Properties

Label 177.3.g.a.10.12
Level $177$
Weight $3$
Character 177.10
Analytic conductor $4.823$
Analytic rank $0$
Dimension $560$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.g (of order \(58\), degree \(28\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(560\)
Relative dimension: \(20\) over \(\Q(\zeta_{58})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{58}]$

Embedding invariants

Embedding label 10.12
Character \(\chi\) \(=\) 177.10
Dual form 177.3.g.a.124.12

$q$-expansion

\(f(q)\) \(=\) \(q+(0.782131 + 0.311630i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(-2.38937 - 2.26333i) q^{4} +(-2.21295 + 2.60528i) q^{5} +(-1.28839 - 0.683062i) q^{6} +(9.58665 + 5.76810i) q^{7} +(-2.57754 - 5.57127i) q^{8} +(2.92986 + 0.644911i) q^{9} +O(q^{10})\) \(q+(0.782131 + 0.311630i) q^{2} +(-1.72190 - 0.187268i) q^{3} +(-2.38937 - 2.26333i) q^{4} +(-2.21295 + 2.60528i) q^{5} +(-1.28839 - 0.683062i) q^{6} +(9.58665 + 5.76810i) q^{7} +(-2.57754 - 5.57127i) q^{8} +(2.92986 + 0.644911i) q^{9} +(-2.54270 + 1.34805i) q^{10} +(16.3553 + 0.886760i) q^{11} +(3.69039 + 4.34467i) q^{12} +(3.90180 + 17.7261i) q^{13} +(5.70051 + 7.49889i) q^{14} +(4.29836 - 4.07162i) q^{15} +(0.432914 + 7.98462i) q^{16} +(-3.56820 + 2.14691i) q^{17} +(2.09056 + 1.41744i) q^{18} +(1.67569 - 6.03528i) q^{19} +(11.1842 - 1.21635i) q^{20} +(-15.4271 - 11.7273i) q^{21} +(12.5157 + 5.79036i) q^{22} +(19.0313 - 12.9035i) q^{23} +(3.39495 + 10.0758i) q^{24} +(2.15418 + 13.1399i) q^{25} +(-2.47224 + 15.0800i) q^{26} +(-4.92415 - 1.65914i) q^{27} +(-9.85093 - 35.4798i) q^{28} +(-6.81640 - 17.1079i) q^{29} +(4.63072 - 1.84505i) q^{30} +(-24.4744 + 6.79529i) q^{31} +(-9.98994 + 29.6491i) q^{32} +(-27.9961 - 4.58973i) q^{33} +(-3.45984 + 0.567213i) q^{34} +(-36.2423 + 12.2115i) q^{35} +(-5.54087 - 8.17216i) q^{36} +(-8.36654 + 18.0840i) q^{37} +(3.19138 - 4.19819i) q^{38} +(-3.39898 - 31.2531i) q^{39} +(20.2187 + 5.61370i) q^{40} +(10.4448 - 15.4049i) q^{41} +(-8.41140 - 13.9798i) q^{42} +(64.8975 - 3.51864i) q^{43} +(-37.0718 - 39.1362i) q^{44} +(-8.16381 + 6.20597i) q^{45} +(18.9061 - 4.16154i) q^{46} +(-52.4796 + 44.5766i) q^{47} +(0.749828 - 13.8298i) q^{48} +(35.6809 + 67.3014i) q^{49} +(-2.40994 + 10.9485i) q^{50} +(6.54612 - 3.02856i) q^{51} +(30.7970 - 51.1851i) q^{52} +(31.0226 - 58.5148i) q^{53} +(-3.33430 - 2.83218i) q^{54} +(-38.5037 + 40.6479i) q^{55} +(7.42561 - 68.2773i) q^{56} +(-4.01557 + 10.0783i) q^{57} -15.5048i q^{58} +(-46.9142 - 35.7779i) q^{59} -19.4858 q^{60} +(38.4946 + 15.3377i) q^{61} +(-21.2598 - 2.31215i) q^{62} +(24.3677 + 23.0823i) q^{63} +(3.65393 - 4.30174i) q^{64} +(-54.8159 - 29.0616i) q^{65} +(-20.4663 - 12.3142i) q^{66} +(32.1670 + 69.5278i) q^{67} +(13.3849 + 2.94624i) q^{68} +(-35.1863 + 18.6546i) q^{69} +(-32.1517 - 1.74321i) q^{70} +(-48.9923 - 57.6782i) q^{71} +(-3.95887 - 17.9853i) q^{72} +(-53.6150 - 70.5293i) q^{73} +(-12.1792 + 11.5368i) q^{74} +(-1.24860 - 23.0290i) q^{75} +(-17.6636 + 10.6279i) q^{76} +(151.678 + 102.840i) q^{77} +(7.08095 - 25.5033i) q^{78} +(14.9474 - 1.62562i) q^{79} +(-21.7602 - 16.5417i) q^{80} +(8.16818 + 3.77900i) q^{81} +(12.9698 - 8.79373i) q^{82} +(9.68721 + 28.7506i) q^{83} +(10.3181 + 62.9374i) q^{84} +(2.30292 - 14.0472i) q^{85} +(51.8548 + 17.4719i) q^{86} +(8.53339 + 30.7345i) q^{87} +(-37.2162 - 93.4055i) q^{88} +(64.5662 - 25.7255i) q^{89} +(-8.31914 + 2.30980i) q^{90} +(-64.8404 + 192.440i) q^{91} +(-74.6776 - 12.2428i) q^{92} +(43.4150 - 7.11753i) q^{93} +(-54.9374 + 18.5105i) q^{94} +(12.0154 + 17.7214i) q^{95} +(22.7540 - 49.1819i) q^{96} +(-51.1356 + 67.2677i) q^{97} +(6.93408 + 63.7578i) q^{98} +(47.3469 + 13.1458i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + O(q^{10}) \) \( 560q + 40q^{4} + 8q^{7} - 60q^{9} + 24q^{12} - 24q^{15} + 8q^{16} - 16q^{17} + 60q^{19} + 164q^{20} - 40q^{22} - 100q^{25} + 156q^{26} - 200q^{28} + 60q^{29} + 32q^{35} + 120q^{36} - 28q^{41} - 1572q^{46} - 638q^{47} + 96q^{48} - 1328q^{49} - 1856q^{50} + 24q^{51} - 1392q^{52} - 572q^{53} - 522q^{55} - 928q^{56} - 24q^{57} + 268q^{59} + 72q^{60} + 348q^{61} + 472q^{62} + 24q^{63} + 2580q^{64} + 1218q^{65} + 120q^{66} + 1044q^{67} + 1936q^{68} + 2784q^{70} + 1416q^{71} + 870q^{73} + 1752q^{74} - 240q^{75} - 120q^{76} + 468q^{78} + 420q^{79} - 376q^{80} - 180q^{81} - 168q^{84} + 348q^{85} - 232q^{86} - 144q^{87} + 212q^{88} - 152q^{94} - 788q^{95} - 3306q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(e\left(\frac{7}{58}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.782131 + 0.311630i 0.391066 + 0.155815i 0.557379 0.830258i \(-0.311807\pi\)
−0.166313 + 0.986073i \(0.553186\pi\)
\(3\) −1.72190 0.187268i −0.573966 0.0624225i
\(4\) −2.38937 2.26333i −0.597341 0.565832i
\(5\) −2.21295 + 2.60528i −0.442590 + 0.521057i −0.937546 0.347861i \(-0.886908\pi\)
0.494956 + 0.868918i \(0.335184\pi\)
\(6\) −1.28839 0.683062i −0.214732 0.113844i
\(7\) 9.58665 + 5.76810i 1.36952 + 0.824014i 0.994674 0.103072i \(-0.0328673\pi\)
0.374848 + 0.927086i \(0.377695\pi\)
\(8\) −2.57754 5.57127i −0.322193 0.696408i
\(9\) 2.92986 + 0.644911i 0.325540 + 0.0716568i
\(10\) −2.54270 + 1.34805i −0.254270 + 0.134805i
\(11\) 16.3553 + 0.886760i 1.48685 + 0.0806145i 0.779567 0.626319i \(-0.215439\pi\)
0.707280 + 0.706933i \(0.249922\pi\)
\(12\) 3.69039 + 4.34467i 0.307533 + 0.362056i
\(13\) 3.90180 + 17.7261i 0.300139 + 1.36354i 0.849337 + 0.527851i \(0.177002\pi\)
−0.549198 + 0.835692i \(0.685067\pi\)
\(14\) 5.70051 + 7.49889i 0.407179 + 0.535635i
\(15\) 4.29836 4.07162i 0.286557 0.271441i
\(16\) 0.432914 + 7.98462i 0.0270571 + 0.499039i
\(17\) −3.56820 + 2.14691i −0.209894 + 0.126289i −0.616619 0.787261i \(-0.711498\pi\)
0.406725 + 0.913551i \(0.366671\pi\)
\(18\) 2.09056 + 1.41744i 0.116142 + 0.0787465i
\(19\) 1.67569 6.03528i 0.0881941 0.317646i −0.906273 0.422692i \(-0.861085\pi\)
0.994467 + 0.105046i \(0.0334989\pi\)
\(20\) 11.1842 1.21635i 0.559208 0.0608175i
\(21\) −15.4271 11.7273i −0.734622 0.558445i
\(22\) 12.5157 + 5.79036i 0.568894 + 0.263198i
\(23\) 19.0313 12.9035i 0.827447 0.561023i −0.0723259 0.997381i \(-0.523042\pi\)
0.899773 + 0.436358i \(0.143732\pi\)
\(24\) 3.39495 + 10.0758i 0.141456 + 0.419827i
\(25\) 2.15418 + 13.1399i 0.0861673 + 0.525598i
\(26\) −2.47224 + 15.0800i −0.0950863 + 0.580001i
\(27\) −4.92415 1.65914i −0.182376 0.0614496i
\(28\) −9.85093 35.4798i −0.351819 1.26714i
\(29\) −6.81640 17.1079i −0.235048 0.589927i 0.763381 0.645948i \(-0.223538\pi\)
−0.998430 + 0.0560213i \(0.982159\pi\)
\(30\) 4.63072 1.84505i 0.154357 0.0615015i
\(31\) −24.4744 + 6.79529i −0.789498 + 0.219203i −0.638796 0.769376i \(-0.720567\pi\)
−0.150702 + 0.988579i \(0.548153\pi\)
\(32\) −9.98994 + 29.6491i −0.312186 + 0.926534i
\(33\) −27.9961 4.58973i −0.848367 0.139083i
\(34\) −3.45984 + 0.567213i −0.101760 + 0.0166827i
\(35\) −36.2423 + 12.2115i −1.03549 + 0.348899i
\(36\) −5.54087 8.17216i −0.153913 0.227005i
\(37\) −8.36654 + 18.0840i −0.226123 + 0.488756i −0.987117 0.160003i \(-0.948850\pi\)
0.760994 + 0.648759i \(0.224712\pi\)
\(38\) 3.19138 4.19819i 0.0839837 0.110479i
\(39\) −3.39898 31.2531i −0.0871534 0.801362i
\(40\) 20.2187 + 5.61370i 0.505468 + 0.140342i
\(41\) 10.4448 15.4049i 0.254750 0.375728i −0.678712 0.734405i \(-0.737461\pi\)
0.933462 + 0.358676i \(0.116772\pi\)
\(42\) −8.41140 13.9798i −0.200271 0.332854i
\(43\) 64.8975 3.51864i 1.50924 0.0818288i 0.719167 0.694837i \(-0.244524\pi\)
0.790076 + 0.613008i \(0.210041\pi\)
\(44\) −37.0718 39.1362i −0.842541 0.889460i
\(45\) −8.16381 + 6.20597i −0.181418 + 0.137910i
\(46\) 18.9061 4.16154i 0.411002 0.0904684i
\(47\) −52.4796 + 44.5766i −1.11659 + 0.948438i −0.999004 0.0446245i \(-0.985791\pi\)
−0.117584 + 0.993063i \(0.537515\pi\)
\(48\) 0.749828 13.8298i 0.0156214 0.288120i
\(49\) 35.6809 + 67.3014i 0.728183 + 1.37350i
\(50\) −2.40994 + 10.9485i −0.0481988 + 0.218969i
\(51\) 6.54612 3.02856i 0.128355 0.0593835i
\(52\) 30.7970 51.1851i 0.592251 0.984329i
\(53\) 31.0226 58.5148i 0.585331 1.10405i −0.397161 0.917749i \(-0.630004\pi\)
0.982492 0.186303i \(-0.0596507\pi\)
\(54\) −3.33430 2.83218i −0.0617462 0.0524477i
\(55\) −38.5037 + 40.6479i −0.700068 + 0.739053i
\(56\) 7.42561 68.2773i 0.132600 1.21924i
\(57\) −4.01557 + 10.0783i −0.0704487 + 0.176813i
\(58\) 15.5048i 0.267324i
\(59\) −46.9142 35.7779i −0.795156 0.606405i
\(60\) −19.4858 −0.324763
\(61\) 38.4946 + 15.3377i 0.631059 + 0.251437i 0.663663 0.748031i \(-0.269001\pi\)
−0.0326042 + 0.999468i \(0.510380\pi\)
\(62\) −21.2598 2.31215i −0.342901 0.0372927i
\(63\) 24.3677 + 23.0823i 0.386788 + 0.366385i
\(64\) 3.65393 4.30174i 0.0570926 0.0672146i
\(65\) −54.8159 29.0616i −0.843322 0.447101i
\(66\) −20.4663 12.3142i −0.310096 0.186579i
\(67\) 32.1670 + 69.5278i 0.480104 + 1.03773i 0.984682 + 0.174362i \(0.0557863\pi\)
−0.504577 + 0.863367i \(0.668352\pi\)
\(68\) 13.3849 + 2.94624i 0.196837 + 0.0433271i
\(69\) −35.1863 + 18.6546i −0.509947 + 0.270357i
\(70\) −32.1517 1.74321i −0.459310 0.0249031i
\(71\) −48.9923 57.6782i −0.690033 0.812369i 0.299890 0.953974i \(-0.403050\pi\)
−0.989923 + 0.141604i \(0.954774\pi\)
\(72\) −3.95887 17.9853i −0.0549843 0.249796i
\(73\) −53.6150 70.5293i −0.734452 0.966155i −0.999998 0.00205665i \(-0.999345\pi\)
0.265546 0.964098i \(-0.414448\pi\)
\(74\) −12.1792 + 11.5368i −0.164584 + 0.155902i
\(75\) −1.24860 23.0290i −0.0166480 0.307054i
\(76\) −17.6636 + 10.6279i −0.232416 + 0.139840i
\(77\) 151.678 + 102.840i 1.96984 + 1.33559i
\(78\) 7.08095 25.5033i 0.0907814 0.326965i
\(79\) 14.9474 1.62562i 0.189207 0.0205775i −0.0130249 0.999915i \(-0.504146\pi\)
0.202232 + 0.979338i \(0.435181\pi\)
\(80\) −21.7602 16.5417i −0.272003 0.206771i
\(81\) 8.16818 + 3.77900i 0.100842 + 0.0466543i
\(82\) 12.9698 8.79373i 0.158168 0.107241i
\(83\) 9.68721 + 28.7506i 0.116713 + 0.346393i 0.990048 0.140727i \(-0.0449440\pi\)
−0.873335 + 0.487120i \(0.838047\pi\)
\(84\) 10.3181 + 62.9374i 0.122834 + 0.749255i
\(85\) 2.30292 14.0472i 0.0270932 0.165261i
\(86\) 51.8548 + 17.4719i 0.602963 + 0.203162i
\(87\) 8.53339 + 30.7345i 0.0980850 + 0.353270i
\(88\) −37.2162 93.4055i −0.422911 1.06143i
\(89\) 64.5662 25.7255i 0.725463 0.289051i 0.0219758 0.999759i \(-0.493004\pi\)
0.703488 + 0.710707i \(0.251625\pi\)
\(90\) −8.31914 + 2.30980i −0.0924348 + 0.0256644i
\(91\) −64.8404 + 192.440i −0.712532 + 2.11472i
\(92\) −74.6776 12.2428i −0.811713 0.133074i
\(93\) 43.4150 7.11753i 0.466828 0.0765326i
\(94\) −54.9374 + 18.5105i −0.584440 + 0.196921i
\(95\) 12.0154 + 17.7214i 0.126478 + 0.186541i
\(96\) 22.7540 49.1819i 0.237021 0.512311i
\(97\) −51.1356 + 67.2677i −0.527171 + 0.693482i −0.980199 0.198015i \(-0.936551\pi\)
0.453028 + 0.891496i \(0.350344\pi\)
\(98\) 6.93408 + 63.7578i 0.0707559 + 0.650590i
\(99\) 47.3469 + 13.1458i 0.478252 + 0.132786i
\(100\) 24.5929 36.2717i 0.245929 0.362717i
\(101\) −51.7918 86.0787i −0.512790 0.852264i 0.486986 0.873410i \(-0.338096\pi\)
−0.999776 + 0.0211455i \(0.993269\pi\)
\(102\) 6.06372 0.328765i 0.0594482 0.00322319i
\(103\) −81.5444 86.0853i −0.791693 0.835780i 0.197818 0.980239i \(-0.436615\pi\)
−0.989511 + 0.144459i \(0.953856\pi\)
\(104\) 88.6996 67.4277i 0.852880 0.648343i
\(105\) 64.6923 14.2399i 0.616118 0.135618i
\(106\) 42.4987 36.0987i 0.400931 0.340554i
\(107\) −5.09687 + 94.0063i −0.0476343 + 0.878564i 0.872899 + 0.487900i \(0.162237\pi\)
−0.920534 + 0.390663i \(0.872246\pi\)
\(108\) 8.01042 + 15.1093i 0.0741706 + 0.139901i
\(109\) 34.9360 158.716i 0.320514 1.45611i −0.490684 0.871337i \(-0.663253\pi\)
0.811198 0.584772i \(-0.198816\pi\)
\(110\) −42.7821 + 19.7931i −0.388928 + 0.179937i
\(111\) 17.7929 29.5720i 0.160296 0.266414i
\(112\) −41.9059 + 79.0429i −0.374160 + 0.705740i
\(113\) −21.5331 18.2904i −0.190558 0.161862i 0.547029 0.837114i \(-0.315759\pi\)
−0.737587 + 0.675252i \(0.764035\pi\)
\(114\) −6.28141 + 6.63121i −0.0551001 + 0.0581685i
\(115\) −8.49789 + 78.1368i −0.0738947 + 0.679450i
\(116\) −22.4339 + 56.3047i −0.193395 + 0.485386i
\(117\) 54.4512i 0.465395i
\(118\) −25.5436 42.6029i −0.216471 0.361041i
\(119\) −46.5907 −0.391519
\(120\) −33.7633 13.4525i −0.281361 0.112104i
\(121\) 146.419 + 15.9241i 1.21008 + 0.131604i
\(122\) 25.3282 + 23.9921i 0.207608 + 0.196657i
\(123\) −20.8696 + 24.5696i −0.169672 + 0.199753i
\(124\) 73.8584 + 39.1572i 0.595632 + 0.315784i
\(125\) −112.225 67.5235i −0.897799 0.540188i
\(126\) 11.8656 + 25.6470i 0.0941713 + 0.203548i
\(127\) 182.883 + 40.2556i 1.44002 + 0.316973i 0.865251 0.501339i \(-0.167159\pi\)
0.574774 + 0.818312i \(0.305090\pi\)
\(128\) 114.768 60.8460i 0.896622 0.475359i
\(129\) −112.406 6.09446i −0.871362 0.0472439i
\(130\) −33.8168 39.8122i −0.260129 0.306248i
\(131\) 17.4608 + 79.3253i 0.133289 + 0.605537i 0.995148 + 0.0983894i \(0.0313691\pi\)
−0.861859 + 0.507148i \(0.830700\pi\)
\(132\) 56.5049 + 74.3309i 0.428067 + 0.563113i
\(133\) 50.8763 48.1926i 0.382529 0.362350i
\(134\) 3.49189 + 64.4041i 0.0260589 + 0.480627i
\(135\) 15.2194 9.15722i 0.112736 0.0678313i
\(136\) 21.1582 + 14.3456i 0.155575 + 0.105483i
\(137\) −20.2190 + 72.8222i −0.147584 + 0.531549i 0.852379 + 0.522924i \(0.175159\pi\)
−0.999963 + 0.00862428i \(0.997255\pi\)
\(138\) −33.3337 + 3.62526i −0.241548 + 0.0262700i
\(139\) 112.640 + 85.6269i 0.810362 + 0.616021i 0.926108 0.377258i \(-0.123133\pi\)
−0.115747 + 0.993279i \(0.536926\pi\)
\(140\) 114.235 + 52.8506i 0.815962 + 0.377504i
\(141\) 98.7123 66.9286i 0.700087 0.474671i
\(142\) −20.3442 60.3794i −0.143269 0.425207i
\(143\) 48.0964 + 293.375i 0.336339 + 2.05158i
\(144\) −3.88100 + 23.6730i −0.0269514 + 0.164396i
\(145\) 59.6552 + 20.1002i 0.411416 + 0.138622i
\(146\) −19.9549 71.8712i −0.136678 0.492268i
\(147\) −48.8356 122.568i −0.332215 0.833796i
\(148\) 60.9207 24.2730i 0.411626 0.164007i
\(149\) 43.9784 12.2106i 0.295157 0.0819500i −0.116793 0.993156i \(-0.537261\pi\)
0.411950 + 0.911206i \(0.364848\pi\)
\(150\) 6.19996 18.4008i 0.0413331 0.122672i
\(151\) −262.620 43.0543i −1.73920 0.285128i −0.793124 0.609061i \(-0.791547\pi\)
−0.946080 + 0.323932i \(0.894995\pi\)
\(152\) −37.9433 + 6.22049i −0.249627 + 0.0409243i
\(153\) −11.8389 + 3.98899i −0.0773785 + 0.0260718i
\(154\) 86.5840 + 127.702i 0.562233 + 0.829232i
\(155\) 36.4570 78.8005i 0.235206 0.508390i
\(156\) −62.6147 + 82.3682i −0.401376 + 0.528001i
\(157\) −24.3774 224.146i −0.155270 1.42768i −0.769546 0.638591i \(-0.779517\pi\)
0.614276 0.789091i \(-0.289448\pi\)
\(158\) 12.1974 + 3.38659i 0.0771986 + 0.0214341i
\(159\) −64.3756 + 94.9469i −0.404878 + 0.597150i
\(160\) −55.1371 91.6386i −0.344607 0.572741i
\(161\) 256.875 13.9274i 1.59550 0.0865054i
\(162\) 5.21094 + 5.50112i 0.0321663 + 0.0339575i
\(163\) −75.5999 + 57.4696i −0.463803 + 0.352574i −0.810831 0.585281i \(-0.800984\pi\)
0.347027 + 0.937855i \(0.387191\pi\)
\(164\) −59.8226 + 13.1679i −0.364772 + 0.0802923i
\(165\) 73.9115 62.7810i 0.447949 0.380491i
\(166\) −1.38287 + 25.5056i −0.00833055 + 0.153648i
\(167\) −73.1454 137.967i −0.437996 0.826149i 0.562003 0.827135i \(-0.310031\pi\)
−1.00000 0.000986289i \(0.999686\pi\)
\(168\) −25.5723 + 116.176i −0.152216 + 0.691524i
\(169\) −145.609 + 67.3658i −0.861591 + 0.398614i
\(170\) 6.17871 10.2691i 0.0363453 0.0604064i
\(171\) 8.80175 16.6019i 0.0514722 0.0970869i
\(172\) −163.028 138.477i −0.947835 0.805098i
\(173\) −28.7272 + 30.3270i −0.166053 + 0.175300i −0.803712 0.595019i \(-0.797145\pi\)
0.637658 + 0.770319i \(0.279903\pi\)
\(174\) −2.90355 + 26.6977i −0.0166871 + 0.153435i
\(175\) −55.1410 + 138.394i −0.315092 + 0.790820i
\(176\) 130.975i 0.744176i
\(177\) 74.0814 + 70.3914i 0.418539 + 0.397691i
\(178\) 58.5161 0.328742
\(179\) 98.2468 + 39.1451i 0.548865 + 0.218688i 0.628051 0.778172i \(-0.283853\pi\)
−0.0791863 + 0.996860i \(0.525232\pi\)
\(180\) 33.5525 + 3.64905i 0.186403 + 0.0202725i
\(181\) −111.761 105.866i −0.617466 0.584895i 0.313686 0.949527i \(-0.398436\pi\)
−0.931152 + 0.364632i \(0.881195\pi\)
\(182\) −110.684 + 130.307i −0.608152 + 0.715971i
\(183\) −63.4115 33.6187i −0.346511 0.183709i
\(184\) −120.943 72.7690i −0.657299 0.395484i
\(185\) −28.5992 61.8161i −0.154590 0.334141i
\(186\) 36.1743 + 7.96256i 0.194485 + 0.0428095i
\(187\) −60.2629 + 31.9493i −0.322261 + 0.170852i
\(188\) 226.284 + 12.2688i 1.20364 + 0.0652595i
\(189\) −37.6360 44.3086i −0.199132 0.234437i
\(190\) 3.87512 + 17.6048i 0.0203953 + 0.0926570i
\(191\) −164.684 216.639i −0.862222 1.13423i −0.989808 0.142406i \(-0.954516\pi\)
0.127586 0.991827i \(-0.459277\pi\)
\(192\) −7.09726 + 6.72289i −0.0369649 + 0.0350150i
\(193\) −19.1878 353.898i −0.0994185 1.83367i −0.445293 0.895385i \(-0.646900\pi\)
0.345874 0.938281i \(-0.387582\pi\)
\(194\) −60.9574 + 36.6768i −0.314213 + 0.189056i
\(195\) 88.9451 + 60.3063i 0.456129 + 0.309263i
\(196\) 67.0703 241.565i 0.342195 1.23248i
\(197\) 320.264 34.8308i 1.62571 0.176806i 0.750607 0.660749i \(-0.229761\pi\)
0.875100 + 0.483943i \(0.160796\pi\)
\(198\) 32.9349 + 25.0365i 0.166338 + 0.126447i
\(199\) −99.2669 45.9258i −0.498829 0.230783i 0.154308 0.988023i \(-0.450685\pi\)
−0.653137 + 0.757240i \(0.726547\pi\)
\(200\) 67.6536 45.8703i 0.338268 0.229351i
\(201\) −42.3679 125.744i −0.210786 0.625590i
\(202\) −13.6833 83.4647i −0.0677393 0.413192i
\(203\) 33.3334 203.325i 0.164204 1.00160i
\(204\) −22.4957 7.57968i −0.110273 0.0371553i
\(205\) 17.0203 + 61.3017i 0.0830260 + 0.299033i
\(206\) −36.9517 92.7417i −0.179377 0.450202i
\(207\) 64.0807 25.5321i 0.309568 0.123343i
\(208\) −139.847 + 38.8283i −0.672340 + 0.186674i
\(209\) 32.7582 97.2230i 0.156738 0.465182i
\(210\) 55.0355 + 9.02261i 0.262074 + 0.0429648i
\(211\) −199.007 + 32.6255i −0.943159 + 0.154623i −0.613693 0.789544i \(-0.710317\pi\)
−0.329466 + 0.944167i \(0.606869\pi\)
\(212\) −206.562 + 69.5990i −0.974351 + 0.328297i
\(213\) 73.5585 + 108.491i 0.345345 + 0.509346i
\(214\) −33.2816 + 71.9369i −0.155521 + 0.336154i
\(215\) −134.448 + 176.863i −0.625338 + 0.822618i
\(216\) 3.44870 + 31.7103i 0.0159662 + 0.146807i
\(217\) −273.824 76.0268i −1.26186 0.350354i
\(218\) 76.7851 113.250i 0.352225 0.519493i
\(219\) 79.1116 + 131.485i 0.361240 + 0.600386i
\(220\) 183.999 9.97614i 0.836359 0.0453461i
\(221\) −51.9787 54.8733i −0.235198 0.248295i
\(222\) 23.1319 17.5844i 0.104198 0.0792089i
\(223\) 324.610 71.4521i 1.45565 0.320413i 0.584486 0.811404i \(-0.301296\pi\)
0.871165 + 0.490991i \(0.163365\pi\)
\(224\) −266.789 + 226.613i −1.19102 + 1.01166i
\(225\) −2.16264 + 39.8875i −0.00961171 + 0.177278i
\(226\) −11.1419 21.0158i −0.0493003 0.0929903i
\(227\) 81.1126 368.498i 0.357324 1.62334i −0.364458 0.931220i \(-0.618746\pi\)
0.721782 0.692120i \(-0.243323\pi\)
\(228\) 32.4052 14.9923i 0.142128 0.0657555i
\(229\) −135.328 + 224.917i −0.590953 + 0.982171i 0.406691 + 0.913566i \(0.366682\pi\)
−0.997644 + 0.0686053i \(0.978145\pi\)
\(230\) −30.9962 + 58.4650i −0.134766 + 0.254196i
\(231\) −241.915 205.485i −1.04725 0.889543i
\(232\) −77.7430 + 82.0723i −0.335099 + 0.353760i
\(233\) −11.4367 + 105.158i −0.0490844 + 0.451323i 0.943645 + 0.330958i \(0.107372\pi\)
−0.992730 + 0.120365i \(0.961594\pi\)
\(234\) −16.9686 + 42.5880i −0.0725154 + 0.182000i
\(235\) 235.370i 1.00158i
\(236\) 31.1181 + 191.669i 0.131856 + 0.812155i
\(237\) −26.0422 −0.109883
\(238\) −36.4401 14.5190i −0.153109 0.0610044i
\(239\) −348.749 37.9288i −1.45920 0.158698i −0.656161 0.754621i \(-0.727821\pi\)
−0.803042 + 0.595923i \(0.796786\pi\)
\(240\) 34.3712 + 32.5581i 0.143213 + 0.135659i
\(241\) −299.756 + 352.900i −1.24380 + 1.46431i −0.410151 + 0.912018i \(0.634524\pi\)
−0.833648 + 0.552296i \(0.813752\pi\)
\(242\) 109.557 + 58.0833i 0.452714 + 0.240014i
\(243\) −13.3571 8.03669i −0.0549674 0.0330728i
\(244\) −57.2636 123.773i −0.234687 0.507267i
\(245\) −254.299 55.9755i −1.03796 0.228472i
\(246\) −23.9794 + 12.7131i −0.0974773 + 0.0516792i
\(247\) 113.520 + 6.15487i 0.459595 + 0.0249185i
\(248\) 100.942 + 118.838i 0.407025 + 0.479187i
\(249\) −11.2963 51.3197i −0.0453668 0.206103i
\(250\) −66.7323 87.7848i −0.266929 0.351139i
\(251\) 28.5642 27.0574i 0.113802 0.107799i −0.628683 0.777661i \(-0.716406\pi\)
0.742485 + 0.669863i \(0.233647\pi\)
\(252\) −5.98051 110.304i −0.0237322 0.437714i
\(253\) 322.705 194.165i 1.27551 0.767451i
\(254\) 130.494 + 88.4770i 0.513755 + 0.348335i
\(255\) −6.59598 + 23.7566i −0.0258666 + 0.0931630i
\(256\) 86.2806 9.38359i 0.337034 0.0366546i
\(257\) −86.8970 66.0574i −0.338121 0.257033i 0.422310 0.906451i \(-0.361219\pi\)
−0.760431 + 0.649419i \(0.775012\pi\)
\(258\) −86.0168 39.7956i −0.333398 0.154247i
\(259\) −184.517 + 125.106i −0.712422 + 0.483034i
\(260\) 65.1994 + 193.505i 0.250767 + 0.744250i
\(261\) −8.93805 54.5197i −0.0342454 0.208888i
\(262\) −11.0635 + 67.4841i −0.0422270 + 0.257573i
\(263\) −444.622 149.811i −1.69058 0.569622i −0.700942 0.713218i \(-0.747237\pi\)
−0.989636 + 0.143596i \(0.954134\pi\)
\(264\) 46.5906 + 167.804i 0.176479 + 0.635622i
\(265\) 83.7963 + 210.313i 0.316212 + 0.793633i
\(266\) 54.8102 21.8384i 0.206053 0.0820992i
\(267\) −115.994 + 32.2056i −0.434435 + 0.120620i
\(268\) 80.5055 238.932i 0.300394 0.891537i
\(269\) 509.139 + 83.4691i 1.89271 + 0.310294i 0.992212 0.124563i \(-0.0397530\pi\)
0.900499 + 0.434857i \(0.143201\pi\)
\(270\) 14.7572 2.41933i 0.0546565 0.00896047i
\(271\) 360.543 121.481i 1.33042 0.448270i 0.437795 0.899075i \(-0.355760\pi\)
0.892623 + 0.450805i \(0.148863\pi\)
\(272\) −18.6870 27.5613i −0.0687023 0.101328i
\(273\) 147.686 319.219i 0.540975 1.16930i
\(274\) −38.5074 + 50.6557i −0.140538 + 0.184875i
\(275\) 23.5804 + 216.818i 0.0857469 + 0.788430i
\(276\) 126.295 + 35.0655i 0.457589 + 0.127049i
\(277\) 144.248 212.750i 0.520752 0.768052i −0.472831 0.881153i \(-0.656768\pi\)
0.993583 + 0.113101i \(0.0360784\pi\)
\(278\) 61.4156 + 102.074i 0.220919 + 0.367171i
\(279\) −76.0891 + 4.12543i −0.272721 + 0.0147865i
\(280\) 161.449 + 170.440i 0.576605 + 0.608714i
\(281\) 170.618 129.700i 0.607180 0.461566i −0.255852 0.966716i \(-0.582356\pi\)
0.863032 + 0.505150i \(0.168563\pi\)
\(282\) 98.0629 21.5853i 0.347741 0.0765435i
\(283\) −30.5462 + 25.9462i −0.107937 + 0.0916827i −0.699730 0.714408i \(-0.746696\pi\)
0.591793 + 0.806090i \(0.298420\pi\)
\(284\) −13.4841 + 248.700i −0.0474793 + 0.875705i
\(285\) −17.3707 32.7645i −0.0609497 0.114963i
\(286\) −53.8067 + 244.446i −0.188135 + 0.854707i
\(287\) 188.987 87.4347i 0.658491 0.304650i
\(288\) −48.3902 + 80.4251i −0.168021 + 0.279254i
\(289\) −127.247 + 240.014i −0.440302 + 0.830497i
\(290\) 40.3944 + 34.3113i 0.139291 + 0.118315i
\(291\) 100.647 106.252i 0.345867 0.365127i
\(292\) −31.5251 + 289.869i −0.107963 + 0.992700i
\(293\) 197.731 496.268i 0.674850 1.69375i −0.0444174 0.999013i \(-0.514143\pi\)
0.719268 0.694733i \(-0.244478\pi\)
\(294\) 111.083i 0.377833i
\(295\) 197.030 43.0502i 0.667899 0.145933i
\(296\) 122.316 0.413229
\(297\) −79.0648 31.5023i −0.266211 0.106068i
\(298\) 38.2021 + 4.15473i 0.128195 + 0.0139420i
\(299\) 302.985 + 287.003i 1.01333 + 0.959875i
\(300\) −49.1389 + 57.8508i −0.163796 + 0.192836i
\(301\) 642.445 + 340.603i 2.13437 + 1.13157i
\(302\) −191.986 115.514i −0.635716 0.382497i
\(303\) 73.0605 + 157.918i 0.241124 + 0.521180i
\(304\) 48.9149 + 10.7670i 0.160904 + 0.0354177i
\(305\) −125.146 + 66.3480i −0.410313 + 0.217534i
\(306\) −10.5027 0.569438i −0.0343224 0.00186091i
\(307\) −118.107 139.047i −0.384714 0.452921i 0.535384 0.844609i \(-0.320167\pi\)
−0.920098 + 0.391688i \(0.871891\pi\)
\(308\) −129.653 589.019i −0.420951 1.91240i
\(309\) 124.290 + 163.501i 0.402233 + 0.529129i
\(310\) 53.0707 50.2713i 0.171196 0.162165i
\(311\) 22.5029 + 415.042i 0.0723566 + 1.33454i 0.779024 + 0.626994i \(0.215715\pi\)
−0.706668 + 0.707546i \(0.749802\pi\)
\(312\) −165.359 + 99.4929i −0.529995 + 0.318888i
\(313\) 198.626 + 134.672i 0.634589 + 0.430262i 0.835609 0.549325i \(-0.185115\pi\)
−0.201020 + 0.979587i \(0.564426\pi\)
\(314\) 50.7843 182.908i 0.161733 0.582511i
\(315\) −114.060 + 12.4048i −0.362096 + 0.0393803i
\(316\) −39.3940 29.9465i −0.124665 0.0947676i
\(317\) 311.659 + 144.189i 0.983152 + 0.454855i 0.844540 0.535492i \(-0.179874\pi\)
0.138612 + 0.990347i \(0.455736\pi\)
\(318\) −79.9384 + 54.1996i −0.251379 + 0.170439i
\(319\) −96.3139 285.849i −0.301924 0.896079i
\(320\) 3.12129 + 19.0390i 0.00975404 + 0.0594970i
\(321\) 26.3806 160.915i 0.0821827 0.501292i
\(322\) 205.250 + 69.1569i 0.637423 + 0.214773i
\(323\) 6.97805 + 25.1326i 0.0216039 + 0.0778101i
\(324\) −10.9636 27.5167i −0.0338384 0.0849280i
\(325\) −224.514 + 89.4546i −0.690813 + 0.275245i
\(326\) −77.0383 + 21.3896i −0.236314 + 0.0656122i
\(327\) −89.8786 + 266.750i −0.274858 + 0.815750i
\(328\) −112.746 18.4838i −0.343739 0.0563531i
\(329\) −760.226 + 124.633i −2.31072 + 0.378823i
\(330\) 77.3729 26.0700i 0.234463 0.0789999i
\(331\) 73.8906 + 108.980i 0.223234 + 0.329246i 0.922770 0.385352i \(-0.125920\pi\)
−0.699535 + 0.714598i \(0.746610\pi\)
\(332\) 41.9258 90.6210i 0.126282 0.272955i
\(333\) −36.1754 + 47.5879i −0.108635 + 0.142906i
\(334\) −14.2147 130.702i −0.0425591 0.391325i
\(335\) −252.324 70.0573i −0.753205 0.209126i
\(336\) 86.9598 128.256i 0.258809 0.381715i
\(337\) 22.3205 + 37.0969i 0.0662329 + 0.110080i 0.888204 0.459449i \(-0.151953\pi\)
−0.821971 + 0.569529i \(0.807126\pi\)
\(338\) −134.878 + 7.31290i −0.399049 + 0.0216358i
\(339\) 33.6526 + 35.5266i 0.0992701 + 0.104798i
\(340\) −37.2959 + 28.3516i −0.109694 + 0.0833871i
\(341\) −406.313 + 89.4363i −1.19153 + 0.262276i
\(342\) 12.0578 10.2420i 0.0352566 0.0299472i
\(343\) −16.4602 + 303.591i −0.0479890 + 0.885104i
\(344\) −186.879 352.492i −0.543254 1.02469i
\(345\) 29.2650 132.952i 0.0848260 0.385369i
\(346\) −31.9193 + 14.7674i −0.0922522 + 0.0426804i
\(347\) 221.312 367.823i 0.637786 1.06001i −0.354382 0.935101i \(-0.615309\pi\)
0.992168 0.124908i \(-0.0398636\pi\)
\(348\) 49.1729 92.7498i 0.141301 0.266523i
\(349\) 21.3932 + 18.1716i 0.0612986 + 0.0520675i 0.677512 0.735512i \(-0.263058\pi\)
−0.616213 + 0.787579i \(0.711334\pi\)
\(350\) −86.2551 + 91.0584i −0.246443 + 0.260167i
\(351\) 10.1970 93.7594i 0.0290511 0.267121i
\(352\) −189.680 + 476.062i −0.538864 + 1.35245i
\(353\) 185.690i 0.526034i 0.964791 + 0.263017i \(0.0847175\pi\)
−0.964791 + 0.263017i \(0.915283\pi\)
\(354\) 36.0053 + 78.1413i 0.101710 + 0.220738i
\(355\) 258.686 0.728692
\(356\) −212.498 84.6668i −0.596904 0.237828i
\(357\) 80.2244 + 8.72493i 0.224718 + 0.0244396i
\(358\) 64.6431 + 61.2332i 0.180567 + 0.171043i
\(359\) −426.922 + 502.611i −1.18920 + 1.40003i −0.293154 + 0.956065i \(0.594705\pi\)
−0.896043 + 0.443966i \(0.853571\pi\)
\(360\) 55.6177 + 29.4866i 0.154494 + 0.0819073i
\(361\) 275.709 + 165.888i 0.763736 + 0.459525i
\(362\) −54.4211 117.629i −0.150334 0.324942i
\(363\) −249.137 54.8392i −0.686328 0.151072i
\(364\) 590.481 313.053i 1.62220 0.860037i
\(365\) 302.396 + 16.3954i 0.828483 + 0.0449190i
\(366\) −39.1196 46.0551i −0.106884 0.125834i
\(367\) 122.940 + 558.524i 0.334988 + 1.52186i 0.779679 + 0.626180i \(0.215382\pi\)
−0.444691 + 0.895684i \(0.646686\pi\)
\(368\) 111.269 + 146.372i 0.302361 + 0.397749i
\(369\) 40.5364 38.3982i 0.109855 0.104060i
\(370\) −3.10458 57.2607i −0.00839076 0.154759i
\(371\) 634.921 382.020i 1.71138 1.02970i
\(372\) −119.844 81.2560i −0.322160 0.218430i
\(373\) 20.1479 72.5660i 0.0540157 0.194547i −0.931620 0.363435i \(-0.881604\pi\)
0.985635 + 0.168888i \(0.0540177\pi\)
\(374\) −57.0898 + 6.20889i −0.152647 + 0.0166013i
\(375\) 180.595 + 137.285i 0.481586 + 0.366092i
\(376\) 383.617 + 177.480i 1.02026 + 0.472021i
\(377\) 276.659 187.579i 0.733844 0.497558i
\(378\) −15.6285 46.3836i −0.0413451 0.122708i
\(379\) −32.6075 198.897i −0.0860355 0.524793i −0.994319 0.106439i \(-0.966055\pi\)
0.908284 0.418355i \(-0.137393\pi\)
\(380\) 11.4001 69.5377i 0.0300004 0.182994i
\(381\) −307.367 103.564i −0.806739 0.271822i
\(382\) −61.2938 220.760i −0.160455 0.577907i
\(383\) 65.9452 + 165.510i 0.172181 + 0.432141i 0.989590 0.143917i \(-0.0459697\pi\)
−0.817409 + 0.576058i \(0.804590\pi\)
\(384\) −209.013 + 83.2782i −0.544304 + 0.216870i
\(385\) −603.583 + 167.584i −1.56775 + 0.435283i
\(386\) 95.2776 282.774i 0.246833 0.732575i
\(387\) 192.410 + 31.5440i 0.497183 + 0.0815090i
\(388\) 274.431 44.9906i 0.707295 0.115955i
\(389\) −151.694 + 51.1117i −0.389959 + 0.131393i −0.507450 0.861681i \(-0.669412\pi\)
0.117490 + 0.993074i \(0.462515\pi\)
\(390\) 50.7735 + 74.8853i 0.130189 + 0.192014i
\(391\) −40.2047 + 86.9010i −0.102825 + 0.222253i
\(392\) 282.985 372.260i 0.721900 0.949644i
\(393\) −15.2107 139.860i −0.0387040 0.355878i
\(394\) 261.343 + 72.5615i 0.663307 + 0.184166i
\(395\) −28.8425 + 42.5395i −0.0730190 + 0.107695i
\(396\) −83.3759 138.572i −0.210545 0.349929i
\(397\) −469.657 + 25.4641i −1.18302 + 0.0641412i −0.635125 0.772409i \(-0.719052\pi\)
−0.547890 + 0.836550i \(0.684569\pi\)
\(398\) −63.3279 66.8545i −0.159115 0.167976i
\(399\) −96.6287 + 73.4552i −0.242177 + 0.184098i
\(400\) −103.985 + 22.8888i −0.259962 + 0.0572220i
\(401\) −164.310 + 139.566i −0.409750 + 0.348045i −0.828433 0.560088i \(-0.810767\pi\)
0.418684 + 0.908132i \(0.362492\pi\)
\(402\) 6.04813 111.551i 0.0150451 0.277490i
\(403\) −215.948 407.321i −0.535852 1.01072i
\(404\) −71.0746 + 322.895i −0.175927 + 0.799246i
\(405\) −27.9211 + 12.9177i −0.0689411 + 0.0318955i
\(406\) 89.4332 148.639i 0.220279 0.366106i
\(407\) −152.873 + 288.350i −0.375611 + 0.708477i
\(408\) −33.7458 28.6640i −0.0827104 0.0702548i
\(409\) 182.041 192.178i 0.445088 0.469874i −0.464387 0.885632i \(-0.653725\pi\)
0.909475 + 0.415759i \(0.136484\pi\)
\(410\) −5.79129 + 53.2500i −0.0141251 + 0.129878i
\(411\) 48.4522 121.606i 0.117889 0.295878i
\(412\) 390.251i 0.947211i
\(413\) −243.380 613.596i −0.589297 1.48570i
\(414\) 58.0761 0.140280
\(415\) −96.3408 38.3857i −0.232147 0.0924956i
\(416\) −564.540 61.3975i −1.35707 0.147590i
\(417\) −177.920 168.535i −0.426666 0.404160i
\(418\) 55.9188 65.8327i 0.133777 0.157495i
\(419\) 308.000 + 163.291i 0.735084 + 0.389717i 0.793496 0.608576i \(-0.208259\pi\)
−0.0584121 + 0.998293i \(0.518604\pi\)
\(420\) −186.803 112.396i −0.444769 0.267609i
\(421\) −80.8037 174.654i −0.191933 0.414856i 0.787587 0.616203i \(-0.211330\pi\)
−0.979520 + 0.201347i \(0.935468\pi\)
\(422\) −165.816 36.4989i −0.392930 0.0864904i
\(423\) −182.506 + 96.7586i −0.431456 + 0.228744i
\(424\) −405.963 22.0107i −0.957461 0.0519120i
\(425\) −35.8969 42.2611i −0.0844633 0.0994379i
\(426\) 23.7235 + 107.777i 0.0556890 + 0.252998i
\(427\) 280.565 + 369.077i 0.657062 + 0.864350i
\(428\) 224.945 213.080i 0.525573 0.497849i
\(429\) −27.8774 514.169i −0.0649824 1.19853i
\(430\) −160.271 + 96.4321i −0.372724 + 0.224261i
\(431\) 279.251 + 189.337i 0.647914 + 0.439296i 0.840373 0.542009i \(-0.182336\pi\)
−0.192459 + 0.981305i \(0.561646\pi\)
\(432\) 11.1159 40.0357i 0.0257312 0.0926753i
\(433\) −6.11487 + 0.665033i −0.0141221 + 0.00153587i −0.115177 0.993345i \(-0.536744\pi\)
0.101055 + 0.994881i \(0.467778\pi\)
\(434\) −190.474 144.795i −0.438880 0.333628i
\(435\) −98.9561 45.7820i −0.227485 0.105246i
\(436\) −442.701 + 300.159i −1.01537 + 0.688437i
\(437\) −45.9860 136.481i −0.105231 0.312315i
\(438\) 20.9012 + 127.492i 0.0477197 + 0.291077i
\(439\) 97.0976 592.269i 0.221179 1.34913i −0.609680 0.792648i \(-0.708702\pi\)
0.830858 0.556484i \(-0.187850\pi\)
\(440\) 325.705 + 109.743i 0.740240 + 0.249416i
\(441\) 61.1368 + 220.195i 0.138632 + 0.499308i
\(442\) −23.5541 59.1162i −0.0532897 0.133747i
\(443\) −622.122 + 247.876i −1.40434 + 0.559539i −0.944514 0.328471i \(-0.893467\pi\)
−0.459824 + 0.888010i \(0.652087\pi\)
\(444\) −109.445 + 30.3872i −0.246497 + 0.0684396i
\(445\) −75.8594 + 225.143i −0.170471 + 0.505939i
\(446\) 276.154 + 45.2732i 0.619180 + 0.101509i
\(447\) −78.0130 + 12.7896i −0.174526 + 0.0286120i
\(448\) 59.8418 20.1630i 0.133575 0.0450068i
\(449\) −206.534 304.615i −0.459986 0.678429i 0.524992 0.851107i \(-0.324068\pi\)
−0.984978 + 0.172678i \(0.944758\pi\)
\(450\) −14.1216 + 30.5233i −0.0313813 + 0.0678295i
\(451\) 184.488 242.689i 0.409064 0.538114i
\(452\) 10.0533 + 92.4388i 0.0222419 + 0.204511i
\(453\) 444.142 + 123.315i 0.980445 + 0.272219i
\(454\) 178.276 262.937i 0.392678 0.579156i
\(455\) −357.871 594.787i −0.786530 1.30722i
\(456\) 66.4994 3.60549i 0.145832 0.00790678i
\(457\) 24.3820 + 25.7398i 0.0533523 + 0.0563234i 0.752125 0.659020i \(-0.229029\pi\)
−0.698773 + 0.715344i \(0.746270\pi\)
\(458\) −175.935 + 133.742i −0.384138 + 0.292014i
\(459\) 21.1324 4.65159i 0.0460401 0.0101342i
\(460\) 197.154 167.464i 0.428595 0.364052i
\(461\) −10.0834 + 185.977i −0.0218729 + 0.403422i 0.967011 + 0.254734i \(0.0819878\pi\)
−0.988884 + 0.148688i \(0.952495\pi\)
\(462\) −125.174 236.104i −0.270940 0.511047i
\(463\) 71.7796 326.098i 0.155032 0.704315i −0.833403 0.552666i \(-0.813611\pi\)
0.988434 0.151649i \(-0.0484585\pi\)
\(464\) 133.649 61.8326i 0.288037 0.133260i
\(465\) −77.5320 + 128.859i −0.166735 + 0.277117i
\(466\) −41.7154 + 78.6836i −0.0895180 + 0.168849i
\(467\) 502.199 + 426.572i 1.07537 + 0.913431i 0.996512 0.0834550i \(-0.0265955\pi\)
0.0788620 + 0.996886i \(0.474871\pi\)
\(468\) 123.241 130.104i 0.263335 0.278000i
\(469\) −92.6694 + 852.081i −0.197589 + 1.81680i
\(470\) 73.3483 184.090i 0.156060 0.391682i
\(471\) 390.522i 0.829133i
\(472\) −78.4049 + 353.591i −0.166112 + 0.749133i
\(473\) 1064.54 2.25061
\(474\) −20.3684 8.11553i −0.0429714 0.0171214i
\(475\) 82.9130 + 9.01733i 0.174554 + 0.0189838i
\(476\) 111.322 + 105.450i 0.233870 + 0.221534i
\(477\) 128.629 151.433i 0.269662 0.317470i
\(478\) −260.948 138.346i −0.545917 0.289427i
\(479\) −122.667 73.8062i −0.256089 0.154084i 0.381720 0.924278i \(-0.375332\pi\)
−0.637810 + 0.770194i \(0.720159\pi\)
\(480\) 77.7795 + 168.118i 0.162041 + 0.350245i
\(481\) −353.202 77.7457i −0.734308 0.161633i
\(482\) −344.422 + 182.601i −0.714569 + 0.378840i
\(483\) −444.921 24.1229i −0.921161 0.0499439i
\(484\) −313.808 369.443i −0.648364 0.763313i
\(485\) −62.0911 282.083i −0.128023 0.581614i
\(486\) −7.94252 10.4482i −0.0163426 0.0214984i
\(487\) 392.990 372.260i 0.806962 0.764395i −0.168232 0.985747i \(-0.553806\pi\)
0.975194 + 0.221353i \(0.0710471\pi\)
\(488\) −13.7713 253.997i −0.0282199 0.520486i
\(489\) 140.938 84.7993i 0.288216 0.173414i
\(490\) −181.452 123.027i −0.370310 0.251076i
\(491\) −171.789 + 618.730i −0.349877 + 1.26014i 0.554060 + 0.832477i \(0.313078\pi\)
−0.903937 + 0.427666i \(0.859336\pi\)
\(492\) 105.474 11.4710i 0.214379 0.0233151i
\(493\) 61.0515 + 46.4101i 0.123837 + 0.0941382i
\(494\) 86.8694 + 40.1901i 0.175849 + 0.0813565i
\(495\) −139.025 + 94.2612i −0.280858 + 0.190427i
\(496\) −64.8532 192.477i −0.130752 0.388059i
\(497\) −136.979 835.534i −0.275611 1.68115i
\(498\) 7.15753 43.6590i 0.0143726 0.0876687i
\(499\) −200.555 67.5749i −0.401914 0.135421i 0.111083 0.993811i \(-0.464568\pi\)
−0.512997 + 0.858390i \(0.671465\pi\)
\(500\) 115.319 + 415.340i 0.230637 + 0.830680i
\(501\) 100.112 + 251.263i 0.199825 + 0.501522i
\(502\) 30.7728 12.2610i 0.0613005 0.0244243i
\(503\) −810.820 + 225.123i −1.61197 + 0.447561i −0.952592 0.304252i \(-0.901594\pi\)
−0.659377 + 0.751813i \(0.729180\pi\)
\(504\) 65.7888 195.254i 0.130533 0.387409i
\(505\) 338.872 + 55.5553i 0.671034 + 0.110010i
\(506\) 312.905 51.2982i 0.618390 0.101380i
\(507\) 263.339 88.7292i 0.519406 0.175008i
\(508\) −345.863 510.110i −0.680833 1.00415i
\(509\) −237.271 + 512.852i −0.466150 + 1.00757i 0.521839 + 0.853044i \(0.325246\pi\)
−0.987989 + 0.154523i \(0.950616\pi\)
\(510\) −12.5622 + 16.5252i −0.0246317 + 0.0324024i
\(511\) −107.168 985.396i −0.209723 1.92837i
\(512\) −430.251 119.459i −0.840334 0.233318i
\(513\) −18.2647 + 26.9384i −0.0356037 + 0.0525116i
\(514\) −47.3795 78.7453i −0.0921779 0.153201i
\(515\) 404.730 21.9438i 0.785884 0.0426094i
\(516\) 254.785 + 268.973i 0.493769 + 0.521265i
\(517\) −897.850 + 682.528i −1.73665 + 1.32017i
\(518\) −183.303 + 40.3481i −0.353867 + 0.0778921i
\(519\) 55.1446 46.8403i 0.106252 0.0902510i
\(520\) −20.6194 + 380.302i −0.0396526 + 0.731349i
\(521\) −55.7961 105.243i −0.107094 0.202001i 0.824173 0.566338i \(-0.191640\pi\)
−0.931267 + 0.364337i \(0.881296\pi\)
\(522\) 9.99922 45.4269i 0.0191556 0.0870248i
\(523\) −424.397 + 196.347i −0.811467 + 0.375424i −0.781328 0.624121i \(-0.785457\pi\)
−0.0301392 + 0.999546i \(0.509595\pi\)
\(524\) 137.819 229.057i 0.263013 0.437131i
\(525\) 120.864 227.973i 0.230217 0.434235i
\(526\) −301.068 255.729i −0.572372 0.486177i
\(527\) 72.7408 76.7915i 0.138028 0.145714i
\(528\) 24.5274 225.525i 0.0464533 0.427131i
\(529\) −0.114317 + 0.286913i −0.000216100 + 0.000542369i
\(530\) 190.606i 0.359633i
\(531\) −114.379 135.080i −0.215402 0.254388i
\(532\) −230.638 −0.433530
\(533\) 313.821 + 125.038i 0.588782 + 0.234592i
\(534\) −100.759 10.9582i −0.188687 0.0205209i
\(535\) −233.634 221.310i −0.436699 0.413664i
\(536\) 304.446 358.422i 0.567997 0.668697i
\(537\) −161.840 85.8023i −0.301379 0.159781i
\(538\) 372.202 + 223.947i 0.691826 + 0.416258i
\(539\) 523.893 + 1132.38i 0.971972 + 2.10088i
\(540\) −57.0906 12.5666i −0.105723 0.0232714i
\(541\) 80.3464 42.5970i 0.148515 0.0787375i −0.392494 0.919755i \(-0.628388\pi\)
0.541008 + 0.841017i \(0.318043\pi\)
\(542\) 319.849 + 17.3417i 0.590128 + 0.0319958i
\(543\) 172.616 + 203.220i 0.317894 + 0.374253i
\(544\) −28.0080 127.241i −0.0514852 0.233900i
\(545\) 336.188 + 442.248i 0.616860 + 0.811465i
\(546\) 214.988 203.647i 0.393751 0.372981i
\(547\) 4.94059 + 91.1239i 0.00903216 + 0.166588i 0.999569 + 0.0293440i \(0.00934182\pi\)
−0.990537 + 0.137244i \(0.956175\pi\)
\(548\) 213.131 128.237i 0.388925 0.234008i
\(549\) 102.892 + 69.7628i 0.187418 + 0.127073i
\(550\) −49.1240 + 176.929i −0.0893163 + 0.321688i
\(551\) −114.673 + 12.4714i −0.208118 + 0.0226342i
\(552\) 194.624 + 147.949i 0.352580 + 0.268024i
\(553\) 152.672 + 70.6335i 0.276079 + 0.127728i
\(554\) 179.120 121.447i 0.323322 0.219218i
\(555\) 37.6687 + 111.797i 0.0678715 + 0.201436i
\(556\) −75.3371 459.536i −0.135498 0.826503i
\(557\) 49.6499 302.851i 0.0891381 0.543718i −0.904072 0.427381i \(-0.859436\pi\)
0.993210 0.116337i \(-0.0371154\pi\)
\(558\) −60.7973 20.4850i −0.108956 0.0367114i
\(559\) 315.589 + 1136.65i 0.564559 + 2.03336i
\(560\) −113.194 284.095i −0.202132 0.507312i
\(561\) 109.750 43.7282i 0.195632 0.0779469i
\(562\) 173.864 48.2730i 0.309366 0.0858951i
\(563\) −296.852 + 881.027i −0.527269 + 1.56488i 0.271001 + 0.962579i \(0.412645\pi\)
−0.798270 + 0.602300i \(0.794251\pi\)
\(564\) −387.341 63.5014i −0.686775 0.112591i
\(565\) 95.3032 15.6242i 0.168678 0.0276534i
\(566\) −31.9768 + 10.7742i −0.0564960 + 0.0190357i
\(567\) 56.5078 + 83.3428i 0.0996611 + 0.146989i
\(568\) −195.061 + 421.618i −0.343417 + 0.742284i
\(569\) 142.144 186.987i 0.249814 0.328624i −0.654045 0.756456i \(-0.726929\pi\)
0.903859 + 0.427831i \(0.140722\pi\)
\(570\) −3.37574 31.0394i −0.00592235 0.0544551i
\(571\) 566.109 + 157.179i 0.991434 + 0.275270i 0.725125 0.688617i \(-0.241782\pi\)
0.266309 + 0.963888i \(0.414196\pi\)
\(572\) 549.084 809.839i 0.959938 1.41580i
\(573\) 243.000 + 403.869i 0.424084 + 0.704833i
\(574\) 175.060 9.49147i 0.304982 0.0165357i
\(575\) 210.549 + 222.273i 0.366171 + 0.386562i
\(576\) 13.4797 10.2470i 0.0234023 0.0177900i
\(577\) 759.239 167.121i 1.31584 0.289638i 0.499049 0.866574i \(-0.333683\pi\)
0.816790 + 0.576935i \(0.195752\pi\)
\(578\) −174.319 + 148.068i −0.301591 + 0.256173i
\(579\) −33.2342 + 612.968i −0.0573993 + 1.05867i
\(580\) −97.0449 183.046i −0.167319 0.315597i
\(581\) −72.9684 + 331.499i −0.125591 + 0.570566i
\(582\) 111.831 51.7384i 0.192149 0.0888976i
\(583\) 559.272 929.518i 0.959301 1.59437i
\(584\) −254.743 + 480.496i −0.436203 + 0.822767i
\(585\) −141.861 120.498i −0.242497 0.205979i
\(586\) 309.303 326.528i 0.527821 0.557214i
\(587\) 71.1886 654.568i 0.121275 1.11511i −0.762432 0.647068i \(-0.775995\pi\)
0.883708 0.468040i \(-0.155040\pi\)
\(588\) −160.726 + 403.391i −0.273343 + 0.686038i
\(589\) 159.097i 0.270114i
\(590\) 167.519 + 27.7296i 0.283931 + 0.0469993i
\(591\) −557.985 −0.944137
\(592\) −148.016 58.9748i −0.250026 0.0996196i
\(593\) 542.776 + 59.0305i 0.915305 + 0.0995455i 0.553634 0.832760i \(-0.313241\pi\)
0.361671 + 0.932306i \(0.382206\pi\)
\(594\) −52.0220 49.2779i −0.0875791 0.0829593i
\(595\) 103.103 121.382i 0.173282 0.204003i
\(596\) −132.717 70.3621i −0.222680 0.118057i
\(597\) 162.327 + 97.6689i 0.271905 + 0.163600i
\(598\) 147.536 + 318.893i 0.246715 + 0.533266i
\(599\) −346.105 76.1834i −0.577804 0.127184i −0.0835528 0.996503i \(-0.526627\pi\)
−0.494251 + 0.869319i \(0.664558\pi\)
\(600\) −125.083 + 66.3146i −0.208471 + 0.110524i
\(601\) 272.575 + 14.7786i 0.453535 + 0.0245900i 0.279492 0.960148i \(-0.409834\pi\)
0.174043 + 0.984738i \(0.444317\pi\)
\(602\) 396.335 + 466.601i 0.658363 + 0.775085i
\(603\) 49.4056 + 224.452i 0.0819329 + 0.372225i
\(604\) 530.049 + 697.267i 0.877564 + 1.15442i
\(605\) −365.505 + 346.225i −0.604141 + 0.572273i
\(606\) 7.93108 + 146.280i 0.0130876 + 0.241386i
\(607\) −438.531 + 263.855i −0.722456 + 0.434688i −0.828729 0.559649i \(-0.810936\pi\)
0.106273 + 0.994337i \(0.466108\pi\)
\(608\) 162.201 + 109.975i 0.266777 + 0.180879i
\(609\) −95.4730 + 343.862i −0.156770 + 0.564635i
\(610\) −118.556 + 12.8938i −0.194354 + 0.0211373i
\(611\) −994.933 756.328i −1.62837 1.23785i
\(612\) 37.3159 + 17.2642i 0.0609736 + 0.0282094i
\(613\) 823.730 558.503i 1.34377 0.911098i 0.344155 0.938913i \(-0.388165\pi\)
0.999613 + 0.0278151i \(0.00885498\pi\)
\(614\) −49.0444 145.559i −0.0798768 0.237066i
\(615\) −17.8274 108.743i −0.0289877 0.176817i
\(616\) 181.994 1110.11i 0.295444 1.80213i
\(617\) −309.126 104.157i −0.501015 0.168811i 0.0574361 0.998349i \(-0.481707\pi\)
−0.558451 + 0.829538i \(0.688604\pi\)
\(618\) 46.2595 + 166.612i 0.0748535 + 0.269598i
\(619\) 67.1237 + 168.468i 0.108439 + 0.272161i 0.973175 0.230065i \(-0.0738939\pi\)
−0.864736 + 0.502226i \(0.832515\pi\)
\(620\) −265.460 + 105.769i −0.428162 + 0.170595i
\(621\) −115.122 + 31.9634i −0.185381 + 0.0514708i
\(622\) −111.739 + 331.630i −0.179645 + 0.533167i
\(623\) 767.362 + 125.803i 1.23172 + 0.201930i
\(624\) 248.073 40.6695i 0.397553 0.0651755i
\(625\) 108.807 36.6615i 0.174092 0.0586584i
\(626\) 113.384 + 167.229i 0.181125 + 0.267139i
\(627\) −74.6131 + 161.273i −0.119000 + 0.257214i
\(628\) −449.070 + 590.741i −0.715079 + 0.940670i
\(629\) −8.97127 82.4895i −0.0142628 0.131144i
\(630\) −93.0758 25.8424i −0.147739 0.0410196i
\(631\) 290.781 428.870i 0.460826 0.679667i −0.524294 0.851537i \(-0.675671\pi\)
0.985120 + 0.171871i \(0.0549811\pi\)
\(632\) −47.5842 79.0856i −0.0752915 0.125135i
\(633\) 348.779 18.9102i 0.550993 0.0298740i
\(634\) 198.825 + 209.897i 0.313604 + 0.331068i
\(635\) −509.588 + 387.379i −0.802501 + 0.610046i
\(636\) 368.713 81.1598i 0.579737 0.127610i
\(637\) −1053.77 + 895.079i −1.65427 + 1.40515i
\(638\) 13.7490 253.586i 0.0215502 0.397470i
\(639\) −106.343 200.585i −0.166422 0.313904i
\(640\) −95.4539 + 433.651i −0.149147 + 0.677580i
\(641\) −93.6010 + 43.3044i −0.146023 + 0.0675576i −0.491540 0.870855i \(-0.663566\pi\)
0.345517 + 0.938413i \(0.387704\pi\)
\(642\) 70.7789 117.635i 0.110248 0.183233i
\(643\) 151.418 285.605i 0.235487 0.444176i −0.737400 0.675456i \(-0.763947\pi\)
0.972887 + 0.231280i \(0.0742915\pi\)
\(644\) −645.291 548.115i −1.00200 0.851110i
\(645\) 264.626 279.362i 0.410273 0.433120i
\(646\) −2.37433 + 21.8316i −0.00367543 + 0.0337950i
\(647\) −183.590 + 460.776i −0.283756 + 0.712173i 0.716143 + 0.697953i \(0.245906\pi\)
−0.999899 + 0.0142195i \(0.995474\pi\)
\(648\) 55.2477i 0.0852587i
\(649\) −735.570 626.761i −1.13339 0.965733i
\(650\) −203.476 −0.313040
\(651\) 457.259 + 182.189i 0.702395 + 0.279860i
\(652\) 310.708 + 33.7916i 0.476546 + 0.0518276i
\(653\) −29.5071 27.9507i −0.0451871 0.0428035i 0.664773 0.747046i \(-0.268528\pi\)
−0.709960 + 0.704242i \(0.751287\pi\)
\(654\) −153.424 + 180.625i −0.234593 + 0.276185i
\(655\) −245.305 130.052i −0.374512 0.198553i
\(656\) 127.524 + 76.7284i 0.194396 + 0.116964i
\(657\) −111.599 241.218i −0.169862 0.367151i
\(658\) −633.436 139.430i −0.962669 0.211899i
\(659\) 267.511 141.826i 0.405935 0.215213i −0.252913 0.967489i \(-0.581389\pi\)
0.658848 + 0.752276i \(0.271044\pi\)
\(660\) −318.696 17.2792i −0.482872 0.0261806i
\(661\) −237.432 279.527i −0.359201 0.422884i 0.552645 0.833417i \(-0.313619\pi\)
−0.911846 + 0.410533i \(0.865343\pi\)
\(662\) 23.8306 + 108.263i 0.0359979 + 0.163540i
\(663\) 79.2261 + 104.220i 0.119496 + 0.157195i
\(664\) 135.208 128.076i 0.203627 0.192885i
\(665\) 12.9688 + 239.195i 0.0195019 + 0.359692i
\(666\) −43.1237 + 25.9466i −0.0647502 + 0.0389589i
\(667\) −350.477 237.629i −0.525453 0.356266i
\(668\) −137.493 + 495.205i −0.205828 + 0.741325i
\(669\) −572.326 + 62.2442i −0.855495 + 0.0930407i
\(670\) −175.518 133.426i −0.261968 0.199143i
\(671\) 615.991 + 284.988i 0.918019 + 0.424721i
\(672\) 501.820 340.243i 0.746757 0.506314i
\(673\) −235.428 698.726i −0.349819 1.03823i −0.967732 0.251980i \(-0.918918\pi\)
0.617913 0.786246i \(-0.287978\pi\)
\(674\) 5.89705 + 35.9704i 0.00874933 + 0.0533685i
\(675\) 11.1935 68.2771i 0.0165829 0.101151i
\(676\) 500.384 + 168.599i 0.740213 + 0.249407i
\(677\) −301.536 1086.03i −0.445400 1.60419i −0.756624 0.653851i \(-0.773152\pi\)
0.311223 0.950337i \(-0.399261\pi\)
\(678\) 15.2496 + 38.2736i 0.0224920 + 0.0564507i
\(679\) −878.226 + 349.917i −1.29341 + 0.515342i
\(680\) −84.1965 + 23.3771i −0.123818 + 0.0343780i
\(681\) −208.675 + 619.326i −0.306425 + 0.909436i
\(682\) −345.661 56.6683i −0.506834 0.0830913i
\(683\) 645.374 105.804i 0.944911 0.154910i 0.330420 0.943834i \(-0.392810\pi\)
0.614491 + 0.788924i \(0.289361\pi\)
\(684\) −58.6061 + 19.7467i −0.0856814 + 0.0288694i
\(685\) −144.979 213.828i −0.211648 0.312158i
\(686\) −107.482 + 232.318i −0.156679 + 0.338656i
\(687\) 275.141 361.942i 0.400496 0.526844i
\(688\) 56.1900 + 516.658i 0.0816715 + 0.750957i
\(689\) 1158.28 + 321.595i 1.68110 + 0.466756i
\(690\) 64.3209 94.8662i 0.0932187 0.137487i
\(691\) −55.2051 91.7515i −0.0798915 0.132781i 0.814336 0.580394i \(-0.197102\pi\)
−0.894227 + 0.447614i \(0.852274\pi\)
\(692\) 137.280 7.44309i 0.198381 0.0107559i
\(693\) 378.072 + 399.126i 0.545559 + 0.575940i
\(694\) 287.719 218.719i 0.414581 0.315156i
\(695\) −472.350 + 103.972i −0.679640 + 0.149600i
\(696\) 149.235 126.761i 0.214418 0.182128i
\(697\) −4.19605 + 77.3916i −0.00602016 + 0.111035i
\(698\) 11.0695 + 20.8793i 0.0158589 + 0.0299130i
\(699\) 39.3855 178.930i 0.0563455 0.255980i
\(700\) 444.982 205.871i 0.635689 0.294101i
\(701\) 90.3436 150.152i 0.128878 0.214197i −0.785699 0.618610i \(-0.787696\pi\)
0.914577 + 0.404412i \(0.132524\pi\)
\(702\) 37.1936 70.1545i 0.0529823 0.0999352i
\(703\) 95.1221 + 80.7975i 0.135309 + 0.114932i
\(704\) 63.5757 67.1161i 0.0903065 0.0953354i
\(705\) −44.0772 + 405.283i −0.0625209 + 0.574870i
\(706\) −57.8665 + 145.234i −0.0819638 + 0.205714i
\(707\) 1123.95i 1.58974i
\(708\) −17.6888 335.861i −0.0249841 0.474380i
\(709\) −391.553 −0.552261 −0.276131 0.961120i \(-0.589052\pi\)
−0.276131 + 0.961120i \(0.589052\pi\)
\(710\) 202.326 + 80.6141i 0.284967 + 0.113541i
\(711\) 44.8421 + 4.87687i 0.0630690 + 0.00685917i
\(712\) −309.746 293.407i −0.435037 0.412089i
\(713\) −378.097 + 445.130i −0.530290 + 0.624306i
\(714\) 60.0271 + 31.8243i 0.0840716 + 0.0445719i
\(715\) −870.761 523.920i −1.21785 0.732755i
\(716\) −146.149 315.897i −0.204119 0.441196i
\(717\) 593.408 + 130.619i 0.827626 + 0.182174i
\(718\) −490.538 + 260.067i −0.683200 + 0.362210i
\(719\) 409.169 + 22.1845i 0.569081 + 0.0308547i 0.336435 0.941707i \(-0.390779\pi\)
0.232646 + 0.972561i \(0.425262\pi\)
\(720\) −53.0865 62.4983i −0.0737313 0.0868032i
\(721\) −285.189 1295.63i −0.395546 1.79699i
\(722\) 163.945 + 215.666i 0.227070 + 0.298706i
\(723\) 582.235 551.522i 0.805304 0.762825i
\(724\) 27.4294 + 505.905i 0.0378859 + 0.698764i
\(725\) 210.113 126.421i 0.289811 0.174373i
\(726\) −177.768 120.530i −0.244860 0.166019i
\(727\) 96.7463 348.449i 0.133076 0.479297i −0.866734 0.498770i \(-0.833785\pi\)
0.999810 + 0.0194735i \(0.00619901\pi\)
\(728\) 1239.26 134.778i 1.70228 0.185134i
\(729\) 21.4945 + 16.3397i 0.0294849 + 0.0224139i
\(730\) 231.404 + 107.059i 0.316992 + 0.146656i
\(731\) −224.013 + 151.885i −0.306447 + 0.207776i
\(732\) 75.4233 + 223.848i 0.103037 + 0.305804i
\(733\) −5.65770 34.5105i −0.00771856 0.0470811i 0.982686 0.185277i \(-0.0593181\pi\)
−0.990405 + 0.138195i \(0.955870\pi\)
\(734\) −77.8971 + 475.151i −0.106127 + 0.647345i
\(735\) 427.395 + 144.006i 0.581490 + 0.195927i
\(736\) 192.457 + 693.166i 0.261490 + 0.941802i
\(737\) 464.447 + 1165.67i 0.630186 + 1.58165i
\(738\) 43.6708 17.4000i 0.0591746 0.0235773i
\(739\) −144.999 + 40.2587i −0.196210 + 0.0544773i −0.364243 0.931304i \(-0.618672\pi\)
0.168033 + 0.985781i \(0.446258\pi\)
\(740\) −71.5762 + 212.431i −0.0967246 + 0.287068i
\(741\) −194.317 31.8567i −0.262236 0.0429915i
\(742\) 615.641 100.929i 0.829704 0.136023i
\(743\) −1254.85 + 422.809i −1.68890 + 0.569057i −0.989354 0.145530i \(-0.953511\pi\)
−0.699547 + 0.714587i \(0.746615\pi\)
\(744\) −151.558 223.531i −0.203707 0.300445i
\(745\) −65.5101 + 141.598i −0.0879330 + 0.190064i
\(746\) 38.3720 50.4775i 0.0514370 0.0676642i
\(747\) 9.84059 + 90.4827i 0.0131735 + 0.121128i
\(748\) 216.302 + 60.0559i 0.289174 + 0.0802886i
\(749\) −591.100 + 871.807i −0.789185 + 1.16396i
\(750\) 98.4669 + 163.653i 0.131289 + 0.218204i
\(751\) −537.669 + 29.1516i −0.715938 + 0.0388170i −0.408509 0.912754i \(-0.633951\pi\)
−0.307428 + 0.951571i \(0.599468\pi\)
\(752\) −378.646 399.732i −0.503519 0.531559i
\(753\) −54.2516 + 41.2410i −0.0720472 + 0.0547689i
\(754\) 274.839 60.4966i 0.364508 0.0802343i
\(755\) 693.333 588.922i 0.918322 0.780030i
\(756\) −10.3585 + 191.052i −0.0137018 + 0.252714i
\(757\) −67.0319 126.435i −0.0885493 0.167022i 0.835282 0.549822i \(-0.185305\pi\)
−0.923831 + 0.382800i \(0.874960\pi\)
\(758\) 36.4788 165.725i 0.0481250 0.218634i
\(759\) −592.026 + 273.900i −0.780008 + 0.360870i
\(760\) 67.7605 112.619i 0.0891585 0.148183i
\(761\) −127.185 + 239.897i −0.167129 + 0.315239i −0.952903 0.303274i \(-0.901920\pi\)
0.785774 + 0.618514i \(0.212265\pi\)
\(762\) −208.128 176.786i −0.273134 0.232002i
\(763\) 1250.41 1320.04i 1.63880 1.73007i
\(764\) −96.8329 + 890.363i −0.126745 + 1.16540i
\(765\) 15.8064 39.6711i 0.0206620 0.0518577i
\(766\) 150.001i 0.195824i
\(767\) 451.151 971.202i 0.588203 1.26623i
\(768\) −150.324 −0.195734
\(769\) −94.1433 37.5101i −0.122423 0.0487778i 0.308122 0.951347i \(-0.400299\pi\)
−0.430545 + 0.902569i \(0.641679\pi\)
\(770\) −524.305 57.0216i −0.680916 0.0740541i
\(771\) 137.257 + 130.017i 0.178025 + 0.168634i
\(772\) −755.139 + 889.019i −0.978160 + 1.15158i
\(773\) 261.015 + 138.381i 0.337664 + 0.179018i 0.628609 0.777722i \(-0.283625\pi\)
−0.290944 +