Properties

Label 177.3.b.a.119.7
Level $177$
Weight $3$
Character 177.119
Analytic conductor $4.823$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 119.7
Character \(\chi\) \(=\) 177.119
Dual form 177.3.b.a.119.32

$q$-expansion

\(f(q)\) \(=\) \(q-2.97620i q^{2} +(-0.474775 + 2.96219i) q^{3} -4.85777 q^{4} -3.00594i q^{5} +(8.81608 + 1.41303i) q^{6} -3.67852 q^{7} +2.55289i q^{8} +(-8.54918 - 2.81275i) q^{9} +O(q^{10})\) \(q-2.97620i q^{2} +(-0.474775 + 2.96219i) q^{3} -4.85777 q^{4} -3.00594i q^{5} +(8.81608 + 1.41303i) q^{6} -3.67852 q^{7} +2.55289i q^{8} +(-8.54918 - 2.81275i) q^{9} -8.94628 q^{10} -14.3274i q^{11} +(2.30635 - 14.3896i) q^{12} -8.01457 q^{13} +10.9480i q^{14} +(8.90417 + 1.42715i) q^{15} -11.8332 q^{16} -0.828304i q^{17} +(-8.37131 + 25.4441i) q^{18} -25.2540 q^{19} +14.6022i q^{20} +(1.74647 - 10.8965i) q^{21} -42.6413 q^{22} -7.83517i q^{23} +(-7.56216 - 1.21205i) q^{24} +15.9643 q^{25} +23.8530i q^{26} +(12.3909 - 23.9889i) q^{27} +17.8694 q^{28} +2.34238i q^{29} +(4.24747 - 26.5006i) q^{30} +25.4893 q^{31} +45.4294i q^{32} +(42.4407 + 6.80232i) q^{33} -2.46520 q^{34} +11.0574i q^{35} +(41.5299 + 13.6637i) q^{36} -0.422862 q^{37} +75.1611i q^{38} +(3.80512 - 23.7407i) q^{39} +7.67384 q^{40} -6.28936i q^{41} +(-32.4301 - 5.19785i) q^{42} +48.4134 q^{43} +69.5994i q^{44} +(-8.45496 + 25.6983i) q^{45} -23.3190 q^{46} -63.1254i q^{47} +(5.61809 - 35.0521i) q^{48} -35.4685 q^{49} -47.5131i q^{50} +(2.45360 + 0.393258i) q^{51} +38.9329 q^{52} +24.6229i q^{53} +(-71.3957 - 36.8777i) q^{54} -43.0674 q^{55} -9.39087i q^{56} +(11.9900 - 74.8073i) q^{57} +6.97139 q^{58} -7.68115i q^{59} +(-43.2544 - 6.93274i) q^{60} +73.6703 q^{61} -75.8611i q^{62} +(31.4483 + 10.3468i) q^{63} +87.8744 q^{64} +24.0913i q^{65} +(20.2451 - 126.312i) q^{66} -100.685 q^{67} +4.02371i q^{68} +(23.2093 + 3.71995i) q^{69} +32.9091 q^{70} -47.9530i q^{71} +(7.18065 - 21.8251i) q^{72} +130.417 q^{73} +1.25852i q^{74} +(-7.57947 + 47.2894i) q^{75} +122.678 q^{76} +52.7038i q^{77} +(-70.6571 - 11.3248i) q^{78} -76.0894 q^{79} +35.5697i q^{80} +(65.1768 + 48.0934i) q^{81} -18.7184 q^{82} -142.865i q^{83} +(-8.48395 + 52.9326i) q^{84} -2.48983 q^{85} -144.088i q^{86} +(-6.93858 - 1.11210i) q^{87} +36.5764 q^{88} +73.4347i q^{89} +(76.4833 + 25.1637i) q^{90} +29.4818 q^{91} +38.0615i q^{92} +(-12.1017 + 75.5041i) q^{93} -187.874 q^{94} +75.9121i q^{95} +(-134.571 - 21.5688i) q^{96} +84.6768 q^{97} +105.561i q^{98} +(-40.2996 + 122.488i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38q - 76q^{4} - 8q^{6} - 12q^{7} + 20q^{9} + O(q^{10}) \) \( 38q - 76q^{4} - 8q^{6} - 12q^{7} + 20q^{9} + 36q^{10} - 4q^{13} - 17q^{15} + 100q^{16} - 2q^{18} - 28q^{19} - 11q^{21} + 84q^{22} - 6q^{24} - 166q^{25} + 3q^{27} + 12q^{28} + 102q^{30} - 40q^{31} - 46q^{33} - 148q^{34} - 96q^{36} + 112q^{37} + 62q^{39} - 56q^{40} + 14q^{42} + 164q^{43} + 55q^{45} - 4q^{46} - 124q^{48} + 242q^{49} + 52q^{51} + 8q^{52} + 18q^{54} - 228q^{55} - 147q^{57} - 80q^{58} + 128q^{60} + 12q^{61} + 86q^{63} + 48q^{64} - 24q^{66} + 124q^{67} - 240q^{69} + 148q^{70} + 166q^{72} - 192q^{73} - 78q^{75} - 304q^{76} + 244q^{78} + 64q^{79} - 156q^{81} - 180q^{82} + 300q^{84} - 52q^{85} - 83q^{87} - 96q^{88} - 376q^{90} - 332q^{91} + 454q^{93} + 768q^{94} - 722q^{96} + 416q^{97} + 494q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.97620i 1.48810i −0.668124 0.744050i \(-0.732902\pi\)
0.668124 0.744050i \(-0.267098\pi\)
\(3\) −0.474775 + 2.96219i −0.158258 + 0.987398i
\(4\) −4.85777 −1.21444
\(5\) 3.00594i 0.601188i −0.953752 0.300594i \(-0.902815\pi\)
0.953752 0.300594i \(-0.0971849\pi\)
\(6\) 8.81608 + 1.41303i 1.46935 + 0.235504i
\(7\) −3.67852 −0.525503 −0.262752 0.964864i \(-0.584630\pi\)
−0.262752 + 0.964864i \(0.584630\pi\)
\(8\) 2.55289i 0.319111i
\(9\) −8.54918 2.81275i −0.949909 0.312528i
\(10\) −8.94628 −0.894628
\(11\) 14.3274i 1.30249i −0.758865 0.651247i \(-0.774246\pi\)
0.758865 0.651247i \(-0.225754\pi\)
\(12\) 2.30635 14.3896i 0.192196 1.19914i
\(13\) −8.01457 −0.616505 −0.308253 0.951305i \(-0.599744\pi\)
−0.308253 + 0.951305i \(0.599744\pi\)
\(14\) 10.9480i 0.782001i
\(15\) 8.90417 + 1.42715i 0.593611 + 0.0951430i
\(16\) −11.8332 −0.739572
\(17\) 0.828304i 0.0487238i −0.999703 0.0243619i \(-0.992245\pi\)
0.999703 0.0243619i \(-0.00775540\pi\)
\(18\) −8.37131 + 25.4441i −0.465073 + 1.41356i
\(19\) −25.2540 −1.32916 −0.664580 0.747217i \(-0.731389\pi\)
−0.664580 + 0.747217i \(0.731389\pi\)
\(20\) 14.6022i 0.730108i
\(21\) 1.74647 10.8965i 0.0831653 0.518881i
\(22\) −42.6413 −1.93824
\(23\) 7.83517i 0.340660i −0.985387 0.170330i \(-0.945517\pi\)
0.985387 0.170330i \(-0.0544833\pi\)
\(24\) −7.56216 1.21205i −0.315090 0.0505021i
\(25\) 15.9643 0.638573
\(26\) 23.8530i 0.917421i
\(27\) 12.3909 23.9889i 0.458921 0.888477i
\(28\) 17.8694 0.638193
\(29\) 2.34238i 0.0807717i 0.999184 + 0.0403858i \(0.0128587\pi\)
−0.999184 + 0.0403858i \(0.987141\pi\)
\(30\) 4.24747 26.5006i 0.141582 0.883353i
\(31\) 25.4893 0.822234 0.411117 0.911583i \(-0.365139\pi\)
0.411117 + 0.911583i \(0.365139\pi\)
\(32\) 45.4294i 1.41967i
\(33\) 42.4407 + 6.80232i 1.28608 + 0.206131i
\(34\) −2.46520 −0.0725059
\(35\) 11.0574i 0.315926i
\(36\) 41.5299 + 13.6637i 1.15361 + 0.379547i
\(37\) −0.422862 −0.0114287 −0.00571434 0.999984i \(-0.501819\pi\)
−0.00571434 + 0.999984i \(0.501819\pi\)
\(38\) 75.1611i 1.97792i
\(39\) 3.80512 23.7407i 0.0975671 0.608736i
\(40\) 7.67384 0.191846
\(41\) 6.28936i 0.153399i −0.997054 0.0766995i \(-0.975562\pi\)
0.997054 0.0766995i \(-0.0244382\pi\)
\(42\) −32.4301 5.19785i −0.772146 0.123758i
\(43\) 48.4134 1.12589 0.562946 0.826494i \(-0.309668\pi\)
0.562946 + 0.826494i \(0.309668\pi\)
\(44\) 69.5994i 1.58180i
\(45\) −8.45496 + 25.6983i −0.187888 + 0.571073i
\(46\) −23.3190 −0.506936
\(47\) 63.1254i 1.34309i −0.740962 0.671547i \(-0.765630\pi\)
0.740962 0.671547i \(-0.234370\pi\)
\(48\) 5.61809 35.0521i 0.117044 0.730252i
\(49\) −35.4685 −0.723846
\(50\) 47.5131i 0.950261i
\(51\) 2.45360 + 0.393258i 0.0481098 + 0.00771095i
\(52\) 38.9329 0.748710
\(53\) 24.6229i 0.464583i 0.972646 + 0.232291i \(0.0746223\pi\)
−0.972646 + 0.232291i \(0.925378\pi\)
\(54\) −71.3957 36.8777i −1.32214 0.682920i
\(55\) −43.0674 −0.783044
\(56\) 9.39087i 0.167694i
\(57\) 11.9900 74.8073i 0.210351 1.31241i
\(58\) 6.97139 0.120196
\(59\) 7.68115i 0.130189i
\(60\) −43.2544 6.93274i −0.720907 0.115546i
\(61\) 73.6703 1.20771 0.603855 0.797094i \(-0.293630\pi\)
0.603855 + 0.797094i \(0.293630\pi\)
\(62\) 75.8611i 1.22357i
\(63\) 31.4483 + 10.3468i 0.499180 + 0.164234i
\(64\) 87.8744 1.37304
\(65\) 24.0913i 0.370635i
\(66\) 20.2451 126.312i 0.306743 1.91382i
\(67\) −100.685 −1.50276 −0.751379 0.659871i \(-0.770611\pi\)
−0.751379 + 0.659871i \(0.770611\pi\)
\(68\) 4.02371i 0.0591722i
\(69\) 23.2093 + 3.71995i 0.336367 + 0.0539123i
\(70\) 32.9091 0.470130
\(71\) 47.9530i 0.675395i −0.941255 0.337697i \(-0.890352\pi\)
0.941255 0.337697i \(-0.109648\pi\)
\(72\) 7.18065 21.8251i 0.0997313 0.303127i
\(73\) 130.417 1.78654 0.893268 0.449524i \(-0.148406\pi\)
0.893268 + 0.449524i \(0.148406\pi\)
\(74\) 1.25852i 0.0170070i
\(75\) −7.57947 + 47.2894i −0.101060 + 0.630526i
\(76\) 122.678 1.61419
\(77\) 52.7038i 0.684465i
\(78\) −70.6571 11.3248i −0.905860 0.145190i
\(79\) −76.0894 −0.963156 −0.481578 0.876403i \(-0.659936\pi\)
−0.481578 + 0.876403i \(0.659936\pi\)
\(80\) 35.5697i 0.444622i
\(81\) 65.1768 + 48.0934i 0.804652 + 0.593746i
\(82\) −18.7184 −0.228273
\(83\) 142.865i 1.72127i −0.509226 0.860633i \(-0.670068\pi\)
0.509226 0.860633i \(-0.329932\pi\)
\(84\) −8.48395 + 52.9326i −0.100999 + 0.630151i
\(85\) −2.48983 −0.0292921
\(86\) 144.088i 1.67544i
\(87\) −6.93858 1.11210i −0.0797538 0.0127828i
\(88\) 36.5764 0.415641
\(89\) 73.4347i 0.825109i 0.910933 + 0.412554i \(0.135363\pi\)
−0.910933 + 0.412554i \(0.864637\pi\)
\(90\) 76.4833 + 25.1637i 0.849814 + 0.279596i
\(91\) 29.4818 0.323975
\(92\) 38.0615i 0.413712i
\(93\) −12.1017 + 75.5041i −0.130125 + 0.811872i
\(94\) −187.874 −1.99866
\(95\) 75.9121i 0.799074i
\(96\) −134.571 21.5688i −1.40178 0.224675i
\(97\) 84.6768 0.872957 0.436478 0.899715i \(-0.356226\pi\)
0.436478 + 0.899715i \(0.356226\pi\)
\(98\) 105.561i 1.07716i
\(99\) −40.2996 + 122.488i −0.407066 + 1.23725i
\(100\) −77.5510 −0.775510
\(101\) 162.825i 1.61213i 0.591825 + 0.806066i \(0.298408\pi\)
−0.591825 + 0.806066i \(0.701592\pi\)
\(102\) 1.17042 7.30240i 0.0114747 0.0715921i
\(103\) −1.33089 −0.0129212 −0.00646062 0.999979i \(-0.502056\pi\)
−0.00646062 + 0.999979i \(0.502056\pi\)
\(104\) 20.4603i 0.196734i
\(105\) −32.7542 5.24979i −0.311945 0.0499980i
\(106\) 73.2826 0.691346
\(107\) 101.598i 0.949518i 0.880116 + 0.474759i \(0.157465\pi\)
−0.880116 + 0.474759i \(0.842535\pi\)
\(108\) −60.1919 + 116.532i −0.557332 + 1.07900i
\(109\) −3.86290 −0.0354394 −0.0177197 0.999843i \(-0.505641\pi\)
−0.0177197 + 0.999843i \(0.505641\pi\)
\(110\) 128.177i 1.16525i
\(111\) 0.200764 1.25260i 0.00180869 0.0112847i
\(112\) 43.5285 0.388648
\(113\) 67.2164i 0.594835i −0.954748 0.297417i \(-0.903875\pi\)
0.954748 0.297417i \(-0.0961253\pi\)
\(114\) −222.642 35.6846i −1.95300 0.313023i
\(115\) −23.5520 −0.204800
\(116\) 11.3787i 0.0980925i
\(117\) 68.5179 + 22.5430i 0.585623 + 0.192675i
\(118\) −22.8606 −0.193734
\(119\) 3.04694i 0.0256045i
\(120\) −3.64335 + 22.7314i −0.0303612 + 0.189428i
\(121\) −84.2757 −0.696493
\(122\) 219.258i 1.79719i
\(123\) 18.6303 + 2.98603i 0.151466 + 0.0242767i
\(124\) −123.821 −0.998556
\(125\) 123.136i 0.985090i
\(126\) 30.7941 93.5966i 0.244397 0.742830i
\(127\) −41.0103 −0.322916 −0.161458 0.986880i \(-0.551620\pi\)
−0.161458 + 0.986880i \(0.551620\pi\)
\(128\) 79.8142i 0.623548i
\(129\) −22.9855 + 143.410i −0.178182 + 1.11170i
\(130\) 71.7005 0.551542
\(131\) 57.1268i 0.436083i −0.975940 0.218041i \(-0.930033\pi\)
0.975940 0.218041i \(-0.0699667\pi\)
\(132\) −206.167 33.0441i −1.56187 0.250334i
\(133\) 92.8975 0.698478
\(134\) 299.658i 2.23625i
\(135\) −72.1091 37.2461i −0.534142 0.275897i
\(136\) 2.11457 0.0155483
\(137\) 37.2566i 0.271946i −0.990713 0.135973i \(-0.956584\pi\)
0.990713 0.135973i \(-0.0434161\pi\)
\(138\) 11.0713 69.0755i 0.0802269 0.500547i
\(139\) 151.905 1.09284 0.546421 0.837511i \(-0.315990\pi\)
0.546421 + 0.837511i \(0.315990\pi\)
\(140\) 53.7144i 0.383674i
\(141\) 186.990 + 29.9704i 1.32617 + 0.212556i
\(142\) −142.718 −1.00505
\(143\) 114.828i 0.802995i
\(144\) 101.164 + 33.2837i 0.702526 + 0.231137i
\(145\) 7.04105 0.0485589
\(146\) 388.148i 2.65855i
\(147\) 16.8396 105.064i 0.114555 0.714724i
\(148\) 2.05416 0.0138795
\(149\) 155.316i 1.04239i −0.853437 0.521196i \(-0.825486\pi\)
0.853437 0.521196i \(-0.174514\pi\)
\(150\) 140.743 + 22.5580i 0.938286 + 0.150387i
\(151\) −100.269 −0.664036 −0.332018 0.943273i \(-0.607729\pi\)
−0.332018 + 0.943273i \(0.607729\pi\)
\(152\) 64.4708i 0.424150i
\(153\) −2.32981 + 7.08132i −0.0152275 + 0.0462831i
\(154\) 156.857 1.01855
\(155\) 76.6191i 0.494317i
\(156\) −18.4844 + 115.327i −0.118490 + 0.739274i
\(157\) −183.383 −1.16805 −0.584024 0.811737i \(-0.698522\pi\)
−0.584024 + 0.811737i \(0.698522\pi\)
\(158\) 226.457i 1.43327i
\(159\) −72.9377 11.6903i −0.458728 0.0735241i
\(160\) 136.558 0.853488
\(161\) 28.8219i 0.179018i
\(162\) 143.136 193.979i 0.883554 1.19740i
\(163\) −159.723 −0.979894 −0.489947 0.871752i \(-0.662984\pi\)
−0.489947 + 0.871752i \(0.662984\pi\)
\(164\) 30.5523i 0.186294i
\(165\) 20.4473 127.574i 0.123923 0.773176i
\(166\) −425.195 −2.56142
\(167\) 271.015i 1.62284i −0.584460 0.811422i \(-0.698694\pi\)
0.584460 0.811422i \(-0.301306\pi\)
\(168\) 27.8176 + 4.45855i 0.165581 + 0.0265390i
\(169\) −104.767 −0.619921
\(170\) 7.41024i 0.0435896i
\(171\) 215.901 + 71.0333i 1.26258 + 0.415400i
\(172\) −235.181 −1.36733
\(173\) 323.180i 1.86809i −0.357156 0.934045i \(-0.616254\pi\)
0.357156 0.934045i \(-0.383746\pi\)
\(174\) −3.30984 + 20.6506i −0.0190221 + 0.118682i
\(175\) −58.7252 −0.335572
\(176\) 169.539i 0.963289i
\(177\) 22.7530 + 3.64682i 0.128548 + 0.0206035i
\(178\) 218.556 1.22784
\(179\) 6.98049i 0.0389972i −0.999810 0.0194986i \(-0.993793\pi\)
0.999810 0.0194986i \(-0.00620698\pi\)
\(180\) 41.0722 124.836i 0.228179 0.693536i
\(181\) −23.0990 −0.127619 −0.0638095 0.997962i \(-0.520325\pi\)
−0.0638095 + 0.997962i \(0.520325\pi\)
\(182\) 87.7436i 0.482108i
\(183\) −34.9769 + 218.226i −0.191130 + 1.19249i
\(184\) 20.0024 0.108708
\(185\) 1.27110i 0.00687079i
\(186\) 224.715 + 36.0170i 1.20815 + 0.193640i
\(187\) −11.8675 −0.0634625
\(188\) 306.649i 1.63111i
\(189\) −45.5800 + 88.2437i −0.241164 + 0.466898i
\(190\) 225.930 1.18910
\(191\) 317.561i 1.66262i 0.555808 + 0.831311i \(0.312409\pi\)
−0.555808 + 0.831311i \(0.687591\pi\)
\(192\) −41.7206 + 260.301i −0.217295 + 1.35573i
\(193\) −286.089 −1.48233 −0.741163 0.671325i \(-0.765726\pi\)
−0.741163 + 0.671325i \(0.765726\pi\)
\(194\) 252.015i 1.29905i
\(195\) −71.3631 11.4380i −0.365964 0.0586562i
\(196\) 172.298 0.879070
\(197\) 258.325i 1.31129i −0.755068 0.655647i \(-0.772396\pi\)
0.755068 0.655647i \(-0.227604\pi\)
\(198\) 364.548 + 119.940i 1.84115 + 0.605755i
\(199\) 26.7086 0.134214 0.0671071 0.997746i \(-0.478623\pi\)
0.0671071 + 0.997746i \(0.478623\pi\)
\(200\) 40.7552i 0.203776i
\(201\) 47.8026 298.248i 0.237824 1.48382i
\(202\) 484.601 2.39901
\(203\) 8.61649i 0.0424458i
\(204\) −11.9190 1.91036i −0.0584265 0.00936450i
\(205\) −18.9054 −0.0922216
\(206\) 3.96099i 0.0192281i
\(207\) −22.0384 + 66.9843i −0.106466 + 0.323596i
\(208\) 94.8376 0.455950
\(209\) 361.826i 1.73122i
\(210\) −15.6244 + 97.4830i −0.0744020 + 0.464205i
\(211\) −372.105 −1.76353 −0.881766 0.471687i \(-0.843645\pi\)
−0.881766 + 0.471687i \(0.843645\pi\)
\(212\) 119.612i 0.564209i
\(213\) 142.046 + 22.7669i 0.666883 + 0.106887i
\(214\) 302.377 1.41298
\(215\) 145.528i 0.676873i
\(216\) 61.2410 + 31.6325i 0.283523 + 0.146447i
\(217\) −93.7628 −0.432087
\(218\) 11.4968i 0.0527374i
\(219\) −61.9188 + 386.321i −0.282734 + 1.76402i
\(220\) 209.212 0.950962
\(221\) 6.63850i 0.0300385i
\(222\) −3.72798 0.597515i −0.0167927 0.00269151i
\(223\) 312.508 1.40138 0.700690 0.713466i \(-0.252875\pi\)
0.700690 + 0.713466i \(0.252875\pi\)
\(224\) 167.113i 0.746041i
\(225\) −136.482 44.9037i −0.606586 0.199572i
\(226\) −200.049 −0.885174
\(227\) 11.4108i 0.0502677i −0.999684 0.0251339i \(-0.991999\pi\)
0.999684 0.0251339i \(-0.00800120\pi\)
\(228\) −58.2446 + 363.397i −0.255459 + 1.59384i
\(229\) 337.431 1.47350 0.736749 0.676166i \(-0.236360\pi\)
0.736749 + 0.676166i \(0.236360\pi\)
\(230\) 70.0956i 0.304764i
\(231\) −156.119 25.0225i −0.675839 0.108322i
\(232\) −5.97984 −0.0257752
\(233\) 246.547i 1.05814i 0.848578 + 0.529071i \(0.177459\pi\)
−0.848578 + 0.529071i \(0.822541\pi\)
\(234\) 67.0925 203.923i 0.286720 0.871466i
\(235\) −189.751 −0.807452
\(236\) 37.3132i 0.158107i
\(237\) 36.1253 225.391i 0.152428 0.951019i
\(238\) 9.06829 0.0381021
\(239\) 136.843i 0.572566i −0.958145 0.286283i \(-0.907580\pi\)
0.958145 0.286283i \(-0.0924198\pi\)
\(240\) −105.364 16.8876i −0.439019 0.0703651i
\(241\) 153.448 0.636715 0.318358 0.947971i \(-0.396869\pi\)
0.318358 + 0.947971i \(0.396869\pi\)
\(242\) 250.821i 1.03645i
\(243\) −173.406 + 170.233i −0.713607 + 0.700547i
\(244\) −357.873 −1.46669
\(245\) 106.616i 0.435168i
\(246\) 8.88703 55.4475i 0.0361261 0.225396i
\(247\) 202.400 0.819434
\(248\) 65.0713i 0.262384i
\(249\) 423.194 + 67.8288i 1.69957 + 0.272405i
\(250\) −366.478 −1.46591
\(251\) 157.596i 0.627874i 0.949444 + 0.313937i \(0.101648\pi\)
−0.949444 + 0.313937i \(0.898352\pi\)
\(252\) −152.769 50.2622i −0.606225 0.199453i
\(253\) −112.258 −0.443708
\(254\) 122.055i 0.480531i
\(255\) 1.18211 7.37536i 0.00463573 0.0289230i
\(256\) 113.955 0.445135
\(257\) 379.854i 1.47803i −0.673689 0.739015i \(-0.735291\pi\)
0.673689 0.739015i \(-0.264709\pi\)
\(258\) 426.816 + 68.4094i 1.65433 + 0.265153i
\(259\) 1.55551 0.00600581
\(260\) 117.030i 0.450115i
\(261\) 6.58853 20.0254i 0.0252434 0.0767257i
\(262\) −170.021 −0.648935
\(263\) 457.411i 1.73921i −0.493751 0.869603i \(-0.664375\pi\)
0.493751 0.869603i \(-0.335625\pi\)
\(264\) −17.3656 + 108.346i −0.0657787 + 0.410403i
\(265\) 74.0149 0.279301
\(266\) 276.482i 1.03940i
\(267\) −217.528 34.8650i −0.814710 0.130580i
\(268\) 489.103 1.82501
\(269\) 154.959i 0.576056i −0.957622 0.288028i \(-0.907000\pi\)
0.957622 0.288028i \(-0.0929996\pi\)
\(270\) −110.852 + 214.611i −0.410563 + 0.794856i
\(271\) −53.5797 −0.197711 −0.0988555 0.995102i \(-0.531518\pi\)
−0.0988555 + 0.995102i \(0.531518\pi\)
\(272\) 9.80146i 0.0360348i
\(273\) −13.9972 + 87.3307i −0.0512718 + 0.319893i
\(274\) −110.883 −0.404683
\(275\) 228.728i 0.831739i
\(276\) −112.745 18.0706i −0.408498 0.0654733i
\(277\) 363.311 1.31159 0.655797 0.754938i \(-0.272333\pi\)
0.655797 + 0.754938i \(0.272333\pi\)
\(278\) 452.100i 1.62626i
\(279\) −217.912 71.6950i −0.781047 0.256971i
\(280\) −28.2284 −0.100816
\(281\) 405.128i 1.44174i 0.693072 + 0.720869i \(0.256257\pi\)
−0.693072 + 0.720869i \(0.743743\pi\)
\(282\) 89.1979 556.519i 0.316305 1.97347i
\(283\) −375.399 −1.32650 −0.663250 0.748398i \(-0.730823\pi\)
−0.663250 + 0.748398i \(0.730823\pi\)
\(284\) 232.945i 0.820228i
\(285\) −224.866 36.0412i −0.789004 0.126460i
\(286\) 341.752 1.19494
\(287\) 23.1356i 0.0806117i
\(288\) 127.782 388.384i 0.443686 1.34856i
\(289\) 288.314 0.997626
\(290\) 20.9556i 0.0722606i
\(291\) −40.2024 + 250.829i −0.138153 + 0.861955i
\(292\) −633.536 −2.16965
\(293\) 21.8044i 0.0744176i −0.999308 0.0372088i \(-0.988153\pi\)
0.999308 0.0372088i \(-0.0118467\pi\)
\(294\) −312.693 50.1179i −1.06358 0.170469i
\(295\) −23.0891 −0.0782680
\(296\) 1.07952i 0.00364703i
\(297\) −343.699 177.529i −1.15724 0.597742i
\(298\) −462.253 −1.55118
\(299\) 62.7955i 0.210018i
\(300\) 36.8193 229.721i 0.122731 0.765737i
\(301\) −178.090 −0.591660
\(302\) 298.422i 0.988152i
\(303\) −482.320 77.3055i −1.59182 0.255134i
\(304\) 298.835 0.983010
\(305\) 221.449i 0.726061i
\(306\) 21.0754 + 6.93400i 0.0688739 + 0.0226601i
\(307\) −35.2986 −0.114979 −0.0574896 0.998346i \(-0.518310\pi\)
−0.0574896 + 0.998346i \(0.518310\pi\)
\(308\) 256.023i 0.831243i
\(309\) 0.631873 3.94235i 0.00204490 0.0127584i
\(310\) −228.034 −0.735593
\(311\) 15.4570i 0.0497008i 0.999691 + 0.0248504i \(0.00791094\pi\)
−0.999691 + 0.0248504i \(0.992089\pi\)
\(312\) 60.6074 + 9.71406i 0.194255 + 0.0311348i
\(313\) 453.370 1.44847 0.724233 0.689555i \(-0.242194\pi\)
0.724233 + 0.689555i \(0.242194\pi\)
\(314\) 545.786i 1.73817i
\(315\) 31.1018 94.5318i 0.0987357 0.300101i
\(316\) 369.625 1.16970
\(317\) 11.2239i 0.0354068i −0.999843 0.0177034i \(-0.994365\pi\)
0.999843 0.0177034i \(-0.00563546\pi\)
\(318\) −34.7928 + 217.077i −0.109411 + 0.682633i
\(319\) 33.5603 0.105205
\(320\) 264.145i 0.825453i
\(321\) −300.954 48.2364i −0.937552 0.150269i
\(322\) 85.7796 0.266396
\(323\) 20.9180i 0.0647617i
\(324\) −316.614 233.627i −0.977204 0.721070i
\(325\) −127.947 −0.393684
\(326\) 475.367i 1.45818i
\(327\) 1.83401 11.4426i 0.00560858 0.0349928i
\(328\) 16.0561 0.0489514
\(329\) 232.208i 0.705800i
\(330\) −379.686 60.8554i −1.15056 0.184410i
\(331\) 133.540 0.403443 0.201722 0.979443i \(-0.435346\pi\)
0.201722 + 0.979443i \(0.435346\pi\)
\(332\) 694.006i 2.09038i
\(333\) 3.61512 + 1.18940i 0.0108562 + 0.00357179i
\(334\) −806.595 −2.41496
\(335\) 302.652i 0.903439i
\(336\) −20.6663 + 128.940i −0.0615068 + 0.383750i
\(337\) 390.559 1.15893 0.579465 0.814997i \(-0.303262\pi\)
0.579465 + 0.814997i \(0.303262\pi\)
\(338\) 311.807i 0.922505i
\(339\) 199.108 + 31.9127i 0.587339 + 0.0941376i
\(340\) 12.0950 0.0355736
\(341\) 365.196i 1.07096i
\(342\) 211.409 642.565i 0.618156 1.87885i
\(343\) 310.719 0.905887
\(344\) 123.594i 0.359285i
\(345\) 11.1819 69.7657i 0.0324114 0.202219i
\(346\) −961.847 −2.77990
\(347\) 426.563i 1.22929i 0.788805 + 0.614644i \(0.210700\pi\)
−0.788805 + 0.614644i \(0.789300\pi\)
\(348\) 33.7060 + 5.40234i 0.0968563 + 0.0155240i
\(349\) −484.515 −1.38830 −0.694148 0.719832i \(-0.744219\pi\)
−0.694148 + 0.719832i \(0.744219\pi\)
\(350\) 174.778i 0.499365i
\(351\) −99.3073 + 192.261i −0.282927 + 0.547751i
\(352\) 650.887 1.84911
\(353\) 537.907i 1.52382i 0.647685 + 0.761908i \(0.275737\pi\)
−0.647685 + 0.761908i \(0.724263\pi\)
\(354\) 10.8537 67.7176i 0.0306601 0.191293i
\(355\) −144.144 −0.406039
\(356\) 356.729i 1.00205i
\(357\) −9.02561 1.44661i −0.0252818 0.00405213i
\(358\) −20.7753 −0.0580317
\(359\) 59.8619i 0.166746i −0.996518 0.0833731i \(-0.973431\pi\)
0.996518 0.0833731i \(-0.0265693\pi\)
\(360\) −65.6050 21.5846i −0.182236 0.0599572i
\(361\) 276.766 0.766665
\(362\) 68.7474i 0.189910i
\(363\) 40.0120 249.641i 0.110226 0.687716i
\(364\) −143.216 −0.393449
\(365\) 392.026i 1.07404i
\(366\) 649.484 + 104.098i 1.77455 + 0.284421i
\(367\) 629.523 1.71532 0.857660 0.514217i \(-0.171917\pi\)
0.857660 + 0.514217i \(0.171917\pi\)
\(368\) 92.7148i 0.251942i
\(369\) −17.6904 + 53.7689i −0.0479415 + 0.145715i
\(370\) 3.78304 0.0102244
\(371\) 90.5758i 0.244140i
\(372\) 58.7871 366.781i 0.158030 0.985972i
\(373\) −80.1229 −0.214807 −0.107403 0.994216i \(-0.534254\pi\)
−0.107403 + 0.994216i \(0.534254\pi\)
\(374\) 35.3200i 0.0944385i
\(375\) 364.753 + 58.4621i 0.972676 + 0.155899i
\(376\) 161.152 0.428597
\(377\) 18.7731i 0.0497961i
\(378\) 262.631 + 135.655i 0.694791 + 0.358876i
\(379\) 149.480 0.394407 0.197204 0.980363i \(-0.436814\pi\)
0.197204 + 0.980363i \(0.436814\pi\)
\(380\) 368.763i 0.970430i
\(381\) 19.4707 121.480i 0.0511041 0.318846i
\(382\) 945.124 2.47415
\(383\) 34.2467i 0.0894171i −0.999000 0.0447085i \(-0.985764\pi\)
0.999000 0.0447085i \(-0.0142359\pi\)
\(384\) 236.425 + 37.8938i 0.615690 + 0.0986818i
\(385\) 158.424 0.411492
\(386\) 851.458i 2.20585i
\(387\) −413.894 136.175i −1.06949 0.351873i
\(388\) −411.340 −1.06016
\(389\) 70.7713i 0.181931i 0.995854 + 0.0909657i \(0.0289954\pi\)
−0.995854 + 0.0909657i \(0.971005\pi\)
\(390\) −34.0416 + 212.391i −0.0872862 + 0.544592i
\(391\) −6.48991 −0.0165982
\(392\) 90.5472i 0.230988i
\(393\) 169.221 + 27.1224i 0.430587 + 0.0690137i
\(394\) −768.827 −1.95134
\(395\) 228.720i 0.579038i
\(396\) 195.766 595.018i 0.494358 1.50257i
\(397\) 658.564 1.65885 0.829425 0.558618i \(-0.188668\pi\)
0.829425 + 0.558618i \(0.188668\pi\)
\(398\) 79.4902i 0.199724i
\(399\) −44.1054 + 275.180i −0.110540 + 0.689675i
\(400\) −188.908 −0.472271
\(401\) 394.424i 0.983602i 0.870708 + 0.491801i \(0.163661\pi\)
−0.870708 + 0.491801i \(0.836339\pi\)
\(402\) −887.645 142.270i −2.20807 0.353906i
\(403\) −204.285 −0.506911
\(404\) 790.968i 1.95784i
\(405\) 144.566 195.918i 0.356953 0.483747i
\(406\) −25.6444 −0.0631636
\(407\) 6.05852i 0.0148858i
\(408\) −1.00395 + 6.26377i −0.00246065 + 0.0153524i
\(409\) −501.659 −1.22655 −0.613275 0.789869i \(-0.710148\pi\)
−0.613275 + 0.789869i \(0.710148\pi\)
\(410\) 56.2663i 0.137235i
\(411\) 110.361 + 17.6885i 0.268519 + 0.0430378i
\(412\) 6.46515 0.0156921
\(413\) 28.2553i 0.0684147i
\(414\) 199.359 + 65.5907i 0.481543 + 0.158432i
\(415\) −429.444 −1.03480
\(416\) 364.097i 0.875233i
\(417\) −72.1208 + 449.972i −0.172952 + 1.07907i
\(418\) 1076.87 2.57623
\(419\) 383.331i 0.914870i 0.889243 + 0.457435i \(0.151232\pi\)
−0.889243 + 0.457435i \(0.848768\pi\)
\(420\) 159.112 + 25.5022i 0.378839 + 0.0607196i
\(421\) −439.790 −1.04463 −0.522316 0.852752i \(-0.674932\pi\)
−0.522316 + 0.852752i \(0.674932\pi\)
\(422\) 1107.46i 2.62431i
\(423\) −177.556 + 539.671i −0.419755 + 1.27582i
\(424\) −62.8596 −0.148254
\(425\) 13.2233i 0.0311137i
\(426\) 67.7589 422.758i 0.159058 0.992389i
\(427\) −270.998 −0.634656
\(428\) 493.542i 1.15313i
\(429\) −340.143 54.5176i −0.792875 0.127081i
\(430\) −433.119 −1.00725
\(431\) 643.243i 1.49244i −0.665697 0.746222i \(-0.731866\pi\)
0.665697 0.746222i \(-0.268134\pi\)
\(432\) −146.623 + 283.864i −0.339405 + 0.657093i
\(433\) 306.913 0.708805 0.354403 0.935093i \(-0.384684\pi\)
0.354403 + 0.935093i \(0.384684\pi\)
\(434\) 279.057i 0.642988i
\(435\) −3.34291 + 20.8569i −0.00768486 + 0.0479470i
\(436\) 18.7651 0.0430391
\(437\) 197.870i 0.452791i
\(438\) 1149.77 + 184.283i 2.62504 + 0.420737i
\(439\) −711.298 −1.62027 −0.810134 0.586244i \(-0.800606\pi\)
−0.810134 + 0.586244i \(0.800606\pi\)
\(440\) 109.946i 0.249878i
\(441\) 303.226 + 99.7640i 0.687588 + 0.226222i
\(442\) 19.7575 0.0447002
\(443\) 305.524i 0.689671i −0.938663 0.344835i \(-0.887935\pi\)
0.938663 0.344835i \(-0.112065\pi\)
\(444\) −0.975266 + 6.08483i −0.00219655 + 0.0137046i
\(445\) 220.740 0.496045
\(446\) 930.086i 2.08539i
\(447\) 460.077 + 73.7404i 1.02926 + 0.164967i
\(448\) −323.248 −0.721536
\(449\) 228.985i 0.509989i −0.966942 0.254995i \(-0.917926\pi\)
0.966942 0.254995i \(-0.0820737\pi\)
\(450\) −133.642 + 406.198i −0.296983 + 0.902661i
\(451\) −90.1105 −0.199801
\(452\) 326.521i 0.722393i
\(453\) 47.6054 297.017i 0.105089 0.655668i
\(454\) −33.9607 −0.0748034
\(455\) 88.6204i 0.194770i
\(456\) 190.975 + 30.6091i 0.418805 + 0.0671253i
\(457\) −13.9561 −0.0305384 −0.0152692 0.999883i \(-0.504861\pi\)
−0.0152692 + 0.999883i \(0.504861\pi\)
\(458\) 1004.26i 2.19271i
\(459\) −19.8701 10.2634i −0.0432900 0.0223603i
\(460\) 114.410 0.248718
\(461\) 518.730i 1.12523i 0.826720 + 0.562614i \(0.190204\pi\)
−0.826720 + 0.562614i \(0.809796\pi\)
\(462\) −74.4719 + 464.641i −0.161195 + 1.00572i
\(463\) 873.381 1.88635 0.943177 0.332292i \(-0.107822\pi\)
0.943177 + 0.332292i \(0.107822\pi\)
\(464\) 27.7177i 0.0597365i
\(465\) 226.961 + 36.3769i 0.488087 + 0.0782298i
\(466\) 733.773 1.57462
\(467\) 15.7070i 0.0336339i 0.999859 + 0.0168169i \(0.00535325\pi\)
−0.999859 + 0.0168169i \(0.994647\pi\)
\(468\) −332.844 109.509i −0.711206 0.233993i
\(469\) 370.371 0.789704
\(470\) 564.738i 1.20157i
\(471\) 87.0659 543.217i 0.184853 1.15333i
\(472\) 19.6091 0.0415448
\(473\) 693.640i 1.46647i
\(474\) −670.810 107.516i −1.41521 0.226828i
\(475\) −403.164 −0.848766
\(476\) 14.8013i 0.0310952i
\(477\) 69.2581 210.505i 0.145195 0.441311i
\(478\) −407.273 −0.852036
\(479\) 375.998i 0.784964i 0.919760 + 0.392482i \(0.128383\pi\)
−0.919760 + 0.392482i \(0.871617\pi\)
\(480\) −64.8344 + 404.511i −0.135072 + 0.842732i
\(481\) 3.38905 0.00704585
\(482\) 456.693i 0.947496i
\(483\) −85.3759 13.6839i −0.176762 0.0283311i
\(484\) 409.392 0.845850
\(485\) 254.533i 0.524811i
\(486\) 506.647 + 516.092i 1.04248 + 1.06192i
\(487\) 789.687 1.62153 0.810767 0.585369i \(-0.199050\pi\)
0.810767 + 0.585369i \(0.199050\pi\)
\(488\) 188.072i 0.385394i
\(489\) 75.8324 473.130i 0.155077 0.967546i
\(490\) 317.311 0.647573
\(491\) 613.979i 1.25047i 0.780438 + 0.625233i \(0.214996\pi\)
−0.780438 + 0.625233i \(0.785004\pi\)
\(492\) −90.5017 14.5055i −0.183947 0.0294826i
\(493\) 1.94020 0.00393550
\(494\) 602.383i 1.21940i
\(495\) 368.191 + 121.138i 0.743820 + 0.244723i
\(496\) −301.618 −0.608102
\(497\) 176.396i 0.354922i
\(498\) 201.872 1259.51i 0.405366 2.52914i
\(499\) 468.935 0.939750 0.469875 0.882733i \(-0.344299\pi\)
0.469875 + 0.882733i \(0.344299\pi\)
\(500\) 598.168i 1.19634i
\(501\) 802.799 + 128.671i 1.60239 + 0.256829i
\(502\) 469.038 0.934339
\(503\) 803.692i 1.59780i −0.601466 0.798898i \(-0.705416\pi\)
0.601466 0.798898i \(-0.294584\pi\)
\(504\) −26.4142 + 80.2842i −0.0524091 + 0.159294i
\(505\) 489.443 0.969194
\(506\) 334.102i 0.660281i
\(507\) 49.7407 310.339i 0.0981078 0.612109i
\(508\) 199.219 0.392162
\(509\) 627.072i 1.23197i −0.787759 0.615984i \(-0.788759\pi\)
0.787759 0.615984i \(-0.211241\pi\)
\(510\) −21.9506 3.51820i −0.0430403 0.00689843i
\(511\) −479.742 −0.938831
\(512\) 658.409i 1.28595i
\(513\) −312.919 + 605.816i −0.609979 + 1.18093i
\(514\) −1130.52 −2.19946
\(515\) 4.00057i 0.00776810i
\(516\) 111.658 696.651i 0.216392 1.35010i
\(517\) −904.426 −1.74937
\(518\) 4.62950i 0.00893725i
\(519\) 957.320 + 153.438i 1.84455 + 0.295641i
\(520\) −61.5025 −0.118274
\(521\) 758.568i 1.45598i 0.685586 + 0.727992i \(0.259546\pi\)
−0.685586 + 0.727992i \(0.740454\pi\)
\(522\) −59.5996 19.6088i −0.114176 0.0375647i
\(523\) 205.714 0.393334 0.196667 0.980470i \(-0.436988\pi\)
0.196667 + 0.980470i \(0.436988\pi\)
\(524\) 277.509i 0.529597i
\(525\) 27.8813 173.955i 0.0531072 0.331343i
\(526\) −1361.35 −2.58811
\(527\) 21.1129i 0.0400624i
\(528\) −502.207 80.4929i −0.951150 0.152449i
\(529\) 467.610 0.883951
\(530\) 220.283i 0.415628i
\(531\) −21.6052 + 65.6675i −0.0406877 + 0.123668i
\(532\) −451.275 −0.848261
\(533\) 50.4065i 0.0945713i
\(534\) −103.765 + 647.406i −0.194317 + 1.21237i
\(535\) 305.399 0.570839
\(536\) 257.037i 0.479547i
\(537\) 20.6776 + 3.31417i 0.0385057 + 0.00617163i
\(538\) −461.189 −0.857229
\(539\) 508.173i 0.942806i
\(540\) 350.289 + 180.933i 0.648684 + 0.335061i
\(541\) 231.135 0.427236 0.213618 0.976917i \(-0.431475\pi\)
0.213618 + 0.976917i \(0.431475\pi\)
\(542\) 159.464i 0.294214i
\(543\) 10.9669 68.4238i 0.0201968 0.126011i
\(544\) 37.6294 0.0691717
\(545\) 11.6116i 0.0213057i
\(546\) 259.914 + 41.6585i 0.476032 + 0.0762976i
\(547\) −978.215 −1.78833 −0.894164 0.447740i \(-0.852229\pi\)
−0.894164 + 0.447740i \(0.852229\pi\)
\(548\) 180.984i 0.330263i
\(549\) −629.821 207.216i −1.14721 0.377443i
\(550\) −680.741 −1.23771
\(551\) 59.1545i 0.107358i
\(552\) −9.49662 + 59.2508i −0.0172040 + 0.107338i
\(553\) 279.896 0.506142
\(554\) 1081.29i 1.95178i
\(555\) −3.76523 0.603485i −0.00678420 0.00108736i
\(556\) −737.920 −1.32719
\(557\) 483.211i 0.867524i 0.901027 + 0.433762i \(0.142814\pi\)
−0.901027 + 0.433762i \(0.857186\pi\)
\(558\) −213.379 + 648.550i −0.382399 + 1.16228i
\(559\) −388.012 −0.694118
\(560\) 130.844i 0.233650i
\(561\) 5.63439 35.1538i 0.0100435 0.0626627i
\(562\) 1205.74 2.14545
\(563\) 918.492i 1.63142i −0.578458 0.815712i \(-0.696345\pi\)
0.578458 0.815712i \(-0.303655\pi\)
\(564\) −908.353 145.589i −1.61055 0.258137i
\(565\) −202.048 −0.357607
\(566\) 1117.26i 1.97396i
\(567\) −239.754 176.913i −0.422847 0.312015i
\(568\) 122.419 0.215526
\(569\) 273.561i 0.480775i 0.970677 + 0.240387i \(0.0772745\pi\)
−0.970677 + 0.240387i \(0.922726\pi\)
\(570\) −107.266 + 669.247i −0.188186 + 1.17412i
\(571\) −678.503 −1.18827 −0.594135 0.804365i \(-0.702506\pi\)
−0.594135 + 0.804365i \(0.702506\pi\)
\(572\) 557.809i 0.975191i
\(573\) −940.676 150.770i −1.64167 0.263124i
\(574\) 68.8560 0.119958
\(575\) 125.083i 0.217536i
\(576\) −751.254 247.169i −1.30426 0.429113i
\(577\) 313.594 0.543490 0.271745 0.962369i \(-0.412399\pi\)
0.271745 + 0.962369i \(0.412399\pi\)
\(578\) 858.080i 1.48457i
\(579\) 135.828 847.451i 0.234591 1.46365i
\(580\) −34.2038 −0.0589720
\(581\) 525.532i 0.904531i
\(582\) 746.517 + 119.651i 1.28268 + 0.205585i
\(583\) 352.783 0.605117
\(584\) 332.941i 0.570104i
\(585\) 67.7628 205.961i 0.115834 0.352070i
\(586\) −64.8941 −0.110741
\(587\) 11.9241i 0.0203137i 0.999948 + 0.0101568i \(0.00323308\pi\)
−0.999948 + 0.0101568i \(0.996767\pi\)
\(588\) −81.8027 + 510.379i −0.139120 + 0.867991i
\(589\) −643.706 −1.09288
\(590\) 68.7176i 0.116471i
\(591\) 765.208 + 122.646i 1.29477 + 0.207523i
\(592\) 5.00379 0.00845234
\(593\) 310.201i 0.523104i 0.965189 + 0.261552i \(0.0842344\pi\)
−0.965189 + 0.261552i \(0.915766\pi\)
\(594\) −528.363 + 1022.92i −0.889499 + 1.72208i
\(595\) 9.15890 0.0153931
\(596\) 754.491i 1.26593i
\(597\) −12.6806 + 79.1161i −0.0212405 + 0.132523i
\(598\) 186.892 0.312528
\(599\) 522.485i 0.872262i 0.899883 + 0.436131i \(0.143652\pi\)
−0.899883 + 0.436131i \(0.856348\pi\)
\(600\) −120.725 19.3496i −0.201208 0.0322493i
\(601\) −24.2214 −0.0403018 −0.0201509 0.999797i \(-0.506415\pi\)
−0.0201509 + 0.999797i \(0.506415\pi\)
\(602\) 530.031i 0.880449i
\(603\) 860.772 + 283.201i 1.42748 + 0.469654i
\(604\) 487.086 0.806433
\(605\) 253.327i 0.418723i
\(606\) −230.077 + 1435.48i −0.379664 + 2.36878i
\(607\) 36.0443 0.0593810 0.0296905 0.999559i \(-0.490548\pi\)
0.0296905 + 0.999559i \(0.490548\pi\)
\(608\) 1147.28i 1.88697i
\(609\) 25.5237 + 4.09090i 0.0419109 + 0.00671740i
\(610\) −659.075 −1.08045
\(611\) 505.923i 0.828025i
\(612\) 11.3177 34.3994i 0.0184930 0.0562082i
\(613\) 185.688 0.302917 0.151458 0.988464i \(-0.451603\pi\)
0.151458 + 0.988464i \(0.451603\pi\)
\(614\) 105.056i 0.171101i
\(615\) 8.97583 56.0015i 0.0145948 0.0910594i
\(616\) −134.547 −0.218421
\(617\) 703.077i 1.13951i 0.821815 + 0.569755i \(0.192962\pi\)
−0.821815 + 0.569755i \(0.807038\pi\)
\(618\) −11.7332 1.88058i −0.0189858 0.00304301i
\(619\) −491.081 −0.793345 −0.396672 0.917960i \(-0.629835\pi\)
−0.396672 + 0.917960i \(0.629835\pi\)
\(620\) 372.198i 0.600319i
\(621\) −187.957 97.0845i −0.302668 0.156336i
\(622\) 46.0030 0.0739598
\(623\) 270.131i 0.433597i
\(624\) −45.0266 + 280.927i −0.0721580 + 0.450204i
\(625\) 28.9683 0.0463493
\(626\) 1349.32i 2.15546i
\(627\) −1071.80 171.786i −1.70941 0.273981i
\(628\) 890.834 1.41853
\(629\) 0.350258i 0.000556849i
\(630\) −281.345 92.5651i −0.446580 0.146929i
\(631\) 1125.02 1.78291 0.891456 0.453107i \(-0.149684\pi\)
0.891456 + 0.453107i \(0.149684\pi\)
\(632\) 194.248i 0.307354i
\(633\) 176.666 1102.25i 0.279094 1.74131i
\(634\) −33.4047 −0.0526888
\(635\) 123.274i 0.194133i
\(636\) 354.315 + 56.7890i 0.557099 + 0.0892908i
\(637\) 284.264 0.446255
\(638\) 99.8822i 0.156555i
\(639\) −134.880 + 409.959i −0.211080 + 0.641563i
\(640\) −239.917 −0.374870
\(641\) 904.406i 1.41093i −0.708745 0.705465i \(-0.750738\pi\)
0.708745 0.705465i \(-0.249262\pi\)
\(642\) −143.561 + 895.700i −0.223616 + 1.39517i
\(643\) 275.235 0.428048 0.214024 0.976828i \(-0.431343\pi\)
0.214024 + 0.976828i \(0.431343\pi\)
\(644\) 140.010i 0.217407i
\(645\) 431.081 + 69.0929i 0.668342 + 0.107121i
\(646\) 62.2562 0.0963719
\(647\) 206.877i 0.319748i 0.987137 + 0.159874i \(0.0511087\pi\)
−0.987137 + 0.159874i \(0.948891\pi\)
\(648\) −122.777 + 166.389i −0.189471 + 0.256774i
\(649\) −110.051 −0.169570
\(650\) 380.797i 0.585841i
\(651\) 44.5163 277.744i 0.0683813 0.426641i
\(652\) 775.896 1.19003
\(653\) 1076.47i 1.64850i 0.566223 + 0.824252i \(0.308404\pi\)
−0.566223 + 0.824252i \(0.691596\pi\)
\(654\) −34.0556 5.45837i −0.0520728 0.00834614i
\(655\) −171.720 −0.262167
\(656\) 74.4230i 0.113450i
\(657\) −1114.96 366.831i −1.69705 0.558343i
\(658\) 691.099 1.05030
\(659\) 926.569i 1.40602i −0.711179 0.703011i \(-0.751838\pi\)
0.711179 0.703011i \(-0.248162\pi\)
\(660\) −99.3285 + 619.725i −0.150498 + 0.938977i
\(661\) −164.989 −0.249605 −0.124803 0.992182i \(-0.539830\pi\)
−0.124803 + 0.992182i \(0.539830\pi\)
\(662\) 397.441i 0.600364i
\(663\) −19.6645 3.15180i −0.0296599 0.00475384i
\(664\) 364.719 0.549276
\(665\) 279.244i 0.419916i
\(666\) 3.53991 10.7593i 0.00531518 0.0161551i
\(667\) 18.3529 0.0275157
\(668\) 1316.53i 1.97085i
\(669\) −148.371 + 925.709i −0.221780 + 1.38372i
\(670\) 900.753 1.34441
\(671\) 1055.51i 1.57304i
\(672\) 495.021 + 79.3412i 0.736639 + 0.118067i
\(673\) −1140.47 −1.69460 −0.847302 0.531112i \(-0.821775\pi\)
−0.847302 + 0.531112i \(0.821775\pi\)
\(674\) 1162.38i 1.72460i
\(675\) 197.812 382.967i 0.293054 0.567358i
\(676\) 508.933 0.752859
\(677\) 21.8653i 0.0322973i 0.999870 + 0.0161486i \(0.00514050\pi\)
−0.999870 + 0.0161486i \(0.994860\pi\)
\(678\) 94.9785 592.585i 0.140086 0.874019i
\(679\) −311.485 −0.458741
\(680\) 6.35627i 0.00934746i
\(681\) 33.8009 + 5.41755i 0.0496342 + 0.00795529i
\(682\) −1086.90 −1.59369
\(683\) 856.622i 1.25421i −0.778937 0.627103i \(-0.784241\pi\)
0.778937 0.627103i \(-0.215759\pi\)
\(684\) −1048.80 345.064i −1.53333 0.504479i
\(685\) −111.991 −0.163491
\(686\) 924.763i 1.34805i
\(687\) −160.204 + 999.536i −0.233193 + 1.45493i
\(688\) −572.883 −0.832679
\(689\) 197.342i 0.286418i
\(690\) −207.637 33.2797i −0.300923 0.0482314i
\(691\) −497.476 −0.719937 −0.359968 0.932965i \(-0.617212\pi\)
−0.359968 + 0.932965i \(0.617212\pi\)
\(692\) 1569.93i 2.26869i
\(693\) 148.243 450.574i 0.213915 0.650179i
\(694\) 1269.54 1.82930
\(695\) 456.617i 0.657003i
\(696\) 2.83908 17.7134i 0.00407914 0.0254503i
\(697\) −5.20950 −0.00747418
\(698\) 1442.02i 2.06592i
\(699\) −730.320 117.054i −1.04481 0.167460i
\(700\) 285.273 0.407533
\(701\) 510.239i 0.727873i 0.931424 + 0.363937i \(0.118568\pi\)
−0.931424 + 0.363937i \(0.881432\pi\)
\(702\) 572.206 + 295.558i 0.815108 + 0.421023i
\(703\) 10.6790 0.0151906
\(704\) 1259.02i 1.78837i
\(705\) 90.0892 562.080i 0.127786 0.797276i
\(706\) 1600.92 2.26759
\(707\) 598.957i 0.847181i
\(708\) −110.529 17.7154i −0.156114 0.0250218i
\(709\) −21.4011 −0.0301849 −0.0150925 0.999886i \(-0.504804\pi\)
−0.0150925 + 0.999886i \(0.504804\pi\)
\(710\) 429.001i 0.604227i
\(711\) 650.501 + 214.021i 0.914911 + 0.301013i
\(712\) −187.471 −0.263302
\(713\) 199.713i 0.280102i
\(714\) −4.30540 + 26.8620i −0.00602997 + 0.0376219i
\(715\) 345.167 0.482751
\(716\) 33.9096i 0.0473598i
\(717\) 405.356 + 64.9698i 0.565351 + 0.0906134i
\(718\) −178.161 −0.248135
\(719\) 271.790i 0.378012i −0.981976 0.189006i \(-0.939473\pi\)
0.981976 0.189006i \(-0.0605265\pi\)
\(720\) 100.049 304.092i 0.138957 0.422350i
\(721\) 4.89570 0.00679016
\(722\) 823.711i 1.14087i
\(723\) −72.8535 + 454.544i −0.100766 + 0.628691i
\(724\) 112.210 0.154986
\(725\) 37.3945i 0.0515786i
\(726\) −742.981 119.084i −1.02339 0.164027i
\(727\) −520.902 −0.716509 −0.358254 0.933624i \(-0.616628\pi\)
−0.358254 + 0.933624i \(0.616628\pi\)
\(728\) 75.2638i 0.103384i
\(729\) −421.933 594.486i −0.578784 0.815481i
\(730\) −1166.75 −1.59828
\(731\) 40.1010i 0.0548577i
\(732\) 169.909 1060.09i 0.232117 1.44821i
\(733\) 655.583 0.894383 0.447192 0.894438i \(-0.352424\pi\)
0.447192 + 0.894438i \(0.352424\pi\)
\(734\) 1873.59i 2.55257i
\(735\) −315.817 50.6187i −0.429683 0.0688689i
\(736\) 355.947 0.483624
\(737\) 1442.56i 1.95733i
\(738\) 160.027 + 52.6502i 0.216839 + 0.0713417i
\(739\) 160.286 0.216895 0.108448 0.994102i \(-0.465412\pi\)
0.108448 + 0.994102i \(0.465412\pi\)
\(740\) 6.17469i 0.00834417i
\(741\) −96.0946 + 599.548i −0.129682 + 0.809107i
\(742\) −269.572 −0.363304
\(743\) 1101.61i 1.48265i −0.671145 0.741326i \(-0.734197\pi\)
0.671145 0.741326i \(-0.265803\pi\)
\(744\) −192.754 30.8943i −0.259078 0.0415245i
\(745\) −466.872 −0.626673
\(746\) 238.462i 0.319654i
\(747\) −401.844 + 1221.38i −0.537944 + 1.63505i
\(748\) 57.6495 0.0770715
\(749\) 373.732i 0.498975i
\(750\) 173.995 1085.58i 0.231993 1.44744i
\(751\) 1083.43 1.44265 0.721323 0.692598i \(-0.243534\pi\)
0.721323 + 0.692598i \(0.243534\pi\)
\(752\) 746.973i 0.993315i
\(753\) −466.831 74.8229i −0.619961 0.0993663i
\(754\) −55.8726 −0.0741017
\(755\) 301.404i 0.399210i
\(756\) 221.417 428.667i 0.292880 0.567020i
\(757\) 601.996 0.795239 0.397620 0.917550i \(-0.369836\pi\)
0.397620 + 0.917550i \(0.369836\pi\)
\(758\) 444.883i 0.586917i
\(759\) 53.2973 332.530i 0.0702205 0.438116i
\(760\) −193.795 −0.254994
\(761\) 33.3091i 0.0437702i 0.999760 + 0.0218851i \(0.00696680\pi\)
−0.999760 + 0.0218851i \(0.993033\pi\)
\(762\) −361.550 57.9486i −0.474475 0.0760481i
\(763\) 14.2097 0.0186235
\(764\) 1542.64i 2.01916i
\(765\) 21.2860 + 7.00328i 0.0278249 + 0.00915461i
\(766\) −101.925 −0.133062
\(767\) 61.5611i 0.0802621i
\(768\) −54.1028 + 337.555i −0.0704464 + 0.439525i
\(769\) 231.879 0.301533 0.150766 0.988569i \(-0.451826\pi\)
0.150766 + 0.988569i \(0.451826\pi\)
\(770\) 471.503i 0.612341i
\(771\) 1125.20 + 180.345i 1.45940 + 0.233911i
\(772\) 1389.75 1.80020
\(773\) 444.880i 0.575524i 0.957702 + 0.287762i \(0.0929113\pi\)
−0.957702 + 0.287762i \(0.907089\pi\)
\(774\) −405.284 + 1231.83i −0.523622 + 1.59152i
\(775\) 406.919 0.525057
\(776\) 216.171i 0.278570i
\(777\) −0.738516 + 4.60771i −0.000950471 + 0.00593013i
\(778\) 210.630 0.270732
\(779\) 158.832i 0.203892i
\(780\) 346.665 + 55.5629i 0.444443 + 0.0712345i
\(781\) −687.044 −0.879698
\(782\) 19.3153i 0.0246998i
\(783\) 56.1911 + 29.0241i 0.0717638 + 0.0370678i
\(784\) 419.704 0.535337
\(785\) 551.239i 0.702216i
\(786\)