Properties

Label 177.3.g.a.10.16
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.16
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.16

$q$-expansion

\(f(q)\) \(=\) \(q+(2.13762 + 0.851704i) q^{2} +(1.72190 + 0.187268i) q^{3} +(0.940023 + 0.890437i) q^{4} +(4.37246 - 5.14766i) q^{5} +(3.52126 + 1.86685i) q^{6} +(-0.447582 - 0.269301i) q^{7} +(-2.61371 - 5.64945i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(2.13762 + 0.851704i) q^{2} +(1.72190 + 0.187268i) q^{3} +(0.940023 + 0.890437i) q^{4} +(4.37246 - 5.14766i) q^{5} +(3.52126 + 1.86685i) q^{6} +(-0.447582 - 0.269301i) q^{7} +(-2.61371 - 5.64945i) q^{8} +(2.92986 + 0.644911i) q^{9} +(13.7309 - 7.27968i) q^{10} +(2.30333 + 0.124883i) q^{11} +(1.45187 + 1.70928i) q^{12} +(3.27171 + 14.8635i) q^{13} +(-0.727394 - 0.956871i) q^{14} +(8.49292 - 8.04493i) q^{15} +(-1.05585 - 19.4741i) q^{16} +(-20.0176 + 12.0442i) q^{17} +(5.71365 + 3.87395i) q^{18} +(-6.08850 + 21.9288i) q^{19} +(8.69388 - 0.945517i) q^{20} +(-0.720259 - 0.547527i) q^{21} +(4.81727 + 2.22871i) q^{22} +(7.90473 - 5.35954i) q^{23} +(-3.44259 - 10.2172i) q^{24} +(-3.33544 - 20.3453i) q^{25} +(-5.66566 + 34.5590i) q^{26} +(4.92415 + 1.65914i) q^{27} +(-0.180942 - 0.651693i) q^{28} +(6.58985 + 16.5393i) q^{29} +(25.0065 - 9.96351i) q^{30} +(-10.7556 + 2.98626i) q^{31} +(6.37884 - 18.9317i) q^{32} +(3.94271 + 0.646375i) q^{33} +(-53.0480 + 8.69678i) q^{34} +(-3.34331 + 1.12649i) q^{35} +(2.17988 + 3.21509i) q^{36} +(10.2683 - 22.1945i) q^{37} +(-31.6917 + 41.6897i) q^{38} +(2.85009 + 26.2061i) q^{39} +(-40.5098 - 11.2475i) q^{40} +(5.39614 - 7.95871i) q^{41} +(-1.07331 - 1.78385i) q^{42} +(-39.4487 + 2.13885i) q^{43} +(2.05398 + 2.16836i) q^{44} +(16.1305 - 12.2621i) q^{45} +(21.4620 - 4.72415i) q^{46} +(4.88103 - 4.14599i) q^{47} +(1.82879 - 33.7301i) q^{48} +(-22.8242 - 43.0510i) q^{49} +(10.1983 - 46.3312i) q^{50} +(-36.7237 + 16.9902i) q^{51} +(-10.1595 + 16.8853i) q^{52} +(30.3824 - 57.3073i) q^{53} +(9.11285 + 7.74052i) q^{54} +(10.7141 - 11.3107i) q^{55} +(-0.351552 + 3.23247i) q^{56} +(-14.5903 + 36.6189i) q^{57} +40.9672i q^{58} +(10.3186 + 58.0907i) q^{59} +15.1470 q^{60} +(20.5075 + 8.17093i) q^{61} +(-25.5347 - 2.77706i) q^{62} +(-1.13768 - 1.07767i) q^{63} +(-20.7434 + 24.4210i) q^{64} +(90.8177 + 48.1485i) q^{65} +(7.87749 + 4.73973i) q^{66} +(21.3928 + 46.2399i) q^{67} +(-29.5416 - 6.50259i) q^{68} +(14.6148 - 7.74827i) q^{69} +(-8.10615 - 0.439503i) q^{70} +(-30.3024 - 35.6747i) q^{71} +(-4.01443 - 18.2377i) q^{72} +(-81.4368 - 107.128i) q^{73} +(40.8527 - 38.6977i) q^{74} +(-1.93327 - 35.6571i) q^{75} +(-25.2495 + 15.1921i) q^{76} +(-0.997299 - 0.676185i) q^{77} +(-16.2275 + 58.4461i) q^{78} +(-86.7435 + 9.43392i) q^{79} +(-104.863 - 79.7146i) q^{80} +(8.16818 + 3.77900i) q^{81} +(18.3133 - 12.4168i) q^{82} +(-3.81776 - 11.3307i) q^{83} +(-0.189522 - 1.15603i) q^{84} +(-25.5268 + 155.706i) q^{85} +(-86.1478 - 29.0266i) q^{86} +(8.24978 + 29.7130i) q^{87} +(-5.31473 - 13.3390i) q^{88} +(146.586 - 58.4051i) q^{89} +(44.9245 - 12.4732i) q^{90} +(2.53841 - 7.53372i) q^{91} +(12.2029 + 2.00057i) q^{92} +(-19.0792 + 3.12787i) q^{93} +(13.9649 - 4.70533i) q^{94} +(86.2603 + 127.224i) q^{95} +(14.5290 - 31.4039i) q^{96} +(-40.2437 + 52.9397i) q^{97} +(-12.1227 - 111.466i) q^{98} +(6.66790 + 1.85133i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
<
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.13762 + 0.851704i 1.06881 + 0.425852i 0.837166 0.546949i \(-0.184211\pi\)
0.231642 + 0.972801i \(0.425590\pi\)
\(3\) 1.72190 + 0.187268i 0.573966 + 0.0624225i
\(4\) 0.940023 + 0.890437i 0.235006 + 0.222609i
\(5\) 4.37246 5.14766i 0.874493 1.02953i −0.124809 0.992181i \(-0.539832\pi\)
0.999302 0.0373517i \(-0.0118922\pi\)
\(6\) 3.52126 + 1.86685i 0.586877 + 0.311142i
\(7\) −0.447582 0.269301i −0.0639403 0.0384716i 0.483225 0.875496i \(-0.339465\pi\)
−0.547165 + 0.837025i \(0.684293\pi\)
\(8\) −2.61371 5.64945i −0.326714 0.706181i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) 13.7309 7.27968i 1.37309 0.727968i
\(11\) 2.30333 + 0.124883i 0.209394 + 0.0113530i 0.158537 0.987353i \(-0.449322\pi\)
0.0508563 + 0.998706i \(0.483805\pi\)
\(12\) 1.45187 + 1.70928i 0.120989 + 0.142440i
\(13\) 3.27171 + 14.8635i 0.251670 + 1.14335i 0.917654 + 0.397381i \(0.130081\pi\)
−0.665984 + 0.745966i \(0.731988\pi\)
\(14\) −0.727394 0.956871i −0.0519567 0.0683479i
\(15\) 8.49292 8.04493i 0.566195 0.536328i
\(16\) −1.05585 19.4741i −0.0659909 1.21713i
\(17\) −20.0176 + 12.0442i −1.17750 + 0.708481i −0.963331 0.268314i \(-0.913533\pi\)
−0.214173 + 0.976796i \(0.568706\pi\)
\(18\) 5.71365 + 3.87395i 0.317425 + 0.215219i
\(19\) −6.08850 + 21.9288i −0.320447 + 1.15415i 0.611408 + 0.791316i \(0.290604\pi\)
−0.931855 + 0.362831i \(0.881810\pi\)
\(20\) 8.69388 0.945517i 0.434694 0.0472758i
\(21\) −0.720259 0.547527i −0.0342981 0.0260727i
\(22\) 4.81727 + 2.22871i 0.218967 + 0.101305i
\(23\) 7.90473 5.35954i 0.343684 0.233023i −0.377117 0.926166i \(-0.623085\pi\)
0.720801 + 0.693142i \(0.243774\pi\)
\(24\) −3.44259 10.2172i −0.143441 0.425718i
\(25\) −3.33544 20.3453i −0.133418 0.813811i
\(26\) −5.66566 + 34.5590i −0.217910 + 1.32919i
\(27\) 4.92415 + 1.65914i 0.182376 + 0.0614496i
\(28\) −0.180942 0.651693i −0.00646220 0.0232748i
\(29\) 6.58985 + 16.5393i 0.227236 + 0.570320i 0.997746 0.0671086i \(-0.0213774\pi\)
−0.770509 + 0.637429i \(0.779998\pi\)
\(30\) 25.0065 9.96351i 0.833551 0.332117i
\(31\) −10.7556 + 2.98626i −0.346953 + 0.0963311i −0.436633 0.899640i \(-0.643829\pi\)
0.0896801 + 0.995971i \(0.471416\pi\)
\(32\) 6.37884 18.9317i 0.199339 0.591616i
\(33\) 3.94271 + 0.646375i 0.119476 + 0.0195871i
\(34\) −53.0480 + 8.69678i −1.56024 + 0.255788i
\(35\) −3.34331 + 1.12649i −0.0955231 + 0.0321855i
\(36\) 2.17988 + 3.21509i 0.0605523 + 0.0893080i
\(37\) 10.2683 22.1945i 0.277520 0.599850i −0.717825 0.696224i \(-0.754862\pi\)
0.995345 + 0.0963733i \(0.0307243\pi\)
\(38\) −31.6917 + 41.6897i −0.833992 + 1.09710i
\(39\) 2.85009 + 26.2061i 0.0730792 + 0.671952i
\(40\) −40.5098 11.2475i −1.01275 0.281188i
\(41\) 5.39614 7.95871i 0.131613 0.194115i −0.756172 0.654373i \(-0.772933\pi\)
0.887785 + 0.460258i \(0.152243\pi\)
\(42\) −1.07331 1.78385i −0.0255549 0.0424726i
\(43\) −39.4487 + 2.13885i −0.917411 + 0.0497406i −0.506794 0.862067i \(-0.669170\pi\)
−0.410617 + 0.911808i \(0.634687\pi\)
\(44\) 2.05398 + 2.16836i 0.0466814 + 0.0492810i
\(45\) 16.1305 12.2621i 0.358456 0.272491i
\(46\) 21.4620 4.72415i 0.466566 0.102699i
\(47\) 4.88103 4.14599i 0.103852 0.0882125i −0.593956 0.804497i \(-0.702435\pi\)
0.697808 + 0.716285i \(0.254159\pi\)
\(48\) 1.82879 33.7301i 0.0380999 0.702711i
\(49\) −22.8242 43.0510i −0.465800 0.878592i
\(50\) 10.1983 46.3312i 0.203965 0.926624i
\(51\) −36.7237 + 16.9902i −0.720073 + 0.333141i
\(52\) −10.1595 + 16.8853i −0.195376 + 0.324717i
\(53\) 30.3824 57.3073i 0.573253 1.08127i −0.412164 0.911110i \(-0.635227\pi\)
0.985416 0.170160i \(-0.0544284\pi\)
\(54\) 9.11285 + 7.74052i 0.168756 + 0.143343i
\(55\) 10.7141 11.3107i 0.194802 0.205649i
\(56\) −0.351552 + 3.23247i −0.00627772 + 0.0577227i
\(57\) −14.5903 + 36.6189i −0.255971 + 0.642438i
\(58\) 40.9672i 0.706332i
\(59\) 10.3186 + 58.0907i 0.174892 + 0.984588i
\(60\) 15.1470 0.252451
\(61\) 20.5075 + 8.17093i 0.336188 + 0.133950i 0.532123 0.846667i \(-0.321395\pi\)
−0.195934 + 0.980617i \(0.562774\pi\)
\(62\) −25.5347 2.77706i −0.411849 0.0447913i
\(63\) −1.13768 1.07767i −0.0180584 0.0171058i
\(64\) −20.7434 + 24.4210i −0.324115 + 0.381578i
\(65\) 90.8177 + 48.1485i 1.39720 + 0.740747i
\(66\) 7.87749 + 4.73973i 0.119356 + 0.0718140i
\(67\) 21.3928 + 46.2399i 0.319296 + 0.690148i 0.999063 0.0432809i \(-0.0137810\pi\)
−0.679767 + 0.733428i \(0.737919\pi\)
\(68\) −29.5416 6.50259i −0.434435 0.0956263i
\(69\) 14.6148 7.74827i 0.211809 0.112294i
\(70\) −8.10615 0.439503i −0.115802 0.00627861i
\(71\) −30.3024 35.6747i −0.426794 0.502460i 0.506169 0.862435i \(-0.331061\pi\)
−0.932962 + 0.359974i \(0.882785\pi\)
\(72\) −4.01443 18.2377i −0.0557559 0.253302i
\(73\) −81.4368 107.128i −1.11557 1.46751i −0.866602 0.499000i \(-0.833701\pi\)
−0.248970 0.968511i \(-0.580092\pi\)
\(74\) 40.8527 38.6977i 0.552064 0.522942i
\(75\) −1.93327 35.6571i −0.0257770 0.475428i
\(76\) −25.2495 + 15.1921i −0.332231 + 0.199896i
\(77\) −0.997299 0.676185i −0.0129519 0.00878163i
\(78\) −16.2275 + 58.4461i −0.208045 + 0.749309i
\(79\) −86.7435 + 9.43392i −1.09802 + 0.119417i −0.639146 0.769085i \(-0.720712\pi\)
−0.458873 + 0.888502i \(0.651747\pi\)
\(80\) −104.863 79.7146i −1.31078 0.996433i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) 18.3133 12.4168i 0.223333 0.151424i
\(83\) −3.81776 11.3307i −0.0459972 0.136515i 0.922193 0.386730i \(-0.126395\pi\)
−0.968190 + 0.250215i \(0.919499\pi\)
\(84\) −0.189522 1.15603i −0.00225621 0.0137623i
\(85\) −25.5268 + 155.706i −0.300315 + 1.83184i
\(86\) −86.1478 29.0266i −1.00172 0.337518i
\(87\) 8.24978 + 29.7130i 0.0948250 + 0.341529i
\(88\) −5.31473 13.3390i −0.0603946 0.151579i
\(89\) 146.586 58.4051i 1.64703 0.656237i 0.652225 0.758026i \(-0.273836\pi\)
0.994806 + 0.101789i \(0.0324566\pi\)
\(90\) 44.9245 12.4732i 0.499161 0.138591i
\(91\) 2.53841 7.53372i 0.0278946 0.0827881i
\(92\) 12.2029 + 2.00057i 0.132641 + 0.0217453i
\(93\) −19.0792 + 3.12787i −0.205153 + 0.0336331i
\(94\) 13.9649 4.70533i 0.148563 0.0500568i
\(95\) 86.2603 + 127.224i 0.908003 + 1.33920i
\(96\) 14.5290 31.4039i 0.151344 0.327124i
\(97\) −40.2437 + 52.9397i −0.414884 + 0.545770i −0.955304 0.295625i \(-0.904472\pi\)
0.540420 + 0.841395i \(0.318265\pi\)
\(98\) −12.1227 111.466i −0.123701 1.13741i
\(99\) 6.66790 + 1.85133i 0.0673525 + 0.0187003i
\(100\) 14.9808 22.0950i 0.149808 0.220950i
\(101\) 64.2261 + 106.745i 0.635902 + 1.05688i 0.992456 + 0.122603i \(0.0391241\pi\)
−0.356554 + 0.934275i \(0.616048\pi\)
\(102\) −92.9718 + 5.04079i −0.911489 + 0.0494195i
\(103\) −55.2564 58.3335i −0.536470 0.566345i 0.400258 0.916403i \(-0.368921\pi\)
−0.936728 + 0.350058i \(0.886162\pi\)
\(104\) 75.4194 57.3323i 0.725186 0.551272i
\(105\) −5.96779 + 1.31361i −0.0568361 + 0.0125106i
\(106\) 113.755 96.6242i 1.07316 0.911549i
\(107\) −7.53793 + 139.029i −0.0704479 + 1.29934i 0.723064 + 0.690781i \(0.242733\pi\)
−0.793512 + 0.608555i \(0.791750\pi\)
\(108\) 3.15145 + 5.94427i 0.0291801 + 0.0550396i
\(109\) 21.9902 99.9025i 0.201745 0.916537i −0.761553 0.648103i \(-0.775563\pi\)
0.963298 0.268434i \(-0.0865061\pi\)
\(110\) 32.5360 15.0528i 0.295782 0.136843i
\(111\) 21.8372 36.2937i 0.196731 0.326970i
\(112\) −4.77182 + 9.00060i −0.0426055 + 0.0803625i
\(113\) 85.0066 + 72.2053i 0.752271 + 0.638985i 0.939193 0.343390i \(-0.111575\pi\)
−0.186922 + 0.982375i \(0.559851\pi\)
\(114\) −62.3770 + 65.8506i −0.547167 + 0.577637i
\(115\) 6.97404 64.1252i 0.0606438 0.557611i
\(116\) −8.53257 + 21.4151i −0.0735567 + 0.184613i
\(117\) 45.6580i 0.390239i
\(118\) −27.4188 + 132.964i −0.232363 + 1.12681i
\(119\) 12.2030 0.102546
\(120\) −67.6475 26.9532i −0.563729 0.224610i
\(121\) −115.001 12.5071i −0.950421 0.103365i
\(122\) 36.8779 + 34.9326i 0.302278 + 0.286333i
\(123\) 10.7820 12.6936i 0.0876586 0.103200i
\(124\) −12.7695 6.76998i −0.102980 0.0545966i
\(125\) 25.3662 + 15.2623i 0.202930 + 0.122099i
\(126\) −1.51407 3.27260i −0.0120164 0.0259730i
\(127\) 246.775 + 54.3193i 1.94311 + 0.427711i 0.993422 + 0.114512i \(0.0365305\pi\)
0.949688 + 0.313198i \(0.101401\pi\)
\(128\) −135.742 + 71.9660i −1.06049 + 0.562234i
\(129\) −68.3271 3.70459i −0.529668 0.0287177i
\(130\) 153.125 + 180.273i 1.17789 + 1.38672i
\(131\) −25.4437 115.592i −0.194227 0.882381i −0.968399 0.249406i \(-0.919765\pi\)
0.774172 0.632975i \(-0.218166\pi\)
\(132\) 3.13068 + 4.11834i 0.0237173 + 0.0311996i
\(133\) 8.63055 8.17530i 0.0648914 0.0614684i
\(134\) 6.34700 + 117.064i 0.0473657 + 0.873608i
\(135\) 30.0714 18.0933i 0.222751 0.134025i
\(136\) 120.363 + 81.6083i 0.885024 + 0.600061i
\(137\) 51.5307 185.597i 0.376137 1.35472i −0.497213 0.867629i \(-0.665643\pi\)
0.873350 0.487094i \(-0.161943\pi\)
\(138\) 37.8401 4.11536i 0.274203 0.0298214i
\(139\) 48.6113 + 36.9533i 0.349722 + 0.265851i 0.765256 0.643726i \(-0.222612\pi\)
−0.415535 + 0.909577i \(0.636405\pi\)
\(140\) −4.14586 1.91808i −0.0296133 0.0137006i
\(141\) 9.18105 6.22491i 0.0651138 0.0441483i
\(142\) −34.3905 102.067i −0.242187 0.718785i
\(143\) 5.67962 + 34.6442i 0.0397176 + 0.242267i
\(144\) 9.46556 57.7373i 0.0657330 0.400954i
\(145\) 113.953 + 38.3951i 0.785879 + 0.264794i
\(146\) −82.8390 298.359i −0.567391 2.04356i
\(147\) −31.2389 78.4037i −0.212509 0.533358i
\(148\) 29.4152 11.7201i 0.198751 0.0791896i
\(149\) −141.414 + 39.2633i −0.949084 + 0.263512i −0.707376 0.706837i \(-0.750121\pi\)
−0.241708 + 0.970349i \(0.577708\pi\)
\(150\) 26.2367 77.8678i 0.174911 0.519118i
\(151\) 156.874 + 25.7182i 1.03890 + 0.170319i 0.657005 0.753886i \(-0.271823\pi\)
0.381896 + 0.924205i \(0.375271\pi\)
\(152\) 139.799 22.9189i 0.919732 0.150782i
\(153\) −66.4162 + 22.3782i −0.434093 + 0.146263i
\(154\) −1.55593 2.29483i −0.0101035 0.0149015i
\(155\) −31.6560 + 68.4233i −0.204232 + 0.441441i
\(156\) −20.6557 + 27.1722i −0.132409 + 0.174181i
\(157\) −20.5740 189.175i −0.131045 1.20494i −0.856308 0.516466i \(-0.827247\pi\)
0.725263 0.688472i \(-0.241718\pi\)
\(158\) −193.459 53.7137i −1.22443 0.339960i
\(159\) 63.0472 92.9876i 0.396523 0.584828i
\(160\) −69.5629 115.614i −0.434768 0.722590i
\(161\) −4.98135 + 0.270081i −0.0309400 + 0.00167752i
\(162\) 14.2418 + 15.0349i 0.0879126 + 0.0928082i
\(163\) 202.567 153.988i 1.24274 0.944709i 0.243064 0.970010i \(-0.421848\pi\)
0.999680 + 0.0253010i \(0.00805441\pi\)
\(164\) 12.1592 2.67645i 0.0741416 0.0163198i
\(165\) 20.5667 17.4695i 0.124647 0.105876i
\(166\) 1.48951 27.4723i 0.00897294 0.165496i
\(167\) 111.386 + 210.096i 0.666981 + 1.25806i 0.953906 + 0.300107i \(0.0970222\pi\)
−0.286925 + 0.957953i \(0.592633\pi\)
\(168\) −1.21067 + 5.50015i −0.00720640 + 0.0327390i
\(169\) −56.8396 + 26.2968i −0.336329 + 0.155602i
\(170\) −187.182 + 311.100i −1.10107 + 1.83000i
\(171\) −31.9806 + 60.3218i −0.187021 + 0.352759i
\(172\) −38.9872 33.1160i −0.226670 0.192535i
\(173\) −5.44423 + 5.74740i −0.0314695 + 0.0332220i −0.741540 0.670908i \(-0.765904\pi\)
0.710071 + 0.704130i \(0.248663\pi\)
\(174\) −7.67184 + 70.5414i −0.0440910 + 0.405410i
\(175\) −3.98613 + 10.0044i −0.0227779 + 0.0571681i
\(176\) 44.9871i 0.255609i
\(177\) 6.88912 + 101.959i 0.0389216 + 0.576037i
\(178\) 363.088 2.03982
\(179\) −241.577 96.2529i −1.34959 0.537726i −0.420404 0.907337i \(-0.638112\pi\)
−0.929186 + 0.369611i \(0.879491\pi\)
\(180\) 26.0816 + 2.83655i 0.144898 + 0.0157586i
\(181\) −61.7712 58.5127i −0.341277 0.323275i 0.497795 0.867295i \(-0.334143\pi\)
−0.839072 + 0.544020i \(0.816902\pi\)
\(182\) 11.8426 13.9422i 0.0650694 0.0766057i
\(183\) 33.7817 + 17.9099i 0.184599 + 0.0978683i
\(184\) −50.9391 30.6491i −0.276843 0.166571i
\(185\) −69.3520 149.902i −0.374876 0.810281i
\(186\) −43.4480 9.56363i −0.233591 0.0514174i
\(187\) −47.6112 + 25.2419i −0.254605 + 0.134983i
\(188\) 8.28002 + 0.448930i 0.0440427 + 0.00238792i
\(189\) −1.75715 2.06868i −0.00929711 0.0109454i
\(190\) 76.0338 + 345.425i 0.400178 + 1.81803i
\(191\) −3.86684 5.08675i −0.0202453 0.0266322i 0.785859 0.618406i \(-0.212221\pi\)
−0.806104 + 0.591773i \(0.798428\pi\)
\(192\) −40.2912 + 38.1659i −0.209850 + 0.198781i
\(193\) −9.06970 167.281i −0.0469933 0.866740i −0.923085 0.384596i \(-0.874341\pi\)
0.876092 0.482144i \(-0.160142\pi\)
\(194\) −131.115 + 78.8891i −0.675849 + 0.406645i
\(195\) 147.362 + 99.9140i 0.755704 + 0.512380i
\(196\) 16.8789 60.7924i 0.0861170 0.310166i
\(197\) −260.371 + 28.3170i −1.32168 + 0.143741i −0.741613 0.670829i \(-0.765939\pi\)
−0.580066 + 0.814570i \(0.696973\pi\)
\(198\) 12.6766 + 9.63652i 0.0640234 + 0.0486693i
\(199\) −58.1043 26.8819i −0.291981 0.135085i 0.268430 0.963299i \(-0.413495\pi\)
−0.560412 + 0.828214i \(0.689357\pi\)
\(200\) −106.222 + 72.0201i −0.531109 + 0.360101i
\(201\) 28.1771 + 83.6265i 0.140184 + 0.416052i
\(202\) 46.3759 + 282.881i 0.229584 + 1.40040i
\(203\) 1.50455 9.17734i 0.00741157 0.0452086i
\(204\) −49.6498 16.7290i −0.243381 0.0820048i
\(205\) −17.3743 62.5767i −0.0847528 0.305252i
\(206\) −68.4342 171.757i −0.332205 0.833771i
\(207\) 26.6162 10.6049i 0.128581 0.0512312i
\(208\) 285.999 79.4072i 1.37500 0.381766i
\(209\) −16.7624 + 49.7489i −0.0802026 + 0.238033i
\(210\) −13.8757 2.27480i −0.0660746 0.0108324i
\(211\) −311.438 + 51.0577i −1.47601 + 0.241980i −0.845406 0.534125i \(-0.820641\pi\)
−0.630604 + 0.776104i \(0.717193\pi\)
\(212\) 79.5887 26.8165i 0.375418 0.126493i
\(213\) −45.4968 67.1028i −0.213600 0.315037i
\(214\) −134.525 + 290.770i −0.628620 + 1.35874i
\(215\) −161.478 + 212.421i −0.751060 + 0.988003i
\(216\) −3.49710 32.1553i −0.0161903 0.148867i
\(217\) 5.61820 + 1.55989i 0.0258903 + 0.00718841i
\(218\) 132.094 194.824i 0.605936 0.893688i
\(219\) −120.164 199.714i −0.548695 0.911938i
\(220\) 20.1430 1.09212i 0.0915589 0.00496418i
\(221\) −244.510 258.127i −1.10638 1.16799i
\(222\) 77.5910 58.9831i 0.349509 0.265690i
\(223\) −275.639 + 60.6728i −1.23605 + 0.272075i −0.784477 0.620158i \(-0.787068\pi\)
−0.451574 + 0.892234i \(0.649137\pi\)
\(224\) −7.95340 + 6.75567i −0.0355062 + 0.0301593i
\(225\) 3.34852 61.7599i 0.0148823 0.274488i
\(226\) 120.214 + 226.748i 0.531920 + 1.00331i
\(227\) −51.3575 + 233.319i −0.226244 + 1.02784i 0.717344 + 0.696719i \(0.245358\pi\)
−0.943589 + 0.331120i \(0.892573\pi\)
\(228\) −46.3221 + 21.4309i −0.203167 + 0.0939951i
\(229\) −7.88563 + 13.1060i −0.0344351 + 0.0572315i −0.873597 0.486651i \(-0.838219\pi\)
0.839162 + 0.543882i \(0.183046\pi\)
\(230\) 69.5236 131.135i 0.302276 0.570154i
\(231\) −1.59062 1.35108i −0.00688579 0.00584885i
\(232\) 76.2139 80.4580i 0.328508 0.346802i
\(233\) 26.2147 241.040i 0.112509 1.03451i −0.792721 0.609585i \(-0.791336\pi\)
0.905230 0.424922i \(-0.139698\pi\)
\(234\) −38.8871 + 97.5993i −0.166184 + 0.417091i
\(235\) 43.2541i 0.184060i
\(236\) −42.0263 + 63.7946i −0.178078 + 0.270316i
\(237\) −151.130 −0.637680
\(238\) 26.0854 + 10.3934i 0.109603 + 0.0436696i
\(239\) −238.958 25.9882i −0.999824 0.108737i −0.406458 0.913670i \(-0.633236\pi\)
−0.593367 + 0.804932i \(0.702202\pi\)
\(240\) −165.635 156.898i −0.690146 0.653741i
\(241\) 55.4874 65.3249i 0.230238 0.271058i −0.634896 0.772597i \(-0.718957\pi\)
0.865134 + 0.501540i \(0.167233\pi\)
\(242\) −235.176 124.682i −0.971800 0.515216i
\(243\) 13.3571 + 8.03669i 0.0549674 + 0.0330728i
\(244\) 12.0018 + 25.9415i 0.0491878 + 0.106318i
\(245\) −321.410 70.7477i −1.31188 0.288766i
\(246\) 33.8590 17.9509i 0.137638 0.0729711i
\(247\) −345.859 18.7519i −1.40024 0.0759186i
\(248\) 44.9827 + 52.9577i 0.181382 + 0.213539i
\(249\) −4.45192 20.2253i −0.0178792 0.0812260i
\(250\) 41.2242 + 54.2296i 0.164897 + 0.216918i
\(251\) 146.699 138.961i 0.584460 0.553630i −0.337297 0.941398i \(-0.609513\pi\)
0.921757 + 0.387769i \(0.126754\pi\)
\(252\) −0.109850 2.02606i −0.000435912 0.00803993i
\(253\) 18.8765 11.3576i 0.0746107 0.0448918i
\(254\) 481.246 + 326.293i 1.89467 + 1.28462i
\(255\) −73.1133 + 263.330i −0.286719 + 1.03267i
\(256\) −224.043 + 24.3661i −0.875168 + 0.0951803i
\(257\) 380.049 + 288.906i 1.47879 + 1.12415i 0.963692 + 0.267016i \(0.0860378\pi\)
0.515098 + 0.857131i \(0.327755\pi\)
\(258\) −142.902 66.1135i −0.553884 0.256254i
\(259\) −10.5729 + 7.16859i −0.0408219 + 0.0276780i
\(260\) 42.4975 + 126.128i 0.163452 + 0.485108i
\(261\) 8.64098 + 52.7077i 0.0331072 + 0.201945i
\(262\) 44.0612 268.762i 0.168173 1.02581i
\(263\) 230.360 + 77.6173i 0.875893 + 0.295123i 0.721106 0.692825i \(-0.243634\pi\)
0.154788 + 0.987948i \(0.450531\pi\)
\(264\) −6.65346 23.9636i −0.0252025 0.0907712i
\(265\) −162.153 406.972i −0.611897 1.53574i
\(266\) 25.4118 10.1250i 0.0955329 0.0380638i
\(267\) 263.343 73.1168i 0.986303 0.273846i
\(268\) −21.0639 + 62.5155i −0.0785968 + 0.233267i
\(269\) −61.9875 10.1623i −0.230437 0.0377782i 0.0454572 0.998966i \(-0.485526\pi\)
−0.275894 + 0.961188i \(0.588974\pi\)
\(270\) 79.6912 13.0647i 0.295153 0.0483878i
\(271\) 36.3410 12.2447i 0.134100 0.0451834i −0.251451 0.967870i \(-0.580908\pi\)
0.385551 + 0.922686i \(0.374011\pi\)
\(272\) 255.685 + 377.107i 0.940019 + 1.38642i
\(273\) 5.78170 12.4969i 0.0211784 0.0457763i
\(274\) 268.227 352.846i 0.978930 1.28776i
\(275\) −5.14184 47.2784i −0.0186976 0.171922i
\(276\) 20.6376 + 5.73000i 0.0747739 + 0.0207609i
\(277\) −97.1103 + 143.227i −0.350579 + 0.517065i −0.961565 0.274576i \(-0.911463\pi\)
0.610987 + 0.791641i \(0.290773\pi\)
\(278\) 72.4390 + 120.395i 0.260572 + 0.433074i
\(279\) −33.4382 + 1.81296i −0.119850 + 0.00649808i
\(280\) 15.1025 + 15.9435i 0.0539376 + 0.0569412i
\(281\) 189.829 144.305i 0.675550 0.513539i −0.210226 0.977653i \(-0.567420\pi\)
0.885776 + 0.464113i \(0.153627\pi\)
\(282\) 24.9273 5.48692i 0.0883948 0.0194572i
\(283\) −237.901 + 202.075i −0.840638 + 0.714044i −0.960360 0.278763i \(-0.910076\pi\)
0.119722 + 0.992807i \(0.461800\pi\)
\(284\) 3.28115 60.5173i 0.0115534 0.213089i
\(285\) 124.706 + 235.221i 0.437566 + 0.825337i
\(286\) −17.3657 + 78.8933i −0.0607193 + 0.275851i
\(287\) −4.55851 + 2.10899i −0.0158833 + 0.00734840i
\(288\) 30.8984 51.3536i 0.107286 0.178311i
\(289\) 120.271 226.856i 0.416164 0.784968i
\(290\) 210.886 + 179.128i 0.727191 + 0.617682i
\(291\) −79.2095 + 83.6204i −0.272197 + 0.287355i
\(292\) 18.8385 173.217i 0.0645155 0.593210i
\(293\) 119.190 299.145i 0.406793 1.02097i −0.572749 0.819731i \(-0.694123\pi\)
0.979542 0.201242i \(-0.0644976\pi\)
\(294\) 194.203i 0.660555i
\(295\) 344.149 + 200.883i 1.16661 + 0.680958i
\(296\) −152.225 −0.514273
\(297\) 11.1347 + 4.43649i 0.0374907 + 0.0149377i
\(298\) −335.729 36.5127i −1.12661 0.122526i
\(299\) 105.523 + 99.9571i 0.352921 + 0.334305i
\(300\) 29.9331 35.2399i 0.0997769 0.117466i
\(301\) 18.2325 + 9.66627i 0.0605732 + 0.0321139i
\(302\) 313.432 + 188.586i 1.03786 + 0.624457i
\(303\) 90.6010 + 195.831i 0.299013 + 0.646306i
\(304\) 433.472 + 95.4144i 1.42589 + 0.313863i
\(305\) 131.729 69.8386i 0.431900 0.228979i
\(306\) −161.032 8.73090i −0.526248 0.0285323i
\(307\) 131.085 + 154.325i 0.426987 + 0.502688i 0.933019 0.359826i \(-0.117164\pi\)
−0.506032 + 0.862515i \(0.668888\pi\)
\(308\) −0.335383 1.52366i −0.00108891 0.00494695i
\(309\) −84.2219 110.792i −0.272563 0.358550i
\(310\) −125.945 + 119.301i −0.406273 + 0.384843i
\(311\) −13.0839 241.318i −0.0420703 0.775942i −0.941115 0.338086i \(-0.890221\pi\)
0.899045 0.437856i \(-0.144262\pi\)
\(312\) 140.601 84.5968i 0.450644 0.271143i
\(313\) −358.709 243.211i −1.14604 0.777032i −0.168066 0.985776i \(-0.553752\pi\)
−0.977970 + 0.208744i \(0.933062\pi\)
\(314\) 117.142 421.907i 0.373063 1.34365i
\(315\) −10.5219 + 1.14433i −0.0334029 + 0.00363279i
\(316\) −89.9412 68.3715i −0.284624 0.216366i
\(317\) 434.902 + 201.207i 1.37193 + 0.634723i 0.960899 0.276898i \(-0.0893065\pi\)
0.411032 + 0.911621i \(0.365169\pi\)
\(318\) 213.969 145.074i 0.672857 0.456209i
\(319\) 13.1131 + 38.9184i 0.0411070 + 0.122001i
\(320\) 35.0113 + 213.560i 0.109410 + 0.667374i
\(321\) −39.0152 + 237.982i −0.121543 + 0.741377i
\(322\) −10.8782 3.66530i −0.0337833 0.0113829i
\(323\) −142.237 512.292i −0.440363 1.58604i
\(324\) 4.31331 + 10.8256i 0.0133127 + 0.0334123i
\(325\) 291.490 116.140i 0.896891 0.357354i
\(326\) 564.163 156.639i 1.73056 0.480488i
\(327\) 56.5734 167.904i 0.173007 0.513467i
\(328\) −59.0663 9.68343i −0.180080 0.0295227i
\(329\) −3.30118 + 0.541202i −0.0100340 + 0.00164499i
\(330\) 58.8425 19.8264i 0.178311 0.0600799i
\(331\) 96.2822 + 142.006i 0.290883 + 0.429020i 0.944850 0.327503i \(-0.106207\pi\)
−0.653967 + 0.756523i \(0.726897\pi\)
\(332\) 6.50051 14.0506i 0.0195798 0.0423211i
\(333\) 44.3980 58.4046i 0.133327 0.175389i
\(334\) 59.1606 + 543.972i 0.177127 + 1.62866i
\(335\) 331.567 + 92.0591i 0.989752 + 0.274803i
\(336\) −9.90210 + 14.6045i −0.0294705 + 0.0434658i
\(337\) −173.937 289.086i −0.516134 0.857822i 0.483714 0.875226i \(-0.339287\pi\)
−0.999849 + 0.0174040i \(0.994460\pi\)
\(338\) −143.898 + 7.80195i −0.425735 + 0.0230827i
\(339\) 132.851 + 140.249i 0.391891 + 0.413714i
\(340\) −162.643 + 123.638i −0.478360 + 0.363640i
\(341\) −25.1465 + 5.53517i −0.0737435 + 0.0162322i
\(342\) −119.739 + 101.707i −0.350113 + 0.297388i
\(343\) −2.76369 + 50.9732i −0.00805740 + 0.148610i
\(344\) 115.191 + 217.273i 0.334857 + 0.631608i
\(345\) 24.0172 109.111i 0.0696150 0.316264i
\(346\) −16.5328 + 7.64887i −0.0477826 + 0.0221066i
\(347\) 158.914 264.118i 0.457966 0.761146i −0.538720 0.842485i \(-0.681092\pi\)
0.996687 + 0.0813386i \(0.0259195\pi\)
\(348\) −18.7026 + 35.2768i −0.0537430 + 0.101370i
\(349\) 244.166 + 207.396i 0.699616 + 0.594259i 0.924980 0.380015i \(-0.124081\pi\)
−0.225364 + 0.974275i \(0.572357\pi\)
\(350\) −17.0416 + 17.9906i −0.0486903 + 0.0514018i
\(351\) −8.55026 + 78.6184i −0.0243597 + 0.223984i
\(352\) 17.0568 42.8094i 0.0484569 0.121618i
\(353\) 402.347i 1.13979i −0.821717 0.569896i \(-0.806983\pi\)
0.821717 0.569896i \(-0.193017\pi\)
\(354\) −72.1122 + 223.816i −0.203707 + 0.632248i
\(355\) −316.137 −0.890527
\(356\) 189.800 + 75.6232i 0.533146 + 0.212425i
\(357\) 21.0124 + 2.28523i 0.0588582 + 0.00640121i
\(358\) −434.419 411.504i −1.21346 1.14945i
\(359\) 121.799 143.393i 0.339273 0.399423i −0.565895 0.824477i \(-0.691469\pi\)
0.905168 + 0.425054i \(0.139745\pi\)
\(360\) −111.435 59.0789i −0.309541 0.164108i
\(361\) −134.476 80.9118i −0.372511 0.224132i
\(362\) −82.2075 177.689i −0.227093 0.490852i
\(363\) −195.678 43.0719i −0.539057 0.118655i
\(364\) 9.09446 4.82158i 0.0249848 0.0132461i
\(365\) −907.540 49.2054i −2.48641 0.134809i
\(366\) 56.9583 + 67.0565i 0.155624 + 0.183214i
\(367\) 116.066 + 527.293i 0.316256 + 1.43677i 0.819728 + 0.572754i \(0.194125\pi\)
−0.503472 + 0.864012i \(0.667944\pi\)
\(368\) −112.718 148.279i −0.306300 0.402931i
\(369\) 20.9426 19.8379i 0.0567550 0.0537612i
\(370\) −20.5759 379.500i −0.0556106 1.02568i
\(371\) −29.0316 + 17.4677i −0.0782522 + 0.0470828i
\(372\) −20.7200 14.0485i −0.0556990 0.0377649i
\(373\) 98.0394 353.106i 0.262840 0.946665i −0.707856 0.706356i \(-0.750338\pi\)
0.970697 0.240308i \(-0.0772486\pi\)
\(374\) −123.273 + 13.4068i −0.329607 + 0.0358470i
\(375\) 40.8199 + 31.0305i 0.108853 + 0.0827479i
\(376\) −36.1802 16.7387i −0.0962239 0.0445179i
\(377\) −224.272 + 152.060i −0.594885 + 0.403342i
\(378\) −1.99422 5.91862i −0.00527571 0.0156577i
\(379\) 67.0223 + 408.818i 0.176840 + 1.07867i 0.914823 + 0.403855i \(0.132330\pi\)
−0.737983 + 0.674819i \(0.764222\pi\)
\(380\) −32.1986 + 196.403i −0.0847333 + 0.516850i
\(381\) 414.749 + 139.745i 1.08858 + 0.366785i
\(382\) −3.93343 14.1669i −0.0102969 0.0370862i
\(383\) 165.752 + 416.006i 0.432773 + 1.08618i 0.970079 + 0.242791i \(0.0780629\pi\)
−0.537306 + 0.843388i \(0.680558\pi\)
\(384\) −247.211 + 98.4979i −0.643779 + 0.256505i
\(385\) −7.84143 + 2.17716i −0.0203673 + 0.00565496i
\(386\) 123.086 365.307i 0.318876 0.946391i
\(387\) −116.959 19.1744i −0.302219 0.0495462i
\(388\) −84.9695 + 13.9300i −0.218994 + 0.0359022i
\(389\) 84.5520 28.4889i 0.217357 0.0732362i −0.208516 0.978019i \(-0.566863\pi\)
0.425873 + 0.904783i \(0.359967\pi\)
\(390\) 229.907 + 339.087i 0.589504 + 0.869454i
\(391\) −93.6823 + 202.491i −0.239597 + 0.517880i
\(392\) −183.559 + 241.467i −0.468262 + 0.615988i
\(393\) −22.1648 203.802i −0.0563991 0.518581i
\(394\) −580.690 161.228i −1.47383 0.409208i
\(395\) −330.720 + 487.776i −0.837266 + 1.23488i
\(396\) 4.61948 + 7.67764i 0.0116654 + 0.0193880i
\(397\) 90.8763 4.92717i 0.228907 0.0124110i 0.0606716 0.998158i \(-0.480676\pi\)
0.168236 + 0.985747i \(0.446193\pi\)
\(398\) −101.309 106.951i −0.254546 0.268721i
\(399\) 16.3919 12.4608i 0.0410825 0.0312301i
\(400\) −392.684 + 86.4363i −0.981710 + 0.216091i
\(401\) −152.665 + 129.675i −0.380711 + 0.323379i −0.817225 0.576318i \(-0.804489\pi\)
0.436514 + 0.899697i \(0.356213\pi\)
\(402\) −10.9933 + 202.760i −0.0273466 + 0.504378i
\(403\) −79.5754 150.095i −0.197458 0.372444i
\(404\) −34.6753 + 157.532i −0.0858300 + 0.389930i
\(405\) 55.1681 25.5235i 0.136218 0.0630209i
\(406\) 11.0325 18.3362i 0.0271737 0.0451631i
\(407\) 26.4229 49.8388i 0.0649211 0.122454i
\(408\) 191.971 + 163.061i 0.470516 + 0.399660i
\(409\) −111.265 + 117.461i −0.272041 + 0.287190i −0.847673 0.530519i \(-0.821997\pi\)
0.575633 + 0.817708i \(0.304756\pi\)
\(410\) 16.1572 148.563i 0.0394077 0.362348i
\(411\) 123.487 309.929i 0.300455 0.754085i
\(412\) 104.037i 0.252517i
\(413\) 11.0255 28.7792i 0.0266960 0.0696832i
\(414\) 65.9274 0.159245
\(415\) −75.0198 29.8906i −0.180771 0.0720256i
\(416\) 302.262 + 32.8729i 0.726590 + 0.0790215i
\(417\) 76.7835 + 72.7332i 0.184133 + 0.174420i
\(418\) −78.2028 + 92.0675i −0.187088 + 0.220257i
\(419\) 151.413 + 80.2741i 0.361368 + 0.191585i 0.639193 0.769047i \(-0.279269\pi\)
−0.277825 + 0.960632i \(0.589614\pi\)
\(420\) −6.77955 4.07912i −0.0161418 0.00971219i
\(421\) 239.063 + 516.727i 0.567846 + 1.22738i 0.952562 + 0.304344i \(0.0984373\pi\)
−0.384716 + 0.923035i \(0.625701\pi\)
\(422\) −709.221 156.111i −1.68062 0.369932i
\(423\) 16.9745 8.99934i 0.0401290 0.0212750i
\(424\) −403.166 21.8590i −0.950862 0.0515543i
\(425\) 311.810 + 367.091i 0.733669 + 0.863742i
\(426\) −40.1030 182.190i −0.0941386 0.427676i
\(427\) −6.97835 9.17986i −0.0163427 0.0214985i
\(428\) −130.882 + 123.978i −0.305800 + 0.289669i
\(429\) 3.29200 + 60.7173i 0.00767365 + 0.141532i
\(430\) −526.097 + 316.542i −1.22348 + 0.736145i
\(431\) −589.127 399.438i −1.36688 0.926771i −0.366891 0.930264i \(-0.619578\pi\)
−0.999994 + 0.00349333i \(0.998888\pi\)
\(432\) 27.1111 97.6452i 0.0627571 0.226031i
\(433\) 105.510 11.4749i 0.243671 0.0265008i 0.0145316 0.999894i \(-0.495374\pi\)
0.229140 + 0.973394i \(0.426409\pi\)
\(434\) 10.6810 + 8.11948i 0.0246106 + 0.0187085i
\(435\) 189.024 + 87.4520i 0.434539 + 0.201039i
\(436\) 109.628 74.3297i 0.251441 0.170481i
\(437\) 69.4002 + 205.973i 0.158811 + 0.471333i
\(438\) −86.7673 529.257i −0.198099 1.20835i
\(439\) −124.571 + 759.850i −0.283761 + 1.73087i 0.332305 + 0.943172i \(0.392174\pi\)
−0.616066 + 0.787695i \(0.711275\pi\)
\(440\) −91.9029 30.9657i −0.208870 0.0703766i
\(441\) −39.1077 140.853i −0.0886795 0.319395i
\(442\) −302.822 760.026i −0.685118 1.71952i
\(443\) 91.5298 36.4688i 0.206613 0.0823223i −0.264536 0.964376i \(-0.585219\pi\)
0.471149 + 0.882054i \(0.343839\pi\)
\(444\) 52.8447 14.6722i 0.119020 0.0330456i
\(445\) 340.291 1009.95i 0.764699 2.26955i
\(446\) −640.886 105.068i −1.43696 0.235578i
\(447\) −250.852 + 41.1252i −0.561191 + 0.0920026i
\(448\) 15.8610 5.34418i 0.0354040 0.0119290i
\(449\) 372.410 + 549.263i 0.829420 + 1.22330i 0.972340 + 0.233569i \(0.0750405\pi\)
−0.142920 + 0.989734i \(0.545649\pi\)
\(450\) 59.7590 129.167i 0.132798 0.287038i
\(451\) 13.4230 17.6577i 0.0297628 0.0391522i
\(452\) 15.6139 + 143.568i 0.0345441 + 0.317627i
\(453\) 265.305 + 73.6615i 0.585662 + 0.162608i
\(454\) −308.502 + 455.006i −0.679520 + 1.00222i
\(455\) −27.6820 46.0078i −0.0608395 0.101116i
\(456\) 245.012 13.2842i 0.537307 0.0291319i
\(457\) −392.012 413.842i −0.857794 0.905562i 0.138606 0.990348i \(-0.455738\pi\)
−0.996399 + 0.0847860i \(0.972979\pi\)
\(458\) −28.0189 + 21.2994i −0.0611767 + 0.0465053i
\(459\) −118.553 + 26.0954i −0.258284 + 0.0568527i
\(460\) 63.6552 54.0692i 0.138381 0.117542i
\(461\) 33.5942 619.608i 0.0728724 1.34405i −0.702109 0.712069i \(-0.747758\pi\)
0.774982 0.631984i \(-0.217759\pi\)
\(462\) −2.24941 4.24284i −0.00486885 0.00918363i
\(463\) −26.8485 + 121.974i −0.0579881 + 0.263442i −0.996691 0.0812850i \(-0.974098\pi\)
0.938703 + 0.344727i \(0.112029\pi\)
\(464\) 315.130 145.794i 0.679159 0.314212i
\(465\) −67.3218 + 111.890i −0.144778 + 0.240623i
\(466\) 261.332 492.924i 0.560798 1.05778i
\(467\) 394.562 + 335.144i 0.844886 + 0.717652i 0.961287 0.275550i \(-0.0888599\pi\)
−0.116401 + 0.993202i \(0.537136\pi\)
\(468\) −40.6556 + 42.9195i −0.0868708 + 0.0917084i
\(469\) 2.87740 26.4573i 0.00613519 0.0564121i
\(470\) 36.8397 92.4607i 0.0783823 0.196725i
\(471\) 329.593i 0.699773i
\(472\) 301.210 210.127i 0.638158 0.445184i
\(473\) −91.1305 −0.192665
\(474\) −323.058 128.718i −0.681557 0.271557i
\(475\) 466.455 + 50.7300i 0.982010 + 0.106800i
\(476\) 11.4711 + 10.8660i 0.0240990 + 0.0228278i
\(477\) 125.974 148.308i 0.264097 0.310919i
\(478\) −488.666 259.074i −1.02231 0.541997i
\(479\) 243.937 + 146.772i 0.509263 + 0.306413i 0.746895 0.664942i \(-0.231544\pi\)
−0.237632 + 0.971355i \(0.576371\pi\)
\(480\) −98.1293 212.103i −0.204436 0.441881i
\(481\) 363.482 + 80.0085i 0.755680 + 0.166338i
\(482\) 174.248 92.3806i 0.361511 0.191661i
\(483\) −8.62794 0.467793i −0.0178632 0.000968517i
\(484\) −96.9667 114.158i −0.200344 0.235864i
\(485\) 96.5516 + 438.638i 0.199075 + 0.904409i
\(486\) 21.7074 + 28.5556i 0.0446655 + 0.0587565i
\(487\) 52.3048 49.5457i 0.107402 0.101737i −0.632115 0.774875i \(-0.717813\pi\)
0.739517 + 0.673138i \(0.235054\pi\)
\(488\) −7.43945 137.213i −0.0152448 0.281173i
\(489\) 377.637 227.217i 0.772264 0.464656i
\(490\) −626.796 424.978i −1.27917 0.867302i
\(491\) −143.117 + 515.459i −0.291480 + 1.04982i 0.662283 + 0.749254i \(0.269588\pi\)
−0.953763 + 0.300561i \(0.902826\pi\)
\(492\) 21.4381 2.33154i 0.0435735 0.00473890i
\(493\) −331.115 251.707i −0.671633 0.510562i
\(494\) −723.342 334.654i −1.46425 0.677436i
\(495\) 38.6852 26.2292i 0.0781519 0.0529883i
\(496\) 69.5111 + 206.302i 0.140143 + 0.415931i
\(497\) 3.95556 + 24.1278i 0.00795886 + 0.0485469i
\(498\) 7.70946 47.0256i 0.0154808 0.0944290i
\(499\) 786.639 + 265.050i 1.57643 + 0.531161i 0.965473 0.260502i \(-0.0838881\pi\)
0.610957 + 0.791663i \(0.290785\pi\)
\(500\) 10.2547 + 36.9340i 0.0205093 + 0.0738679i
\(501\) 152.451 + 382.623i 0.304293 + 0.763718i
\(502\) 431.941 172.101i 0.860440 0.342831i
\(503\) −377.479 + 104.807i −0.750456 + 0.208363i −0.621637 0.783305i \(-0.713532\pi\)
−0.128819 + 0.991668i \(0.541118\pi\)
\(504\) −3.11466 + 9.24397i −0.00617988 + 0.0183412i
\(505\) 830.312 + 136.123i 1.64418 + 0.269550i
\(506\) 50.0241 8.20103i 0.0988618 0.0162076i
\(507\) −102.797 + 34.6362i −0.202755 + 0.0683160i
\(508\) 183.606 + 270.799i 0.361429 + 0.533068i
\(509\) −240.514 + 519.861i −0.472522 + 1.02134i 0.514012 + 0.857783i \(0.328159\pi\)
−0.986534 + 0.163556i \(0.947704\pi\)
\(510\) −380.568 + 500.628i −0.746211 + 0.981624i
\(511\) 7.59988 + 69.8798i 0.0148726 + 0.136751i
\(512\) 92.4860 + 25.6786i 0.180637 + 0.0501536i
\(513\) −66.3636 + 97.8790i −0.129364 + 0.190797i
\(514\) 566.337 + 941.259i 1.10182 + 1.83124i
\(515\) −541.888 + 29.3803i −1.05221 + 0.0570491i
\(516\) −60.9304 64.3234i −0.118082 0.124658i
\(517\) 11.7604 8.94002i 0.0227474 0.0172921i
\(518\) −28.7063 + 6.31873i −0.0554176 + 0.0121983i
\(519\) −10.4507 + 8.87691i −0.0201362 + 0.0171039i
\(520\) 34.6411 638.917i 0.0666174 1.22869i
\(521\) 130.945 + 246.989i 0.251335 + 0.474067i 0.976789 0.214203i \(-0.0687153\pi\)
−0.725455 + 0.688270i \(0.758370\pi\)
\(522\) −26.4202 + 120.028i −0.0506135 + 0.229939i
\(523\) 523.013 241.972i 1.00003 0.462661i 0.149594 0.988747i \(-0.452203\pi\)
0.850431 + 0.526087i \(0.176341\pi\)
\(524\) 79.0096 131.315i 0.150782 0.250601i
\(525\) −8.73720 + 16.4801i −0.0166423 + 0.0313907i
\(526\) 426.314 + 362.115i 0.810483 + 0.688431i
\(527\) 179.333 189.320i 0.340290 0.359240i
\(528\) 8.42464 77.4632i 0.0159557 0.146711i
\(529\) −162.043 + 406.697i −0.306320 + 0.768804i
\(530\) 1008.06i 1.90199i
\(531\) −7.23118 + 176.852i −0.0136180 + 0.333055i
\(532\) 15.3925 0.0289333
\(533\) 135.949 + 54.1670i 0.255064 + 0.101627i
\(534\) 625.200 + 67.9946i 1.17079 + 0.127331i
\(535\) 682.715 + 646.702i 1.27610 + 1.20879i
\(536\) 205.315 241.716i 0.383051 0.450962i
\(537\) −397.945 210.977i −0.741052 0.392881i
\(538\) −123.850 74.5181i −0.230205 0.138510i
\(539\) −47.1954 102.011i −0.0875610 0.189260i
\(540\) 44.3787 + 9.76850i 0.0821828 + 0.0180898i
\(541\) −605.994 + 321.278i −1.12014 + 0.593859i −0.922338 0.386384i \(-0.873724\pi\)
−0.197799 + 0.980243i \(0.563379\pi\)
\(542\) 88.1120 + 4.77729i 0.162568 + 0.00881420i
\(543\) −95.4061 112.321i −0.175702 0.206852i
\(544\) 100.328 + 455.795i 0.184427 + 0.837859i
\(545\) −418.113 550.018i −0.767180 1.00921i
\(546\) 23.0027 21.7893i 0.0421296 0.0399072i
\(547\) −14.1366 260.734i −0.0258439 0.476663i −0.982596 0.185757i \(-0.940526\pi\)
0.956752 0.290905i \(-0.0939565\pi\)
\(548\) 213.702 128.580i 0.389968 0.234636i
\(549\) 54.8146 + 37.1652i 0.0998444 + 0.0676962i
\(550\) 29.2760 105.442i 0.0532290 0.191714i
\(551\) −402.809 + 43.8081i −0.731050 + 0.0795065i
\(552\) −81.9724 62.3138i −0.148501 0.112887i
\(553\) 41.3654 + 19.1377i 0.0748019 + 0.0346070i
\(554\) −329.572 + 223.455i −0.594895 + 0.403349i
\(555\) −91.3453 271.103i −0.164586 0.488474i
\(556\) 12.7911 + 78.0223i 0.0230056 + 0.140328i
\(557\) −77.0899 + 470.228i −0.138402 + 0.844215i 0.822792 + 0.568342i \(0.192415\pi\)
−0.961194 + 0.275872i \(0.911033\pi\)
\(558\) −73.0221 24.6040i −0.130864 0.0440932i
\(559\) −160.855 579.348i −0.287755 1.03640i
\(560\) 25.4675 + 63.9185i 0.0454776 + 0.114140i
\(561\) −86.7086 + 34.5479i −0.154561 + 0.0615827i
\(562\) 528.687 146.789i 0.940725 0.261191i
\(563\) 262.741 779.789i 0.466681 1.38506i −0.413536 0.910488i \(-0.635706\pi\)
0.880217 0.474572i \(-0.157397\pi\)
\(564\) 14.1733 + 2.32359i 0.0251299 + 0.00411984i
\(565\) 743.377 121.870i 1.31571 0.215700i
\(566\) −680.648 + 229.337i −1.20256 + 0.405189i
\(567\) −2.63824 3.89112i −0.00465298 0.00686264i
\(568\) −122.341 + 264.435i −0.215389 + 0.465555i
\(569\) 141.501 186.141i 0.248684 0.327138i −0.654766 0.755831i \(-0.727233\pi\)
0.903450 + 0.428694i \(0.141026\pi\)
\(570\) 66.2355 + 609.025i 0.116203 + 1.06847i
\(571\) −996.753 276.747i −1.74563 0.484671i −0.759479 0.650532i \(-0.774546\pi\)
−0.986149 + 0.165861i \(0.946960\pi\)
\(572\) −25.5095 + 37.6236i −0.0445970 + 0.0657756i
\(573\) −5.70573 9.48299i −0.00995764 0.0165497i
\(574\) −11.5406 + 0.625712i −0.0201055 + 0.00109009i
\(575\) −135.407 142.947i −0.235490 0.248604i
\(576\) −76.5246 + 58.1725i −0.132855 + 0.100994i
\(577\) −991.919 + 218.338i −1.71910 + 0.378402i −0.961604 0.274442i \(-0.911507\pi\)
−0.757493 + 0.652844i \(0.773576\pi\)
\(578\) 450.308 382.495i 0.779079 0.661756i
\(579\) 15.7092 289.739i 0.0271316 0.500412i
\(580\) 72.9296 + 137.560i 0.125741 + 0.237172i
\(581\) −1.34261 + 6.09956i −0.00231087 + 0.0104984i
\(582\) −240.539 + 111.285i −0.413298 + 0.191212i
\(583\) 77.1374 128.203i 0.132311 0.219903i
\(584\) −392.363 + 740.076i −0.671855 + 1.26725i
\(585\) 235.032 + 199.638i 0.401764 + 0.341261i
\(586\) 509.566 537.942i 0.869566 0.917990i
\(587\) 92.9809 854.946i 0.158400 1.45647i −0.597547 0.801834i \(-0.703858\pi\)
0.755947 0.654632i \(-0.227177\pi\)
\(588\) 40.4483 101.517i 0.0687896 0.172649i
\(589\) 254.038i 0.431304i
\(590\) 564.566 + 722.523i 0.956892 + 1.22462i
\(591\) −453.634 −0.767571
\(592\) −443.059 176.531i −0.748410 0.298194i
\(593\) 872.324 + 94.8710i 1.47104 + 0.159985i 0.808257 0.588830i \(-0.200411\pi\)
0.662779 + 0.748815i \(0.269377\pi\)
\(594\) 20.0232 + 18.9670i 0.0337092 + 0.0319310i
\(595\) 53.3573 62.8171i 0.0896761 0.105575i
\(596\) −167.893 89.0115i −0.281700 0.149348i
\(597\) −95.0155 57.1689i −0.159155 0.0957604i
\(598\) 140.435 + 303.545i 0.234841 + 0.507600i
\(599\) −118.882 26.1678i −0.198467 0.0436858i 0.114624 0.993409i \(-0.463434\pi\)
−0.313091 + 0.949723i \(0.601365\pi\)
\(600\) −196.390 + 104.119i −0.327317 + 0.173532i
\(601\) 589.550 + 31.9645i 0.980949 + 0.0531855i 0.537632 0.843179i \(-0.319319\pi\)
0.443317 + 0.896365i \(0.353802\pi\)
\(602\) 30.7413 + 36.1915i 0.0510654 + 0.0601188i
\(603\) 32.8575 + 149.273i 0.0544900 + 0.247551i
\(604\) 124.565 + 163.862i 0.206233 + 0.271295i
\(605\) −567.220 + 537.299i −0.937554 + 0.888098i
\(606\) 26.8802 + 495.776i 0.0443568 + 0.818113i
\(607\) −398.997 + 240.068i −0.657326 + 0.395500i −0.804783 0.593569i \(-0.797719\pi\)
0.147458 + 0.989068i \(0.452891\pi\)
\(608\) 376.312 + 255.146i 0.618935 + 0.419648i
\(609\) 4.30930 15.5207i 0.00707602 0.0254855i
\(610\) 341.069 37.0935i 0.559129 0.0608090i
\(611\) 77.5932 + 58.9849i 0.126994 + 0.0965382i
\(612\) −82.3591 38.1034i −0.134574 0.0622604i
\(613\) −564.401 + 382.673i −0.920719 + 0.624263i −0.926734 0.375719i \(-0.877396\pi\)
0.00601453 + 0.999982i \(0.498086\pi\)
\(614\) 148.770 + 441.534i 0.242297 + 0.719111i
\(615\) −18.1982 111.004i −0.0295906 0.180495i
\(616\) −1.21342 + 7.40155i −0.00196984 + 0.0120155i
\(617\) −895.625 301.771i −1.45158 0.489094i −0.520485 0.853871i \(-0.674249\pi\)
−0.931095 + 0.364776i \(0.881146\pi\)
\(618\) −85.6721 308.563i −0.138628 0.499293i
\(619\) 103.653 + 260.150i 0.167453 + 0.420275i 0.988624 0.150407i \(-0.0480583\pi\)
−0.821171 + 0.570682i \(0.806679\pi\)
\(620\) −90.6840 + 36.1318i −0.146264 + 0.0582771i
\(621\) 47.8163 13.2761i 0.0769988 0.0213786i
\(622\) 177.563 526.989i 0.285471 0.847249i
\(623\) −81.3377 13.3346i −0.130558 0.0214039i
\(624\) 507.331 83.1728i 0.813031 0.133290i
\(625\) 677.919 228.418i 1.08467 0.365468i
\(626\) −559.639 825.406i −0.893992 1.31854i
\(627\) −38.1794 + 82.5234i −0.0608922 + 0.131616i
\(628\) 149.108 196.149i 0.237434 0.312339i
\(629\) 61.7685 + 567.952i 0.0982011 + 0.902944i
\(630\) −23.4665 6.51543i −0.0372484 0.0103420i
\(631\) −514.001 + 758.095i −0.814582 + 1.20142i 0.162110 + 0.986773i \(0.448170\pi\)
−0.976692 + 0.214646i \(0.931140\pi\)
\(632\) 280.019 + 465.396i 0.443068 + 0.736385i
\(633\) −545.826 + 29.5938i −0.862284 + 0.0467517i
\(634\) 758.285 + 800.512i 1.19603 + 1.26264i
\(635\) 1358.63 1032.80i 2.13958 1.62646i
\(636\) 142.065 31.2710i 0.223373 0.0491682i
\(637\) 565.215 480.098i 0.887308 0.753686i
\(638\) −5.11611 + 94.3611i −0.00801898 + 0.147901i
\(639\) −65.7747 124.064i −0.102934 0.194154i
\(640\) −223.071 + 1013.42i −0.348549 + 1.58347i
\(641\) −739.556 + 342.155i −1.15375 + 0.533784i −0.901031 0.433755i \(-0.857188\pi\)
−0.252723 + 0.967539i \(0.581326\pi\)
\(642\) −286.090 + 475.485i −0.445623 + 0.740630i
\(643\) 508.104 958.387i 0.790209 1.49049i −0.0794498 0.996839i \(-0.525316\pi\)
0.869659 0.493653i \(-0.164339\pi\)
\(644\) −4.92307 4.18169i −0.00764451 0.00649331i
\(645\) −317.828 + 335.527i −0.492756 + 0.520197i
\(646\) 132.273 1216.23i 0.204757 1.88271i
\(647\) 152.603 383.005i 0.235863 0.591970i −0.762631 0.646833i \(-0.776093\pi\)
0.998494 + 0.0548630i \(0.0174722\pi\)
\(648\) 56.0230i 0.0864552i
\(649\) 16.5127 + 135.091i 0.0254433 + 0.208152i
\(650\) 722.010 1.11078
\(651\) 9.38185 + 3.73807i 0.0144114 + 0.00574204i
\(652\) 327.534 + 35.6215i 0.502353 + 0.0546342i
\(653\) −876.942 830.683i −1.34294 1.27210i −0.932946 0.360016i \(-0.882771\pi\)
−0.409997 0.912087i \(-0.634470\pi\)
\(654\) 263.937 310.730i 0.403573 0.475123i
\(655\) −706.280 374.446i −1.07829 0.571673i
\(656\) −160.686 96.6817i −0.244949 0.147381i
\(657\) −169.510 366.391i −0.258007 0.557672i
\(658\) −7.51761 1.65475i −0.0114249 0.00251482i
\(659\) 420.207 222.780i 0.637644 0.338057i −0.118026 0.993011i \(-0.537656\pi\)
0.755669 + 0.654953i \(0.227312\pi\)
\(660\) 34.8886 + 1.89161i 0.0528616 + 0.00286607i
\(661\) 564.729 + 664.850i 0.854356 + 1.00583i 0.999864 + 0.0164683i \(0.00524225\pi\)
−0.145509 + 0.989357i \(0.546482\pi\)
\(662\) 84.8676 + 385.558i 0.128199 + 0.582413i
\(663\) −372.683 490.256i −0.562116 0.739451i
\(664\) −54.0338 + 51.1835i −0.0813762 + 0.0770837i
\(665\) −4.34687 80.1734i −0.00653665 0.120561i
\(666\) 144.649 87.0326i 0.217191 0.130680i
\(667\) 140.734 + 95.4199i 0.210995 + 0.143058i
\(668\) −82.3720 + 296.677i −0.123311 + 0.444127i
\(669\) −485.985 + 52.8540i −0.726434 + 0.0790045i
\(670\) 630.356 + 479.184i 0.940829 + 0.715200i
\(671\) 46.2151 + 21.3814i 0.0688750 + 0.0318650i
\(672\) −14.9600 + 10.1432i −0.0222620 + 0.0150940i
\(673\) 163.686 + 485.804i 0.243219 + 0.721849i 0.997840 + 0.0656878i \(0.0209241\pi\)
−0.754621 + 0.656161i \(0.772179\pi\)
\(674\) −125.595 766.098i −0.186343 1.13664i
\(675\) 17.3314 105.717i 0.0256762 0.156618i
\(676\) −76.8462 25.8925i −0.113678 0.0383025i
\(677\) 356.967 + 1285.68i 0.527278 + 1.89908i 0.427342 + 0.904090i \(0.359450\pi\)
0.0999359 + 0.994994i \(0.468136\pi\)
\(678\) 164.534 + 412.948i 0.242675 + 0.609068i
\(679\) 32.2691 12.8572i 0.0475245 0.0189355i
\(680\) 946.376 262.760i 1.39173 0.386412i
\(681\) −132.126 + 392.135i −0.194017 + 0.575822i
\(682\) −58.4680 9.58534i −0.0857302 0.0140547i
\(683\) 757.534 124.191i 1.10913 0.181832i 0.420744 0.907179i \(-0.361769\pi\)
0.688383 + 0.725347i \(0.258321\pi\)
\(684\) −83.7752 + 28.2271i −0.122478 + 0.0412678i
\(685\) −730.074 1076.78i −1.06580 1.57194i
\(686\) −49.3218 + 106.607i −0.0718977 + 0.155404i
\(687\) −16.0326 + 21.0905i −0.0233371 + 0.0306994i
\(688\) 83.3042 + 765.969i 0.121082 + 1.11333i
\(689\) 951.190 + 264.097i 1.38054 + 0.383304i
\(690\) 144.270 212.782i 0.209087 0.308380i
\(691\) 576.890 + 958.799i 0.834863 + 1.38755i 0.920301 + 0.391210i \(0.127943\pi\)
−0.0854382 + 0.996343i \(0.527229\pi\)
\(692\) −10.2354 + 0.554947i −0.0147910 + 0.000801947i
\(693\) −2.48587 2.62430i −0.00358711 0.00378687i
\(694\) 564.648 429.234i 0.813614 0.618493i
\(695\) 402.774 88.6574i 0.579532 0.127565i
\(696\) 146.300 124.268i 0.210201 0.178546i
\(697\) −12.1615 + 224.306i −0.0174484 + 0.321817i
\(698\) 345.293 + 651.291i 0.494689 + 0.933082i
\(699\) 90.2780 410.137i 0.129153 0.586748i
\(700\) −12.6554 + 5.85499i −0.0180791 + 0.00836427i
\(701\) 144.517 240.189i 0.206158 0.342637i −0.736477 0.676463i \(-0.763512\pi\)
0.942635 + 0.333825i \(0.108340\pi\)
\(702\) −85.2368 + 160.774i −0.121420 + 0.229022i
\(703\) 424.179 + 360.301i 0.603385 + 0.512519i
\(704\) −50.8286 + 53.6591i −0.0721997 + 0.0762203i
\(705\) 8.10009 74.4791i 0.0114895 0.105644i
\(706\) 342.680 860.063i 0.485383 1.21822i
\(707\) 65.0732i 0.0920413i
\(708\) −84.3117 + 101.978i −0.119084 + 0.144036i
\(709\) 50.6855 0.0714887 0.0357443 0.999361i \(-0.488620\pi\)
0.0357443 + 0.999361i \(0.488620\pi\)
\(710\) −675.780 269.255i −0.951803 0.379233i
\(711\) −260.231 28.3018i −0.366006 0.0398056i
\(712\) −713.090 675.475i −1.00153 0.948700i
\(713\) −69.0147 + 81.2504i −0.0967948 + 0.113956i
\(714\) 42.9700 + 22.7813i 0.0601821 + 0.0319065i
\(715\) 203.170 + 122.244i 0.284154 + 0.170970i
\(716\) −141.380 305.589i −0.197459 0.426800i
\(717\) −406.594 89.4982i −0.567077 0.124823i
\(718\) 382.488 202.782i 0.532713 0.282426i
\(719\) −528.834 28.6726i −0.735514 0.0398784i −0.317423 0.948284i \(-0.602818\pi\)
−0.418090 + 0.908406i \(0.637300\pi\)
\(720\) −255.825 301.180i −0.355312 0.418305i
\(721\) 9.02251 + 40.9897i 0.0125139 + 0.0568511i
\(722\) −218.546 287.492i −0.302695 0.398189i
\(723\) 107.777 102.092i 0.149069 0.141206i
\(724\) −5.96439 110.007i −0.00823810 0.151943i
\(725\) 314.516 189.238i 0.433815 0.261018i
\(726\) −381.599 258.731i −0.525619 0.356378i
\(727\) 221.987 799.524i 0.305346 1.09976i −0.638567 0.769566i \(-0.720473\pi\)
0.943914 0.330192i \(-0.107114\pi\)
\(728\) −49.1960 + 5.35039i −0.0675770 + 0.00734944i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) −1898.06 878.138i −2.60009 1.20293i
\(731\) 763.907 517.942i 1.04502 0.708538i
\(732\) 15.8079 + 46.9161i 0.0215955 + 0.0640931i
\(733\) 126.659 + 772.589i 0.172796 + 1.05401i 0.920720 + 0.390224i \(0.127603\pi\)
−0.747924 + 0.663785i \(0.768949\pi\)
\(734\) −200.993 + 1226.00i −0.273833 + 1.67031i
\(735\) −540.187 182.010i −0.734948 0.247633i
\(736\) −51.0423 183.838i −0.0693509 0.249780i
\(737\) 43.5002 + 109.177i 0.0590234 + 0.148138i
\(738\) 61.6633 24.5689i 0.0835546 0.0332912i
\(739\) −505.760 + 140.424i −0.684384 + 0.190018i −0.592281 0.805731i \(-0.701773\pi\)
−0.0921027 + 0.995750i \(0.529359\pi\)
\(740\) 68.2857 202.665i 0.0922780 0.273871i
\(741\) −592.021 97.0570i −0.798949 0.130981i
\(742\) −76.9357 + 12.6130i −0.103687 + 0.0169986i
\(743\) −867.796 + 292.394i −1.16796 + 0.393532i −0.835450 0.549567i \(-0.814793\pi\)
−0.332512 + 0.943099i \(0.607896\pi\)
\(744\) 67.5383 + 99.6116i 0.0907773 + 0.133887i
\(745\) −416.212 + 899.626i −0.558673 + 1.20755i
\(746\) 510.313 671.305i 0.684065 0.899872i
\(747\) −3.87821 35.6596i −0.00519172 0.0477370i
\(748\) −67.2319 18.6668i −0.0898822 0.0249557i
\(749\) 40.8145 60.1969i 0.0544920 0.0803697i
\(750\) 60.8285 + 101.098i 0.0811046 + 0.134797i
\(751\) −1238.50 + 67.1494i −1.64913 + 0.0894133i −0.855100 0.518463i \(-0.826504\pi\)
−0.794032 + 0.607877i \(0.792022\pi\)
\(752\) −85.8930 90.6762i −0.114219 0.120580i
\(753\) 278.624 211.805i 0.370019 0.281281i
\(754\) −608.917 + 134.033i −0.807582 + 0.177762i
\(755\) 818.315 695.083i 1.08386 0.920639i
\(756\) 0.190266 3.50924i 0.000251674 0.00464185i
\(757\) −492.506 928.966i −0.650603 1.22717i −0.960997 0.276559i \(-0.910806\pi\)
0.310394 0.950608i \(-0.399539\pi\)
\(758\) −204.924 + 930.979i −0.270348 + 1.22820i
\(759\) 34.6303 16.0217i 0.0456263 0.0211090i
\(760\) 493.288 819.851i 0.649063 1.07875i
\(761\) −273.511 + 515.896i −0.359409 + 0.677918i −0.995609 0.0936062i \(-0.970161\pi\)
0.636200 + 0.771524i \(0.280505\pi\)
\(762\) 767.552 + 651.965i 1.00729 + 0.855597i
\(763\) −36.7463 + 38.7926i −0.0481603 + 0.0508422i
\(764\) 0.894505 8.22484i 0.00117082 0.0107655i
\(765\) −175.207 + 439.736i −0.229029 + 0.574818i
\(766\) 1030.43i 1.34521i
\(767\) −829.672 + 343.427i −1.08171 + 0.447753i
\(768\) −390.342 −0.508258
\(769\) −187.528 74.7180i −0.243860 0.0971626i 0.245006 0.969521i \(-0.421210\pi\)
−0.488866 + 0.872359i \(0.662589\pi\)
\(770\) −18.6163 2.02464i −0.0241770 0.00262940i
\(771\) 600.303 + 568.637i 0.778603 + 0.737532i
\(772\) 140.427 165.324i 0.181901 0.214150i
\(773\) −837.466 443.996i −1.08340 0.574381i −0.171660 0.985156i \(-0.554913\pi\)