Properties

Label 177.3.g.a.10.13
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.13
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.13

$q$-expansion

\(f(q)\) \(=\) \(q+(0.819309 + 0.326442i) q^{2} +(1.72190 + 0.187268i) q^{3} +(-2.33928 - 2.21588i) q^{4} +(1.32036 - 1.55445i) q^{5} +(1.34963 + 0.715530i) q^{6} +(7.54931 + 4.54227i) q^{7} +(-2.67451 - 5.78087i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(0.819309 + 0.326442i) q^{2} +(1.72190 + 0.187268i) q^{3} +(-2.33928 - 2.21588i) q^{4} +(1.32036 - 1.55445i) q^{5} +(1.34963 + 0.715530i) q^{6} +(7.54931 + 4.54227i) q^{7} +(-2.67451 - 5.78087i) q^{8} +(2.92986 + 0.644911i) q^{9} +(1.58922 - 0.842551i) q^{10} +(8.00405 + 0.433967i) q^{11} +(-3.61304 - 4.25360i) q^{12} +(-2.74300 - 12.4616i) q^{13} +(4.70243 + 6.18594i) q^{14} +(2.56462 - 2.42934i) q^{15} +(0.393646 + 7.26038i) q^{16} +(21.3238 - 12.8301i) q^{17} +(2.18993 + 1.48481i) q^{18} +(5.94855 - 21.4248i) q^{19} +(-6.53316 + 0.710524i) q^{20} +(12.1485 + 9.23507i) q^{21} +(6.41612 + 2.96841i) q^{22} +(-34.7776 + 23.5798i) q^{23} +(-3.52267 - 10.4549i) q^{24} +(3.37159 + 20.5658i) q^{25} +(1.82062 - 11.1053i) q^{26} +(4.92415 + 1.65914i) q^{27} +(-7.59481 - 27.3540i) q^{28} +(11.4284 + 28.6832i) q^{29} +(2.89426 - 1.15318i) q^{30} +(-39.5754 + 10.9880i) q^{31} +(-10.1828 + 30.2216i) q^{32} +(13.7009 + 2.24615i) q^{33} +(21.6591 - 3.55083i) q^{34} +(17.0285 - 5.73758i) q^{35} +(-5.42472 - 8.00086i) q^{36} +(-20.3901 + 44.0726i) q^{37} +(11.8677 - 15.6116i) q^{38} +(-2.38952 - 21.9712i) q^{39} +(-12.5174 - 3.47543i) q^{40} +(24.0953 - 35.5378i) q^{41} +(6.93867 + 11.5322i) q^{42} +(-78.3897 + 4.25017i) q^{43} +(-17.7621 - 18.7512i) q^{44} +(4.87095 - 3.70280i) q^{45} +(-36.1910 + 7.96624i) q^{46} +(42.9177 - 36.4546i) q^{47} +(-0.681816 + 12.5753i) q^{48} +(13.4079 + 25.2900i) q^{49} +(-3.95118 + 17.9504i) q^{50} +(39.1201 - 18.0989i) q^{51} +(-21.1968 + 35.2293i) q^{52} +(8.86078 - 16.7132i) q^{53} +(3.49279 + 2.96680i) q^{54} +(11.2428 - 11.8689i) q^{55} +(6.06752 - 55.7900i) q^{56} +(14.2550 - 35.7773i) q^{57} +27.2311i q^{58} +(-8.63189 + 58.3651i) q^{59} -11.3825 q^{60} +(-90.9224 - 36.2268i) q^{61} +(-36.0114 - 3.91648i) q^{62} +(19.1891 + 18.1769i) q^{63} +(0.620203 - 0.730159i) q^{64} +(-22.9926 - 12.1899i) q^{65} +(10.4920 + 6.31284i) q^{66} +(-6.38717 - 13.8056i) q^{67} +(-78.3125 - 17.2379i) q^{68} +(-64.2991 + 34.0893i) q^{69} +(15.8246 + 0.857985i) q^{70} +(66.1839 + 77.9177i) q^{71} +(-4.10781 - 18.6620i) q^{72} +(49.5119 + 65.1318i) q^{73} +(-31.0930 + 29.4528i) q^{74} +(1.95423 + 36.0436i) q^{75} +(-61.3901 + 36.9372i) q^{76} +(58.4539 + 39.6327i) q^{77} +(5.21460 - 18.7813i) q^{78} +(-91.2954 + 9.92898i) q^{79} +(11.8056 + 8.97441i) q^{80} +(8.16818 + 3.77900i) q^{81} +(31.3425 - 21.2507i) q^{82} +(-2.10729 - 6.25421i) q^{83} +(-7.95496 - 48.5231i) q^{84} +(8.21138 - 50.0872i) q^{85} +(-65.6128 - 22.1075i) q^{86} +(14.3071 + 51.5297i) q^{87} +(-18.8982 - 47.4310i) q^{88} +(7.81364 - 3.11324i) q^{89} +(5.19956 - 1.44365i) q^{90} +(35.8961 - 106.536i) q^{91} +(133.605 + 21.9034i) q^{92} +(-70.2024 + 11.5091i) q^{93} +(47.0632 - 15.8574i) q^{94} +(-25.4494 - 37.5351i) q^{95} +(-23.1933 + 50.1316i) q^{96} +(71.2408 - 93.7156i) q^{97} +(2.72948 + 25.0972i) q^{98} +(23.1709 + 6.43337i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.819309 + 0.326442i 0.409654 + 0.163221i 0.565856 0.824504i \(-0.308546\pi\)
−0.156202 + 0.987725i \(0.549925\pi\)
\(3\) 1.72190 + 0.187268i 0.573966 + 0.0624225i
\(4\) −2.33928 2.21588i −0.584820 0.553971i
\(5\) 1.32036 1.55445i 0.264072 0.310889i −0.614106 0.789223i \(-0.710483\pi\)
0.878178 + 0.478334i \(0.158759\pi\)
\(6\) 1.34963 + 0.715530i 0.224939 + 0.119255i
\(7\) 7.54931 + 4.54227i 1.07847 + 0.648896i 0.939898 0.341456i \(-0.110920\pi\)
0.138576 + 0.990352i \(0.455748\pi\)
\(8\) −2.67451 5.78087i −0.334314 0.722609i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) 1.58922 0.842551i 0.158922 0.0842551i
\(11\) 8.00405 + 0.433967i 0.727641 + 0.0394515i 0.414238 0.910169i \(-0.364048\pi\)
0.313403 + 0.949620i \(0.398531\pi\)
\(12\) −3.61304 4.25360i −0.301086 0.354466i
\(13\) −2.74300 12.4616i −0.211000 0.958584i −0.956421 0.291990i \(-0.905683\pi\)
0.745421 0.666594i \(-0.232248\pi\)
\(14\) 4.70243 + 6.18594i 0.335888 + 0.441853i
\(15\) 2.56462 2.42934i 0.170975 0.161956i
\(16\) 0.393646 + 7.26038i 0.0246029 + 0.453774i
\(17\) 21.3238 12.8301i 1.25434 0.754714i 0.275892 0.961189i \(-0.411027\pi\)
0.978452 + 0.206475i \(0.0661992\pi\)
\(18\) 2.18993 + 1.48481i 0.121663 + 0.0824896i
\(19\) 5.94855 21.4248i 0.313082 1.12762i −0.624835 0.780757i \(-0.714834\pi\)
0.937916 0.346862i \(-0.112753\pi\)
\(20\) −6.53316 + 0.710524i −0.326658 + 0.0355262i
\(21\) 12.1485 + 9.23507i 0.578501 + 0.439765i
\(22\) 6.41612 + 2.96841i 0.291642 + 0.134928i
\(23\) −34.7776 + 23.5798i −1.51207 + 1.02521i −0.527631 + 0.849474i \(0.676920\pi\)
−0.984438 + 0.175734i \(0.943770\pi\)
\(24\) −3.52267 10.4549i −0.146778 0.435621i
\(25\) 3.37159 + 20.5658i 0.134864 + 0.822632i
\(26\) 1.82062 11.1053i 0.0700240 0.427128i
\(27\) 4.92415 + 1.65914i 0.182376 + 0.0614496i
\(28\) −7.59481 27.3540i −0.271243 0.976930i
\(29\) 11.4284 + 28.6832i 0.394084 + 0.989076i 0.983445 + 0.181206i \(0.0580001\pi\)
−0.589361 + 0.807869i \(0.700621\pi\)
\(30\) 2.89426 1.15318i 0.0964752 0.0384392i
\(31\) −39.5754 + 10.9880i −1.27662 + 0.354453i −0.838717 0.544567i \(-0.816694\pi\)
−0.437907 + 0.899020i \(0.644280\pi\)
\(32\) −10.1828 + 30.2216i −0.318214 + 0.944424i
\(33\) 13.7009 + 2.24615i 0.415178 + 0.0680650i
\(34\) 21.6591 3.55083i 0.637033 0.104436i
\(35\) 17.0285 5.73758i 0.486529 0.163931i
\(36\) −5.42472 8.00086i −0.150687 0.222246i
\(37\) −20.3901 + 44.0726i −0.551085 + 1.19115i 0.409281 + 0.912408i \(0.365780\pi\)
−0.960366 + 0.278742i \(0.910083\pi\)
\(38\) 11.8677 15.6116i 0.312307 0.410832i
\(39\) −2.38952 21.9712i −0.0612697 0.563365i
\(40\) −12.5174 3.47543i −0.312934 0.0868858i
\(41\) 24.0953 35.5378i 0.587689 0.866776i −0.411311 0.911495i \(-0.634929\pi\)
0.999000 + 0.0447188i \(0.0142392\pi\)
\(42\) 6.93867 + 11.5322i 0.165206 + 0.274575i
\(43\) −78.3897 + 4.25017i −1.82302 + 0.0988411i −0.933613 0.358283i \(-0.883362\pi\)
−0.889403 + 0.457124i \(0.848880\pi\)
\(44\) −17.7621 18.7512i −0.403684 0.426164i
\(45\) 4.87095 3.70280i 0.108243 0.0822845i
\(46\) −36.1910 + 7.96624i −0.786761 + 0.173179i
\(47\) 42.9177 36.4546i 0.913142 0.775630i −0.0617998 0.998089i \(-0.519684\pi\)
0.974942 + 0.222458i \(0.0714082\pi\)
\(48\) −0.681816 + 12.5753i −0.0142045 + 0.261986i
\(49\) 13.4079 + 25.2900i 0.273630 + 0.516122i
\(50\) −3.95118 + 17.9504i −0.0790235 + 0.359007i
\(51\) 39.1201 18.0989i 0.767062 0.354881i
\(52\) −21.1968 + 35.2293i −0.407630 + 0.677487i
\(53\) 8.86078 16.7132i 0.167185 0.315343i −0.785737 0.618561i \(-0.787716\pi\)
0.952921 + 0.303217i \(0.0980608\pi\)
\(54\) 3.49279 + 2.96680i 0.0646812 + 0.0549407i
\(55\) 11.2428 11.8689i 0.204415 0.215798i
\(56\) 6.06752 55.7900i 0.108349 0.996249i
\(57\) 14.2550 35.7773i 0.250087 0.627671i
\(58\) 27.2311i 0.469502i
\(59\) −8.63189 + 58.3651i −0.146303 + 0.989240i
\(60\) −11.3825 −0.189708
\(61\) −90.9224 36.2268i −1.49053 0.593882i −0.524294 0.851537i \(-0.675671\pi\)
−0.966237 + 0.257655i \(0.917050\pi\)
\(62\) −36.0114 3.91648i −0.580829 0.0631690i
\(63\) 19.1891 + 18.1769i 0.304589 + 0.288522i
\(64\) 0.620203 0.730159i 0.00969067 0.0114087i
\(65\) −22.9926 12.1899i −0.353733 0.187537i
\(66\) 10.4920 + 6.31284i 0.158970 + 0.0956491i
\(67\) −6.38717 13.8056i −0.0953309 0.206054i 0.854043 0.520202i \(-0.174143\pi\)
−0.949374 + 0.314148i \(0.898281\pi\)
\(68\) −78.3125 17.2379i −1.15165 0.253498i
\(69\) −64.2991 + 34.0893i −0.931872 + 0.494047i
\(70\) 15.8246 + 0.857985i 0.226066 + 0.0122569i
\(71\) 66.1839 + 77.9177i 0.932168 + 1.09743i 0.995046 + 0.0994117i \(0.0316961\pi\)
−0.0628785 + 0.998021i \(0.520028\pi\)
\(72\) −4.10781 18.6620i −0.0570529 0.259194i
\(73\) 49.5119 + 65.1318i 0.678245 + 0.892216i 0.998480 0.0551224i \(-0.0175549\pi\)
−0.320235 + 0.947338i \(0.603762\pi\)
\(74\) −31.0930 + 29.4528i −0.420175 + 0.398011i
\(75\) 1.95423 + 36.0436i 0.0260564 + 0.480581i
\(76\) −61.3901 + 36.9372i −0.807764 + 0.486016i
\(77\) 58.4539 + 39.6327i 0.759141 + 0.514711i
\(78\) 5.21460 18.7813i 0.0668538 0.240786i
\(79\) −91.2954 + 9.92898i −1.15564 + 0.125683i −0.665800 0.746130i \(-0.731910\pi\)
−0.489838 + 0.871813i \(0.662944\pi\)
\(80\) 11.8056 + 8.97441i 0.147570 + 0.112180i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) 31.3425 21.2507i 0.382226 0.259155i
\(83\) −2.10729 6.25421i −0.0253890 0.0753520i 0.934209 0.356725i \(-0.116107\pi\)
−0.959598 + 0.281373i \(0.909210\pi\)
\(84\) −7.95496 48.5231i −0.0947019 0.577656i
\(85\) 8.21138 50.0872i 0.0966044 0.589261i
\(86\) −65.6128 22.1075i −0.762939 0.257064i
\(87\) 14.3071 + 51.5297i 0.164450 + 0.592295i
\(88\) −18.8982 47.4310i −0.214753 0.538989i
\(89\) 7.81364 3.11324i 0.0877937 0.0349802i −0.325828 0.945429i \(-0.605643\pi\)
0.413622 + 0.910449i \(0.364264\pi\)
\(90\) 5.19956 1.44365i 0.0577729 0.0160406i
\(91\) 35.8961 106.536i 0.394463 1.17072i
\(92\) 133.605 + 21.9034i 1.45222 + 0.238080i
\(93\) −70.2024 + 11.5091i −0.754865 + 0.123754i
\(94\) 47.0632 15.8574i 0.500672 0.168696i
\(95\) −25.4494 37.5351i −0.267889 0.395106i
\(96\) −23.1933 + 50.1316i −0.241597 + 0.522204i
\(97\) 71.2408 93.7156i 0.734441 0.966141i −0.265557 0.964095i \(-0.585556\pi\)
0.999998 0.00204544i \(-0.000651084\pi\)
\(98\) 2.72948 + 25.0972i 0.0278519 + 0.256094i
\(99\) 23.1709 + 6.43337i 0.234049 + 0.0649835i
\(100\) 37.6843 55.5802i 0.376843 0.555802i
\(101\) −59.5896 99.0387i −0.589996 0.980581i −0.997721 0.0674761i \(-0.978505\pi\)
0.407725 0.913105i \(-0.366322\pi\)
\(102\) 37.9597 2.05812i 0.372154 0.0201776i
\(103\) 125.135 + 132.104i 1.21491 + 1.28256i 0.947789 + 0.318898i \(0.103313\pi\)
0.267118 + 0.963664i \(0.413929\pi\)
\(104\) −64.7026 + 49.1856i −0.622140 + 0.472939i
\(105\) 30.3958 6.69063i 0.289484 0.0637203i
\(106\) 12.7156 10.8007i 0.119959 0.101894i
\(107\) 1.44307 26.6159i 0.0134866 0.248747i −0.984014 0.178091i \(-0.943008\pi\)
0.997501 0.0706560i \(-0.0225093\pi\)
\(108\) −7.84251 14.7925i −0.0726158 0.136968i
\(109\) −2.91454 + 13.2409i −0.0267389 + 0.121476i −0.988099 0.153816i \(-0.950844\pi\)
0.961361 + 0.275292i \(0.0887746\pi\)
\(110\) 13.0858 6.05415i 0.118962 0.0550377i
\(111\) −43.3631 + 72.0700i −0.390659 + 0.649280i
\(112\) −30.0069 + 56.5989i −0.267918 + 0.505348i
\(113\) −3.25897 2.76819i −0.0288404 0.0244973i 0.632850 0.774274i \(-0.281885\pi\)
−0.661691 + 0.749777i \(0.730161\pi\)
\(114\) 23.3584 24.6592i 0.204899 0.216309i
\(115\) −9.26537 + 85.1937i −0.0805685 + 0.740815i
\(116\) 36.8243 92.4221i 0.317451 0.796742i
\(117\) 38.2797i 0.327177i
\(118\) −26.1250 + 45.0013i −0.221399 + 0.381367i
\(119\) 219.258 1.84251
\(120\) −20.9028 8.32844i −0.174190 0.0694036i
\(121\) −56.4142 6.13541i −0.466233 0.0507059i
\(122\) −62.6676 59.3619i −0.513669 0.486573i
\(123\) 48.1446 56.6802i 0.391420 0.460815i
\(124\) 116.926 + 61.9903i 0.942952 + 0.499922i
\(125\) 80.1097 + 48.2004i 0.640877 + 0.385603i
\(126\) 9.78808 + 21.1566i 0.0776832 + 0.167909i
\(127\) 87.6442 + 19.2919i 0.690112 + 0.151905i 0.546161 0.837680i \(-0.316088\pi\)
0.143950 + 0.989585i \(0.454020\pi\)
\(128\) 113.451 60.1478i 0.886334 0.469904i
\(129\) −135.775 7.36150i −1.05252 0.0570659i
\(130\) −14.8588 17.4931i −0.114298 0.134562i
\(131\) 13.2832 + 60.3461i 0.101398 + 0.460657i 0.999771 + 0.0214223i \(0.00681944\pi\)
−0.898372 + 0.439235i \(0.855250\pi\)
\(132\) −27.0730 35.6139i −0.205099 0.269803i
\(133\) 142.225 134.722i 1.06936 1.01295i
\(134\) −0.726317 13.3961i −0.00542027 0.0999711i
\(135\) 9.08069 5.46367i 0.0672644 0.0404716i
\(136\) −131.200 88.9560i −0.964708 0.654088i
\(137\) −48.7574 + 175.608i −0.355893 + 1.28181i 0.541545 + 0.840672i \(0.317840\pi\)
−0.897438 + 0.441140i \(0.854574\pi\)
\(138\) −63.8090 + 6.93965i −0.462384 + 0.0502873i
\(139\) −137.731 104.700i −0.990871 0.753241i −0.0217343 0.999764i \(-0.506919\pi\)
−0.969137 + 0.246523i \(0.920712\pi\)
\(140\) −52.5483 24.3114i −0.375345 0.173653i
\(141\) 80.7266 54.7340i 0.572529 0.388184i
\(142\) 28.7894 + 85.4439i 0.202742 + 0.601718i
\(143\) −16.5472 100.934i −0.115715 0.705829i
\(144\) −3.52897 + 21.5258i −0.0245068 + 0.149485i
\(145\) 59.6761 + 20.1072i 0.411560 + 0.138671i
\(146\) 19.3037 + 69.5258i 0.132217 + 0.476204i
\(147\) 18.3510 + 46.0576i 0.124837 + 0.313317i
\(148\) 145.358 57.9159i 0.982148 0.391324i
\(149\) 234.819 65.1972i 1.57597 0.437565i 0.634017 0.773319i \(-0.281405\pi\)
0.941950 + 0.335754i \(0.108991\pi\)
\(150\) −10.1650 + 30.1688i −0.0677670 + 0.201125i
\(151\) −21.5206 3.52813i −0.142521 0.0233651i 0.0900992 0.995933i \(-0.471282\pi\)
−0.232620 + 0.972568i \(0.574730\pi\)
\(152\) −139.763 + 22.9130i −0.919495 + 0.150743i
\(153\) 70.7502 23.8385i 0.462420 0.155807i
\(154\) 34.9540 + 51.5533i 0.226974 + 0.334761i
\(155\) −35.1734 + 76.0260i −0.226925 + 0.490490i
\(156\) −43.0960 + 56.6918i −0.276256 + 0.363409i
\(157\) −8.91544 81.9761i −0.0567862 0.522141i −0.987639 0.156746i \(-0.949900\pi\)
0.930853 0.365395i \(-0.119066\pi\)
\(158\) −78.0404 21.6678i −0.493926 0.137138i
\(159\) 18.3872 27.1191i 0.115643 0.170560i
\(160\) 33.5329 + 55.7320i 0.209580 + 0.348325i
\(161\) −369.653 + 20.0420i −2.29598 + 0.124484i
\(162\) 5.45863 + 5.76261i 0.0336953 + 0.0355717i
\(163\) −8.59461 + 6.53345i −0.0527277 + 0.0400825i −0.631206 0.775615i \(-0.717440\pi\)
0.578478 + 0.815698i \(0.303647\pi\)
\(164\) −135.113 + 29.7407i −0.823861 + 0.181346i
\(165\) 21.5816 18.3316i 0.130798 0.111101i
\(166\) 0.315120 5.81204i 0.00189831 0.0350123i
\(167\) −16.8111 31.7092i −0.100665 0.189875i 0.828064 0.560634i \(-0.189442\pi\)
−0.928729 + 0.370759i \(0.879098\pi\)
\(168\) 20.8953 94.9283i 0.124377 0.565050i
\(169\) 5.61317 2.59693i 0.0332140 0.0153664i
\(170\) 23.0782 38.3563i 0.135754 0.225625i
\(171\) 31.2455 58.9353i 0.182722 0.344651i
\(172\) 192.793 + 163.760i 1.12089 + 0.952094i
\(173\) −26.5719 + 28.0516i −0.153595 + 0.162148i −0.798252 0.602324i \(-0.794242\pi\)
0.644657 + 0.764472i \(0.277000\pi\)
\(174\) −5.09951 + 46.8892i −0.0293075 + 0.269478i
\(175\) −67.9622 + 170.572i −0.388356 + 0.974699i
\(176\) 58.2833i 0.331155i
\(177\) −25.7931 + 98.8823i −0.145724 + 0.558657i
\(178\) 7.41807 0.0416746
\(179\) −64.5880 25.7342i −0.360827 0.143766i 0.182678 0.983173i \(-0.441524\pi\)
−0.543504 + 0.839406i \(0.682903\pi\)
\(180\) −19.5995 2.13157i −0.108886 0.0118421i
\(181\) −168.881 159.973i −0.933045 0.883827i 0.0603955 0.998175i \(-0.480764\pi\)
−0.993441 + 0.114347i \(0.963522\pi\)
\(182\) 64.1878 75.5678i 0.352680 0.415207i
\(183\) −149.775 79.4057i −0.818442 0.433911i
\(184\) 229.325 + 137.980i 1.24633 + 0.749892i
\(185\) 41.5862 + 89.8870i 0.224790 + 0.485876i
\(186\) −61.2745 13.4875i −0.329433 0.0725136i
\(187\) 176.245 93.4392i 0.942487 0.499675i
\(188\) −181.176 9.82306i −0.963700 0.0522503i
\(189\) 29.6377 + 34.8922i 0.156813 + 0.184615i
\(190\) −8.59789 39.0606i −0.0452520 0.205582i
\(191\) 13.0643 + 17.1858i 0.0683995 + 0.0899779i 0.829021 0.559218i \(-0.188899\pi\)
−0.760621 + 0.649196i \(0.775105\pi\)
\(192\) 1.20466 1.14112i 0.00627428 0.00594331i
\(193\) −8.12766 149.906i −0.0421122 0.776715i −0.940973 0.338481i \(-0.890087\pi\)
0.898861 0.438234i \(-0.144396\pi\)
\(194\) 88.9610 53.5260i 0.458562 0.275907i
\(195\) −37.3082 25.2956i −0.191324 0.129721i
\(196\) 24.6748 88.8706i 0.125892 0.453421i
\(197\) −186.144 + 20.2444i −0.944893 + 0.102763i −0.567576 0.823321i \(-0.692119\pi\)
−0.377317 + 0.926084i \(0.623153\pi\)
\(198\) 16.8840 + 12.8349i 0.0852727 + 0.0648226i
\(199\) 179.941 + 83.2495i 0.904225 + 0.418339i 0.816194 0.577778i \(-0.196080\pi\)
0.0880318 + 0.996118i \(0.471942\pi\)
\(200\) 109.871 74.4943i 0.549354 0.372471i
\(201\) −8.41270 24.9680i −0.0418542 0.124219i
\(202\) −16.4918 100.596i −0.0816428 0.497999i
\(203\) −44.0100 + 268.449i −0.216798 + 1.32241i
\(204\) −131.618 44.3473i −0.645186 0.217389i
\(205\) −23.4273 84.3775i −0.114280 0.411598i
\(206\) 59.4002 + 149.083i 0.288351 + 0.723706i
\(207\) −117.100 + 46.6570i −0.565702 + 0.225396i
\(208\) 89.3961 24.8207i 0.429789 0.119330i
\(209\) 56.9102 168.903i 0.272297 0.808150i
\(210\) 27.0877 + 4.44080i 0.128989 + 0.0211467i
\(211\) 55.2994 9.06587i 0.262082 0.0429662i −0.0293081 0.999570i \(-0.509330\pi\)
0.291390 + 0.956604i \(0.405882\pi\)
\(212\) −57.7624 + 19.4624i −0.272464 + 0.0918038i
\(213\) 99.3705 + 146.560i 0.466528 + 0.688077i
\(214\) 9.87088 21.3355i 0.0461256 0.0996988i
\(215\) −96.8959 + 127.464i −0.450679 + 0.592858i
\(216\) −3.57845 32.9033i −0.0165669 0.152330i
\(217\) −348.677 96.8098i −1.60681 0.446128i
\(218\) −6.71029 + 9.89694i −0.0307812 + 0.0453988i
\(219\) 73.0573 + 121.422i 0.333595 + 0.554439i
\(220\) −52.6001 + 2.85190i −0.239091 + 0.0129632i
\(221\) −218.375 230.536i −0.988123 1.04315i
\(222\) −59.0545 + 44.8921i −0.266011 + 0.202216i
\(223\) −177.549 + 39.0815i −0.796185 + 0.175254i −0.594393 0.804175i \(-0.702608\pi\)
−0.201792 + 0.979428i \(0.564677\pi\)
\(224\) −214.148 + 181.899i −0.956018 + 0.812049i
\(225\) −3.38482 + 62.4293i −0.0150436 + 0.277464i
\(226\) −1.76645 3.33187i −0.00781613 0.0147428i
\(227\) 22.5902 102.628i 0.0995163 0.452107i −0.900341 0.435186i \(-0.856683\pi\)
0.999857 0.0169210i \(-0.00538637\pi\)
\(228\) −112.625 + 52.1057i −0.493967 + 0.228534i
\(229\) −100.488 + 167.013i −0.438814 + 0.729315i −0.994797 0.101879i \(-0.967515\pi\)
0.555982 + 0.831194i \(0.312342\pi\)
\(230\) −35.4020 + 66.7753i −0.153922 + 0.290328i
\(231\) 93.2297 + 79.1900i 0.403592 + 0.342814i
\(232\) 135.248 142.780i 0.582967 0.615430i
\(233\) −1.11447 + 10.2474i −0.00478312 + 0.0439800i −0.996286 0.0861025i \(-0.972559\pi\)
0.991503 + 0.130083i \(0.0415242\pi\)
\(234\) 12.4961 31.3629i 0.0534022 0.134030i
\(235\) 114.846i 0.488708i
\(236\) 149.523 117.405i 0.633571 0.497479i
\(237\) −159.061 −0.671142
\(238\) 179.640 + 71.5752i 0.754791 + 0.300736i
\(239\) −54.3324 5.90900i −0.227332 0.0247239i −0.00625613 0.999980i \(-0.501991\pi\)
−0.221076 + 0.975257i \(0.570957\pi\)
\(240\) 18.6475 + 17.6638i 0.0776978 + 0.0735993i
\(241\) 18.6218 21.9233i 0.0772688 0.0909679i −0.722169 0.691716i \(-0.756855\pi\)
0.799438 + 0.600749i \(0.205131\pi\)
\(242\) −44.2178 23.4428i −0.182718 0.0968710i
\(243\) 13.3571 + 8.03669i 0.0549674 + 0.0330728i
\(244\) 132.419 + 286.218i 0.542699 + 1.17303i
\(245\) 57.0151 + 12.5500i 0.232715 + 0.0512244i
\(246\) 57.9482 30.7222i 0.235562 0.124887i
\(247\) −283.303 15.3603i −1.14698 0.0621873i
\(248\) 169.365 + 199.392i 0.682925 + 0.804001i
\(249\) −2.45732 11.1637i −0.00986877 0.0448343i
\(250\) 49.8999 + 65.6422i 0.199600 + 0.262569i
\(251\) −216.448 + 205.030i −0.862343 + 0.816854i −0.984450 0.175662i \(-0.943793\pi\)
0.122108 + 0.992517i \(0.461035\pi\)
\(252\) −4.61082 85.0415i −0.0182969 0.337466i
\(253\) −288.594 + 173.641i −1.14069 + 0.686330i
\(254\) 65.5099 + 44.4168i 0.257913 + 0.174869i
\(255\) 23.5189 84.7073i 0.0922308 0.332185i
\(256\) 108.776 11.8301i 0.424908 0.0462115i
\(257\) −198.006 150.520i −0.770452 0.585683i 0.144377 0.989523i \(-0.453882\pi\)
−0.914830 + 0.403840i \(0.867675\pi\)
\(258\) −108.838 50.3540i −0.421855 0.195171i
\(259\) −354.121 + 240.100i −1.36726 + 0.927027i
\(260\) 26.7747 + 79.4646i 0.102980 + 0.305633i
\(261\) 14.9856 + 91.4081i 0.0574161 + 0.350223i
\(262\) −8.81650 + 53.7783i −0.0336508 + 0.205261i
\(263\) −139.883 47.1322i −0.531876 0.179210i 0.0405332 0.999178i \(-0.487094\pi\)
−0.572409 + 0.819968i \(0.693991\pi\)
\(264\) −23.6585 85.2104i −0.0896157 0.322767i
\(265\) −14.2804 35.8411i −0.0538882 0.135249i
\(266\) 160.505 63.9510i 0.603402 0.240417i
\(267\) 14.0373 3.89743i 0.0525741 0.0145971i
\(268\) −15.6503 + 46.4485i −0.0583967 + 0.173315i
\(269\) −35.2447 5.77807i −0.131021 0.0214798i 0.0959145 0.995390i \(-0.469422\pi\)
−0.226936 + 0.973910i \(0.572871\pi\)
\(270\) 9.22347 1.51211i 0.0341610 0.00560041i
\(271\) 477.534 160.900i 1.76212 0.593726i 0.763476 0.645836i \(-0.223491\pi\)
0.998641 + 0.0521096i \(0.0165945\pi\)
\(272\) 101.546 + 149.769i 0.373330 + 0.550620i
\(273\) 81.7602 176.722i 0.299488 0.647332i
\(274\) −97.2734 + 127.961i −0.355012 + 0.467011i
\(275\) 18.0615 + 166.073i 0.0656782 + 0.603901i
\(276\) 225.952 + 62.7351i 0.818665 + 0.227301i
\(277\) −41.8422 + 61.7126i −0.151055 + 0.222789i −0.895686 0.444687i \(-0.853315\pi\)
0.744631 + 0.667476i \(0.232625\pi\)
\(278\) −78.6656 130.743i −0.282970 0.470300i
\(279\) −123.037 + 6.67085i −0.440991 + 0.0239099i
\(280\) −78.7112 83.0944i −0.281112 0.296766i
\(281\) 373.261 283.746i 1.32833 1.00977i 0.330509 0.943803i \(-0.392780\pi\)
0.997822 0.0659680i \(-0.0210135\pi\)
\(282\) 84.0075 18.4915i 0.297899 0.0655725i
\(283\) 89.2486 75.8084i 0.315366 0.267874i −0.475697 0.879609i \(-0.657804\pi\)
0.791063 + 0.611735i \(0.209528\pi\)
\(284\) 17.8339 328.927i 0.0627955 1.15819i
\(285\) −36.7922 69.3974i −0.129095 0.243500i
\(286\) 19.3917 88.0974i 0.0678032 0.308033i
\(287\) 343.325 158.839i 1.19625 0.553446i
\(288\) −49.3245 + 81.9780i −0.171266 + 0.284646i
\(289\) 154.724 291.841i 0.535378 1.00983i
\(290\) 42.3293 + 35.9549i 0.145963 + 0.123982i
\(291\) 140.219 148.028i 0.481853 0.508686i
\(292\) 28.5023 262.074i 0.0976105 0.897514i
\(293\) 137.987 346.320i 0.470944 1.18198i −0.481277 0.876569i \(-0.659827\pi\)
0.952221 0.305411i \(-0.0987938\pi\)
\(294\) 43.7259i 0.148728i
\(295\) 79.3284 + 90.4808i 0.268910 + 0.306715i
\(296\) 309.311 1.04497
\(297\) 38.6931 + 15.4168i 0.130280 + 0.0519083i
\(298\) 213.672 + 23.2383i 0.717022 + 0.0779808i
\(299\) 389.236 + 368.704i 1.30179 + 1.23312i
\(300\) 75.2969 88.6464i 0.250990 0.295488i
\(301\) −611.094 323.981i −2.03021 1.07635i
\(302\) −16.4803 9.91588i −0.0545706 0.0328340i
\(303\) −84.0604 181.694i −0.277427 0.599649i
\(304\) 157.894 + 34.7550i 0.519387 + 0.114326i
\(305\) −176.363 + 93.5017i −0.578239 + 0.306563i
\(306\) 65.7482 + 3.56476i 0.214863 + 0.0116496i
\(307\) −25.7497 30.3149i −0.0838752 0.0987455i 0.718624 0.695399i \(-0.244772\pi\)
−0.802499 + 0.596654i \(0.796497\pi\)
\(308\) −48.9185 222.239i −0.158826 0.721555i
\(309\) 190.732 + 250.903i 0.617254 + 0.811984i
\(310\) −53.6359 + 50.8067i −0.173019 + 0.163892i
\(311\) 19.8752 + 366.577i 0.0639074 + 1.17870i 0.838014 + 0.545648i \(0.183716\pi\)
−0.774107 + 0.633055i \(0.781801\pi\)
\(312\) −120.622 + 72.5759i −0.386609 + 0.232615i
\(313\) −52.4127 35.5367i −0.167453 0.113536i 0.474582 0.880211i \(-0.342599\pi\)
−0.642035 + 0.766675i \(0.721910\pi\)
\(314\) 19.4560 70.0741i 0.0619617 0.223166i
\(315\) 53.5915 5.82842i 0.170132 0.0185029i
\(316\) 235.567 + 179.073i 0.745465 + 0.566688i
\(317\) 381.592 + 176.543i 1.20376 + 0.556919i 0.916153 0.400829i \(-0.131278\pi\)
0.287608 + 0.957748i \(0.407140\pi\)
\(318\) 23.9176 16.2165i 0.0752126 0.0509954i
\(319\) 79.0262 + 234.541i 0.247731 + 0.735239i
\(320\) −0.316103 1.92815i −0.000987823 0.00602545i
\(321\) 7.46912 45.5596i 0.0232683 0.141930i
\(322\) −309.402 104.250i −0.960876 0.323757i
\(323\) −148.036 533.179i −0.458317 1.65071i
\(324\) −10.7338 26.9399i −0.0331291 0.0831478i
\(325\) 247.034 98.4274i 0.760105 0.302854i
\(326\) −9.17444 + 2.54727i −0.0281424 + 0.00781371i
\(327\) −7.49813 + 22.2536i −0.0229301 + 0.0680540i
\(328\) −269.883 44.2450i −0.822813 0.134893i
\(329\) 489.586 80.2635i 1.48810 0.243962i
\(330\) 23.6662 7.97407i 0.0717158 0.0241639i
\(331\) 130.245 + 192.097i 0.393489 + 0.580353i 0.971900 0.235392i \(-0.0756375\pi\)
−0.578411 + 0.815745i \(0.696327\pi\)
\(332\) −8.92907 + 19.2999i −0.0268948 + 0.0581321i
\(333\) −88.1632 + 115.977i −0.264754 + 0.348278i
\(334\) −3.42229 31.4674i −0.0102464 0.0942139i
\(335\) −29.8935 8.29989i −0.0892343 0.0247758i
\(336\) −62.2679 + 91.8382i −0.185321 + 0.273328i
\(337\) 99.6933 + 165.692i 0.295826 + 0.491666i 0.968748 0.248047i \(-0.0797887\pi\)
−0.672922 + 0.739713i \(0.734961\pi\)
\(338\) 5.44667 0.295310i 0.0161144 0.000873697i
\(339\) −5.09322 5.37684i −0.0150242 0.0158609i
\(340\) −130.196 + 98.9725i −0.382930 + 0.291096i
\(341\) −321.532 + 70.7745i −0.942908 + 0.207550i
\(342\) 44.8387 38.0863i 0.131107 0.111364i
\(343\) 9.71896 179.256i 0.0283352 0.522612i
\(344\) 234.224 + 441.793i 0.680884 + 1.28428i
\(345\) −31.9080 + 144.960i −0.0924871 + 0.420173i
\(346\) −30.9278 + 14.3087i −0.0893867 + 0.0413547i
\(347\) 46.3763 77.0779i 0.133649 0.222127i −0.782804 0.622268i \(-0.786211\pi\)
0.916453 + 0.400141i \(0.131039\pi\)
\(348\) 80.7154 152.245i 0.231941 0.437487i
\(349\) −215.168 182.765i −0.616526 0.523682i 0.283808 0.958881i \(-0.408402\pi\)
−0.900334 + 0.435199i \(0.856678\pi\)
\(350\) −111.364 + 117.566i −0.318183 + 0.335902i
\(351\) 7.16855 65.9137i 0.0204232 0.187788i
\(352\) −94.6191 + 237.476i −0.268804 + 0.674648i
\(353\) 525.030i 1.48734i −0.668549 0.743668i \(-0.733084\pi\)
0.668549 0.743668i \(-0.266916\pi\)
\(354\) −53.4119 + 72.5952i −0.150881 + 0.205071i
\(355\) 208.506 0.587340
\(356\) −25.1768 10.0314i −0.0707215 0.0281780i
\(357\) 377.540 + 41.0600i 1.05754 + 0.115014i
\(358\) −44.5168 42.1685i −0.124348 0.117789i
\(359\) −121.749 + 143.334i −0.339135 + 0.399260i −0.905121 0.425155i \(-0.860220\pi\)
0.565986 + 0.824415i \(0.308496\pi\)
\(360\) −34.4328 18.2551i −0.0956468 0.0507087i
\(361\) −114.309 68.7777i −0.316646 0.190520i
\(362\) −86.1439 186.197i −0.237967 0.514357i
\(363\) −95.9905 21.1291i −0.264437 0.0582069i
\(364\) −320.042 + 169.676i −0.879237 + 0.466142i
\(365\) 166.617 + 9.03373i 0.456486 + 0.0247499i
\(366\) −96.7906 113.951i −0.264455 0.311341i
\(367\) 125.273 + 569.120i 0.341343 + 1.55074i 0.764466 + 0.644664i \(0.223003\pi\)
−0.423123 + 0.906072i \(0.639066\pi\)
\(368\) −184.888 243.216i −0.502414 0.660914i
\(369\) 93.5145 88.5816i 0.253427 0.240059i
\(370\) 4.72897 + 87.2207i 0.0127810 + 0.235732i
\(371\) 142.809 85.9251i 0.384929 0.231604i
\(372\) 189.726 + 128.637i 0.510016 + 0.345799i
\(373\) 123.072 443.264i 0.329951 1.18838i −0.593555 0.804793i \(-0.702276\pi\)
0.923506 0.383583i \(-0.125310\pi\)
\(374\) 174.902 19.0217i 0.467651 0.0508601i
\(375\) 128.914 + 97.9981i 0.343771 + 0.261328i
\(376\) −325.523 150.603i −0.865753 0.400540i
\(377\) 326.090 221.094i 0.864960 0.586457i
\(378\) 12.8921 + 38.2625i 0.0341062 + 0.101223i
\(379\) 20.7742 + 126.717i 0.0548131 + 0.334345i 0.999970 + 0.00772901i \(0.00246024\pi\)
−0.945157 + 0.326616i \(0.894091\pi\)
\(380\) −23.6401 + 144.198i −0.0622107 + 0.379469i
\(381\) 147.302 + 49.6317i 0.386618 + 0.130267i
\(382\) 5.09352 + 18.3452i 0.0133338 + 0.0480241i
\(383\) −201.982 506.936i −0.527368 1.32359i −0.915622 0.402041i \(-0.868301\pi\)
0.388254 0.921552i \(-0.373078\pi\)
\(384\) 206.614 82.3226i 0.538058 0.214382i
\(385\) 138.787 38.5341i 0.360486 0.100088i
\(386\) 42.2766 125.472i 0.109525 0.325058i
\(387\) −232.412 38.1020i −0.600548 0.0984548i
\(388\) −374.315 + 61.3658i −0.964730 + 0.158159i
\(389\) −539.133 + 181.655i −1.38595 + 0.466980i −0.910771 0.412911i \(-0.864512\pi\)
−0.475175 + 0.879891i \(0.657615\pi\)
\(390\) −22.3094 32.9039i −0.0572035 0.0843688i
\(391\) −439.060 + 949.013i −1.12292 + 2.42714i
\(392\) 110.338 145.148i 0.281475 0.370274i
\(393\) 11.5714 + 106.397i 0.0294438 + 0.270731i
\(394\) −159.118 44.1789i −0.403853 0.112129i
\(395\) −105.109 + 155.024i −0.266098 + 0.392465i
\(396\) −39.9476 66.3934i −0.100878 0.167660i
\(397\) 91.2267 4.94617i 0.229790 0.0124589i 0.0611158 0.998131i \(-0.480534\pi\)
0.168674 + 0.985672i \(0.446051\pi\)
\(398\) 120.251 + 126.947i 0.302138 + 0.318963i
\(399\) 270.125 205.344i 0.677005 0.514646i
\(400\) −147.988 + 32.5747i −0.369971 + 0.0814368i
\(401\) −29.5665 + 25.1140i −0.0737319 + 0.0626284i −0.683494 0.729956i \(-0.739541\pi\)
0.609763 + 0.792584i \(0.291265\pi\)
\(402\) 1.25802 23.2028i 0.00312940 0.0577183i
\(403\) 245.484 + 463.031i 0.609141 + 1.14896i
\(404\) −80.0614 + 363.723i −0.198172 + 0.900304i
\(405\) 16.6592 7.70736i 0.0411338 0.0190305i
\(406\) −123.691 + 205.576i −0.304658 + 0.506345i
\(407\) −182.330 + 343.910i −0.447985 + 0.844989i
\(408\) −209.255 177.743i −0.512879 0.435644i
\(409\) −104.719 + 110.551i −0.256038 + 0.270296i −0.841324 0.540531i \(-0.818223\pi\)
0.585287 + 0.810827i \(0.300982\pi\)
\(410\) 8.35021 76.7789i 0.0203664 0.187266i
\(411\) −116.841 + 293.249i −0.284285 + 0.713501i
\(412\) 586.313i 1.42309i
\(413\) −330.275 + 401.408i −0.799698 + 0.971933i
\(414\) −111.172 −0.268532
\(415\) −12.5042 4.98214i −0.0301307 0.0120052i
\(416\) 404.540 + 43.9964i 0.972453 + 0.105761i
\(417\) −217.552 206.076i −0.521707 0.494187i
\(418\) 101.764 119.806i 0.243455 0.286617i
\(419\) −284.731 150.955i −0.679550 0.360274i 0.0926104 0.995702i \(-0.470479\pi\)
−0.772160 + 0.635428i \(0.780824\pi\)
\(420\) −85.9300 51.7024i −0.204595 0.123101i
\(421\) −63.7866 137.872i −0.151512 0.327488i 0.816926 0.576743i \(-0.195676\pi\)
−0.968438 + 0.249255i \(0.919814\pi\)
\(422\) 48.2667 + 10.6243i 0.114376 + 0.0251761i
\(423\) 149.253 79.1289i 0.352844 0.187066i
\(424\) −120.315 6.52330i −0.283762 0.0153851i
\(425\) 335.757 + 395.284i 0.790017 + 0.930080i
\(426\) 33.5715 + 152.517i 0.0788064 + 0.358021i
\(427\) −521.850 686.482i −1.22213 1.60769i
\(428\) −62.3535 + 59.0643i −0.145686 + 0.138001i
\(429\) −9.59102 176.896i −0.0223567 0.412345i
\(430\) −120.997 + 72.8018i −0.281389 + 0.169306i
\(431\) −142.741 96.7808i −0.331185 0.224549i 0.384248 0.923230i \(-0.374461\pi\)
−0.715434 + 0.698680i \(0.753771\pi\)
\(432\) −10.1076 + 36.4043i −0.0233972 + 0.0842693i
\(433\) −462.975 + 50.3515i −1.06923 + 0.116285i −0.625767 0.780010i \(-0.715214\pi\)
−0.443458 + 0.896295i \(0.646249\pi\)
\(434\) −254.072 193.140i −0.585418 0.445024i
\(435\) 98.9908 + 45.7980i 0.227565 + 0.105283i
\(436\) 36.1582 24.5159i 0.0829316 0.0562290i
\(437\) 298.315 + 885.367i 0.682642 + 2.02601i
\(438\) 20.2191 + 123.331i 0.0461624 + 0.281578i
\(439\) −66.4928 + 405.588i −0.151464 + 0.923891i 0.796296 + 0.604907i \(0.206790\pi\)
−0.947760 + 0.318984i \(0.896658\pi\)
\(440\) −98.6815 33.2497i −0.224276 0.0755674i
\(441\) 22.9735 + 82.7430i 0.0520940 + 0.187626i
\(442\) −103.660 260.167i −0.234525 0.588613i
\(443\) 283.050 112.778i 0.638940 0.254577i −0.0280930 0.999605i \(-0.508943\pi\)
0.667033 + 0.745029i \(0.267564\pi\)
\(444\) 261.137 72.5044i 0.588147 0.163298i
\(445\) 5.47744 16.2565i 0.0123089 0.0365314i
\(446\) −158.226 25.9398i −0.354766 0.0581609i
\(447\) 416.544 68.2889i 0.931865 0.152772i
\(448\) 7.99869 2.69507i 0.0178542 0.00601578i
\(449\) −118.935 175.416i −0.264889 0.390682i 0.671863 0.740675i \(-0.265494\pi\)
−0.936752 + 0.349993i \(0.886184\pi\)
\(450\) −23.1528 + 50.0440i −0.0514507 + 0.111209i
\(451\) 208.282 273.990i 0.461822 0.607517i
\(452\) 1.48965 + 13.6971i 0.00329568 + 0.0303033i
\(453\) −36.3956 10.1052i −0.0803435 0.0223073i
\(454\) 52.0106 76.7099i 0.114561 0.168964i
\(455\) −118.209 196.464i −0.259799 0.431790i
\(456\) −244.949 + 13.2807i −0.537168 + 0.0291244i
\(457\) −413.575 436.606i −0.904979 0.955375i 0.0942135 0.995552i \(-0.469966\pi\)
−0.999193 + 0.0401772i \(0.987208\pi\)
\(458\) −136.851 + 104.032i −0.298802 + 0.227143i
\(459\) 126.289 27.7983i 0.275139 0.0605627i
\(460\) 210.454 178.761i 0.457508 0.388611i
\(461\) 17.0765 314.957i 0.0370423 0.683205i −0.919763 0.392475i \(-0.871619\pi\)
0.956805 0.290730i \(-0.0938981\pi\)
\(462\) 50.5329 + 95.3152i 0.109379 + 0.206310i
\(463\) 57.0114 259.006i 0.123135 0.559407i −0.874143 0.485669i \(-0.838576\pi\)
0.997278 0.0737382i \(-0.0234929\pi\)
\(464\) −203.752 + 94.2658i −0.439121 + 0.203159i
\(465\) −74.8021 + 124.322i −0.160865 + 0.267359i
\(466\) −4.25826 + 8.03194i −0.00913790 + 0.0172359i
\(467\) 582.475 + 494.759i 1.24727 + 1.05944i 0.995798 + 0.0915760i \(0.0291905\pi\)
0.251472 + 0.967865i \(0.419085\pi\)
\(468\) −84.8234 + 89.5470i −0.181247 + 0.191340i
\(469\) 14.4902 133.235i 0.0308960 0.284084i
\(470\) 37.4908 94.0947i 0.0797676 0.200202i
\(471\) 142.824i 0.303236i
\(472\) 360.487 106.199i 0.763744 0.224997i
\(473\) −629.280 −1.33040
\(474\) −130.320 51.9242i −0.274936 0.109545i
\(475\) 460.673 + 50.1013i 0.969839 + 0.105476i
\(476\) −512.907 485.851i −1.07753 1.02070i
\(477\) 36.7394 43.2530i 0.0770218 0.0906771i
\(478\) −42.5861 22.5777i −0.0890922 0.0472337i
\(479\) 85.1234 + 51.2170i 0.177711 + 0.106925i 0.601630 0.798775i \(-0.294518\pi\)
−0.423919 + 0.905700i \(0.639346\pi\)
\(480\) 47.3033 + 102.244i 0.0985486 + 0.213009i
\(481\) 605.144 + 133.202i 1.25810 + 0.276928i
\(482\) 22.4137 11.8830i 0.0465014 0.0246535i
\(483\) −640.257 34.7137i −1.32558 0.0718711i
\(484\) 118.373 + 139.360i 0.244573 + 0.287933i
\(485\) −51.6126 234.478i −0.106418 0.483461i
\(486\) 8.32006 + 10.9448i 0.0171195 + 0.0225203i
\(487\) −449.585 + 425.869i −0.923172 + 0.874475i −0.992391 0.123126i \(-0.960708\pi\)
0.0692188 + 0.997602i \(0.477949\pi\)
\(488\) 33.7509 + 622.500i 0.0691618 + 1.27561i
\(489\) −16.0225 + 9.64044i −0.0327659 + 0.0197146i
\(490\) 42.6161 + 28.8945i 0.0869717 + 0.0589683i
\(491\) 195.329 703.512i 0.397819 1.43282i −0.445442 0.895311i \(-0.646953\pi\)
0.843261 0.537504i \(-0.180633\pi\)
\(492\) −238.221 + 25.9081i −0.484188 + 0.0526586i
\(493\) 611.707 + 465.008i 1.24079 + 0.943221i
\(494\) −227.099 105.067i −0.459714 0.212686i
\(495\) 40.5942 27.5236i 0.0820086 0.0556032i
\(496\) −95.3561 283.007i −0.192250 0.570578i
\(497\) 145.720 + 888.851i 0.293199 + 1.78843i
\(498\) 1.63101 9.94872i 0.00327512 0.0199774i
\(499\) 720.645 + 242.814i 1.44418 + 0.486601i 0.928871 0.370404i \(-0.120781\pi\)
0.515308 + 0.857005i \(0.327677\pi\)
\(500\) −80.5925 290.268i −0.161185 0.580536i
\(501\) −23.0089 57.7481i −0.0459260 0.115266i
\(502\) −244.268 + 97.3254i −0.486590 + 0.193875i
\(503\) 623.522 173.120i 1.23961 0.344175i 0.414969 0.909836i \(-0.363793\pi\)
0.824638 + 0.565661i \(0.191379\pi\)
\(504\) 53.7566 159.544i 0.106660 0.316555i
\(505\) −232.630 38.1378i −0.460654 0.0755203i
\(506\) −293.132 + 48.0565i −0.579312 + 0.0949734i
\(507\) 10.1516 3.42048i 0.0200229 0.00674651i
\(508\) −162.276 239.339i −0.319440 0.471139i
\(509\) −26.0331 + 56.2696i −0.0511455 + 0.110549i −0.931463 0.363835i \(-0.881467\pi\)
0.880318 + 0.474384i \(0.157329\pi\)
\(510\) 46.9213 61.7239i 0.0920025 0.121027i
\(511\) 77.9345 + 716.596i 0.152514 + 1.40234i
\(512\) −401.930 111.595i −0.785019 0.217960i
\(513\) 64.8382 95.6292i 0.126390 0.186412i
\(514\) −113.092 187.960i −0.220023 0.365682i
\(515\) 370.572 20.0918i 0.719558 0.0390133i
\(516\) 301.303 + 318.082i 0.583921 + 0.616438i
\(517\) 359.335 273.160i 0.695040 0.528355i
\(518\) −368.513 + 81.1159i −0.711416 + 0.156594i
\(519\) −51.0072 + 43.3259i −0.0982798 + 0.0834796i
\(520\) −8.97421 + 165.519i −0.0172581 + 0.318307i
\(521\) 170.281 + 321.185i 0.326836 + 0.616478i 0.991417 0.130738i \(-0.0417348\pi\)
−0.664581 + 0.747216i \(0.731390\pi\)
\(522\) −17.5617 + 79.7834i −0.0336430 + 0.152842i
\(523\) −290.621 + 134.456i −0.555681 + 0.257085i −0.677570 0.735458i \(-0.736967\pi\)
0.121889 + 0.992544i \(0.461105\pi\)
\(524\) 102.647 170.600i 0.195891 0.325573i
\(525\) −148.967 + 280.981i −0.283746 + 0.535202i
\(526\) −99.2216 84.2796i −0.188634 0.160227i
\(527\) −702.921 + 742.064i −1.33382 + 1.40809i
\(528\) −10.9146 + 100.358i −0.0206715 + 0.190072i
\(529\) 457.671 1148.67i 0.865162 2.17139i
\(530\) 34.0266i 0.0642012i
\(531\) −62.9306 + 165.435i −0.118513 + 0.311554i
\(532\) −631.232 −1.18653
\(533\) −508.951 202.785i −0.954880 0.380459i
\(534\) 12.7732 + 1.38916i 0.0239198 + 0.00260143i
\(535\) −39.4676 37.3857i −0.0737713 0.0698798i
\(536\) −62.7260 + 73.8468i −0.117026 + 0.137774i
\(537\) −106.395 56.4069i −0.198128 0.105041i
\(538\) −26.9901 16.2394i −0.0501674 0.0301847i
\(539\) 96.3424 + 208.241i 0.178743 + 0.386346i
\(540\) −33.3491 7.34070i −0.0617577 0.0135939i
\(541\) 515.798 273.459i 0.953417 0.505469i 0.0823333 0.996605i \(-0.473763\pi\)
0.871083 + 0.491135i \(0.163418\pi\)
\(542\) 443.772 + 24.0606i 0.818768 + 0.0443923i
\(543\) −260.838 307.083i −0.480365 0.565530i
\(544\) 170.610 + 775.088i 0.313621 + 1.42479i
\(545\) 16.7340 + 22.0132i 0.0307046 + 0.0403912i
\(546\) 124.676 118.100i 0.228345 0.216300i
\(547\) −43.6691 805.429i −0.0798338 1.47245i −0.714486 0.699650i \(-0.753339\pi\)
0.634652 0.772798i \(-0.281143\pi\)
\(548\) 503.185 302.756i 0.918220 0.552475i
\(549\) −243.027 164.776i −0.442672 0.300139i
\(550\) −39.4153 + 141.961i −0.0716642 + 0.258111i
\(551\) 682.513 74.2278i 1.23868 0.134715i
\(552\) 369.034 + 280.533i 0.668541 + 0.508211i
\(553\) −734.318 339.732i −1.32788 0.614343i
\(554\) −54.4273 + 36.9026i −0.0982442 + 0.0666112i
\(555\) 54.7742 + 162.564i 0.0986922 + 0.292908i
\(556\) 90.1876 + 550.120i 0.162208 + 0.989424i
\(557\) −57.7167 + 352.056i −0.103621 + 0.632058i 0.883044 + 0.469291i \(0.155490\pi\)
−0.986664 + 0.162767i \(0.947958\pi\)
\(558\) −102.983 34.6989i −0.184557 0.0621844i
\(559\) 267.987 + 965.202i 0.479404 + 1.72666i
\(560\) 48.3602 + 121.375i 0.0863575 + 0.216741i
\(561\) 320.974 127.888i 0.572146 0.227964i
\(562\) 398.443 110.627i 0.708973 0.196845i
\(563\) 191.951 569.689i 0.340943 1.01188i −0.630822 0.775928i \(-0.717282\pi\)
0.971764 0.235954i \(-0.0758214\pi\)
\(564\) −310.126 50.8426i −0.549869 0.0901465i
\(565\) −8.60602 + 1.41089i −0.0152319 + 0.00249714i
\(566\) 97.8693 32.9760i 0.172914 0.0582615i
\(567\) 44.4989 + 65.6309i 0.0784813 + 0.115751i
\(568\) 273.422 590.993i 0.481377 1.04048i
\(569\) −87.8924 + 115.620i −0.154468 + 0.203199i −0.866817 0.498626i \(-0.833838\pi\)
0.712349 + 0.701825i \(0.247631\pi\)
\(570\) −7.48990 68.8685i −0.0131402 0.120822i
\(571\) 826.888 + 229.584i 1.44814 + 0.402074i 0.900579 0.434692i \(-0.143143\pi\)
0.547561 + 0.836766i \(0.315557\pi\)
\(572\) −184.948 + 272.779i −0.323336 + 0.476885i
\(573\) 19.2770 + 32.0387i 0.0336423 + 0.0559139i
\(574\) 333.141 18.0624i 0.580385 0.0314676i
\(575\) −602.193 635.727i −1.04729 1.10561i
\(576\) 2.28800 1.73929i 0.00397222 0.00301960i
\(577\) 475.785 104.728i 0.824584 0.181505i 0.217417 0.976079i \(-0.430237\pi\)
0.607167 + 0.794574i \(0.292306\pi\)
\(578\) 222.036 188.599i 0.384145 0.326296i
\(579\) 14.0775 259.645i 0.0243135 0.448436i
\(580\) −95.0439 179.272i −0.163869 0.309089i
\(581\) 12.4997 56.7869i 0.0215142 0.0977399i
\(582\) 163.205 75.5068i 0.280422 0.129737i
\(583\) 78.1751 129.928i 0.134091 0.222861i
\(584\) 244.098 460.417i 0.417976 0.788386i
\(585\) −59.5038 50.5430i −0.101716 0.0863983i
\(586\) 226.107 238.698i 0.385848 0.407335i
\(587\) 92.6144 851.575i 0.157776 1.45072i −0.600936 0.799297i \(-0.705205\pi\)
0.758711 0.651427i \(-0.225829\pi\)
\(588\) 59.1301 148.405i 0.100561 0.252390i
\(589\) 913.255i 1.55052i
\(590\) 35.4576 + 100.028i 0.0600977 + 0.169539i
\(591\) −324.312 −0.548751
\(592\) −328.010 130.691i −0.554071 0.220762i
\(593\) −530.156 57.6580i −0.894024 0.0972310i −0.350440 0.936585i \(-0.613968\pi\)
−0.543585 + 0.839354i \(0.682933\pi\)
\(594\) 26.6689 + 25.2622i 0.0448972 + 0.0425289i
\(595\) 289.500 340.826i 0.486554 0.572816i
\(596\) −693.777 367.817i −1.16406 0.617143i
\(597\) 294.250 + 177.044i 0.492881 + 0.296556i
\(598\) 198.544 + 429.146i 0.332014 + 0.717635i
\(599\) −315.160 69.3720i −0.526144 0.115813i −0.0560475 0.998428i \(-0.517850\pi\)
−0.470096 + 0.882615i \(0.655781\pi\)
\(600\) 203.137 107.696i 0.338561 0.179494i
\(601\) −475.497 25.7807i −0.791177 0.0428963i −0.345879 0.938279i \(-0.612419\pi\)
−0.445297 + 0.895383i \(0.646902\pi\)
\(602\) −394.913 464.928i −0.656002 0.772305i
\(603\) −9.81011 44.5678i −0.0162688 0.0739101i
\(604\) 42.5249 + 55.9405i 0.0704054 + 0.0926167i
\(605\) −84.0242 + 79.5919i −0.138883 + 0.131557i
\(606\) −9.55893 176.304i −0.0157738 0.290931i
\(607\) −49.1221 + 29.5558i −0.0809261 + 0.0486916i −0.555442 0.831555i \(-0.687451\pi\)
0.474516 + 0.880247i \(0.342623\pi\)
\(608\) 586.917 + 397.940i 0.965324 + 0.654506i
\(609\) −126.053 + 454.001i −0.206983 + 0.745485i
\(610\) −175.019 + 19.0344i −0.286916 + 0.0312040i
\(611\) −572.006 434.827i −0.936179 0.711665i
\(612\) −218.328 101.009i −0.356745 0.165048i
\(613\) 512.289 347.340i 0.835707 0.566624i −0.0665690 0.997782i \(-0.521205\pi\)
0.902276 + 0.431158i \(0.141895\pi\)
\(614\) −11.2009 33.2430i −0.0182425 0.0541417i
\(615\) −24.5382 149.677i −0.0398996 0.243377i
\(616\) 72.7758 443.913i 0.118142 0.720637i
\(617\) 468.600 + 157.890i 0.759481 + 0.255899i 0.672285 0.740292i \(-0.265313\pi\)
0.0871960 + 0.996191i \(0.472209\pi\)
\(618\) 74.3626 + 267.830i 0.120328 + 0.433382i
\(619\) 119.582 + 300.129i 0.193186 + 0.484861i 0.993379 0.114882i \(-0.0366489\pi\)
−0.800193 + 0.599743i \(0.795270\pi\)
\(620\) 250.745 99.9060i 0.404427 0.161139i
\(621\) −210.372 + 58.4095i −0.338764 + 0.0940572i
\(622\) −103.382 + 306.828i −0.166209 + 0.493292i
\(623\) 73.1287 + 11.9888i 0.117382 + 0.0192437i
\(624\) 158.579 25.9977i 0.254133 0.0416630i
\(625\) −313.037 + 105.474i −0.500859 + 0.168759i
\(626\) −31.3415 46.2252i −0.0500663 0.0738422i
\(627\) 129.624 280.177i 0.206736 0.446853i
\(628\) −160.794 + 211.521i −0.256041 + 0.336816i
\(629\) 130.661 + 1201.41i 0.207728 + 1.91002i
\(630\) 45.8106 + 12.7192i 0.0727152 + 0.0201893i
\(631\) −548.626 + 809.163i −0.869455 + 1.28235i 0.0886876 + 0.996059i \(0.471733\pi\)
−0.958143 + 0.286291i \(0.907578\pi\)
\(632\) 301.569 + 501.212i 0.477166 + 0.793056i
\(633\) 96.9176 5.25472i 0.153108 0.00830129i
\(634\) 255.010 + 269.211i 0.402225 + 0.424623i
\(635\) 145.710 110.766i 0.229465 0.174435i
\(636\) −103.106 + 22.6952i −0.162116 + 0.0356843i
\(637\) 278.375 236.454i 0.437010 0.371199i
\(638\) −11.8174 + 217.959i −0.0185226 + 0.341629i
\(639\) 143.660 + 270.971i 0.224820 + 0.424055i
\(640\) 56.2992 255.770i 0.0879675 0.399640i
\(641\) 628.468 290.760i 0.980449 0.453604i 0.136858 0.990591i \(-0.456300\pi\)
0.843591 + 0.536987i \(0.180438\pi\)
\(642\) 20.9921 34.8891i 0.0326980 0.0543444i
\(643\) 320.520 604.565i 0.498476 0.940226i −0.498817 0.866707i \(-0.666232\pi\)
0.997294 0.0735191i \(-0.0234230\pi\)
\(644\) 909.131 + 772.223i 1.41169 + 1.19910i
\(645\) −190.715 + 201.335i −0.295682 + 0.312148i
\(646\) 52.7647 485.164i 0.0816791 0.751027i
\(647\) −68.4056 + 171.685i −0.105727 + 0.265356i −0.972317 0.233666i \(-0.924928\pi\)
0.866590 + 0.499021i \(0.166307\pi\)
\(648\) 57.3262i 0.0884663i
\(649\) −94.4186 + 463.412i −0.145483 + 0.714040i
\(650\) 234.528 0.360813
\(651\) −582.257 231.993i −0.894405 0.356363i
\(652\) 34.5826 + 3.76108i 0.0530408 + 0.00576853i
\(653\) 581.786 + 551.097i 0.890944 + 0.843947i 0.988490 0.151284i \(-0.0483408\pi\)
−0.0975463 + 0.995231i \(0.531099\pi\)
\(654\) −13.4078 + 15.7849i −0.0205012 + 0.0241359i
\(655\) 111.343 + 59.0306i 0.169990 + 0.0901230i
\(656\) 267.503 + 160.951i 0.407779 + 0.245353i
\(657\) 103.059 + 222.758i 0.156863 + 0.339053i
\(658\) 427.323 + 94.0610i 0.649428 + 0.142950i
\(659\) 634.409 336.342i 0.962684 0.510383i 0.0885524 0.996072i \(-0.471776\pi\)
0.874132 + 0.485689i \(0.161431\pi\)
\(660\) −91.1061 4.93963i −0.138040 0.00748429i
\(661\) 358.970 + 422.612i 0.543070 + 0.639352i 0.963415 0.268012i \(-0.0863668\pi\)
−0.420345 + 0.907364i \(0.638091\pi\)
\(662\) 44.0022 + 199.904i 0.0664686 + 0.301970i
\(663\) −332.848 437.854i −0.502033 0.660413i
\(664\) −30.5188 + 28.9089i −0.0459621 + 0.0435376i
\(665\) −21.6311 398.962i −0.0325280 0.599943i
\(666\) −110.093 + 66.2405i −0.165304 + 0.0994602i
\(667\) −1073.80 728.052i −1.60989 1.09153i
\(668\) −30.9379 + 111.428i −0.0463142 + 0.166808i
\(669\) −313.040 + 34.0452i −0.467923 + 0.0508897i
\(670\) −21.7826 16.5587i −0.0325113 0.0247144i
\(671\) −712.026 329.418i −1.06114 0.490937i
\(672\) −402.805 + 273.108i −0.599412 + 0.406411i
\(673\) −91.3076 270.991i −0.135673 0.402662i 0.858183 0.513343i \(-0.171593\pi\)
−0.993856 + 0.110681i \(0.964697\pi\)
\(674\) 27.5908 + 168.297i 0.0409360 + 0.249698i
\(675\) −17.5193 + 106.863i −0.0259545 + 0.158316i
\(676\) −18.8853 6.36319i −0.0279368 0.00941300i
\(677\) −247.658 891.984i −0.365817 1.31755i −0.886074 0.463544i \(-0.846577\pi\)
0.520256 0.854010i \(-0.325836\pi\)
\(678\) −2.41769 6.06794i −0.00356591 0.00894976i
\(679\) 963.501 383.894i 1.41900 0.565381i
\(680\) −311.509 + 86.4900i −0.458101 + 0.127191i
\(681\) 58.1170 172.485i 0.0853406 0.253282i
\(682\) −286.537 46.9754i −0.420143 0.0688789i
\(683\) −1150.43 + 188.603i −1.68437 + 0.276139i −0.926508 0.376274i \(-0.877205\pi\)
−0.757864 + 0.652413i \(0.773757\pi\)
\(684\) −203.686 + 68.6297i −0.297786 + 0.100336i
\(685\) 208.597 + 307.657i 0.304520 + 0.449134i
\(686\) 66.4795 143.693i 0.0969089 0.209465i
\(687\) −204.307 + 268.761i −0.297390 + 0.391210i
\(688\) −61.7156 567.466i −0.0897030 0.824805i
\(689\) −232.578 64.5750i −0.337559 0.0937228i
\(690\) −73.4635 + 108.351i −0.106469 + 0.157030i
\(691\) 217.948 + 362.232i 0.315409 + 0.524214i 0.973489 0.228734i \(-0.0734586\pi\)
−0.658080 + 0.752948i \(0.728631\pi\)
\(692\) 124.318 6.74033i 0.179650 0.00974036i
\(693\) 145.702 + 153.816i 0.210249 + 0.221957i
\(694\) 63.1580 48.0115i 0.0910057 0.0691808i
\(695\) −344.606 + 75.8535i −0.495836 + 0.109142i
\(696\) 259.622 220.525i 0.373020 0.316846i
\(697\) 57.8483 1066.95i 0.0829961 1.53077i
\(698\) −116.626 219.981i −0.167087 0.315159i
\(699\) −3.83799 + 17.4362i −0.00549069 + 0.0249445i
\(700\) 536.951 248.420i 0.767073 0.354886i
\(701\) −504.454 + 838.409i −0.719621 + 1.19602i 0.253858 + 0.967241i \(0.418300\pi\)
−0.973479 + 0.228777i \(0.926527\pi\)
\(702\) 27.3903 51.6636i 0.0390175 0.0735949i
\(703\) 822.952 + 699.022i 1.17063 + 0.994341i
\(704\) 5.28100 5.57508i 0.00750142 0.00791915i
\(705\) 21.5070 197.754i 0.0305064 0.280502i
\(706\) 171.392 430.162i 0.242765 0.609294i
\(707\) 1018.35i 1.44038i
\(708\) 279.449 174.159i 0.394702 0.245987i
\(709\) 326.694 0.460782 0.230391 0.973098i \(-0.426000\pi\)
0.230391 + 0.973098i \(0.426000\pi\)
\(710\) 170.830 + 68.0651i 0.240606 + 0.0958663i
\(711\) −273.886 29.7869i −0.385213 0.0418944i
\(712\) −38.8949 36.8432i −0.0546277 0.0517461i
\(713\) 1117.24 1315.32i 1.56696 1.84476i
\(714\) 295.918 + 156.886i 0.414452 + 0.219728i
\(715\) −178.744 107.547i −0.249992 0.150415i
\(716\) 94.0653 + 203.319i 0.131376 + 0.283965i
\(717\) −92.4483 20.3494i −0.128938 0.0283813i
\(718\) −146.541 + 77.6909i −0.204096 + 0.108205i
\(719\) 574.104 + 31.1270i 0.798475 + 0.0432921i 0.448861 0.893602i \(-0.351830\pi\)
0.349614 + 0.936894i \(0.386313\pi\)
\(720\) 28.8012 + 33.9074i 0.0400016 + 0.0470936i
\(721\) 344.635 + 1565.69i 0.477996 + 2.17156i
\(722\) −71.2027 93.6656i −0.0986187 0.129731i
\(723\) 36.1703 34.2624i 0.0500281 0.0473891i
\(724\) 40.5794 + 748.442i 0.0560488 + 1.03376i
\(725\) −551.361 + 331.743i −0.760498 + 0.457576i
\(726\) −71.7484 48.6466i −0.0988270 0.0670064i
\(727\) 221.115 796.384i 0.304147 1.09544i −0.640663 0.767822i \(-0.721341\pi\)
0.944810 0.327617i \(-0.106246\pi\)
\(728\) −711.875 + 77.4210i −0.977850 + 0.106348i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) 133.562 + 61.7924i 0.182962 + 0.0846471i
\(731\) −1617.04 + 1096.38i −2.21209 + 1.49984i
\(732\) 174.412 + 517.636i 0.238268 + 0.707153i
\(733\) 40.0448 + 244.263i 0.0546314 + 0.333237i 0.999974 + 0.00715909i \(0.00227883\pi\)
−0.945343 + 0.326078i \(0.894273\pi\)
\(734\) −83.1479 + 507.180i −0.113280 + 0.690980i
\(735\) 95.8240 + 32.2869i 0.130373 + 0.0439277i
\(736\) −358.484 1291.14i −0.487071 1.75427i
\(737\) −45.1320 113.273i −0.0612375 0.153695i
\(738\) 105.534 42.0486i 0.143000 0.0569764i
\(739\) 123.832 34.3817i 0.167567 0.0465247i −0.182732 0.983163i \(-0.558494\pi\)
0.350298 + 0.936638i \(0.386080\pi\)
\(740\) 101.898 302.421i 0.137699 0.408677i
\(741\) −484.943 79.5023i −0.654444 0.107291i
\(742\) 145.054 23.7804i 0.195491 0.0320491i
\(743\) −866.287 + 291.886i −1.16593 + 0.392848i −0.834702 0.550702i \(-0.814360\pi\)
−0.331229 + 0.943550i \(0.607463\pi\)
\(744\) 254.290 + 375.050i 0.341788 + 0.504099i
\(745\) 208.700 451.098i 0.280134 0.605500i
\(746\) 245.534 322.994i 0.329134 0.432968i
\(747\) −2.14065 19.6830i −0.00286567 0.0263494i
\(748\) −619.337 171.958i −0.827990 0.229890i
\(749\) 131.791 194.377i 0.175956 0.259515i
\(750\) 73.6299 + 122.374i 0.0981731 + 0.163165i
\(751\) −884.130 + 47.9362i −1.17727 + 0.0638298i −0.632367 0.774669i \(-0.717917\pi\)
−0.544904 + 0.838499i \(0.683434\pi\)
\(752\) 281.569 + 297.249i 0.374427 + 0.395277i
\(753\) −411.097 + 312.508i −0.545945 + 0.415017i
\(754\) 339.343 74.6950i 0.450057 0.0990650i
\(755\) −33.8993 + 28.7943i −0.0448997 + 0.0381381i
\(756\) 7.98617 147.296i 0.0105637 0.194836i
\(757\) −235.285 443.795i −0.310813 0.586255i 0.678062 0.735005i \(-0.262820\pi\)
−0.988875 + 0.148749i \(0.952475\pi\)
\(758\) −24.3453 + 110.602i −0.0321178 + 0.145913i
\(759\) −529.447 + 244.948i −0.697559 + 0.322725i
\(760\) −148.921 + 247.508i −0.195948 + 0.325668i
\(761\) 99.6153 187.894i 0.130900 0.246905i −0.809394 0.587266i \(-0.800204\pi\)
0.940295 + 0.340361i \(0.110549\pi\)
\(762\) 104.484 + 88.7491i 0.137118 + 0.116469i
\(763\) −82.1465 + 86.7210i −0.107662 + 0.113658i
\(764\) 7.52066 69.1513i 0.00984380 0.0905122i
\(765\) 56.3600 141.453i 0.0736732 0.184906i
\(766\) 481.273i 0.628293i
\(767\) 751.000 52.5287i 0.979139 0.0684860i
\(768\) 189.517 0.246767
\(769\) −395.418 157.549i −0.514198 0.204875i 0.0985818 0.995129i \(-0.468569\pi\)
−0.612780 + 0.790254i \(0.709949\pi\)
\(770\) 126.289 + 13.7347i 0.164011 + 0.0178373i
\(771\) −312.759 296.261i −0.405653 0.384255i
\(772\) −313.161 + 368.682i −0.405649 + 0.477567i
\(773\) 897.562 + 475.857i 1.16114 + 0.615598i 0.933652 0.358182i \(-0.116603\pi\)