Properties

Label 177.3.g.a.10.14
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.14
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.14

$q$-expansion

\(f(q)\) \(=\) \(q+(1.61637 + 0.644021i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(-0.706089 - 0.668843i) q^{4} +(-2.42613 + 2.85626i) q^{5} +(-2.66262 - 1.41163i) q^{6} +(-4.88728 - 2.94058i) q^{7} +(-3.63289 - 7.85237i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(1.61637 + 0.644021i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(-0.706089 - 0.668843i) q^{4} +(-2.42613 + 2.85626i) q^{5} +(-2.66262 - 1.41163i) q^{6} +(-4.88728 - 2.94058i) q^{7} +(-3.63289 - 7.85237i) q^{8} +(2.92986 + 0.644911i) q^{9} +(-5.76103 + 3.05430i) q^{10} +(-12.2764 - 0.665607i) q^{11} +(1.09056 + 1.28391i) q^{12} +(-0.957795 - 4.35131i) q^{13} +(-6.00586 - 7.90058i) q^{14} +(4.71244 - 4.46386i) q^{15} +(-0.604394 - 11.1474i) q^{16} +(-16.4052 + 9.87071i) q^{17} +(4.32041 + 2.92931i) q^{18} +(4.85655 - 17.4917i) q^{19} +(3.62346 - 0.394075i) q^{20} +(7.86472 + 5.97860i) q^{21} +(-19.4145 - 8.98213i) q^{22} +(0.619562 - 0.420073i) q^{23} +(4.78498 + 14.2013i) q^{24} +(1.77242 + 10.8113i) q^{25} +(1.25418 - 7.65017i) q^{26} +(-4.92415 - 1.65914i) q^{27} +(1.48407 + 5.34514i) q^{28} +(6.74579 + 16.9307i) q^{29} +(10.4919 - 4.18034i) q^{30} +(-2.24533 + 0.623412i) q^{31} +(-4.84820 + 14.3889i) q^{32} +(21.0141 + 3.44508i) q^{33} +(-32.8739 + 5.38940i) q^{34} +(20.2563 - 6.82513i) q^{35} +(-1.63740 - 2.41498i) q^{36} +(4.64360 - 10.0370i) q^{37} +(19.1150 - 25.1454i) q^{38} +(0.834366 + 7.67187i) q^{39} +(31.2423 + 8.67439i) q^{40} +(21.5063 - 31.7195i) q^{41} +(8.86196 + 14.7287i) q^{42} +(-6.98439 + 0.378682i) q^{43} +(8.22305 + 8.68096i) q^{44} +(-8.95027 + 6.80382i) q^{45} +(1.27198 - 0.279984i) q^{46} +(30.1786 - 25.6339i) q^{47} +(-1.04684 + 19.3078i) q^{48} +(-7.71351 - 14.5492i) q^{49} +(-4.09782 + 18.6166i) q^{50} +(30.0966 - 13.9242i) q^{51} +(-2.23405 + 3.71303i) q^{52} +(-36.8878 + 69.5777i) q^{53} +(-6.89073 - 5.85304i) q^{54} +(31.6853 - 33.4498i) q^{55} +(-5.33555 + 49.0596i) q^{56} +(-11.6381 + 29.2095i) q^{57} +31.7107i q^{58} +(41.7646 + 41.6739i) q^{59} -6.31302 q^{60} +(-59.3658 - 23.6535i) q^{61} +(-4.03077 - 0.438373i) q^{62} +(-12.4226 - 11.7674i) q^{63} +(-46.0123 + 54.1699i) q^{64} +(14.7522 + 7.82114i) q^{65} +(31.7478 + 19.1020i) q^{66} +(-46.8645 - 101.296i) q^{67} +(18.1855 + 4.00294i) q^{68} +(-1.14549 + 0.607300i) q^{69} +(37.1372 + 2.01352i) q^{70} +(-55.1740 - 64.9559i) q^{71} +(-5.57979 - 25.3493i) q^{72} +(-9.74671 - 12.8216i) q^{73} +(13.9698 - 13.2329i) q^{74} +(-1.02732 - 18.9479i) q^{75} +(-15.1284 + 9.10245i) q^{76} +(58.0409 + 39.3527i) q^{77} +(-3.59220 + 12.9379i) q^{78} +(-63.1401 + 6.86689i) q^{79} +(33.3062 + 25.3187i) q^{80} +(8.16818 + 3.77900i) q^{81} +(55.1902 - 37.4199i) q^{82} +(20.1449 + 59.7880i) q^{83} +(-1.55444 - 9.48169i) q^{84} +(11.6080 - 70.8054i) q^{85} +(-11.5332 - 3.88600i) q^{86} +(-8.44500 - 30.4161i) q^{87} +(39.3723 + 98.8169i) q^{88} +(44.0932 - 17.5683i) q^{89} +(-18.8488 + 5.23333i) q^{90} +(-8.11435 + 24.0825i) q^{91} +(-0.718430 - 0.117781i) q^{92} +(3.98297 - 0.652975i) q^{93} +(65.2886 - 21.9983i) q^{94} +(38.1783 + 56.3088i) q^{95} +(11.0427 - 23.8684i) q^{96} +(4.82641 - 6.34903i) q^{97} +(-3.09789 - 28.4846i) q^{98} +(-35.5389 - 9.86732i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61637 + 0.644021i 0.808186 + 0.322011i 0.737379 0.675479i \(-0.236063\pi\)
0.0708068 + 0.997490i \(0.477443\pi\)
\(3\) −1.72190 0.187268i −0.573966 0.0624225i
\(4\) −0.706089 0.668843i −0.176522 0.167211i
\(5\) −2.42613 + 2.85626i −0.485227 + 0.571253i −0.949231 0.314580i \(-0.898136\pi\)
0.464004 + 0.885833i \(0.346412\pi\)
\(6\) −2.66262 1.41163i −0.443770 0.235272i
\(7\) −4.88728 2.94058i −0.698183 0.420083i 0.121736 0.992563i \(-0.461154\pi\)
−0.819919 + 0.572480i \(0.805981\pi\)
\(8\) −3.63289 7.85237i −0.454112 0.981546i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) −5.76103 + 3.05430i −0.576103 + 0.305430i
\(11\) −12.2764 0.665607i −1.11604 0.0605097i −0.513122 0.858316i \(-0.671511\pi\)
−0.602914 + 0.797806i \(0.705994\pi\)
\(12\) 1.09056 + 1.28391i 0.0908801 + 0.106992i
\(13\) −0.957795 4.35131i −0.0736766 0.334716i 0.925336 0.379149i \(-0.123783\pi\)
−0.999012 + 0.0444325i \(0.985852\pi\)
\(14\) −6.00586 7.90058i −0.428990 0.564327i
\(15\) 4.71244 4.46386i 0.314163 0.297591i
\(16\) −0.604394 11.1474i −0.0377746 0.696712i
\(17\) −16.4052 + 9.87071i −0.965014 + 0.580630i −0.908551 0.417775i \(-0.862810\pi\)
−0.0564638 + 0.998405i \(0.517983\pi\)
\(18\) 4.32041 + 2.92931i 0.240023 + 0.162739i
\(19\) 4.85655 17.4917i 0.255608 0.920617i −0.718686 0.695335i \(-0.755256\pi\)
0.974294 0.225282i \(-0.0723303\pi\)
\(20\) 3.62346 0.394075i 0.181173 0.0197038i
\(21\) 7.86472 + 5.97860i 0.374510 + 0.284695i
\(22\) −19.4145 8.98213i −0.882480 0.408279i
\(23\) 0.619562 0.420073i 0.0269375 0.0182641i −0.547644 0.836711i \(-0.684475\pi\)
0.574581 + 0.818447i \(0.305165\pi\)
\(24\) 4.78498 + 14.2013i 0.199374 + 0.591721i
\(25\) 1.77242 + 10.8113i 0.0708970 + 0.432452i
\(26\) 1.25418 7.65017i 0.0482378 0.294237i
\(27\) −4.92415 1.65914i −0.182376 0.0614496i
\(28\) 1.48407 + 5.34514i 0.0530025 + 0.190898i
\(29\) 6.74579 + 16.9307i 0.232614 + 0.583816i 0.998229 0.0594821i \(-0.0189449\pi\)
−0.765616 + 0.643298i \(0.777566\pi\)
\(30\) 10.4919 4.18034i 0.349729 0.139345i
\(31\) −2.24533 + 0.623412i −0.0724299 + 0.0201101i −0.303554 0.952814i \(-0.598173\pi\)
0.231124 + 0.972924i \(0.425760\pi\)
\(32\) −4.84820 + 14.3889i −0.151506 + 0.449654i
\(33\) 21.0141 + 3.44508i 0.636789 + 0.104396i
\(34\) −32.8739 + 5.38940i −0.966880 + 0.158512i
\(35\) 20.2563 6.82513i 0.578750 0.195004i
\(36\) −1.63740 2.41498i −0.0454833 0.0670829i
\(37\) 4.64360 10.0370i 0.125503 0.271270i −0.834632 0.550808i \(-0.814319\pi\)
0.960134 + 0.279539i \(0.0901816\pi\)
\(38\) 19.1150 25.1454i 0.503027 0.661721i
\(39\) 0.834366 + 7.67187i 0.0213940 + 0.196715i
\(40\) 31.2423 + 8.67439i 0.781058 + 0.216860i
\(41\) 21.5063 31.7195i 0.524545 0.773645i −0.469463 0.882952i \(-0.655553\pi\)
0.994008 + 0.109306i \(0.0348630\pi\)
\(42\) 8.86196 + 14.7287i 0.210999 + 0.350683i
\(43\) −6.98439 + 0.378682i −0.162428 + 0.00880657i −0.135173 0.990822i \(-0.543159\pi\)
−0.0272542 + 0.999629i \(0.508676\pi\)
\(44\) 8.22305 + 8.68096i 0.186887 + 0.197295i
\(45\) −8.95027 + 6.80382i −0.198895 + 0.151196i
\(46\) 1.27198 0.279984i 0.0276517 0.00608660i
\(47\) 30.1786 25.6339i 0.642098 0.545403i −0.266099 0.963946i \(-0.585735\pi\)
0.908197 + 0.418543i \(0.137459\pi\)
\(48\) −1.04684 + 19.3078i −0.0218092 + 0.402247i
\(49\) −7.71351 14.5492i −0.157419 0.296923i
\(50\) −4.09782 + 18.6166i −0.0819563 + 0.372331i
\(51\) 30.0966 13.9242i 0.590130 0.273023i
\(52\) −2.23405 + 3.71303i −0.0429626 + 0.0714044i
\(53\) −36.8878 + 69.5777i −0.695996 + 1.31279i 0.243391 + 0.969928i \(0.421740\pi\)
−0.939387 + 0.342859i \(0.888605\pi\)
\(54\) −6.89073 5.85304i −0.127606 0.108390i
\(55\) 31.6853 33.4498i 0.576097 0.608178i
\(56\) −5.33555 + 49.0596i −0.0952776 + 0.876063i
\(57\) −11.6381 + 29.2095i −0.204178 + 0.512447i
\(58\) 31.7107i 0.546736i
\(59\) 41.7646 + 41.6739i 0.707875 + 0.706338i
\(60\) −6.31302 −0.105217
\(61\) −59.3658 23.6535i −0.973210 0.387762i −0.171308 0.985218i \(-0.554799\pi\)
−0.801902 + 0.597455i \(0.796179\pi\)
\(62\) −4.03077 0.438373i −0.0650125 0.00707054i
\(63\) −12.4226 11.7674i −0.197185 0.186783i
\(64\) −46.0123 + 54.1699i −0.718943 + 0.846405i
\(65\) 14.7522 + 7.82114i 0.226957 + 0.120325i
\(66\) 31.7478 + 19.1020i 0.481027 + 0.289425i
\(67\) −46.8645 101.296i −0.699471 1.51188i −0.851977 0.523579i \(-0.824597\pi\)
0.152506 0.988302i \(-0.451266\pi\)
\(68\) 18.1855 + 4.00294i 0.267434 + 0.0588667i
\(69\) −1.14549 + 0.607300i −0.0166013 + 0.00880144i
\(70\) 37.1372 + 2.01352i 0.530531 + 0.0287646i
\(71\) −55.1740 64.9559i −0.777099 0.914871i 0.221076 0.975257i \(-0.429043\pi\)
−0.998175 + 0.0603850i \(0.980767\pi\)
\(72\) −5.57979 25.3493i −0.0774971 0.352073i
\(73\) −9.74671 12.8216i −0.133517 0.175638i 0.724476 0.689300i \(-0.242082\pi\)
−0.857993 + 0.513662i \(0.828289\pi\)
\(74\) 13.9698 13.2329i 0.188781 0.178823i
\(75\) −1.02732 18.9479i −0.0136977 0.252638i
\(76\) −15.1284 + 9.10245i −0.199058 + 0.119769i
\(77\) 58.0409 + 39.3527i 0.753778 + 0.511074i
\(78\) −3.59220 + 12.9379i −0.0460539 + 0.165871i
\(79\) −63.1401 + 6.86689i −0.799241 + 0.0869227i −0.498620 0.866821i \(-0.666160\pi\)
−0.300621 + 0.953744i \(0.597194\pi\)
\(80\) 33.3062 + 25.3187i 0.416328 + 0.316484i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) 55.1902 37.4199i 0.673051 0.456340i
\(83\) 20.1449 + 59.7880i 0.242710 + 0.720338i 0.997896 + 0.0648276i \(0.0206498\pi\)
−0.755186 + 0.655510i \(0.772454\pi\)
\(84\) −1.55444 9.48169i −0.0185053 0.112877i
\(85\) 11.6080 70.8054i 0.136564 0.833004i
\(86\) −11.5332 3.88600i −0.134107 0.0451861i
\(87\) −8.44500 30.4161i −0.0970689 0.349611i
\(88\) 39.3723 + 98.8169i 0.447412 + 1.12292i
\(89\) 44.0932 17.5683i 0.495429 0.197397i −0.109022 0.994039i \(-0.534772\pi\)
0.604451 + 0.796642i \(0.293393\pi\)
\(90\) −18.8488 + 5.23333i −0.209431 + 0.0581482i
\(91\) −8.11435 + 24.0825i −0.0891687 + 0.264643i
\(92\) −0.718430 0.117781i −0.00780902 0.00128022i
\(93\) 3.98297 0.652975i 0.0428276 0.00702123i
\(94\) 65.2886 21.9983i 0.694560 0.234025i
\(95\) 38.1783 + 56.3088i 0.401877 + 0.592725i
\(96\) 11.0427 23.8684i 0.115028 0.248629i
\(97\) 4.82641 6.34903i 0.0497568 0.0654539i −0.770542 0.637390i \(-0.780014\pi\)
0.820298 + 0.571936i \(0.193807\pi\)
\(98\) −3.09789 28.4846i −0.0316111 0.290659i
\(99\) −35.5389 9.86732i −0.358979 0.0996699i
\(100\) 5.97958 8.81922i 0.0597958 0.0881922i
\(101\) −7.06150 11.7363i −0.0699159 0.116201i 0.819927 0.572468i \(-0.194014\pi\)
−0.889843 + 0.456267i \(0.849186\pi\)
\(102\) 57.6148 3.12378i 0.564851 0.0306253i
\(103\) −96.3629 101.729i −0.935562 0.987661i 0.0643852 0.997925i \(-0.479491\pi\)
−0.999947 + 0.0102642i \(0.996733\pi\)
\(104\) −30.6885 + 23.3288i −0.295082 + 0.224315i
\(105\) −36.1573 + 7.95883i −0.344356 + 0.0757984i
\(106\) −104.434 + 88.7069i −0.985225 + 0.836858i
\(107\) 1.09727 20.2380i 0.0102549 0.189140i −0.988918 0.148466i \(-0.952567\pi\)
0.999172 0.0406746i \(-0.0129507\pi\)
\(108\) 2.36719 + 4.46499i 0.0219184 + 0.0413425i
\(109\) 15.7241 71.4355i 0.144258 0.655372i −0.847876 0.530194i \(-0.822119\pi\)
0.992134 0.125177i \(-0.0399500\pi\)
\(110\) 72.7576 33.6613i 0.661433 0.306011i
\(111\) −9.87540 + 16.4131i −0.0889676 + 0.147865i
\(112\) −29.8259 + 56.2577i −0.266303 + 0.502301i
\(113\) −32.1307 27.2921i −0.284343 0.241523i 0.493852 0.869546i \(-0.335588\pi\)
−0.778195 + 0.628023i \(0.783864\pi\)
\(114\) −37.6230 + 39.7182i −0.330027 + 0.348405i
\(115\) −0.303299 + 2.78879i −0.00263738 + 0.0242503i
\(116\) 6.56083 16.4664i 0.0565589 0.141952i
\(117\) 13.3664i 0.114243i
\(118\) 40.6682 + 94.2578i 0.344646 + 0.798795i
\(119\) 109.203 0.917669
\(120\) −52.1717 20.7871i −0.434764 0.173226i
\(121\) 29.9762 + 3.26011i 0.247737 + 0.0269430i
\(122\) −80.7238 76.4657i −0.661671 0.626768i
\(123\) −42.9717 + 50.5902i −0.349364 + 0.411303i
\(124\) 2.00237 + 1.06159i 0.0161481 + 0.00856119i
\(125\) −115.459 69.4692i −0.923669 0.555753i
\(126\) −12.5012 27.0209i −0.0992157 0.214451i
\(127\) 154.317 + 33.9677i 1.21509 + 0.267462i 0.775857 0.630909i \(-0.217318\pi\)
0.439237 + 0.898371i \(0.355249\pi\)
\(128\) −55.5994 + 29.4770i −0.434371 + 0.230289i
\(129\) 12.0973 + 0.655897i 0.0937776 + 0.00508447i
\(130\) 18.8081 + 22.1426i 0.144678 + 0.170328i
\(131\) −42.0528 191.048i −0.321014 1.45838i −0.810175 0.586188i \(-0.800628\pi\)
0.489161 0.872193i \(-0.337303\pi\)
\(132\) −12.5336 16.4876i −0.0949514 0.124906i
\(133\) −75.1711 + 71.2059i −0.565196 + 0.535382i
\(134\) −10.5137 193.914i −0.0784604 1.44712i
\(135\) 16.6856 10.0394i 0.123597 0.0743658i
\(136\) 137.107 + 92.9608i 1.00814 + 0.683536i
\(137\) −46.5497 + 167.657i −0.339779 + 1.22377i 0.574438 + 0.818548i \(0.305221\pi\)
−0.914217 + 0.405225i \(0.867193\pi\)
\(138\) −2.24265 + 0.243903i −0.0162511 + 0.00176741i
\(139\) −118.881 90.3709i −0.855258 0.650151i 0.0828235 0.996564i \(-0.473606\pi\)
−0.938082 + 0.346414i \(0.887399\pi\)
\(140\) −18.8677 8.72912i −0.134769 0.0623508i
\(141\) −56.7649 + 38.4875i −0.402588 + 0.272961i
\(142\) −47.3487 140.526i −0.333442 0.989620i
\(143\) 8.86202 + 54.0559i 0.0619721 + 0.378013i
\(144\) 5.41829 33.0501i 0.0376270 0.229515i
\(145\) −64.7246 21.8083i −0.446377 0.150402i
\(146\) −7.49694 27.0015i −0.0513489 0.184942i
\(147\) 10.5573 + 26.4968i 0.0718182 + 0.180250i
\(148\) −9.99196 + 3.98116i −0.0675133 + 0.0268997i
\(149\) −114.938 + 31.9125i −0.771398 + 0.214178i −0.630859 0.775898i \(-0.717297\pi\)
−0.140539 + 0.990075i \(0.544884\pi\)
\(150\) 10.5423 31.2884i 0.0702820 0.208590i
\(151\) 153.477 + 25.1613i 1.01641 + 0.166631i 0.646882 0.762590i \(-0.276073\pi\)
0.369524 + 0.929221i \(0.379521\pi\)
\(152\) −154.995 + 25.4101i −1.01970 + 0.167172i
\(153\) −54.4308 + 18.3399i −0.355757 + 0.119869i
\(154\) 68.4717 + 100.988i 0.444621 + 0.655767i
\(155\) 3.66683 7.92573i 0.0236570 0.0511338i
\(156\) 4.54214 5.97509i 0.0291163 0.0383018i
\(157\) −16.4010 150.804i −0.104465 0.960537i −0.922665 0.385603i \(-0.873993\pi\)
0.818200 0.574934i \(-0.194972\pi\)
\(158\) −106.480 29.5641i −0.673925 0.187114i
\(159\) 76.5466 112.898i 0.481425 0.710049i
\(160\) −29.3362 48.7572i −0.183352 0.304733i
\(161\) −4.26323 + 0.231146i −0.0264797 + 0.00143569i
\(162\) 10.7691 + 11.3687i 0.0664756 + 0.0701775i
\(163\) −189.713 + 144.216i −1.16388 + 0.884762i −0.994901 0.100857i \(-0.967842\pi\)
−0.168984 + 0.985619i \(0.554049\pi\)
\(164\) −36.4007 + 8.01241i −0.221956 + 0.0488562i
\(165\) −60.8229 + 51.6635i −0.368624 + 0.313112i
\(166\) −5.94307 + 109.613i −0.0358016 + 0.660322i
\(167\) −96.0690 181.205i −0.575264 1.08506i −0.984951 0.172836i \(-0.944707\pi\)
0.409687 0.912226i \(-0.365638\pi\)
\(168\) 18.3745 83.4763i 0.109372 0.496883i
\(169\) 135.364 62.6259i 0.800969 0.370568i
\(170\) 64.3629 106.972i 0.378605 0.629247i
\(171\) 25.5096 48.1163i 0.149179 0.281382i
\(172\) 5.18488 + 4.40408i 0.0301447 + 0.0256051i
\(173\) −121.109 + 127.853i −0.700051 + 0.739035i −0.974947 0.222439i \(-0.928598\pi\)
0.274896 + 0.961474i \(0.411357\pi\)
\(174\) 5.93838 54.6025i 0.0341286 0.313808i
\(175\) 23.1292 58.0498i 0.132167 0.331713i
\(176\) 137.252i 0.779841i
\(177\) −64.1102 79.5794i −0.362205 0.449601i
\(178\) 82.5853 0.463962
\(179\) 121.194 + 48.2882i 0.677063 + 0.269766i 0.683218 0.730215i \(-0.260580\pi\)
−0.00615513 + 0.999981i \(0.501959\pi\)
\(180\) 10.8704 + 1.18223i 0.0603910 + 0.00656792i
\(181\) 151.038 + 143.070i 0.834462 + 0.790444i 0.980019 0.198905i \(-0.0637387\pi\)
−0.145557 + 0.989350i \(0.546497\pi\)
\(182\) −28.6255 + 33.7005i −0.157283 + 0.185168i
\(183\) 97.7923 + 51.8462i 0.534384 + 0.283313i
\(184\) −5.54938 3.33895i −0.0301597 0.0181465i
\(185\) 17.4023 + 37.6144i 0.0940663 + 0.203321i
\(186\) 6.85849 + 1.50967i 0.0368736 + 0.00811649i
\(187\) 207.967 110.257i 1.11212 0.589611i
\(188\) −38.4539 2.08491i −0.204542 0.0110899i
\(189\) 19.1869 + 22.5885i 0.101518 + 0.119516i
\(190\) 25.4463 + 115.604i 0.133928 + 0.608440i
\(191\) 203.108 + 267.184i 1.06339 + 1.39887i 0.911900 + 0.410412i \(0.134615\pi\)
0.151493 + 0.988458i \(0.451592\pi\)
\(192\) 89.3728 84.6584i 0.465483 0.440929i
\(193\) 16.3991 + 302.463i 0.0849693 + 1.56717i 0.661408 + 0.750026i \(0.269959\pi\)
−0.576439 + 0.817140i \(0.695558\pi\)
\(194\) 11.8902 7.15408i 0.0612896 0.0368767i
\(195\) −23.9372 16.2298i −0.122755 0.0832298i
\(196\) −4.28472 + 15.4322i −0.0218608 + 0.0787356i
\(197\) −83.5643 + 9.08816i −0.424184 + 0.0461328i −0.317722 0.948184i \(-0.602918\pi\)
−0.106462 + 0.994317i \(0.533952\pi\)
\(198\) −51.0893 38.8371i −0.258027 0.196147i
\(199\) 324.414 + 150.090i 1.63022 + 0.754221i 0.999758 0.0219988i \(-0.00700300\pi\)
0.630463 + 0.776219i \(0.282865\pi\)
\(200\) 78.4554 53.1941i 0.392277 0.265970i
\(201\) 61.7265 + 183.198i 0.307097 + 0.911431i
\(202\) −3.85558 23.5180i −0.0190870 0.116426i
\(203\) 16.8174 102.581i 0.0828442 0.505327i
\(204\) −30.5640 10.2982i −0.149823 0.0504814i
\(205\) 38.4220 + 138.383i 0.187424 + 0.675041i
\(206\) −90.2425 226.492i −0.438071 1.09947i
\(207\) 2.08614 0.831195i 0.0100780 0.00401543i
\(208\) −47.9268 + 13.3068i −0.230418 + 0.0639751i
\(209\) −71.2636 + 211.503i −0.340974 + 1.01197i
\(210\) −63.5693 10.4217i −0.302711 0.0496270i
\(211\) −147.730 + 24.2191i −0.700141 + 0.114782i −0.501331 0.865256i \(-0.667156\pi\)
−0.198810 + 0.980038i \(0.563708\pi\)
\(212\) 72.5827 24.4560i 0.342371 0.115358i
\(213\) 82.8399 + 122.180i 0.388920 + 0.573613i
\(214\) 14.8073 32.0055i 0.0691930 0.149558i
\(215\) 15.8634 20.8680i 0.0737834 0.0970604i
\(216\) 4.86074 + 44.6937i 0.0225034 + 0.206915i
\(217\) 12.8067 + 3.55577i 0.0590172 + 0.0163861i
\(218\) 71.4220 105.340i 0.327624 0.483209i
\(219\) 14.3818 + 23.9027i 0.0656702 + 0.109145i
\(220\) −44.7453 + 2.42602i −0.203388 + 0.0110274i
\(221\) 58.6634 + 61.9302i 0.265445 + 0.280227i
\(222\) −26.5327 + 20.1696i −0.119517 + 0.0908541i
\(223\) 390.713 86.0025i 1.75208 0.385661i 0.781020 0.624506i \(-0.214700\pi\)
0.971058 + 0.238845i \(0.0767687\pi\)
\(224\) 66.0063 56.0663i 0.294671 0.250296i
\(225\) −1.77938 + 32.8187i −0.00790835 + 0.145861i
\(226\) −34.3585 64.8070i −0.152029 0.286757i
\(227\) 46.3433 210.540i 0.204156 0.927488i −0.757416 0.652933i \(-0.773538\pi\)
0.961571 0.274555i \(-0.0885306\pi\)
\(228\) 27.7541 12.8404i 0.121729 0.0563176i
\(229\) 49.5462 82.3464i 0.216359 0.359591i −0.729602 0.683872i \(-0.760295\pi\)
0.945961 + 0.324281i \(0.105122\pi\)
\(230\) −2.28628 + 4.31238i −0.00994035 + 0.0187495i
\(231\) −92.5710 78.6305i −0.400740 0.340392i
\(232\) 108.439 114.478i 0.467410 0.493439i
\(233\) −30.1259 + 277.003i −0.129296 + 1.18885i 0.732200 + 0.681090i \(0.238494\pi\)
−0.861496 + 0.507765i \(0.830472\pi\)
\(234\) 8.60826 21.6051i 0.0367874 0.0923295i
\(235\) 148.389i 0.631444i
\(236\) −1.61622 57.3595i −0.00684839 0.243049i
\(237\) 110.007 0.464163
\(238\) 176.512 + 70.3288i 0.741647 + 0.295499i
\(239\) 156.444 + 17.0143i 0.654577 + 0.0711895i 0.429380 0.903124i \(-0.358732\pi\)
0.225197 + 0.974313i \(0.427698\pi\)
\(240\) −52.6085 49.8335i −0.219202 0.207639i
\(241\) −138.732 + 163.328i −0.575651 + 0.677708i −0.970518 0.241030i \(-0.922515\pi\)
0.394867 + 0.918738i \(0.370791\pi\)
\(242\) 46.3531 + 24.5749i 0.191542 + 0.101549i
\(243\) −13.3571 8.03669i −0.0549674 0.0330728i
\(244\) 26.0971 + 56.4079i 0.106955 + 0.231180i
\(245\) 60.2704 + 13.2665i 0.246002 + 0.0541491i
\(246\) −102.039 + 54.0979i −0.414794 + 0.219910i
\(247\) −80.7635 4.37887i −0.326978 0.0177282i
\(248\) 13.0523 + 15.3664i 0.0526303 + 0.0619611i
\(249\) −23.4911 106.721i −0.0943419 0.428600i
\(250\) −141.884 186.646i −0.567538 0.746583i
\(251\) 108.764 103.027i 0.433325 0.410467i −0.439699 0.898145i \(-0.644915\pi\)
0.873023 + 0.487678i \(0.162156\pi\)
\(252\) 0.900980 + 16.6176i 0.00357532 + 0.0659429i
\(253\) −7.88559 + 4.74460i −0.0311684 + 0.0187534i
\(254\) 227.557 + 154.288i 0.895896 + 0.607432i
\(255\) −33.2473 + 119.746i −0.130381 + 0.469591i
\(256\) 173.776 18.8993i 0.678814 0.0738255i
\(257\) −96.8939 73.6568i −0.377019 0.286602i 0.399454 0.916753i \(-0.369200\pi\)
−0.776473 + 0.630151i \(0.782993\pi\)
\(258\) 19.1313 + 8.85110i 0.0741525 + 0.0343066i
\(259\) −52.2091 + 35.3986i −0.201580 + 0.136674i
\(260\) −5.18528 15.3893i −0.0199434 0.0591898i
\(261\) 8.84546 + 53.9549i 0.0338907 + 0.206724i
\(262\) 55.0659 335.887i 0.210175 1.28201i
\(263\) −161.518 54.4216i −0.614135 0.206926i −0.00499342 0.999988i \(-0.501589\pi\)
−0.609142 + 0.793061i \(0.708486\pi\)
\(264\) −49.2898 177.526i −0.186704 0.672446i
\(265\) −109.238 274.166i −0.412218 1.03459i
\(266\) −167.363 + 66.6833i −0.629182 + 0.250689i
\(267\) −79.2139 + 21.9936i −0.296681 + 0.0823731i
\(268\) −34.6606 + 102.869i −0.129331 + 0.383840i
\(269\) −309.765 50.7834i −1.15154 0.188786i −0.444382 0.895838i \(-0.646577\pi\)
−0.707162 + 0.707052i \(0.750025\pi\)
\(270\) 33.4357 5.48150i 0.123836 0.0203019i
\(271\) 111.089 37.4302i 0.409922 0.138119i −0.106783 0.994282i \(-0.534055\pi\)
0.516705 + 0.856163i \(0.327158\pi\)
\(272\) 119.948 + 176.910i 0.440985 + 0.650404i
\(273\) 18.4820 39.9481i 0.0676995 0.146330i
\(274\) −183.216 + 241.017i −0.668672 + 0.879623i
\(275\) −14.5629 133.904i −0.0529560 0.486922i
\(276\) 1.21501 + 0.337345i 0.00440219 + 0.00122226i
\(277\) 44.7565 66.0109i 0.161576 0.238307i −0.738280 0.674495i \(-0.764361\pi\)
0.899855 + 0.436188i \(0.143672\pi\)
\(278\) −133.955 222.635i −0.481852 0.800845i
\(279\) −6.98055 + 0.378474i −0.0250199 + 0.00135654i
\(280\) −127.182 134.265i −0.454223 0.479517i
\(281\) 71.0621 54.0200i 0.252890 0.192242i −0.471047 0.882108i \(-0.656124\pi\)
0.723937 + 0.689866i \(0.242331\pi\)
\(282\) −116.540 + 25.6524i −0.413262 + 0.0909659i
\(283\) −412.450 + 350.338i −1.45742 + 1.23794i −0.539020 + 0.842293i \(0.681205\pi\)
−0.918401 + 0.395652i \(0.870519\pi\)
\(284\) −4.48752 + 82.7674i −0.0158011 + 0.291435i
\(285\) −55.1944 104.108i −0.193664 0.365290i
\(286\) −20.4888 + 93.0817i −0.0716393 + 0.325461i
\(287\) −198.381 + 91.7808i −0.691223 + 0.319794i
\(288\) −23.4841 + 39.0309i −0.0815422 + 0.135524i
\(289\) 36.3312 68.5278i 0.125713 0.237121i
\(290\) −90.5741 76.9343i −0.312324 0.265291i
\(291\) −9.49954 + 10.0285i −0.0326445 + 0.0344624i
\(292\) −1.69358 + 15.5722i −0.00579993 + 0.0533295i
\(293\) −126.217 + 316.780i −0.430774 + 1.08116i 0.540106 + 0.841597i \(0.318384\pi\)
−0.970880 + 0.239564i \(0.922995\pi\)
\(294\) 49.6277i 0.168802i
\(295\) −220.358 + 18.1843i −0.746977 + 0.0616417i
\(296\) −95.6838 −0.323256
\(297\) 59.3465 + 23.6458i 0.199820 + 0.0796155i
\(298\) −206.335 22.4403i −0.692400 0.0753030i
\(299\) −2.42128 2.29356i −0.00809794 0.00767077i
\(300\) −11.9478 + 14.0660i −0.0398259 + 0.0468867i
\(301\) 35.2482 + 18.6874i 0.117104 + 0.0620844i
\(302\) 231.872 + 139.513i 0.767787 + 0.461962i
\(303\) 9.96135 + 21.5311i 0.0328758 + 0.0710598i
\(304\) −197.922 43.5660i −0.651060 0.143309i
\(305\) 211.590 112.178i 0.693738 0.367796i
\(306\) −99.7917 5.41055i −0.326117 0.0176815i
\(307\) −313.703 369.320i −1.02183 1.20300i −0.978989 0.203913i \(-0.934634\pi\)
−0.0428443 0.999082i \(-0.513642\pi\)
\(308\) −14.6613 66.6068i −0.0476015 0.216256i
\(309\) 146.876 + 193.213i 0.475328 + 0.625284i
\(310\) 11.0313 10.4494i 0.0355849 0.0337078i
\(311\) −24.5093 452.048i −0.0788082 1.45353i −0.724153 0.689640i \(-0.757769\pi\)
0.645345 0.763892i \(-0.276714\pi\)
\(312\) 57.2112 34.4228i 0.183369 0.110330i
\(313\) 62.6591 + 42.4839i 0.200189 + 0.135731i 0.657163 0.753749i \(-0.271756\pi\)
−0.456974 + 0.889480i \(0.651067\pi\)
\(314\) 70.6112 254.318i 0.224876 0.809931i
\(315\) 63.7496 6.93319i 0.202380 0.0220101i
\(316\) 49.1754 + 37.3822i 0.155618 + 0.118298i
\(317\) 427.608 + 197.832i 1.34892 + 0.624077i 0.955421 0.295247i \(-0.0954021\pi\)
0.393500 + 0.919325i \(0.371264\pi\)
\(318\) 196.436 133.187i 0.617725 0.418828i
\(319\) −71.5449 212.338i −0.224279 0.665635i
\(320\) −43.0915 262.847i −0.134661 0.821396i
\(321\) −5.67931 + 34.6423i −0.0176926 + 0.107920i
\(322\) −7.03983 2.37199i −0.0218628 0.00736644i
\(323\) 92.9828 + 334.894i 0.287872 + 1.03682i
\(324\) −3.23990 8.13155i −0.00999970 0.0250974i
\(325\) 45.3457 18.0674i 0.139525 0.0555920i
\(326\) −399.525 + 110.928i −1.22554 + 0.340269i
\(327\) −40.4529 + 120.060i −0.123709 + 0.367156i
\(328\) −327.203 53.6423i −0.997571 0.163543i
\(329\) −222.870 + 36.5377i −0.677416 + 0.111057i
\(330\) −131.585 + 44.3361i −0.398742 + 0.134352i
\(331\) −313.195 461.928i −0.946209 1.39555i −0.918275 0.395943i \(-0.870418\pi\)
−0.0279336 0.999610i \(-0.508893\pi\)
\(332\) 25.7647 55.6895i 0.0776045 0.167739i
\(333\) 20.0781 26.4122i 0.0602945 0.0793161i
\(334\) −38.5831 354.766i −0.115518 1.06217i
\(335\) 403.028 + 111.900i 1.20307 + 0.334030i
\(336\) 61.8924 91.2845i 0.184204 0.271680i
\(337\) −162.358 269.842i −0.481776 0.800717i 0.516685 0.856175i \(-0.327166\pi\)
−0.998461 + 0.0554580i \(0.982338\pi\)
\(338\) 259.130 14.0496i 0.766658 0.0415670i
\(339\) 50.2149 + 53.0112i 0.148126 + 0.156375i
\(340\) −55.5540 + 42.2310i −0.163394 + 0.124209i
\(341\) 27.9795 6.15875i 0.0820513 0.0180609i
\(342\) 72.2209 61.3450i 0.211172 0.179371i
\(343\) −20.2159 + 372.861i −0.0589386 + 1.08706i
\(344\) 28.3471 + 53.4683i 0.0824043 + 0.155431i
\(345\) 1.04450 4.74521i 0.00302753 0.0137542i
\(346\) −278.097 + 128.661i −0.803748 + 0.371853i
\(347\) −277.165 + 460.651i −0.798745 + 1.32753i 0.142498 + 0.989795i \(0.454487\pi\)
−0.941243 + 0.337730i \(0.890341\pi\)
\(348\) −14.3807 + 27.1249i −0.0413239 + 0.0779451i
\(349\) −241.887 205.460i −0.693085 0.588711i 0.230054 0.973178i \(-0.426110\pi\)
−0.923139 + 0.384466i \(0.874385\pi\)
\(350\) 74.7707 78.9344i 0.213630 0.225527i
\(351\) −2.50310 + 23.0156i −0.00713134 + 0.0655715i
\(352\) 69.0958 173.417i 0.196295 0.492663i
\(353\) 130.432i 0.369497i 0.982786 + 0.184748i \(0.0591470\pi\)
−0.982786 + 0.184748i \(0.940853\pi\)
\(354\) −52.3751 169.918i −0.147952 0.479995i
\(355\) 319.391 0.899692
\(356\) −42.8842 17.0866i −0.120461 0.0479961i
\(357\) −188.036 20.4501i −0.526711 0.0572832i
\(358\) 164.796 + 156.103i 0.460325 + 0.436043i
\(359\) 66.9983 78.8765i 0.186625 0.219712i −0.660891 0.750482i \(-0.729821\pi\)
0.847516 + 0.530770i \(0.178097\pi\)
\(360\) 85.9415 + 45.5633i 0.238726 + 0.126565i
\(361\) 26.9512 + 16.2160i 0.0746571 + 0.0449197i
\(362\) 151.992 + 328.526i 0.419869 + 0.907531i
\(363\) −51.0054 11.2271i −0.140511 0.0309288i
\(364\) 21.8369 11.5772i 0.0599915 0.0318055i
\(365\) 60.2686 + 3.26767i 0.165120 + 0.00895252i
\(366\) 124.679 + 146.783i 0.340652 + 0.401046i
\(367\) −15.3431 69.7046i −0.0418069 0.189931i 0.951089 0.308917i \(-0.0999666\pi\)
−0.992896 + 0.118986i \(0.962036\pi\)
\(368\) −5.05718 6.65261i −0.0137423 0.0180777i
\(369\) 83.4668 79.0640i 0.226197 0.214265i
\(370\) 3.90407 + 72.0063i 0.0105515 + 0.194611i
\(371\) 384.880 231.574i 1.03741 0.624190i
\(372\) −3.24907 2.20292i −0.00873406 0.00592184i
\(373\) 135.236 487.076i 0.362563 1.30583i −0.527328 0.849662i \(-0.676806\pi\)
0.889891 0.456172i \(-0.150780\pi\)
\(374\) 407.160 44.2814i 1.08866 0.118399i
\(375\) 185.799 + 141.240i 0.495463 + 0.376641i
\(376\) −310.923 143.848i −0.826923 0.382575i
\(377\) 67.2094 45.5691i 0.178274 0.120873i
\(378\) 16.4656 + 48.8682i 0.0435598 + 0.129281i
\(379\) −26.9775 164.555i −0.0711807 0.434183i −0.998242 0.0592728i \(-0.981122\pi\)
0.927061 0.374910i \(-0.122326\pi\)
\(380\) 10.7045 65.2944i 0.0281697 0.171827i
\(381\) −259.357 87.3875i −0.680727 0.229363i
\(382\) 156.226 + 562.675i 0.408968 + 1.47297i
\(383\) −60.4831 151.801i −0.157919 0.396348i 0.828633 0.559792i \(-0.189119\pi\)
−0.986553 + 0.163444i \(0.947740\pi\)
\(384\) 101.257 40.3443i 0.263689 0.105063i
\(385\) −253.217 + 70.3053i −0.657706 + 0.182611i
\(386\) −168.286 + 499.454i −0.435973 + 1.29392i
\(387\) −20.7075 3.39482i −0.0535078 0.00877215i
\(388\) −7.65438 + 1.25487i −0.0197278 + 0.00323421i
\(389\) −88.2113 + 29.7219i −0.226764 + 0.0764058i −0.430390 0.902643i \(-0.641624\pi\)
0.203626 + 0.979049i \(0.434727\pi\)
\(390\) −28.2390 41.6494i −0.0724077 0.106793i
\(391\) −6.01764 + 13.0069i −0.0153904 + 0.0332658i
\(392\) −86.2236 + 113.425i −0.219958 + 0.289350i
\(393\) 36.6336 + 336.840i 0.0932152 + 0.857099i
\(394\) −140.924 39.1273i −0.357675 0.0993079i
\(395\) 133.572 197.005i 0.338158 0.498746i
\(396\) 18.4939 + 30.7372i 0.0467019 + 0.0776191i
\(397\) −87.9974 + 4.77108i −0.221656 + 0.0120178i −0.164632 0.986355i \(-0.552644\pi\)
−0.0570236 + 0.998373i \(0.518161\pi\)
\(398\) 427.712 + 451.530i 1.07465 + 1.13450i
\(399\) 142.772 108.532i 0.357823 0.272010i
\(400\) 119.447 26.2922i 0.298617 0.0657305i
\(401\) 93.3217 79.2682i 0.232722 0.197676i −0.523436 0.852065i \(-0.675350\pi\)
0.756158 + 0.654389i \(0.227074\pi\)
\(402\) −18.2103 + 335.869i −0.0452992 + 0.835494i
\(403\) 4.86322 + 9.17301i 0.0120676 + 0.0227618i
\(404\) −2.86370 + 13.0099i −0.00708837 + 0.0322028i
\(405\) −30.6109 + 14.1621i −0.0755825 + 0.0349682i
\(406\) 93.2477 154.979i 0.229674 0.381721i
\(407\) −63.6874 + 120.127i −0.156480 + 0.295153i
\(408\) −218.676 185.745i −0.535970 0.455257i
\(409\) 221.703 234.049i 0.542062 0.572248i −0.396204 0.918163i \(-0.629673\pi\)
0.938266 + 0.345915i \(0.112431\pi\)
\(410\) −27.0177 + 248.424i −0.0658968 + 0.605911i
\(411\) 111.551 279.971i 0.271412 0.681194i
\(412\) 136.282i 0.330780i
\(413\) −81.5699 326.484i −0.197506 0.790519i
\(414\) 3.90729 0.00943789
\(415\) −219.645 87.5144i −0.529264 0.210878i
\(416\) 67.2543 + 7.31435i 0.161669 + 0.0175826i
\(417\) 187.777 + 177.872i 0.450305 + 0.426552i
\(418\) −251.401 + 295.972i −0.601437 + 0.708066i
\(419\) −7.32071 3.88119i −0.0174719 0.00926299i 0.459650 0.888100i \(-0.347975\pi\)
−0.477121 + 0.878837i \(0.658320\pi\)
\(420\) 30.8535 + 18.5639i 0.0734608 + 0.0441999i
\(421\) 168.218 + 363.597i 0.399568 + 0.863652i 0.998044 + 0.0625112i \(0.0199109\pi\)
−0.598477 + 0.801140i \(0.704227\pi\)
\(422\) −254.384 55.9941i −0.602805 0.132687i
\(423\) 104.951 55.6414i 0.248111 0.131540i
\(424\) 680.360 + 36.8880i 1.60462 + 0.0870001i
\(425\) −135.792 159.867i −0.319511 0.376158i
\(426\) 55.2137 + 250.838i 0.129610 + 0.588822i
\(427\) 220.582 + 290.171i 0.516586 + 0.679558i
\(428\) −14.3108 + 13.5559i −0.0334365 + 0.0316728i
\(429\) −5.13656 94.7383i −0.0119733 0.220835i
\(430\) 39.0806 23.5140i 0.0908852 0.0546838i
\(431\) 43.2813 + 29.3454i 0.100421 + 0.0680868i 0.610364 0.792121i \(-0.291023\pi\)
−0.509943 + 0.860208i \(0.670334\pi\)
\(432\) −15.5189 + 55.8942i −0.0359235 + 0.129385i
\(433\) 558.897 60.7838i 1.29076 0.140378i 0.563139 0.826362i \(-0.309593\pi\)
0.727617 + 0.685984i \(0.240628\pi\)
\(434\) 18.4105 + 13.9953i 0.0424204 + 0.0322472i
\(435\) 107.365 + 49.6724i 0.246817 + 0.114190i
\(436\) −58.8818 + 39.9229i −0.135050 + 0.0915662i
\(437\) −4.33887 12.8773i −0.00992877 0.0294675i
\(438\) 7.85244 + 47.8978i 0.0179280 + 0.109356i
\(439\) 66.4900 405.571i 0.151458 0.923852i −0.796309 0.604889i \(-0.793217\pi\)
0.947767 0.318963i \(-0.103334\pi\)
\(440\) −377.770 127.285i −0.858567 0.289285i
\(441\) −13.2166 47.6017i −0.0299695 0.107940i
\(442\) 54.9374 + 137.883i 0.124293 + 0.311952i
\(443\) −353.574 + 140.877i −0.798134 + 0.318006i −0.733313 0.679891i \(-0.762027\pi\)
−0.0648213 + 0.997897i \(0.520648\pi\)
\(444\) 17.9507 4.98398i 0.0404295 0.0112252i
\(445\) −56.7961 + 168.565i −0.127632 + 0.378797i
\(446\) 686.925 + 112.616i 1.54019 + 0.252501i
\(447\) 203.888 33.4258i 0.456126 0.0747780i
\(448\) 384.166 129.441i 0.857514 0.288930i
\(449\) −382.379 563.967i −0.851625 1.25605i −0.964934 0.262492i \(-0.915456\pi\)
0.113310 0.993560i \(-0.463855\pi\)
\(450\) −24.0121 + 51.9012i −0.0533602 + 0.115336i
\(451\) −285.133 + 375.086i −0.632224 + 0.831676i
\(452\) 4.43303 + 40.7611i 0.00980759 + 0.0901793i
\(453\) −259.560 72.0665i −0.572980 0.159087i
\(454\) 210.500 310.464i 0.463657 0.683842i
\(455\) −49.0996 81.6042i −0.107911 0.179350i
\(456\) 271.644 14.7281i 0.595710 0.0322985i
\(457\) −93.3032 98.4990i −0.204165 0.215534i 0.615870 0.787848i \(-0.288805\pi\)
−0.820035 + 0.572314i \(0.806046\pi\)
\(458\) 133.118 101.194i 0.290650 0.220947i
\(459\) 97.1588 21.3863i 0.211675 0.0465932i
\(460\) 2.07942 1.76627i 0.00452047 0.00383972i
\(461\) −31.2954 + 577.210i −0.0678859 + 1.25208i 0.743966 + 0.668218i \(0.232943\pi\)
−0.811852 + 0.583864i \(0.801540\pi\)
\(462\) −98.9894 186.714i −0.214263 0.404142i
\(463\) 23.8698 108.441i 0.0515546 0.234215i −0.943797 0.330527i \(-0.892774\pi\)
0.995351 + 0.0963120i \(0.0307046\pi\)
\(464\) 184.656 85.4308i 0.397965 0.184118i
\(465\) −7.79815 + 12.9606i −0.0167702 + 0.0278723i
\(466\) −227.091 + 428.338i −0.487319 + 0.919181i
\(467\) −639.464 543.165i −1.36930 1.16310i −0.969100 0.246668i \(-0.920664\pi\)
−0.400201 0.916427i \(-0.631060\pi\)
\(468\) −8.94004 + 9.43789i −0.0191027 + 0.0201664i
\(469\) −68.8289 + 632.871i −0.146757 + 1.34941i
\(470\) −95.5659 + 239.852i −0.203332 + 0.510324i
\(471\) 262.741i 0.557837i
\(472\) 175.513 479.348i 0.371849 1.01557i
\(473\) 85.9952 0.181808
\(474\) 177.812 + 70.8466i 0.375130 + 0.149465i
\(475\) 197.716 + 21.5029i 0.416245 + 0.0452693i
\(476\) −77.1068 73.0395i −0.161989 0.153444i
\(477\) −152.948 + 180.064i −0.320645 + 0.377492i
\(478\) 241.914 + 128.255i 0.506096 + 0.268315i
\(479\) −205.573 123.689i −0.429172 0.258224i 0.284539 0.958664i \(-0.408159\pi\)
−0.713711 + 0.700440i \(0.752987\pi\)
\(480\) 41.3834 + 89.4487i 0.0862153 + 0.186351i
\(481\) −48.1216 10.5924i −0.100045 0.0220216i
\(482\) −329.429 + 174.652i −0.683462 + 0.362348i
\(483\) 7.38413 + 0.400356i 0.0152881 + 0.000828895i
\(484\) −18.9854 22.3513i −0.0392260 0.0461804i
\(485\) 6.42500 + 29.1891i 0.0132474 + 0.0601837i
\(486\) −16.4142 21.5925i −0.0337741 0.0444290i
\(487\) −17.4289 + 16.5095i −0.0357882 + 0.0339004i −0.705385 0.708825i \(-0.749226\pi\)
0.669596 + 0.742725i \(0.266467\pi\)
\(488\) 29.9336 + 552.093i 0.0613394 + 1.13134i
\(489\) 353.674 212.798i 0.723259 0.435171i
\(490\) 88.8755 + 60.2591i 0.181379 + 0.122978i
\(491\) 143.387 516.432i 0.292030 1.05180i −0.661364 0.750065i \(-0.730022\pi\)
0.953393 0.301730i \(-0.0975642\pi\)
\(492\) 64.1788 6.97987i 0.130445 0.0141867i
\(493\) −277.784 211.166i −0.563456 0.428328i
\(494\) −127.724 59.0912i −0.258550 0.119618i
\(495\) 114.406 77.5690i 0.231123 0.156705i
\(496\) 8.30648 + 24.6528i 0.0167469 + 0.0497032i
\(497\) 78.6430 + 479.701i 0.158235 + 0.965193i
\(498\) 30.7604 187.630i 0.0617679 0.376767i
\(499\) 336.503 + 113.381i 0.674354 + 0.227216i 0.635584 0.772032i \(-0.280759\pi\)
0.0387703 + 0.999248i \(0.487656\pi\)
\(500\) 35.0601 + 126.275i 0.0701203 + 0.252550i
\(501\) 131.487 + 330.008i 0.262449 + 0.658698i
\(502\) 242.155 96.4836i 0.482381 0.192198i
\(503\) −475.654 + 132.065i −0.945635 + 0.262554i −0.705922 0.708290i \(-0.749467\pi\)
−0.239713 + 0.970844i \(0.577053\pi\)
\(504\) −47.2715 + 140.297i −0.0937926 + 0.278367i
\(505\) 50.6541 + 8.30433i 0.100305 + 0.0164442i
\(506\) −15.8017 + 2.59055i −0.0312286 + 0.00511967i
\(507\) −244.810 + 82.4862i −0.482861 + 0.162695i
\(508\) −86.2424 127.198i −0.169769 0.250390i
\(509\) 369.970 799.677i 0.726857 1.57108i −0.0911302 0.995839i \(-0.529048\pi\)
0.817987 0.575236i \(-0.195090\pi\)
\(510\) −130.859 + 172.142i −0.256586 + 0.337533i
\(511\) 9.93204 + 91.3236i 0.0194365 + 0.178716i
\(512\) 535.604 + 148.710i 1.04610 + 0.290448i
\(513\) −52.9356 + 78.0742i −0.103188 + 0.152191i
\(514\) −109.180 181.459i −0.212412 0.353032i
\(515\) 524.354 28.4297i 1.01816 0.0552032i
\(516\) −8.10309 8.55433i −0.0157037 0.0165782i
\(517\) −387.547 + 294.605i −0.749607 + 0.569836i
\(518\) −107.187 + 23.5936i −0.206924 + 0.0455475i
\(519\) 232.480 197.470i 0.447938 0.380482i
\(520\) 7.82119 144.253i 0.0150407 0.277410i
\(521\) −470.327 887.130i −0.902738 1.70274i −0.687502 0.726183i \(-0.741293\pi\)
−0.215237 0.976562i \(-0.569052\pi\)
\(522\) −20.4506 + 92.9079i −0.0391773 + 0.177984i
\(523\) −577.436 + 267.151i −1.10408 + 0.510804i −0.885324 0.464974i \(-0.846064\pi\)
−0.218761 + 0.975779i \(0.570201\pi\)
\(524\) −98.0881 + 163.024i −0.187191 + 0.311114i
\(525\) −50.6969 + 95.6245i −0.0965656 + 0.182142i
\(526\) −226.024 191.986i −0.429703 0.364993i
\(527\) 30.6816 32.3902i 0.0582194 0.0614615i
\(528\) 25.7029 236.334i 0.0486797 0.447602i
\(529\) −195.596 + 490.908i −0.369746 + 0.927993i
\(530\) 513.506i 0.968879i
\(531\) 95.4886 + 149.033i 0.179828 + 0.280665i
\(532\) 100.703 0.189292
\(533\) −158.620 63.1999i −0.297598 0.118574i
\(534\) −142.203 15.4655i −0.266298 0.0289617i
\(535\) 55.1430 + 52.2342i 0.103071 + 0.0976340i
\(536\) −625.160 + 735.996i −1.16634 + 1.37313i
\(537\) −199.641 105.843i −0.371771 0.197101i
\(538\) −467.990 281.580i −0.869870 0.523383i
\(539\) 85.0101 + 183.746i 0.157718 + 0.340902i
\(540\) −18.4963 4.07134i −0.0342524 0.00753952i
\(541\) 628.642 333.285i 1.16200 0.616054i 0.228118 0.973633i \(-0.426743\pi\)
0.933883 + 0.357580i \(0.116398\pi\)
\(542\) 203.667 + 11.0425i 0.375769 + 0.0203736i
\(543\) −233.279 274.637i −0.429611 0.505777i
\(544\) −62.4932 283.909i −0.114877 0.521892i
\(545\) 165.890 + 218.224i 0.304385 + 0.400412i
\(546\) 55.6011 52.6682i 0.101834 0.0964619i
\(547\) 26.4842 + 488.471i 0.0484171 + 0.893001i 0.917353 + 0.398076i \(0.130322\pi\)
−0.868936 + 0.494925i \(0.835195\pi\)
\(548\) 145.004 87.2463i 0.264607 0.159209i
\(549\) −158.679 107.587i −0.289033 0.195969i
\(550\) 62.6977 225.817i 0.113996 0.410576i
\(551\) 328.908 35.7709i 0.596929 0.0649199i
\(552\) 8.93018 + 6.78855i 0.0161779 + 0.0122981i
\(553\) 328.776 + 152.108i 0.594531 + 0.275059i
\(554\) 114.856 77.8740i 0.207320 0.140567i
\(555\) −22.9210 68.0270i −0.0412990 0.122571i
\(556\) 23.4966 + 143.323i 0.0422600 + 0.257775i
\(557\) −89.8071 + 547.799i −0.161234 + 0.983481i 0.774963 + 0.632006i \(0.217768\pi\)
−0.936197 + 0.351475i \(0.885680\pi\)
\(558\) −11.5269 3.88387i −0.0206575 0.00696033i
\(559\) 8.33738 + 30.0285i 0.0149148 + 0.0537183i
\(560\) −88.3251 221.679i −0.157723 0.395856i
\(561\) −378.746 + 150.906i −0.675127 + 0.268995i
\(562\) 149.653 41.5509i 0.266286 0.0739340i
\(563\) 63.2120 187.606i 0.112277 0.333226i −0.876753 0.480941i \(-0.840295\pi\)
0.989030 + 0.147715i \(0.0471917\pi\)
\(564\) 65.8232 + 10.7912i 0.116708 + 0.0191333i
\(565\) 155.907 25.5596i 0.275941 0.0452383i
\(566\) −892.298 + 300.650i −1.57650 + 0.531184i
\(567\) −28.8077 42.4882i −0.0508073 0.0749351i
\(568\) −309.616 + 669.225i −0.545099 + 1.17821i
\(569\) 507.258 667.287i 0.891491 1.17274i −0.0927121 0.995693i \(-0.529554\pi\)
0.984203 0.177043i \(-0.0566533\pi\)
\(570\) −22.1671 203.823i −0.0388896 0.357584i
\(571\) −580.408 161.150i −1.01648 0.282223i −0.280952 0.959722i \(-0.590650\pi\)
−0.735524 + 0.677498i \(0.763064\pi\)
\(572\) 29.8976 44.0956i 0.0522685 0.0770902i
\(573\) −299.696 498.099i −0.523030 0.869283i
\(574\) −379.766 + 20.5903i −0.661614 + 0.0358716i
\(575\) 5.63967 + 5.95373i 0.00980812 + 0.0103543i
\(576\) −169.745 + 129.036i −0.294695 + 0.224022i
\(577\) 417.353 91.8664i 0.723316 0.159214i 0.161970 0.986796i \(-0.448215\pi\)
0.561345 + 0.827582i \(0.310284\pi\)
\(578\) 102.858 87.3684i 0.177955 0.151156i
\(579\) 28.4040 523.881i 0.0490570 0.904804i
\(580\) 31.1151 + 58.6892i 0.0536467 + 0.101188i
\(581\) 77.3575 351.439i 0.133145 0.604886i
\(582\) −21.8134 + 10.0919i −0.0374800 + 0.0173401i
\(583\) 499.161 829.611i 0.856193 1.42300i
\(584\) −65.2711 + 123.114i −0.111765 + 0.210812i
\(585\) 38.1780 + 32.4287i 0.0652616 + 0.0554337i
\(586\) −408.026 + 430.748i −0.696291 + 0.735065i
\(587\) −28.5576 + 262.583i −0.0486501 + 0.447330i 0.944326 + 0.329012i \(0.106716\pi\)
−0.992976 + 0.118318i \(0.962250\pi\)
\(588\) 10.2678 25.7702i 0.0174623 0.0438270i
\(589\) 42.3023i 0.0718205i
\(590\) −367.892 112.523i −0.623546 0.190717i
\(591\) 145.591 0.246347
\(592\) −114.693 45.6977i −0.193738 0.0771921i
\(593\) 38.7671 + 4.21618i 0.0653746 + 0.00710992i 0.140748 0.990045i \(-0.455049\pi\)
−0.0753733 + 0.997155i \(0.524015\pi\)
\(594\) 80.6976 + 76.4408i 0.135854 + 0.128688i
\(595\) −264.940 + 311.912i −0.445277 + 0.524221i
\(596\) 102.501 + 54.3427i 0.171982 + 0.0911790i
\(597\) −530.501 319.192i −0.888611 0.534659i
\(598\) −2.43659 5.26660i −0.00407457 0.00880703i
\(599\) −351.347 77.3373i −0.586556 0.129111i −0.0882293 0.996100i \(-0.528121\pi\)
−0.498326 + 0.866990i \(0.666052\pi\)
\(600\) −145.054 + 76.9026i −0.241756 + 0.128171i
\(601\) 869.313 + 47.1328i 1.44644 + 0.0784239i 0.760551 0.649278i \(-0.224929\pi\)
0.685893 + 0.727702i \(0.259412\pi\)
\(602\) 44.9391 + 52.9064i 0.0746496 + 0.0878843i
\(603\) −71.9797 327.007i −0.119369 0.542300i
\(604\) −91.5397 120.418i −0.151556 0.199368i
\(605\) −82.0380 + 77.7105i −0.135600 + 0.128447i
\(606\) 2.23475 + 41.2176i 0.00368771 + 0.0680158i
\(607\) 185.689 111.725i 0.305912 0.184061i −0.354317 0.935125i \(-0.615287\pi\)
0.660229 + 0.751064i \(0.270459\pi\)
\(608\) 228.142 + 154.684i 0.375233 + 0.254414i
\(609\) −48.1680 + 173.485i −0.0790935 + 0.284869i
\(610\) 414.253 45.0527i 0.679103 0.0738569i
\(611\) −140.446 106.764i −0.229863 0.174737i
\(612\) 50.6995 + 23.4561i 0.0828424 + 0.0383270i
\(613\) −10.5196 + 7.13245i −0.0171608 + 0.0116353i −0.569737 0.821827i \(-0.692955\pi\)
0.552577 + 0.833462i \(0.313645\pi\)
\(614\) −269.211 798.989i −0.438454 1.30128i
\(615\) −40.2439 245.477i −0.0654373 0.399150i
\(616\) 98.1557 598.723i 0.159344 0.971953i
\(617\) −668.775 225.337i −1.08391 0.365213i −0.280025 0.959993i \(-0.590343\pi\)
−0.803889 + 0.594779i \(0.797239\pi\)
\(618\) 112.974 + 406.895i 0.182806 + 0.658406i
\(619\) 396.317 + 994.680i 0.640253 + 1.60691i 0.786446 + 0.617659i \(0.211919\pi\)
−0.146193 + 0.989256i \(0.546702\pi\)
\(620\) −7.89019 + 3.14374i −0.0127261 + 0.00507054i
\(621\) −3.74778 + 1.04057i −0.00603507 + 0.00167563i
\(622\) 251.512 746.462i 0.404361 1.20010i
\(623\) −267.157 43.7981i −0.428823 0.0703019i
\(624\) 85.0170 13.9378i 0.136245 0.0223363i
\(625\) 218.987 73.7853i 0.350379 0.118056i
\(626\) 73.9199 + 109.024i 0.118083 + 0.174159i
\(627\) 162.316 350.841i 0.258878 0.559555i
\(628\) −89.2840 + 117.451i −0.142172 + 0.187024i
\(629\) 22.8927 + 210.495i 0.0363954 + 0.334650i
\(630\) 107.508 + 29.8495i 0.170648 + 0.0473802i
\(631\) 134.072 197.742i 0.212476 0.313378i −0.706485 0.707728i \(-0.749720\pi\)
0.918960 + 0.394350i \(0.129030\pi\)
\(632\) 283.303 + 470.852i 0.448264 + 0.745020i
\(633\) 258.911 14.0377i 0.409022 0.0221765i
\(634\) 563.765 + 595.159i 0.889219 + 0.938737i
\(635\) −471.414 + 358.360i −0.742384 + 0.564346i
\(636\) −129.560 + 28.5183i −0.203710 + 0.0448400i
\(637\) −55.9202 + 47.4990i −0.0877868 + 0.0745668i
\(638\) 21.1068 389.293i 0.0330828 0.610177i
\(639\) −119.761 225.894i −0.187420 0.353512i
\(640\) 50.6976 230.322i 0.0792151 0.359878i
\(641\) 115.278 53.3334i 0.179841 0.0832035i −0.327902 0.944712i \(-0.606342\pi\)
0.507744 + 0.861508i \(0.330480\pi\)
\(642\) −31.4902 + 52.3372i −0.0490502 + 0.0815221i
\(643\) −357.610 + 674.524i −0.556159 + 1.04903i 0.432891 + 0.901446i \(0.357493\pi\)
−0.989050 + 0.147581i \(0.952851\pi\)
\(644\) 3.16482 + 2.68823i 0.00491432 + 0.00417426i
\(645\) −31.2231 + 32.9618i −0.0484079 + 0.0511036i
\(646\) −65.3839 + 601.195i −0.101214 + 0.930643i
\(647\) 34.8534 87.4754i 0.0538692 0.135202i −0.899579 0.436758i \(-0.856127\pi\)
0.953448 + 0.301556i \(0.0975061\pi\)
\(648\) 77.8683i 0.120167i
\(649\) −484.981 539.405i −0.747274 0.831132i
\(650\) 84.9313 0.130664
\(651\) −21.3860 8.52097i −0.0328510 0.0130890i
\(652\) 230.413 + 25.0589i 0.353393 + 0.0384339i
\(653\) 546.807 + 517.963i 0.837377 + 0.793206i 0.980504 0.196499i \(-0.0629572\pi\)
−0.143127 + 0.989704i \(0.545716\pi\)
\(654\) −142.708 + 168.009i −0.218208 + 0.256895i
\(655\) 647.709 + 343.394i 0.988869 + 0.524265i
\(656\) −366.588 220.568i −0.558822 0.336232i
\(657\) −20.2877 43.8512i −0.0308794 0.0667446i
\(658\) −383.772 84.4745i −0.583240 0.128381i
\(659\) −316.264 + 167.672i −0.479915 + 0.254435i −0.690759 0.723085i \(-0.742724\pi\)
0.210844 + 0.977520i \(0.432379\pi\)
\(660\) 77.5012 + 4.20199i 0.117426 + 0.00636666i
\(661\) −279.719 329.310i −0.423175 0.498200i 0.508718 0.860933i \(-0.330120\pi\)
−0.931893 + 0.362733i \(0.881844\pi\)
\(662\) −208.748 948.352i −0.315329 1.43256i
\(663\) −89.4148 117.623i −0.134864 0.177410i
\(664\) 396.293 375.389i 0.596827 0.565345i
\(665\) −21.0077 387.463i −0.0315905 0.582652i
\(666\) 49.4637 29.7613i 0.0742698 0.0446866i
\(667\) 11.2916 + 7.65587i 0.0169289 + 0.0114781i
\(668\) −53.3647 + 192.202i −0.0798873 + 0.287728i
\(669\) −688.874 + 74.9195i −1.02971 + 0.111987i
\(670\) 579.377 + 440.431i 0.864741 + 0.657359i
\(671\) 713.054 + 329.894i 1.06267 + 0.491645i
\(672\) −124.156 + 84.1795i −0.184755 + 0.125267i
\(673\) −235.640 699.354i −0.350133 1.03916i −0.967584 0.252549i \(-0.918731\pi\)
0.617451 0.786610i \(-0.288166\pi\)
\(674\) −88.6476 540.727i −0.131525 0.802265i
\(675\) 9.20979 56.1772i 0.0136441 0.0832255i
\(676\) −137.466 46.3176i −0.203352 0.0685172i
\(677\) 300.528 + 1082.41i 0.443912 + 1.59883i 0.759885 + 0.650058i \(0.225255\pi\)
−0.315973 + 0.948768i \(0.602331\pi\)
\(678\) 47.0255 + 118.025i 0.0693592 + 0.174078i
\(679\) −42.2578 + 16.8371i −0.0622354 + 0.0247968i
\(680\) −598.161 + 166.078i −0.879648 + 0.244233i
\(681\) −119.226 + 353.849i −0.175074 + 0.519603i
\(682\) 49.1916 + 8.06455i 0.0721285 + 0.0118249i
\(683\) −306.712 + 50.2830i −0.449067 + 0.0736207i −0.382072 0.924133i \(-0.624789\pi\)
−0.0669947 + 0.997753i \(0.521341\pi\)
\(684\) −50.1943 + 16.9124i −0.0733835 + 0.0247258i
\(685\) −365.937 539.716i −0.534214 0.787907i
\(686\) −272.807 + 589.662i −0.397678 + 0.859566i
\(687\) −100.734 + 132.514i −0.146629 + 0.192888i
\(688\) 8.44264 + 77.6288i 0.0122713 + 0.112833i
\(689\) 338.085 + 93.8689i 0.490690 + 0.136239i
\(690\) 4.74431 6.99734i 0.00687581 0.0101411i
\(691\) 413.959 + 688.006i 0.599073 + 0.995667i 0.996936 + 0.0782219i \(0.0249243\pi\)
−0.397863 + 0.917445i \(0.630248\pi\)
\(692\) 171.027 9.27283i 0.247149 0.0134000i
\(693\) 144.673 + 152.729i 0.208763 + 0.220389i
\(694\) −744.670 + 566.084i −1.07301 + 0.815682i
\(695\) 546.544 120.303i 0.786394 0.173099i
\(696\) −208.159 + 176.812i −0.299079 + 0.254040i
\(697\) −39.7230 + 732.648i −0.0569914 + 1.05115i
\(698\) −258.658 487.880i −0.370570 0.698969i
\(699\) 103.747 471.329i 0.148423 0.674291i
\(700\) −55.1575 + 25.5186i −0.0787965 + 0.0364551i
\(701\) 301.741 501.497i 0.430443 0.715402i −0.563402 0.826183i \(-0.690508\pi\)
0.993845 + 0.110781i \(0.0353353\pi\)
\(702\) −18.8685 + 35.5897i −0.0268782 + 0.0506976i
\(703\) −153.012 129.970i −0.217656 0.184879i
\(704\) 600.922 634.385i 0.853582 0.901115i
\(705\) 27.7885 255.511i 0.0394164 0.362428i
\(706\) −84.0012 + 210.827i −0.118982 + 0.298622i
\(707\) 78.1235i 0.110500i
\(708\) −7.95861 + 99.0699i −0.0112410 + 0.139929i
\(709\) −632.869 −0.892622 −0.446311 0.894878i \(-0.647262\pi\)
−0.446311 + 0.894878i \(0.647262\pi\)
\(710\) 516.254 + 205.694i 0.727118 + 0.289710i
\(711\) −189.420 20.6007i −0.266414 0.0289742i
\(712\) −298.139 282.412i −0.418734 0.396646i
\(713\) −1.12924 + 1.32945i −0.00158379 + 0.00186458i
\(714\) −290.765 154.154i −0.407234 0.215902i
\(715\) −175.898 105.835i −0.246012 0.148020i
\(716\) −53.2767 115.156i −0.0744088 0.160832i
\(717\) −266.194 58.5938i −0.371261 0.0817207i
\(718\) 159.092 84.3453i 0.221577 0.117473i
\(719\) 769.218 + 41.7058i 1.06984 + 0.0580053i 0.580638 0.814162i \(-0.302803\pi\)
0.489207 + 0.872168i \(0.337286\pi\)
\(720\) 81.2543 + 95.6600i 0.112853 + 0.132861i
\(721\) 171.810 + 780.541i 0.238294 + 1.08258i
\(722\) 33.1197 + 43.5682i 0.0458722 + 0.0603438i
\(723\) 269.468 255.254i 0.372708 0.353048i
\(724\) −10.9543 202.041i −0.0151303 0.279062i
\(725\) −171.086 + 102.939i −0.235981 + 0.141985i
\(726\) −75.2132 50.9958i −0.103599 0.0702422i
\(727\) −222.323 + 800.735i −0.305809 + 1.10142i 0.637756 + 0.770238i \(0.279863\pi\)
−0.943565 + 0.331186i \(0.892551\pi\)
\(728\) 218.584 23.7724i 0.300252 0.0326544i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) 95.3121 + 44.0961i 0.130564 + 0.0604056i
\(731\) 110.843 75.1532i 0.151632 0.102809i
\(732\) −34.3731 102.016i −0.0469578 0.139366i
\(733\) −60.8583 371.219i −0.0830263 0.506438i −0.995299 0.0968538i \(-0.969122\pi\)
0.912272 0.409584i \(-0.134326\pi\)
\(734\) 20.0910 122.550i 0.0273720 0.166962i
\(735\) −101.295 34.1303i −0.137816 0.0464358i
\(736\) 3.04065 + 10.9514i 0.00413132 + 0.0148797i
\(737\) 507.904 + 1274.74i 0.689151 + 1.72964i
\(738\) 185.832 74.0423i 0.251805 0.100328i
\(739\) −1221.25 + 339.078i −1.65257 + 0.458833i −0.963904 0.266249i \(-0.914216\pi\)
−0.688663 + 0.725082i \(0.741802\pi\)
\(740\) 12.8706 38.1985i 0.0173927 0.0516196i
\(741\) 138.246 + 22.6643i 0.186567 + 0.0305862i
\(742\) 771.247 126.440i 1.03942 0.170404i
\(743\) 324.333 109.280i 0.436518 0.147080i −0.0924587 0.995717i \(-0.529473\pi\)
0.528976 + 0.848637i \(0.322576\pi\)
\(744\) −19.5971 28.9036i −0.0263402 0.0388489i
\(745\) 187.705 405.718i 0.251953 0.544588i
\(746\) 532.279 700.201i 0.713510 0.938607i
\(747\) 20.4639 + 188.162i 0.0273948 + 0.251891i
\(748\) −220.588 61.2461i −0.294904 0.0818798i
\(749\) −64.8741 + 95.6822i −0.0866143 + 0.127747i
\(750\) 209.358 + 347.955i 0.279144 + 0.463940i
\(751\) 799.407 43.3426i 1.06446 0.0577132i 0.486421 0.873725i \(-0.338302\pi\)
0.578036 + 0.816011i \(0.303819\pi\)
\(752\) −303.991 320.920i −0.404244 0.426755i
\(753\) −206.575 + 157.034i −0.274336 + 0.208545i
\(754\) 137.983 30.3723i 0.183001 0.0402816i
\(755\) −444.224 + 377.327i −0.588376 + 0.499771i
\(756\) 1.56054 28.7825i 0.00206421 0.0380721i
\(757\) −479.190 903.847i −0.633011 1.19399i −0.967807 0.251695i \(-0.919012\pi\)
0.334795 0.942291i \(-0.391333\pi\)
\(758\) 62.3715 283.357i 0.0822843 0.373821i
\(759\) 14.4667 6.69301i 0.0190602 0.00881819i
\(760\) 303.460 504.355i 0.399290 0.663624i
\(761\) −182.162 + 343.595i −0.239372 + 0.451504i −0.973870 0.227107i \(-0.927073\pi\)
0.734497 + 0.678612i \(0.237418\pi\)
\(762\) −362.938 308.282i −0.476296 0.404569i
\(763\) −286.910 + 302.887i −0.376029 + 0.396969i
\(764\) 35.2919 324.503i 0.0461936 0.424743i
\(765\) 79.6729 199.964i 0.104148 0.261391i
\(766\) 284.319i 0.371174i
\(767\) 141.334 221.646i 0.184269 0.288978i
\(768\) −302.764 −0.394224
\(769\) 282.592 + 112.595i 0.367480 + 0.146417i 0.546566 0.837416i \(-0.315935\pi\)
−0.179086 + 0.983833i \(0.557314\pi\)
\(770\) −454.570 49.4375i −0.590351 0.0642046i
\(771\) 153.048 + 144.975i 0.198506 + 0.188035i
\(772\) 190.721 224.534i 0.247048 0.290848i
\(773\) 288.081 + 152.731i 0.372679 + 0.197582i 0.644211 0.764848i