i
\(213\) 38.8512 + 57.3012i 0.182400 + 0.269020i
\(214\) −167.197 + 361.389i −0.781292 + 1.68874i
\(215\) −78.8496 + 103.725i −0.366742 + 0.482441i
\(216\) 1.70785 + 15.7034i 0.00790670 + 0.0727009i
\(217\) 30.9952 + 8.60577i 0.142835 + 0.0396579i
\(218\) −124.353 + 183.407i −0.570427 + 0.841318i
\(219\) 50.6472 + 84.1764i 0.231266 + 0.384367i
\(220\) −186.344 + 10.1033i −0.847020 + 0.0459241i
\(221\) 46.8147 + 49.4217i 0.211831 + 0.223628i
\(222\) −18.0237 + 13.7013i −0.0811878 + 0.0617174i
\(223\) 81.5292 17.9459i 0.365602 0.0804750i −0.0283702 0.999597i \(-0.509032\pi\)
0.393972 + 0.919122i \(0.371101\pi\)
\(224\) 155.152 131.787i 0.692641 0.588335i
\(225\) 1.09249 20.1497i 0.00485549 0.0895543i
\(226\) 140.789 + 265.557i 0.622962 + 1.17503i
\(227\) −83.7722 + 380.581i −0.369040 + 1.67657i 0.316547 + 0.948577i \(0.397477\pi\)
−0.685587 + 0.727991i \(0.740454\pi\)
\(228\) 170.682 78.9657i 0.748603 0.346341i
\(229\) 165.212 274.585i 0.721451 1.19906i −0.251457 0.967868i \(-0.580910\pi\)
0.972908 0.231193i \(-0.0742627\pi\)
\(230\) −69.6967 + 131.462i −0.303029 + 0.571574i
\(231\) 39.5107 + 33.5607i 0.171042 + 0.145284i
\(232\) 108.803 114.862i 0.468978 0.495094i
\(233\) 31.5027 289.663i 0.135205 1.24319i −0.708240 0.705972i \(-0.750510\pi\)
0.843445 0.537216i \(-0.180524\pi\)
\(234\) 15.9048 39.9181i 0.0679693 0.170590i
\(235\) 130.455i 0.555127i
\(236\) 168.497 + 243.049i 0.713971 + 1.02987i
\(237\) 0.885192 0.00373499
\(238\) −180.187 71.7930i −0.757088 0.301651i
\(239\) 16.2969 + 1.77239i 0.0681877 + 0.00741586i 0.142149 0.989845i \(-0.454599\pi\)
−0.0739616 + 0.997261i \(0.523564\pi\)
\(240\) 77.3741 + 73.2926i 0.322392 + 0.305386i
\(241\) −5.61940 + 6.61567i −0.0233170 + 0.0274509i −0.773697 0.633556i \(-0.781595\pi\)
0.750380 + 0.661007i \(0.229871\pi\)
\(242\) −205.062 108.717i −0.847366 0.449245i
\(243\) 13.3571 + 8.03669i 0.0549674 + 0.0330728i
\(244\) −40.2985 87.1037i −0.165158 0.356982i
\(245\) 156.750 + 34.5034i 0.639797 + 0.140830i
\(246\) −362.652 + 192.266i −1.47419 + 0.781568i
\(247\) −103.195 5.59510i −0.417796 0.0226522i
\(248\) 13.9804 + 16.4591i 0.0563728 + 0.0663672i
\(249\) 28.1292 + 127.792i 0.112969 + 0.513223i
\(250\) −186.999 245.993i −0.747996 0.983972i
\(251\) 309.499 293.173i 1.23306 1.16802i 0.253402 0.967361i \(-0.418451\pi\)
0.979661 0.200658i \(-0.0643081\pi\)
\(252\) 3.68656 + 67.9947i 0.0146292 + 0.269820i
\(253\) 49.8356 29.9851i 0.196979 0.118518i
\(254\) −73.3090 49.7047i −0.288618 0.195688i
\(255\) 37.2398 134.125i 0.146038 0.525982i
\(256\) −81.8907 + 8.90615i −0.319885 + 0.0347896i
\(257\) −225.477 171.403i −0.877341 0.666937i 0.0663390 0.997797i \(-0.478868\pi\)
−0.943680 + 0.330860i \(0.892661\pi\)
\(258\) 109.163 + 50.5044i 0.423114 + 0.195753i
\(259\) −16.3188 + 11.0644i −0.0630070 + 0.0427198i
\(260\) 43.0124 + 127.656i 0.165432 + 0.490985i
\(261\) −25.2597 154.077i −0.0967805 0.590335i
\(262\) −99.5279 + 607.093i −0.379877 + 2.31715i
\(263\) 255.383 + 86.0487i 0.971039 + 0.327181i 0.759730 0.650238i \(-0.225331\pi\)
0.211309 + 0.977419i \(0.432227\pi\)
\(264\) 9.31054 + 33.5335i 0.0352672 + 0.127021i
\(265\) −100.578 252.432i −0.379540 0.952572i
\(266\) 273.550 108.992i 1.02839 0.409746i
\(267\) −85.5367 + 23.7491i −0.320362 + 0.0889481i
\(268\) 91.5105 271.594i 0.341457 1.01341i
\(269\) 111.935 + 18.3508i 0.416114 + 0.0682185i 0.366203 0.930535i \(-0.380658\pi\)
0.0499117 + 0.998754i \(0.484106\pi\)
\(270\) −86.7079 + 14.2150i −0.321140 + 0.0526483i
\(271\) −397.203 + 133.833i −1.46569 + 0.493850i −0.935286 0.353893i \(-0.884858\pi\)
−0.530408 + 0.847743i \(0.677961\pi\)
\(272\) 87.4709 + 129.010i 0.321584 + 0.474301i
\(273\) 15.7123 33.9617i 0.0575544 0.124402i
\(274\) −175.447 + 230.796i −0.640317 + 0.842323i
\(275\) −4.80692 44.1989i −0.0174797 0.160723i
\(276\) 73.6122 + 20.4383i 0.266711 + 0.0740519i
\(277\) 263.224 388.227i 0.950269 1.40154i 0.0346918 0.999398i \(-0.488955\pi\)
0.915577 0.402143i \(-0.131735\pi\)
\(278\) 92.6714 + 154.021i 0.333350 + 0.554032i
\(279\) 21.2802 1.15378i 0.0762733 0.00413542i
\(280\) −53.3214 56.2908i −0.190434 0.201038i
\(281\) 401.596 305.285i 1.42917 1.08642i 0.447830 0.894119i \(-0.352197\pi\)
0.981335 0.192305i \(-0.0615962\pi\)
\(282\) −117.615 + 25.8889i −0.417073 + 0.0918047i
\(283\) 30.4245 25.8428i 0.107507 0.0913174i −0.592021 0.805923i \(-0.701670\pi\)
0.699528 + 0.714605i \(0.253394\pi\)
\(284\) −10.8470 + 200.061i −0.0381936 + 0.704440i
\(285\) 98.9865 + 186.708i 0.347321 + 0.655117i
\(286\) 20.3517 92.4589i 0.0711600 0.323283i
\(287\) −324.416 + 150.091i −1.13037 + 0.522964i
\(288\) 69.5307 115.561i 0.241426 0.401253i
\(289\) −40.0122 + 75.4711i −0.138451 + 0.261146i
\(290\) 670.749 + 569.739i 2.31293 + 1.96462i
\(291\) 44.6899 47.1786i 0.153574 0.162126i
\(292\) −30.7388 + 282.638i −0.105270 + 0.967940i
\(293\) −130.884 + 328.494i −0.446703 + 1.12114i 0.517431 + 0.855725i \(0.326888\pi\)
−0.964134 + 0.265416i \(0.914491\pi\)
\(294\) 148.169i 0.503977i
\(295\) −262.462 + 203.847i −0.889700 + 0.691007i
\(296\) −13.2361 −0.0447164
\(297\) 31.9056 + 12.7123i 0.107426 + 0.0428025i
\(298\) 783.028 + 85.1594i 2.62761 + 0.285770i
\(299\) −30.4792 28.8715i −0.101937 0.0965600i
\(300\) 37.8070 44.5099i 0.126023 0.148366i
\(301\) 92.5441 + 49.0638i 0.307455 + 0.163003i
\(302\) −172.491 103.784i −0.571162 0.343657i
\(303\) −63.9777 138.285i −0.211147 0.456388i
\(304\) −231.098 50.8685i −0.760190 0.167331i
\(305\) 95.2826 50.5156i 0.312402 0.165625i
\(306\) −128.314 6.95699i −0.419328 0.0227353i
\(307\) 313.522 + 369.106i 1.02124 + 1.20230i 0.979140 + 0.203187i \(0.0651299\pi\)
0.0421031 + 0.999113i \(0.486594\pi\)
\(308\) 32.2515 + 146.520i 0.104713 + 0.475714i
\(309\) −128.327 168.811i −0.415297 0.546314i
\(310\) −87.2092 + 82.6090i −0.281320 + 0.266481i
\(311\) −19.9564 368.074i −0.0641685 1.18352i −0.836379 0.548151i \(-0.815332\pi\)
0.772211 0.635366i \(-0.219151\pi\)
\(312\) 21.5254 12.9514i 0.0689918 0.0415110i
\(313\) 352.325 + 238.883i 1.12564 + 0.763203i 0.974295 0.225278i \(-0.0723290\pi\)
0.151346 + 0.988481i \(0.451639\pi\)
\(314\) −172.337 + 620.701i −0.548844 + 1.97676i
\(315\) −76.0687 + 8.27297i −0.241488 + 0.0262634i
\(316\) 2.03941 + 1.55032i 0.00645382 + 0.00490607i
\(317\) −110.931 51.3219i −0.349939 0.161899i 0.237043 0.971499i \(-0.423822\pi\)
−0.586982 + 0.809600i \(0.699684\pi\)
\(318\) −207.626 + 140.774i −0.652911 + 0.442685i
\(319\) −109.839 325.991i −0.344323 1.02192i
\(320\) 83.1646 + 507.281i 0.259889 + 1.58525i
\(321\) −37.1671 + 226.709i −0.115785 + 0.706259i
\(322\) 113.358 + 38.1949i 0.352045 + 0.118618i
\(323\) 82.6829 + 297.797i 0.255984 + 0.921971i
\(324\) 16.6982 + 41.9093i 0.0515377 + 0.129350i
\(325\) −29.8132 + 11.8787i −0.0917329 + 0.0365497i
\(326\) 148.830 41.3225i 0.456534 0.126756i
\(327\) −40.8212 + 121.153i −0.124835 + 0.370498i
\(328\) −236.808 38.8228i −0.721977 0.118362i
\(329\) −103.495 + 16.9671i −0.314573 + 0.0515717i
\(330\) −183.453 + 61.8126i −0.555919 + 0.187311i
\(331\) 67.3435 + 99.3242i 0.203455 + 0.300073i 0.915704 0.401853i \(-0.131634\pi\)
−0.712249 + 0.701926i \(0.752324\pi\)
\(332\) −159.007 + 343.688i −0.478937 + 1.03521i
\(333\) −7.90489 + 10.3987i −0.0237384 + 0.0312273i
\(334\) −60.7091 558.211i −0.181764 1.67129i
\(335\) 310.307 + 86.1563i 0.926289 + 0.257183i
\(336\) 48.0824 70.9162i 0.143102 0.211060i
\(337\) 163.057 + 271.002i 0.483848 + 0.804161i 0.998585 0.0531870i \(-0.0169379\pi\)
−0.514737 + 0.857348i \(0.672110\pi\)
\(338\) 438.373 23.7679i 1.29696 0.0703192i
\(339\) 119.256 + 125.897i 0.351787 + 0.371377i
\(340\) 320.704 243.792i 0.943246 0.717037i
\(341\) 45.8562 10.0937i 0.134476 0.0296003i
\(342\) 148.687 126.296i 0.434758 0.369287i
\(343\) 18.9982 350.401i 0.0553883 1.02158i
\(344\) 32.9381 + 62.1278i 0.0957502 + 0.180604i
\(345\) −18.4545 + 83.8395i −0.0534912 + 0.243013i
\(346\) −124.928 + 57.7977i −0.361063 + 0.167045i
\(347\) −136.754 + 227.286i −0.394103 + 0.655004i −0.988851 0.148908i \(-0.952424\pi\)
0.594748 + 0.803912i \(0.297252\pi\)
\(348\) 211.654 399.221i 0.608200 1.14719i
\(349\) 525.258 + 446.158i 1.50504 + 1.27839i 0.855179 + 0.518333i \(0.173447\pi\)
0.649858 + 0.760056i \(0.274829\pi\)
\(350\) 62.8835 66.3853i 0.179667 0.189672i
\(351\) 2.68042 24.6460i 0.00763651 0.0702166i
\(352\) 109.983 276.036i 0.312451 0.784193i
\(353\) 87.4129i 0.247629i −0.992305 0.123814i \(-0.960487\pi\)
0.992305 0.123814i \(-0.0395127\pi\)
\(354\) 235.869 + 196.175i 0.666296 + 0.554166i
\(355\) −225.137 −0.634189
\(356\) −238.663 95.0922i −0.670403 0.267113i
\(357\) −111.250 12.0992i −0.311625 0.0338913i
\(358\) −455.967 431.915i −1.27365 1.20647i
\(359\) 46.5819 54.8404i 0.129754 0.152759i −0.693448 0.720507i \(-0.743909\pi\)
0.823202 + 0.567748i \(0.192185\pi\)
\(360\) −45.3847 24.0614i −0.126069 0.0668373i
\(361\) −92.7136 55.7839i −0.256824 0.154526i
\(362\) 399.608 + 863.740i 1.10389 + 2.38602i
\(363\) −130.778 28.7864i −0.360270 0.0793015i
\(364\) 95.6801 50.7264i 0.262857 0.139358i
\(365\) −319.003 17.2958i −0.873980 0.0473858i
\(366\) −64.4525 75.8793i −0.176100 0.207321i
\(367\) 56.6707 + 257.457i 0.154416 + 0.701519i 0.988666 + 0.150132i \(0.0479700\pi\)
−0.834250 + 0.551386i \(0.814099\pi\)
\(368\) −58.1731 76.5254i −0.158079 0.207950i
\(369\) −171.928 + 162.859i −0.465930 + 0.441352i
\(370\) −3.98602 73.5178i −0.0107730 0.198697i
\(371\) −187.182 + 112.624i −0.504534 + 0.303568i
\(372\) 51.0486 + 34.6118i 0.137227 + 0.0930425i
\(373\) 161.922 583.189i 0.434106 1.56351i −0.346231 0.938149i \(-0.612539\pi\)
0.780337 0.625359i \(-0.215048\pi\)
\(374\) −281.460 + 30.6107i −0.752568 + 0.0818467i
\(375\) −141.925 107.888i −0.378466 0.287702i
\(376\) −63.8994 29.5630i −0.169945 0.0786251i
\(377\) −205.524 + 139.349i −0.545156 + 0.369625i
\(378\) 22.5546 + 66.9397i 0.0596683 + 0.177089i
\(379\) 69.1460 + 421.772i 0.182443 + 1.11285i 0.906216 + 0.422816i \(0.138958\pi\)
−0.723772 + 0.690039i \(0.757593\pi\)
\(380\) −98.9428 + 603.524i −0.260376 + 1.58822i
\(381\) −48.4256 16.3165i −0.127101 0.0428254i
\(382\) −265.143 954.958i −0.694091 2.49989i
\(383\) 0.169766 + 0.426080i 0.000443252 + 0.00111248i 0.929198 0.369582i \(-0.120499\pi\)
−0.928755 + 0.370694i \(0.879120\pi\)
\(384\) 151.508 60.3664i 0.394553 0.157204i
\(385\) −162.440 + 45.1011i −0.421921 + 0.117146i
\(386\) 294.549 874.191i 0.763081 2.26474i
\(387\) 68.4811 + 11.2269i 0.176954 + 0.0290101i
\(388\) 185.590 30.4259i 0.478325 0.0784173i
\(389\) −437.900 + 147.546i −1.12571 + 0.379295i −0.819734 0.572745i \(-0.805879\pi\)
−0.305974 + 0.952040i \(0.598982\pi\)
\(390\) 78.4192 + 115.660i 0.201075 + 0.296563i
\(391\) −52.7172 + 113.946i −0.134827 + 0.291423i
\(392\) 52.4225 68.9606i 0.133731 0.175920i
\(393\) 38.3753 + 352.855i 0.0976472 + 0.897851i
\(394\) −384.982 106.890i −0.977112 0.271294i
\(395\) −1.61546 + 2.38262i −0.00408976 + 0.00603195i
\(396\) 51.2434 + 85.1673i 0.129403 + 0.215069i
\(397\) −691.608 + 37.4979i −1.74209 + 0.0944531i −0.897513 0.440988i \(-0.854628\pi\)
−0.844573 + 0.535441i \(0.820145\pi\)
\(398\) −682.774 720.796i −1.71551 1.81104i
\(399\) 135.248 102.813i 0.338968 0.257677i
\(400\) −71.7631 + 15.7963i −0.179408 + 0.0394906i
\(401\) 513.132 435.858i 1.27963 1.08693i 0.288027 0.957622i \(-0.407001\pi\)
0.991605 0.129306i \(-0.0412750\pi\)
\(402\) 16.0954 296.862i 0.0400383 0.738463i
\(403\) −15.8758 29.9449i −0.0393940 0.0743050i
\(404\) 94.7928 430.648i 0.234636 1.06596i
\(405\) −46.0083 + 21.2857i −0.113601 + 0.0525573i
\(406\) 364.757 606.231i 0.898416 1.49318i
\(407\) −13.4803 + 25.4265i −0.0331210 + 0.0624729i
\(408\) −57.2583 48.6357i −0.140339 0.119205i
\(409\) −16.7357 + 17.6676i −0.0409185 + 0.0431971i −0.746133 0.665796i \(-0.768092\pi\)
0.705215 + 0.708994i \(0.250851\pi\)
\(410\) 144.321 1327.01i 0.352002 3.23661i
\(411\) −61.9105 + 155.384i −0.150634 + 0.378063i
\(412\) 613.677i 1.48951i
\(413\) 195.855 + 181.708i 0.474226 + 0.439971i
\(414\) 79.2498 0.191425
\(415\) −395.307 157.505i −0.952546 0.379529i
\(416\) −213.229 23.1900i −0.512570 0.0557453i
\(417\) 75.2906 + 71.3191i 0.180553 + 0.171029i
\(418\) 278.258 327.591i 0.665690 0.783710i
\(419\) −499.939 265.051i −1.19317 0.632580i −0.251090 0.967964i \(-0.580789\pi\)
−0.942082 + 0.335384i \(0.891134\pi\)
\(420\) −189.745 114.166i −0.451774 0.271824i
\(421\) −112.198 242.513i −0.266504 0.576039i 0.727409 0.686204i \(-0.240724\pi\)
−0.993913 + 0.110165i \(0.964862\pi\)
\(422\) 176.703 + 38.8953i 0.418728 + 0.0921690i
\(423\) −61.3879 + 32.5458i −0.145125 + 0.0769405i
\(424\) −146.439 7.93968i −0.345374 0.0187257i
\(425\) 62.1319 + 73.1473i 0.146193 + 0.172111i
\(426\) 44.6787 + 202.977i 0.104880 + 0.476473i
\(427\) −52.4685 69.0211i −0.122877 0.161642i
\(428\) −482.686 + 457.225i −1.12777 + 1.06828i
\(429\) −2.95711 54.5407i −0.00689304 0.127135i
\(430\) −335.161 + 201.659i −0.779443 + 0.468975i
\(431\) −161.313 109.373i −0.374276 0.253766i 0.359517 0.933139i \(-0.382941\pi\)
−0.733793 + 0.679373i \(0.762252\pi\)
\(432\) 15.1859 54.6948i 0.0351527 0.126608i
\(433\) 179.503 19.5222i 0.414557 0.0450858i 0.101536 0.994832i \(-0.467624\pi\)
0.313021 + 0.949746i \(0.398659\pi\)
\(434\) 76.8793 + 58.4421i 0.177141 + 0.134659i
\(435\) 460.819 + 213.198i 1.05935 + 0.490110i
\(436\) −306.235 + 207.632i −0.702374 + 0.476221i
\(437\) −60.8601 180.626i −0.139268 0.413333i
\(438\) 47.7130 + 291.037i 0.108934 + 0.664467i
\(439\) −112.273 + 684.838i −0.255748 + 1.55999i 0.476635 + 0.879101i \(0.341856\pi\)
−0.732383 + 0.680893i \(0.761592\pi\)
\(440\) −107.252 36.1373i −0.243754 0.0821303i
\(441\) −22.8698 82.3697i −0.0518590 0.186779i
\(442\) 75.6437 + 189.851i 0.171140 + 0.429528i
\(443\) 45.3864 18.0836i 0.102452 0.0408207i −0.318349 0.947974i \(-0.603128\pi\)
0.420801 + 0.907153i \(0.361749\pi\)
\(444\) −36.4244 + 10.1132i −0.0820369 + 0.0227774i
\(445\) 92.1784 273.576i 0.207142 0.614777i
\(446\) 247.317 + 40.5455i 0.554521 + 0.0909092i
\(447\) 448.442 73.5184i 1.00323 0.164471i
\(448\) 391.629 131.955i 0.874171 0.294543i
\(449\) 81.6768 + 120.464i 0.181908 + 0.268295i 0.907700 0.419620i \(-0.137837\pi\)
−0.725792 + 0.687915i \(0.758526\pi\)
\(450\) 25.4370 54.9812i 0.0565267 0.122180i
\(451\) −315.756 + 415.370i −0.700124 + 0.920997i
\(452\) 54.2607 + 498.919i 0.120046 + 1.10380i
\(453\) −111.910 31.0716i −0.247041 0.0685907i
\(454\) −656.529 + 968.308i −1.44610 + 2.13284i
\(455\) 62.7380 + 104.271i 0.137886 + 0.229168i
\(456\) 113.885 6.17469i 0.249749 0.0135410i
\(457\) 101.610 + 107.268i 0.222341 + 0.234722i 0.827617 0.561293i \(-0.189696\pi\)
−0.605276 + 0.796016i \(0.706937\pi\)
\(458\) 765.874 582.202i 1.67221 1.27118i
\(459\) −72.4058 + 15.9377i −0.157747 + 0.0347227i
\(460\) −189.353 + 160.838i −0.411638 + 0.349648i
\(461\) 1.67634 30.9183i 0.00363632 0.0670680i −0.996152 0.0876424i \(-0.972067\pi\)
0.999788 + 0.0205744i \(0.00654949\pi\)
\(462\) 72.8983 + 137.501i 0.157789 + 0.297621i
\(463\) −133.830 + 607.997i −0.289050 + 1.31317i 0.578444 + 0.815722i \(0.303660\pi\)
−0.867495 + 0.497447i \(0.834271\pi\)
\(464\) −516.000 + 238.727i −1.11207 + 0.514498i
\(465\) −35.7304 + 59.3844i −0.0768396 + 0.127708i
\(466\) 409.728 772.829i 0.879245 1.65843i
\(467\) −148.278 125.949i −0.317512 0.269697i 0.474430 0.880293i \(-0.342654\pi\)
−0.791942 + 0.610596i \(0.790930\pi\)
\(468\) 49.3403 52.0879i 0.105428 0.111299i
\(469\) 27.9921 257.384i 0.0596848 0.548792i
\(470\) 144.960 363.823i 0.308426 0.774091i
\(471\) 371.658i 0.789084i
\(472\) 40.3707 + 174.754i 0.0855312 + 0.370241i
\(473\) 152.893 0.323241
\(474\) 2.46869 + 0.983618i 0.00520822 + 0.00207514i
\(475\) −144.848 15.7531i −0.304943 0.0331645i
\(476\) −235.121 222.718i −0.493951 0.467895i
\(477\) −93.6943 + 110.305i −0.196424 + 0.231248i
\(478\) 43.4806 + 23.0519i 0.0909635 + 0.0482258i
\(479\) 607.580 + 365.569i 1.26843 + 0.763191i 0.980888 0.194576i \(-0.0623330\pi\)
0.287546 + 0.957767i \(0.407161\pi\)
\(480\) 184.157 + 398.048i 0.383660 + 0.829266i
\(481\) 20.2880 + 4.46572i 0.0421787 + 0.00928423i
\(482\) −23.0231 + 12.2061i −0.0477658 + 0.0253238i
\(483\) 68.9132 + 3.73637i 0.142677 + 0.00773575i
\(484\) −250.885 295.365i −0.518358 0.610259i
\(485\) 45.4297 + 206.389i 0.0936694 + 0.425544i
\(486\) 28.3210 + 37.2556i 0.0582737 + 0.0766577i
\(487\) 167.695 158.849i 0.344343 0.326179i −0.495910 0.868374i \(-0.665165\pi\)
0.840253 + 0.542195i \(0.182407\pi\)
\(488\) −3.15112 58.1190i −0.00645721 0.119096i
\(489\) 76.3591 45.9437i 0.156154 0.0939545i
\(490\) 398.818 + 270.405i 0.813915 + 0.551848i
\(491\) 107.119 385.807i 0.218165 0.785758i −0.770733 0.637158i \(-0.780110\pi\)
0.988897 0.148599i \(-0.0474765\pi\)
\(492\) −681.337 + 74.0999i −1.38483 + 0.150610i
\(493\) 591.162 + 449.390i 1.19911 + 0.911541i
\(494\) −281.583 130.274i −0.570005 0.263713i
\(495\) −92.4440 + 62.6786i −0.186756 + 0.126623i
\(496\) −24.7790 73.5415i −0.0499577 0.148269i
\(497\) 29.2815 + 178.609i 0.0589166 + 0.359375i
\(498\) −63.5528 + 387.655i −0.127616 + 0.778423i
\(499\) 333.600 + 112.403i 0.668537 + 0.225256i 0.633046 0.774114i \(-0.281804\pi\)
0.0354902 + 0.999370i \(0.488701\pi\)
\(500\) −138.028 497.132i −0.276056 0.994264i
\(501\) −119.909 300.948i −0.239339 0.600695i
\(502\) 1188.93 473.712i 2.36838 0.943649i
\(503\) 729.309 202.492i 1.44992 0.402568i 0.548732 0.835998i \(-0.315111\pi\)
0.901187 + 0.433430i \(0.142697\pi\)
\(504\) −13.1860 + 39.1348i −0.0261628 + 0.0776484i
\(505\) 488.973 + 80.1630i 0.968263 + 0.158739i
\(506\) 172.305 28.2479i 0.340523 0.0558259i
\(507\) 240.030 80.8757i 0.473433 0.159518i
\(508\) −82.9920 122.404i −0.163370 0.240953i
\(509\) −327.242 + 707.322i −0.642911 + 1.38963i 0.262433 + 0.964950i \(0.415475\pi\)
−0.905344 + 0.424679i \(0.860387\pi\)
\(510\) 252.896 332.680i 0.495875 0.652313i
\(511\) 27.7684 + 255.326i 0.0543413 + 0.499660i
\(512\) −601.195 166.921i −1.17421 0.326018i
\(513\) 63.1640 93.1599i 0.123127 0.181598i
\(514\) −438.366 728.570i −0.852852 1.41745i
\(515\) 688.572 37.3333i 1.33703 0.0724919i
\(516\) 138.112 + 145.803i 0.267659 + 0.282564i
\(517\) −121.869 + 92.6423i −0.235723 + 0.179192i
\(518\) −57.8060 + 12.7241i −0.111595 + 0.0245638i
\(519\) −60.5283 + 51.4132i −0.116625 + 0.0990621i
\(520\) −4.42286 + 81.5749i −0.00850550 + 0.156875i
\(521\) −69.0702 130.280i −0.132572 0.250058i 0.808334 0.588723i \(-0.200369\pi\)
−0.940907 + 0.338666i \(0.890024\pi\)
\(522\) 100.763 457.772i 0.193033 0.876957i
\(523\) −88.4658 + 40.9286i −0.169151 + 0.0782574i −0.502637 0.864497i \(-0.667637\pi\)
0.333487 + 0.942755i \(0.391775\pi\)
\(524\) −529.574 + 880.159i −1.01064 + 1.67969i
\(525\) 24.7114 46.6107i 0.0470694 0.0887823i
\(526\) 616.617 + 523.759i 1.17228 + 0.995740i
\(527\) −69.7039 + 73.5855i −0.132265 + 0.139631i
\(528\) 13.5217 124.330i 0.0256094 0.235474i
\(529\) −167.144 + 419.499i −0.315962 + 0.793004i
\(530\) 815.763i 1.53918i
\(531\) 161.403 + 72.6505i 0.303960 + 0.136818i
\(532\) 491.667 0.924186
\(533\) 349.876 + 139.403i 0.656428 + 0.261545i
\(534\) −264.941 28.8141i −0.496145 0.0539590i
\(535\) −542.391 513.780i −1.01381 0.960336i
\(536\) 112.521 132.470i 0.209928 0.247146i
\(537\) −320.145 169.730i −0.596174 0.316071i
\(538\) 291.781 + 175.559i 0.542345 + 0.326318i
\(539\) −79.0836 170.936i −0.146723 0.317136i
\(540\) −143.279 31.5380i −0.265331 0.0584038i
\(541\) −666.927 + 353.582i −1.23277 + 0.653572i −0.951969 0.306195i \(-0.900944\pi\)
−0.280799 + 0.959767i \(0.590599\pi\)
\(542\) −1256.47 68.1236i −2.31820 0.125689i
\(543\) 355.467 + 418.488i 0.654635 + 0.770696i
\(544\) 137.888 + 626.431i 0.253470 + 1.15153i
\(545\) −251.603 330.978i −0.461656 0.607298i
\(546\) 81.5578 77.2556i 0.149373 0.141494i
\(547\) 21.9165 + 404.226i 0.0400667 + 0.738987i 0.947688 + 0.319198i \(0.103413\pi\)
−0.907621 + 0.419790i \(0.862104\pi\)
\(548\) −414.774 + 249.562i −0.756888 + 0.455404i
\(549\) −47.5422 32.2344i −0.0865977 0.0587147i
\(550\) 35.7075 128.607i 0.0649228 0.233831i
\(551\) −1120.74 + 121.887i −2.03400 + 0.221211i
\(552\) 36.8843 + 28.0387i 0.0668193 + 0.0507947i
\(553\) 2.10033 + 0.971715i 0.00379806 + 0.00175717i
\(554\) 1165.50 790.226i 2.10378 1.42640i
\(555\) −13.5633 40.2545i −0.0244384 0.0725307i
\(556\) 48.5557 + 296.176i 0.0873303 + 0.532692i
\(557\) 96.2696 587.219i 0.172836 1.05425i −0.747827 0.663894i \(-0.768903\pi\)
0.920663 0.390359i \(-0.127649\pi\)
\(558\) 60.6301 + 20.4287i 0.108656 + 0.0366105i
\(559\) −29.5255 106.341i −0.0528183 0.190234i
\(560\) 103.132 + 258.841i 0.184164 + 0.462216i
\(561\) −151.744 + 60.4602i −0.270488 + 0.107772i
\(562\) 1459.23 405.154i 2.59650 0.720914i
\(563\) 260.688 773.694i 0.463034 1.37423i −0.421106 0.907012i \(-0.638358\pi\)
0.884139 0.467223i \(-0.154746\pi\)
\(564\) −198.433 32.5315i −0.351832 0.0576799i
\(565\) −556.508 + 91.2349i −0.984970 + 0.161478i
\(566\) 113.567 38.2651i 0.200648 0.0676061i
\(567\) 22.8706 + 33.7316i 0.0403362 + 0.0594914i
\(568\) −51.0194 + 110.277i −0.0898230 + 0.194149i
\(569\) −443.477 + 583.384i −0.779397 + 1.02528i 0.219370 + 0.975642i \(0.429600\pi\)
−0.998767 + 0.0496379i \(0.984193\pi\)
\(570\) 68.5928 + 630.700i 0.120338 + 1.10649i
\(571\) −329.331 91.4384i −0.576763 0.160137i −0.0331159 0.999452i \(-0.510543\pi\)
−0.543647 + 0.839314i \(0.682957\pi\)
\(572\) 88.7092 130.836i 0.155086 0.228735i
\(573\) −294.795 489.953i −0.514476 0.855066i
\(574\) −1071.54 + 58.0970i −1.86679 + 0.101214i
\(575\) −40.7039 42.9705i −0.0707893 0.0747314i
\(576\) 217.963 165.691i 0.378408 0.287658i
\(577\) 82.8274 18.2317i 0.143548 0.0315974i −0.142615 0.989778i \(-0.545551\pi\)
0.286163 + 0.958181i \(0.407620\pi\)
\(578\) −195.452 + 166.019i −0.338153 + 0.287229i
\(579\) 28.8139 531.441i 0.0497649 0.917860i
\(580\) 688.296 + 1298.26i 1.18672 + 2.23839i
\(581\) −73.5402 + 334.097i −0.126575 + 0.575037i
\(582\) 177.059 81.9163i 0.304226 0.140750i
\(583\) −164.392 + 273.222i −0.281977 + 0.468649i
\(584\) −80.7627 + 152.335i −0.138292 + 0.260847i
\(585\) 61.4465 + 52.1932i 0.105037 + 0.0892191i
\(586\) −730.040 + 770.694i −1.24580 + 1.31518i
\(587\) −26.4928 + 243.597i −0.0451325 + 0.414986i 0.949677 + 0.313231i \(0.101411\pi\)
−0.994809 + 0.101755i \(0.967554\pi\)
\(588\) 91.5714 229.827i 0.155734 0.390862i
\(589\) 153.877i 0.261251i
\(590\) −958.487 + 276.860i −1.62455 + 0.469255i
\(591\) −230.516 −0.390045
\(592\) 44.1865 + 17.6055i 0.0746393 + 0.0297390i
\(593\) −672.125 73.0980i −1.13343 0.123268i −0.477885 0.878422i \(-0.658596\pi\)
−0.655547 + 0.755154i \(0.727562\pi\)
\(594\) 74.8550 + 70.9064i 0.126018 + 0.119371i
\(595\) 235.596 277.365i 0.395959 0.466159i
\(596\) 1161.93 + 616.018i 1.94955 + 1.03359i
\(597\) −490.820 295.317i −0.822144 0.494668i
\(598\) −52.9212 114.387i −0.0884970 0.191283i
\(599\) −524.493 115.450i −0.875614 0.192737i −0.245647 0.969359i \(-0.579000\pi\)
−0.629967 + 0.776622i \(0.716931\pi\)
\(600\) 31.2913 16.5896i 0.0521521 0.0276493i
\(601\) −149.709 8.11699i −0.249100 0.0135058i −0.0708338 0.997488i \(-0.522566\pi\)
−0.178266 + 0.983982i \(0.557049\pi\)
\(602\) 203.575 + 239.667i 0.338165 + 0.398118i
\(603\) −36.8728 167.515i −0.0611490 0.277803i
\(604\) −203.412 267.584i −0.336775 0.443020i
\(605\) 316.150 299.473i 0.522562 0.494997i
\(606\) −24.7644 456.753i −0.0408654 0.753718i
\(607\) 317.117 190.803i 0.522434 0.314338i −0.229796 0.973239i \(-0.573806\pi\)
0.752230 + 0.658901i \(0.228978\pi\)
\(608\) −805.988 546.473i −1.32564 0.898805i
\(609\) 109.203 393.314i 0.179315 0.645835i
\(610\) 321.864 35.0049i 0.527646 0.0573850i
\(611\) 87.9694 + 66.8726i 0.143976 + 0.109448i
\(612\) −194.730 90.0918i −0.318187 0.147209i
\(613\) 307.101 208.219i 0.500980 0.339673i −0.284381 0.958711i \(-0.591788\pi\)
0.785361 + 0.619039i \(0.212478\pi\)
\(614\) 464.227 + 1377.78i 0.756070 + 2.24393i
\(615\) −124.593 759.983i −0.202590 1.23574i
\(616\) −14.7198 + 89.7869i −0.0238958 + 0.145758i
\(617\) 533.292 + 179.687i 0.864330 + 0.291227i 0.716331 0.697761i \(-0.245820\pi\)
0.147999 + 0.988987i \(0.452717\pi\)
\(618\) −170.307 613.390i −0.275577 0.992540i
\(619\) 49.5632 + 124.394i 0.0800697 + 0.200960i 0.963562 0.267487i \(-0.0861932\pi\)
−0.883492 + 0.468447i \(0.844814\pi\)
\(620\) −186.325 + 74.2387i −0.300524 + 0.119740i
\(621\) 44.0563 12.2322i 0.0709441 0.0196975i
\(622\) 353.345 1048.69i 0.568078 1.68600i
\(623\) −229.027 37.5470i −0.367619 0.0602681i
\(624\) −89.0861 + 14.6049i −0.142766 + 0.0234053i
\(625\) 708.765 238.811i 1.13402 0.382097i
\(626\) 717.149 + 1057.72i 1.14561 + 1.68964i
\(627\) 104.125 225.062i 0.166068 0.358951i
\(628\) −650.919 + 856.270i −1.03650 + 1.36349i
\(629\) −6.71679 61.7599i −0.0106785 0.0981874i
\(630\) −221.339 61.4546i −0.351332 0.0975470i
\(631\) −243.215 + 358.715i −0.385443 + 0.568486i −0.970073 0.242814i \(-0.921929\pi\)
0.584630 + 0.811300i \(0.301240\pi\)
\(632\) 0.800969 + 1.33122i 0.00126736 + 0.00210636i
\(633\) 104.236 5.65150i 0.164669 0.00892811i
\(634\) −252.344 266.396i −0.398018 0.420183i
\(635\) 132.294 100.567i 0.208337 0.158373i
\(636\) −409.052 + 90.0391i −0.643163 + 0.141571i
\(637\) −103.619 + 88.0144i −0.162667 + 0.138170i
\(638\) 55.9102 1031.20i 0.0876335 1.61631i
\(639\) 56.1671 + 105.942i 0.0878985 + 0.165794i
\(640\) −114.015 + 517.974i −0.178148 + 0.809334i
\(641\) 567.852 262.716i 0.885885 0.409854i 0.0764568 0.997073i \(-0.475639\pi\)
0.809428 + 0.587219i \(0.199777\pi\)
\(642\) −355.572 + 590.965i −0.553850 + 0.920506i
\(643\) 187.719 354.075i 0.291942 0.550661i −0.693545 0.720413i \(-0.743952\pi\)
0.985487 + 0.169753i \(0.0542969\pi\)
\(644\) 152.226 + 129.302i 0.236376 + 0.200780i
\(645\) −155.195 + 163.838i −0.240613 + 0.254012i
\(646\) −100.317 + 922.396i −0.155289 + 1.42786i
\(647\) −27.0387 + 67.8620i −0.0417909 + 0.104887i −0.948391 0.317104i \(-0.897289\pi\)
0.906600 + 0.421991i \(0.138669\pi\)
\(648\) 27.3595i 0.0422214i
\(649\) 376.818 + 100.426i 0.580613 + 0.154739i
\(650\) −96.3449 −0.148223
\(651\) 51.7590 + 20.6227i 0.0795069 + 0.0316784i
\(652\) 256.390 + 27.8841i 0.393237 + 0.0427671i
\(653\) 228.188 + 216.151i 0.349446 + 0.331013i 0.842209 0.539151i \(-0.181255\pi\)
−0.492764 + 0.870163i \(0.664013\pi\)
\(654\) −248.470 + 292.521i −0.379923 + 0.447280i
\(655\) −1019.79 540.661i −1.55694 0.825436i
\(656\) 738.908 + 444.586i 1.12638 + 0.677723i
\(657\) 71.4458 + 154.428i 0.108746 + 0.235050i
\(658\) −307.488 67.6832i −0.467307 0.102862i
\(659\) 247.850 131.402i 0.376101 0.199396i −0.269625 0.962965i \(-0.586900\pi\)
0.645726 + 0.763569i \(0.276555\pi\)
\(660\) −322.758 17.4994i −0.489027 0.0265143i
\(661\) 680.077 + 800.649i 1.02886 + 1.21127i 0.977138 + 0.212608i \(0.0681957\pi\)
0.0517239 + 0.998661i \(0.483528\pi\)
\(662\) 77.4447 + 351.835i 0.116986 + 0.531473i
\(663\) 71.3551 + 93.8660i 0.107625 + 0.141578i
\(664\) −166.731 + 157.936i −0.251102 + 0.237856i
\(665\) 29.9108 + 551.672i 0.0449786 + 0.829581i
\(666\) −33.6007 + 20.2169i −0.0504516 + 0.0303557i
\(667\) −379.049 257.002i −0.568290 0.385310i
\(668\) 250.819 903.367i 0.375477 1.35235i
\(669\) 143.746 15.6333i 0.214866 0.0233681i
\(670\) 769.673 + 585.090i 1.14877 + 0.873269i
\(671\) −114.856 53.1379i −0.171171 0.0791921i
\(672\) 291.835 197.869i 0.434278 0.294448i
\(673\) −115.083 341.554i −0.171000 0.507509i 0.827547 0.561396i \(-0.189736\pi\)
−0.998547 + 0.0538869i \(0.982839\pi\)
\(674\) 153.610 + 936.981i 0.227908 + 1.39018i
\(675\) 5.65454 34.4912i 0.00837710 0.0510980i
\(676\) 694.655 + 234.056i 1.02760 + 0.346237i
\(677\) 38.0510 + 137.047i 0.0562053 + 0.202433i 0.986322 0.164832i \(-0.0527080\pi\)
−0.930116 + 0.367265i \(0.880294\pi\)
\(678\) 192.695 + 483.627i 0.284210 + 0.713314i
\(679\) 157.827 62.8842i 0.232441 0.0926130i
\(680\) 235.405 65.3599i 0.346184 0.0961175i
\(681\) −215.518 + 639.633i −0.316472 + 0.939256i
\(682\) 139.104 + 22.8049i 0.203964 + 0.0334382i
\(683\) 1275.73 209.145i 1.86783 0.306215i 0.881651 0.471901i \(-0.156432\pi\)
0.986179 + 0.165686i \(0.0529838\pi\)
\(684\) 308.684 104.008i 0.451292 0.152058i
\(685\) −305.252 450.213i −0.445623 0.657245i
\(686\) 442.346 956.115i 0.644819 1.39375i
\(687\) 335.900 441.868i 0.488937 0.643185i
\(688\) −27.3213 251.215i −0.0397112 0.365138i
\(689\) 221.779 + 61.5767i 0.321886 + 0.0893711i
\(690\) −144.629 + 213.312i −0.209607 + 0.309148i
\(691\) 157.076 + 261.062i 0.227317 + 0.377803i 0.949434 0.313968i \(-0.101658\pi\)
−0.722117 + 0.691771i \(0.756831\pi\)
\(692\) −229.497 + 12.4430i −0.331643 + 0.0179812i
\(693\) 61.7486 + 65.1872i 0.0891033 + 0.0940652i
\(694\) −633.948 + 481.915i −0.913470 + 0.694402i
\(695\) −329.369 + 72.4996i −0.473912 + 0.104316i
\(696\) 208.857 177.405i 0.300082 0.254892i
\(697\) 60.9771 1124.66i 0.0874851 1.61357i
\(698\) 969.114 + 1827.94i 1.38842 + 2.61883i
\(699\) 108.489 492.870i 0.155206 0.705108i
\(700\) 138.567 64.1078i 0.197952 0.0915826i
\(701\) −387.245 + 643.605i −0.552417 + 0.918125i 0.447301 + 0.894384i \(0.352385\pi\)
−0.999718 + 0.0237412i \(0.992442\pi\)
\(702\) 34.8618 65.7564i 0.0496607 0.0936700i
\(703\) 71.8822 + 61.0573i 0.102251 + 0.0868525i
\(704\) 414.835 437.936i 0.589255 0.622069i
\(705\) 24.4300 224.630i 0.0346524 0.318624i
\(706\) 97.1325 243.784i 0.137581 0.345303i
\(707\) 398.346i 0.563432i
\(708\) 244.619 + 450.060i 0.345508 + 0.635678i
\(709\) −125.754 −0.177368 −0.0886842 0.996060i \(-0.528266\pi\)
−0.0886842 + 0.996060i \(0.528266\pi\)
\(710\) −627.880 250.170i −0.884338 0.352353i
\(711\) 1.52421 + 0.165768i 0.00214375 + 0.000233147i
\(712\) −113.114 107.147i −0.158868 0.150488i
\(713\) 40.4676 47.6422i 0.0567569 0.0668193i
\(714\) −296.819 157.363i −0.415713 0.220397i
\(715\) 152.201 + 91.5762i 0.212868 + 0.128079i
\(716\) −440.324 951.744i −0.614977 1.32925i
\(717\) 27.7296 + 6.10375i 0.0386745 + 0.00851290i
\(718\) 190.849 101.182i 0.265807 0.140922i
\(719\) −1101.58 59.7260i −1.53210 0.0830682i −0.731325 0.682029i \(-0.761098\pi\)
−0.800778 + 0.598961i \(0.795580\pi\)
\(720\) 119.505 + 140.692i 0.165979 + 0.195406i
\(721\) −119.174 541.414i −0.165290 0.750921i
\(722\) −196.580 258.597i −0.272272 0.358168i
\(723\) −10.9149 + 10.3392i −0.0150967 + 0.0143004i
\(724\) 86.0296 + 1586.72i 0.118825 + 2.19161i
\(725\) −299.965 + 180.483i −0.413745 + 0.248942i
\(726\) −332.737 225.602i −0.458316 0.310746i
\(727\) 222.219 800.361i 0.305666 1.10091i −0.638007 0.770030i \(-0.720241\pi\)
0.943673 0.330879i \(-0.107345\pi\)
\(728\) 65.2916 7.10089i 0.0896863 0.00975397i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) −870.442 402.709i −1.19239 0.551656i
\(731\) −273.175 + 185.217i −0.373701 + 0.253376i
\(732\) −53.0781 157.530i −0.0725111 0.215205i
\(733\) 10.8668 + 66.2845i 0.0148251 + 0.0904291i 0.993203 0.116398i \(-0.0371347\pi\)
−0.978378 + 0.206827i \(0.933686\pi\)
\(734\) −128.037 + 780.990i −0.174437 + 1.06402i
\(735\) 263.447 + 88.7655i 0.358431 + 0.120769i
\(736\) −105.829 381.160i −0.143789 0.517880i
\(737\) −139.878 351.068i −0.189794 0.476347i
\(738\) −660.454 + 263.149i −0.894925 + 0.356571i
\(739\) 698.898 194.048i 0.945735 0.262582i 0.239771 0.970830i \(-0.422928\pi\)
0.705964 + 0.708247i \(0.250514\pi\)
\(740\) 39.2527 116.498i 0.0530441 0.157429i
\(741\) −176.644 28.9594i −0.238386 0.0390815i
\(742\) −647.175 + 106.099i −0.872204 + 0.142991i
\(743\) 1239.61 417.673i 1.66838 0.562144i 0.682692 0.730706i \(-0.260809\pi\)
0.985691 + 0.168563i \(0.0539126\pi\)
\(744\) 20.9906 + 30.9589i 0.0282132 + 0.0416114i
\(745\) −620.513 + 1341.22i −0.832903 + 1.80029i
\(746\) 1099.61 1446.52i 1.47401 1.93903i
\(747\) 24.5043 + 225.313i 0.0328036 + 0.301624i
\(748\) −455.494 126.467i −0.608950 0.169074i
\(749\) −337.057 + 497.121i −0.450009 + 0.663713i
\(750\) −275.927 458.594i −0.367902 0.611458i
\(751\) −670.155 + 36.3347i −0.892350 + 0.0483818i −0.494609 0.869116i \(-0.664689\pi\)
−0.397741 + 0.917498i \(0.630206\pi\)
\(752\) 173.996 + 183.685i 0.231377 + 0.244262i
\(753\) 587.827 446.855i 0.780647 0.593432i
\(754\) −728.025 + 160.250i −0.965550 + 0.212534i
\(755\) 287.866 244.516i 0.381280 0.323862i
\(756\) −6.38532 + 117.770i −0.00844618 + 0.155781i
\(757\) 193.966 + 365.859i 0.256230 + 0.483302i 0.977938 0.208896i \(-0.0669872\pi\)
−0.721707 + 0.692198i \(0.756642\pi\)
\(758\) −275.829 + 1253.11i −0.363891 + 1.65317i
\(759\) 91.4270 42.2987i 0.120457 0.0557294i
\(760\) −191.218 + 317.807i −0.251603 + 0.418168i
\(761\) −218.570 + 412.266i −0.287214 + 0.541742i −0.984572 0.174980i \(-0.944014\pi\)
0.697358 + 0.716723i \(0.254359\pi\)
\(762\) −116.922 99.3149i −0.153442 0.130334i
\(763\) −229.853 + 242.653i −0.301249 + 0.318025i
\(764\) 178.917 1645.11i 0.234184 2.15329i
\(765\) 89.2404 223.977i 0.116654 0.292780i
\(766\) 1.37693i 0.00179756i
\(767\) −2.91918 281.480i −0.00380598 0.366988i
\(768\) −142.675 −0.185775
\(769\) −141.148 56.2384i −0.183547 0.0731319i 0.276554 0.960998i \(-0.410808\pi\)
−0.460101 + 0.887866i \(0.652187\pi\)
\(770\) −503.141 54.7199i −0.653430 0.0710648i
\(771\) −356.149 337.363i −0.461932 0.437565i
\(772\) 997.146 1173.93i 1.29164 1.52064i
\(773\) −729.602 386.811i −0.943858 0.500402i −0.0759416 0.997112i \(-0.524196\pi\)
−0.867916 + 0.496710i \(0.834541\pi\)
\(774\) 1