Properties

Label 177.3.b.a.119.18
Level $177$
Weight $3$
Character 177.119
Analytic conductor $4.823$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 119.18
Character \(\chi\) \(=\) 177.119
Dual form 177.3.b.a.119.21

$q$-expansion

\(f(q)\) \(=\) \(q-0.201372i q^{2} +(-2.12758 + 2.11504i) q^{3} +3.95945 q^{4} -6.21609i q^{5} +(0.425911 + 0.428435i) q^{6} -0.661651 q^{7} -1.60281i q^{8} +(0.0531837 - 8.99984i) q^{9} +O(q^{10})\) \(q-0.201372i q^{2} +(-2.12758 + 2.11504i) q^{3} +3.95945 q^{4} -6.21609i q^{5} +(0.425911 + 0.428435i) q^{6} -0.661651 q^{7} -1.60281i q^{8} +(0.0531837 - 8.99984i) q^{9} -1.25175 q^{10} -5.79475i q^{11} +(-8.42404 + 8.37441i) q^{12} +3.06045 q^{13} +0.133238i q^{14} +(13.1473 + 13.2252i) q^{15} +15.5150 q^{16} -12.8260i q^{17} +(-1.81232 - 0.0107097i) q^{18} +24.1445 q^{19} -24.6123i q^{20} +(1.40771 - 1.39942i) q^{21} -1.16690 q^{22} -10.5674i q^{23} +(3.39002 + 3.41011i) q^{24} -13.6398 q^{25} -0.616289i q^{26} +(18.9219 + 19.2604i) q^{27} -2.61977 q^{28} +3.55194i q^{29} +(2.66319 - 2.64750i) q^{30} +23.2167 q^{31} -9.53555i q^{32} +(12.2561 + 12.3288i) q^{33} -2.58280 q^{34} +4.11288i q^{35} +(0.210578 - 35.6344i) q^{36} -63.0720 q^{37} -4.86203i q^{38} +(-6.51134 + 6.47298i) q^{39} -9.96323 q^{40} +25.4591i q^{41} +(-0.281804 - 0.283475i) q^{42} -26.9762 q^{43} -22.9440i q^{44} +(-55.9438 - 0.330595i) q^{45} -2.12799 q^{46} +4.63050i q^{47} +(-33.0095 + 32.8150i) q^{48} -48.5622 q^{49} +2.74668i q^{50} +(27.1275 + 27.2883i) q^{51} +12.1177 q^{52} +39.5277i q^{53} +(3.87850 - 3.81035i) q^{54} -36.0207 q^{55} +1.06050i q^{56} +(-51.3693 + 51.0666i) q^{57} +0.715262 q^{58} +7.68115i q^{59} +(52.0561 + 52.3646i) q^{60} +48.9008 q^{61} -4.67519i q^{62} +(-0.0351890 + 5.95475i) q^{63} +60.1399 q^{64} -19.0240i q^{65} +(2.48267 - 2.46805i) q^{66} +35.5322 q^{67} -50.7838i q^{68} +(22.3506 + 22.4831i) q^{69} +0.828221 q^{70} +103.764i q^{71} +(-14.4251 - 0.0852435i) q^{72} -76.1989 q^{73} +12.7009i q^{74} +(29.0197 - 28.8488i) q^{75} +95.5988 q^{76} +3.83410i q^{77} +(1.30348 + 1.31120i) q^{78} +26.3243 q^{79} -96.4429i q^{80} +(-80.9943 - 0.957289i) q^{81} +5.12676 q^{82} -52.3210i q^{83} +(5.57377 - 5.54093i) q^{84} -79.7275 q^{85} +5.43227i q^{86} +(-7.51250 - 7.55703i) q^{87} -9.28789 q^{88} +7.05059i q^{89} +(-0.0665726 + 11.2655i) q^{90} -2.02495 q^{91} -41.8413i q^{92} +(-49.3953 + 49.1043i) q^{93} +0.932455 q^{94} -150.084i q^{95} +(20.1681 + 20.2876i) q^{96} +106.653 q^{97} +9.77909i q^{98} +(-52.1518 - 0.308186i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38q - 76q^{4} - 8q^{6} - 12q^{7} + 20q^{9} + O(q^{10}) \) \( 38q - 76q^{4} - 8q^{6} - 12q^{7} + 20q^{9} + 36q^{10} - 4q^{13} - 17q^{15} + 100q^{16} - 2q^{18} - 28q^{19} - 11q^{21} + 84q^{22} - 6q^{24} - 166q^{25} + 3q^{27} + 12q^{28} + 102q^{30} - 40q^{31} - 46q^{33} - 148q^{34} - 96q^{36} + 112q^{37} + 62q^{39} - 56q^{40} + 14q^{42} + 164q^{43} + 55q^{45} - 4q^{46} - 124q^{48} + 242q^{49} + 52q^{51} + 8q^{52} + 18q^{54} - 228q^{55} - 147q^{57} - 80q^{58} + 128q^{60} + 12q^{61} + 86q^{63} + 48q^{64} - 24q^{66} + 124q^{67} - 240q^{69} + 148q^{70} + 166q^{72} - 192q^{73} - 78q^{75} - 304q^{76} + 244q^{78} + 64q^{79} - 156q^{81} - 180q^{82} + 300q^{84} - 52q^{85} - 83q^{87} - 96q^{88} - 376q^{90} - 332q^{91} + 454q^{93} + 768q^{94} - 722q^{96} + 416q^{97} + 494q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.201372i 0.100686i −0.998732 0.0503431i \(-0.983969\pi\)
0.998732 0.0503431i \(-0.0160315\pi\)
\(3\) −2.12758 + 2.11504i −0.709193 + 0.705014i
\(4\) 3.95945 0.989862
\(5\) 6.21609i 1.24322i −0.783328 0.621609i \(-0.786479\pi\)
0.783328 0.621609i \(-0.213521\pi\)
\(6\) 0.425911 + 0.428435i 0.0709852 + 0.0714059i
\(7\) −0.661651 −0.0945215 −0.0472608 0.998883i \(-0.515049\pi\)
−0.0472608 + 0.998883i \(0.515049\pi\)
\(8\) 1.60281i 0.200352i
\(9\) 0.0531837 8.99984i 0.00590930 0.999983i
\(10\) −1.25175 −0.125175
\(11\) 5.79475i 0.526795i −0.964687 0.263398i \(-0.915157\pi\)
0.964687 0.263398i \(-0.0848431\pi\)
\(12\) −8.42404 + 8.37441i −0.702003 + 0.697867i
\(13\) 3.06045 0.235419 0.117710 0.993048i \(-0.462445\pi\)
0.117710 + 0.993048i \(0.462445\pi\)
\(14\) 0.133238i 0.00951701i
\(15\) 13.1473 + 13.2252i 0.876487 + 0.881682i
\(16\) 15.5150 0.969690
\(17\) 12.8260i 0.754470i −0.926118 0.377235i \(-0.876875\pi\)
0.926118 0.377235i \(-0.123125\pi\)
\(18\) −1.81232 0.0107097i −0.100684 0.000594984i
\(19\) 24.1445 1.27076 0.635381 0.772199i \(-0.280843\pi\)
0.635381 + 0.772199i \(0.280843\pi\)
\(20\) 24.6123i 1.23061i
\(21\) 1.40771 1.39942i 0.0670340 0.0666391i
\(22\) −1.16690 −0.0530410
\(23\) 10.5674i 0.459454i −0.973255 0.229727i \(-0.926217\pi\)
0.973255 0.229727i \(-0.0737833\pi\)
\(24\) 3.39002 + 3.41011i 0.141251 + 0.142088i
\(25\) −13.6398 −0.545592
\(26\) 0.616289i 0.0237034i
\(27\) 18.9219 + 19.2604i 0.700811 + 0.713347i
\(28\) −2.61977 −0.0935633
\(29\) 3.55194i 0.122481i 0.998123 + 0.0612403i \(0.0195056\pi\)
−0.998123 + 0.0612403i \(0.980494\pi\)
\(30\) 2.66319 2.64750i 0.0887731 0.0882501i
\(31\) 23.2167 0.748925 0.374462 0.927242i \(-0.377827\pi\)
0.374462 + 0.927242i \(0.377827\pi\)
\(32\) 9.53555i 0.297986i
\(33\) 12.2561 + 12.3288i 0.371398 + 0.373599i
\(34\) −2.58280 −0.0759647
\(35\) 4.11288i 0.117511i
\(36\) 0.210578 35.6344i 0.00584939 0.989845i
\(37\) −63.0720 −1.70465 −0.852324 0.523015i \(-0.824807\pi\)
−0.852324 + 0.523015i \(0.824807\pi\)
\(38\) 4.86203i 0.127948i
\(39\) −6.51134 + 6.47298i −0.166958 + 0.165974i
\(40\) −9.96323 −0.249081
\(41\) 25.4591i 0.620954i 0.950581 + 0.310477i \(0.100489\pi\)
−0.950581 + 0.310477i \(0.899511\pi\)
\(42\) −0.281804 0.283475i −0.00670963 0.00674940i
\(43\) −26.9762 −0.627354 −0.313677 0.949530i \(-0.601561\pi\)
−0.313677 + 0.949530i \(0.601561\pi\)
\(44\) 22.9440i 0.521455i
\(45\) −55.9438 0.330595i −1.24320 0.00734655i
\(46\) −2.12799 −0.0462607
\(47\) 4.63050i 0.0985213i 0.998786 + 0.0492606i \(0.0156865\pi\)
−0.998786 + 0.0492606i \(0.984314\pi\)
\(48\) −33.0095 + 32.8150i −0.687697 + 0.683645i
\(49\) −48.5622 −0.991066
\(50\) 2.74668i 0.0549336i
\(51\) 27.1275 + 27.2883i 0.531912 + 0.535065i
\(52\) 12.1177 0.233032
\(53\) 39.5277i 0.745805i 0.927871 + 0.372902i \(0.121637\pi\)
−0.927871 + 0.372902i \(0.878363\pi\)
\(54\) 3.87850 3.81035i 0.0718241 0.0705620i
\(55\) −36.0207 −0.654921
\(56\) 1.06050i 0.0189375i
\(57\) −51.3693 + 51.0666i −0.901215 + 0.895905i
\(58\) 0.715262 0.0123321
\(59\) 7.68115i 0.130189i
\(60\) 52.0561 + 52.3646i 0.867601 + 0.872743i
\(61\) 48.9008 0.801653 0.400827 0.916154i \(-0.368723\pi\)
0.400827 + 0.916154i \(0.368723\pi\)
\(62\) 4.67519i 0.0754064i
\(63\) −0.0351890 + 5.95475i −0.000558556 + 0.0945199i
\(64\) 60.1399 0.939687
\(65\) 19.0240i 0.292677i
\(66\) 2.48267 2.46805i 0.0376163 0.0373946i
\(67\) 35.5322 0.530332 0.265166 0.964203i \(-0.414573\pi\)
0.265166 + 0.964203i \(0.414573\pi\)
\(68\) 50.7838i 0.746821i
\(69\) 22.3506 + 22.4831i 0.323922 + 0.325842i
\(70\) 0.828221 0.0118317
\(71\) 103.764i 1.46146i 0.682665 + 0.730732i \(0.260821\pi\)
−0.682665 + 0.730732i \(0.739179\pi\)
\(72\) −14.4251 0.0852435i −0.200348 0.00118394i
\(73\) −76.1989 −1.04382 −0.521911 0.853000i \(-0.674781\pi\)
−0.521911 + 0.853000i \(0.674781\pi\)
\(74\) 12.7009i 0.171634i
\(75\) 29.0197 28.8488i 0.386930 0.384650i
\(76\) 95.5988 1.25788
\(77\) 3.83410i 0.0497935i
\(78\) 1.30348 + 1.31120i 0.0167113 + 0.0168103i
\(79\) 26.3243 0.333219 0.166610 0.986023i \(-0.446718\pi\)
0.166610 + 0.986023i \(0.446718\pi\)
\(80\) 96.4429i 1.20554i
\(81\) −80.9943 0.957289i −0.999930 0.0118184i
\(82\) 5.12676 0.0625215
\(83\) 52.3210i 0.630373i −0.949030 0.315187i \(-0.897933\pi\)
0.949030 0.315187i \(-0.102067\pi\)
\(84\) 5.57377 5.54093i 0.0663544 0.0659635i
\(85\) −79.7275 −0.937971
\(86\) 5.43227i 0.0631659i
\(87\) −7.51250 7.55703i −0.0863506 0.0868624i
\(88\) −9.28789 −0.105544
\(89\) 7.05059i 0.0792201i 0.999215 + 0.0396100i \(0.0126116\pi\)
−0.999215 + 0.0396100i \(0.987388\pi\)
\(90\) −0.0665726 + 11.2655i −0.000739696 + 0.125173i
\(91\) −2.02495 −0.0222522
\(92\) 41.8413i 0.454796i
\(93\) −49.3953 + 49.1043i −0.531132 + 0.528003i
\(94\) 0.932455 0.00991973
\(95\) 150.084i 1.57983i
\(96\) 20.1681 + 20.2876i 0.210084 + 0.211330i
\(97\) 106.653 1.09951 0.549756 0.835325i \(-0.314721\pi\)
0.549756 + 0.835325i \(0.314721\pi\)
\(98\) 9.77909i 0.0997866i
\(99\) −52.1518 0.308186i −0.526786 0.00311299i
\(100\) −54.0061 −0.540061
\(101\) 173.195i 1.71480i −0.514650 0.857400i \(-0.672078\pi\)
0.514650 0.857400i \(-0.327922\pi\)
\(102\) 5.49511 5.46273i 0.0538736 0.0535562i
\(103\) −15.3050 −0.148592 −0.0742962 0.997236i \(-0.523671\pi\)
−0.0742962 + 0.997236i \(0.523671\pi\)
\(104\) 4.90532i 0.0471666i
\(105\) −8.69892 8.75048i −0.0828469 0.0833379i
\(106\) 7.95977 0.0750922
\(107\) 196.423i 1.83573i 0.396896 + 0.917864i \(0.370088\pi\)
−0.396896 + 0.917864i \(0.629912\pi\)
\(108\) 74.9203 + 76.2604i 0.693707 + 0.706115i
\(109\) −130.315 −1.19555 −0.597776 0.801663i \(-0.703949\pi\)
−0.597776 + 0.801663i \(0.703949\pi\)
\(110\) 7.25357i 0.0659415i
\(111\) 134.191 133.400i 1.20892 1.20180i
\(112\) −10.2655 −0.0916566
\(113\) 181.249i 1.60397i 0.597342 + 0.801986i \(0.296223\pi\)
−0.597342 + 0.801986i \(0.703777\pi\)
\(114\) 10.2834 + 10.3443i 0.0902053 + 0.0907399i
\(115\) −65.6882 −0.571202
\(116\) 14.0637i 0.121239i
\(117\) 0.162766 27.5435i 0.00139116 0.235415i
\(118\) 1.54677 0.0131082
\(119\) 8.48633i 0.0713137i
\(120\) 21.1976 21.0727i 0.176646 0.175606i
\(121\) 87.4209 0.722487
\(122\) 9.84727i 0.0807154i
\(123\) −53.8471 54.1663i −0.437781 0.440376i
\(124\) 91.9252 0.741332
\(125\) 70.6161i 0.564928i
\(126\) 1.19912 + 0.00708609i 0.00951685 + 5.62388e-5i
\(127\) −5.71681 −0.0450142 −0.0225071 0.999747i \(-0.507165\pi\)
−0.0225071 + 0.999747i \(0.507165\pi\)
\(128\) 50.2527i 0.392599i
\(129\) 57.3941 57.0559i 0.444915 0.442294i
\(130\) −3.83091 −0.0294685
\(131\) 40.2469i 0.307228i 0.988131 + 0.153614i \(0.0490913\pi\)
−0.988131 + 0.153614i \(0.950909\pi\)
\(132\) 48.5276 + 48.8152i 0.367633 + 0.369812i
\(133\) −15.9752 −0.120114
\(134\) 7.15521i 0.0533971i
\(135\) 119.724 117.620i 0.886846 0.871261i
\(136\) −20.5577 −0.151159
\(137\) 26.7603i 0.195331i −0.995219 0.0976653i \(-0.968863\pi\)
0.995219 0.0976653i \(-0.0311375\pi\)
\(138\) 4.52747 4.50079i 0.0328077 0.0326144i
\(139\) 199.418 1.43466 0.717331 0.696733i \(-0.245364\pi\)
0.717331 + 0.696733i \(0.245364\pi\)
\(140\) 16.2847i 0.116320i
\(141\) −9.79371 9.85175i −0.0694589 0.0698706i
\(142\) 20.8952 0.147149
\(143\) 17.7345i 0.124018i
\(144\) 0.825147 139.633i 0.00573018 0.969673i
\(145\) 22.0792 0.152270
\(146\) 15.3444i 0.105098i
\(147\) 103.320 102.711i 0.702857 0.698716i
\(148\) −249.730 −1.68737
\(149\) 176.143i 1.18217i 0.806609 + 0.591085i \(0.201300\pi\)
−0.806609 + 0.591085i \(0.798700\pi\)
\(150\) −5.80934 5.84377i −0.0387289 0.0389585i
\(151\) 158.877 1.05217 0.526084 0.850433i \(-0.323660\pi\)
0.526084 + 0.850433i \(0.323660\pi\)
\(152\) 38.6991i 0.254599i
\(153\) −115.432 0.682133i −0.754457 0.00445839i
\(154\) 0.772081 0.00501351
\(155\) 144.317i 0.931077i
\(156\) −25.7813 + 25.6294i −0.165265 + 0.164291i
\(157\) 287.164 1.82907 0.914535 0.404506i \(-0.132556\pi\)
0.914535 + 0.404506i \(0.132556\pi\)
\(158\) 5.30099i 0.0335506i
\(159\) −83.6027 84.0982i −0.525803 0.528919i
\(160\) −59.2739 −0.370462
\(161\) 6.99196i 0.0434283i
\(162\) −0.192772 + 16.3100i −0.00118995 + 0.100679i
\(163\) 76.9398 0.472023 0.236012 0.971750i \(-0.424160\pi\)
0.236012 + 0.971750i \(0.424160\pi\)
\(164\) 100.804i 0.614659i
\(165\) 76.6368 76.1853i 0.464466 0.461729i
\(166\) −10.5360 −0.0634699
\(167\) 294.401i 1.76288i 0.472296 + 0.881440i \(0.343425\pi\)
−0.472296 + 0.881440i \(0.656575\pi\)
\(168\) −2.24301 2.25630i −0.0133512 0.0134304i
\(169\) −159.634 −0.944578
\(170\) 16.0549i 0.0944407i
\(171\) 1.28409 217.296i 0.00750931 1.27074i
\(172\) −106.811 −0.620994
\(173\) 260.169i 1.50387i 0.659239 + 0.751934i \(0.270879\pi\)
−0.659239 + 0.751934i \(0.729121\pi\)
\(174\) −1.52178 + 1.51281i −0.00874584 + 0.00869431i
\(175\) 9.02478 0.0515702
\(176\) 89.9057i 0.510828i
\(177\) −16.2460 16.3422i −0.0917851 0.0923291i
\(178\) 1.41979 0.00797637
\(179\) 350.468i 1.95792i −0.204053 0.978960i \(-0.565411\pi\)
0.204053 0.978960i \(-0.434589\pi\)
\(180\) −221.507 1.30897i −1.23059 0.00727207i
\(181\) 208.790 1.15353 0.576767 0.816909i \(-0.304314\pi\)
0.576767 + 0.816909i \(0.304314\pi\)
\(182\) 0.407768i 0.00224049i
\(183\) −104.040 + 103.427i −0.568527 + 0.565177i
\(184\) −16.9376 −0.0920523
\(185\) 392.061i 2.11925i
\(186\) 9.88824 + 9.94684i 0.0531626 + 0.0534777i
\(187\) −74.3233 −0.397451
\(188\) 18.3342i 0.0975225i
\(189\) −12.5197 12.7436i −0.0662418 0.0674266i
\(190\) −30.2228 −0.159067
\(191\) 262.744i 1.37562i 0.725889 + 0.687812i \(0.241428\pi\)
−0.725889 + 0.687812i \(0.758572\pi\)
\(192\) −127.952 + 127.199i −0.666419 + 0.662493i
\(193\) −231.780 −1.20094 −0.600468 0.799649i \(-0.705019\pi\)
−0.600468 + 0.799649i \(0.705019\pi\)
\(194\) 21.4769i 0.110706i
\(195\) 40.2366 + 40.4751i 0.206342 + 0.207565i
\(196\) −192.280 −0.981019
\(197\) 223.225i 1.13312i 0.824019 + 0.566562i \(0.191727\pi\)
−0.824019 + 0.566562i \(0.808273\pi\)
\(198\) −0.0620601 + 10.5019i −0.000313435 + 0.0530400i
\(199\) 40.6294 0.204168 0.102084 0.994776i \(-0.467449\pi\)
0.102084 + 0.994776i \(0.467449\pi\)
\(200\) 21.8620i 0.109310i
\(201\) −75.5976 + 75.1522i −0.376108 + 0.373892i
\(202\) −34.8766 −0.172657
\(203\) 2.35014i 0.0115771i
\(204\) 107.410 + 108.047i 0.526520 + 0.529640i
\(205\) 158.256 0.771981
\(206\) 3.08201i 0.0149612i
\(207\) −95.1053 0.562015i −0.459446 0.00271505i
\(208\) 47.4829 0.228283
\(209\) 139.911i 0.669431i
\(210\) −1.76210 + 1.75172i −0.00839097 + 0.00834154i
\(211\) −316.346 −1.49927 −0.749636 0.661850i \(-0.769771\pi\)
−0.749636 + 0.661850i \(0.769771\pi\)
\(212\) 156.508i 0.738244i
\(213\) −219.465 220.766i −1.03035 1.03646i
\(214\) 39.5541 0.184832
\(215\) 167.687i 0.779938i
\(216\) 30.8708 30.3283i 0.142920 0.140409i
\(217\) −15.3613 −0.0707895
\(218\) 26.2419i 0.120376i
\(219\) 162.119 161.164i 0.740271 0.735909i
\(220\) −142.622 −0.648282
\(221\) 39.2533i 0.177617i
\(222\) −26.8630 27.0223i −0.121005 0.121722i
\(223\) −95.5535 −0.428491 −0.214245 0.976780i \(-0.568729\pi\)
−0.214245 + 0.976780i \(0.568729\pi\)
\(224\) 6.30920i 0.0281661i
\(225\) −0.725415 + 122.756i −0.00322406 + 0.545582i
\(226\) 36.4985 0.161498
\(227\) 392.945i 1.73104i −0.500878 0.865518i \(-0.666990\pi\)
0.500878 0.865518i \(-0.333010\pi\)
\(228\) −203.394 + 202.196i −0.892079 + 0.886823i
\(229\) 213.168 0.930863 0.465431 0.885084i \(-0.345899\pi\)
0.465431 + 0.885084i \(0.345899\pi\)
\(230\) 13.2278i 0.0575121i
\(231\) −8.10928 8.15735i −0.0351051 0.0353132i
\(232\) 5.69309 0.0245392
\(233\) 174.471i 0.748803i −0.927267 0.374401i \(-0.877848\pi\)
0.927267 0.374401i \(-0.122152\pi\)
\(234\) −5.54651 0.0327765i −0.0237030 0.000140071i
\(235\) 28.7836 0.122483
\(236\) 30.4131i 0.128869i
\(237\) −56.0071 + 55.6771i −0.236317 + 0.234924i
\(238\) 1.70891 0.00718030
\(239\) 208.017i 0.870365i −0.900342 0.435183i \(-0.856684\pi\)
0.900342 0.435183i \(-0.143316\pi\)
\(240\) 203.981 + 205.190i 0.849920 + 0.854958i
\(241\) −386.692 −1.60453 −0.802266 0.596967i \(-0.796372\pi\)
−0.802266 + 0.596967i \(0.796372\pi\)
\(242\) 17.6042i 0.0727444i
\(243\) 174.347 169.270i 0.717476 0.696584i
\(244\) 193.620 0.793526
\(245\) 301.867i 1.23211i
\(246\) −10.9076 + 10.8433i −0.0443398 + 0.0440785i
\(247\) 73.8929 0.299161
\(248\) 37.2120i 0.150048i
\(249\) 110.661 + 111.317i 0.444422 + 0.447056i
\(250\) −14.2201 −0.0568805
\(251\) 29.5693i 0.117806i 0.998264 + 0.0589030i \(0.0187603\pi\)
−0.998264 + 0.0589030i \(0.981240\pi\)
\(252\) −0.139329 + 23.5775i −0.000552893 + 0.0935617i
\(253\) −61.2356 −0.242038
\(254\) 1.15121i 0.00453231i
\(255\) 169.627 168.627i 0.665202 0.661283i
\(256\) 230.440 0.900157
\(257\) 248.436i 0.966676i −0.875434 0.483338i \(-0.839424\pi\)
0.875434 0.483338i \(-0.160576\pi\)
\(258\) −11.4895 11.5576i −0.0445329 0.0447968i
\(259\) 41.7316 0.161126
\(260\) 75.3246i 0.289710i
\(261\) 31.9669 + 0.188905i 0.122478 + 0.000723774i
\(262\) 8.10461 0.0309336
\(263\) 9.74268i 0.0370444i −0.999828 0.0185222i \(-0.994104\pi\)
0.999828 0.0185222i \(-0.00589614\pi\)
\(264\) 19.7607 19.6443i 0.0748512 0.0744102i
\(265\) 245.708 0.927198
\(266\) 3.21696i 0.0120939i
\(267\) −14.9123 15.0007i −0.0558513 0.0561823i
\(268\) 140.688 0.524956
\(269\) 309.815i 1.15173i −0.817545 0.575865i \(-0.804665\pi\)
0.817545 0.575865i \(-0.195335\pi\)
\(270\) −23.6855 24.1091i −0.0877240 0.0892931i
\(271\) −185.506 −0.684526 −0.342263 0.939604i \(-0.611193\pi\)
−0.342263 + 0.939604i \(0.611193\pi\)
\(272\) 198.996i 0.731602i
\(273\) 4.30824 4.28285i 0.0157811 0.0156881i
\(274\) −5.38878 −0.0196671
\(275\) 79.0392i 0.287415i
\(276\) 88.4961 + 89.0206i 0.320638 + 0.322538i
\(277\) −66.4098 −0.239746 −0.119873 0.992789i \(-0.538249\pi\)
−0.119873 + 0.992789i \(0.538249\pi\)
\(278\) 40.1573i 0.144451i
\(279\) 1.23475 208.946i 0.00442562 0.748912i
\(280\) 6.59218 0.0235435
\(281\) 225.137i 0.801201i 0.916253 + 0.400601i \(0.131198\pi\)
−0.916253 + 0.400601i \(0.868802\pi\)
\(282\) −1.98387 + 1.97218i −0.00703500 + 0.00699355i
\(283\) −192.753 −0.681107 −0.340553 0.940225i \(-0.610614\pi\)
−0.340553 + 0.940225i \(0.610614\pi\)
\(284\) 410.848i 1.44665i
\(285\) 317.435 + 319.316i 1.11381 + 1.12041i
\(286\) −3.57124 −0.0124869
\(287\) 16.8450i 0.0586935i
\(288\) −85.8184 0.507136i −0.297981 0.00176089i
\(289\) 124.494 0.430775
\(290\) 4.44613i 0.0153315i
\(291\) −226.912 + 225.575i −0.779766 + 0.775172i
\(292\) −301.706 −1.03324
\(293\) 49.5040i 0.168956i 0.996425 + 0.0844778i \(0.0269222\pi\)
−0.996425 + 0.0844778i \(0.973078\pi\)
\(294\) −20.6832 20.8058i −0.0703510 0.0707680i
\(295\) 47.7467 0.161853
\(296\) 101.093i 0.341529i
\(297\) 111.609 109.648i 0.375788 0.369184i
\(298\) 35.4704 0.119028
\(299\) 32.3411i 0.108164i
\(300\) 114.902 114.225i 0.383007 0.380751i
\(301\) 17.8488 0.0592985
\(302\) 31.9935i 0.105939i
\(303\) 366.315 + 368.486i 1.20896 + 1.21612i
\(304\) 374.602 1.23224
\(305\) 303.972i 0.996630i
\(306\) −0.137363 + 23.2448i −0.000448898 + 0.0759633i
\(307\) 326.249 1.06270 0.531350 0.847153i \(-0.321685\pi\)
0.531350 + 0.847153i \(0.321685\pi\)
\(308\) 15.1809i 0.0492887i
\(309\) 32.5626 32.3708i 0.105381 0.104760i
\(310\) −29.0614 −0.0937466
\(311\) 530.351i 1.70531i 0.522475 + 0.852655i \(0.325009\pi\)
−0.522475 + 0.852655i \(0.674991\pi\)
\(312\) 10.3750 + 10.4365i 0.0332531 + 0.0334502i
\(313\) −330.130 −1.05473 −0.527364 0.849639i \(-0.676820\pi\)
−0.527364 + 0.849639i \(0.676820\pi\)
\(314\) 57.8269i 0.184162i
\(315\) 37.0153 + 0.218738i 0.117509 + 0.000694407i
\(316\) 104.230 0.329841
\(317\) 553.376i 1.74566i −0.488020 0.872832i \(-0.662281\pi\)
0.488020 0.872832i \(-0.337719\pi\)
\(318\) −16.9350 + 16.8353i −0.0532549 + 0.0529411i
\(319\) 20.5826 0.0645222
\(320\) 373.835i 1.16824i
\(321\) −415.443 417.905i −1.29421 1.30189i
\(322\) 1.40799 0.00437263
\(323\) 309.677i 0.958751i
\(324\) −320.693 3.79034i −0.989793 0.0116986i
\(325\) −41.7439 −0.128443
\(326\) 15.4935i 0.0475262i
\(327\) 277.256 275.622i 0.847877 0.842882i
\(328\) 40.8062 0.124409
\(329\) 3.06377i 0.00931238i
\(330\) −15.3416 15.4325i −0.0464897 0.0467653i
\(331\) −227.087 −0.686062 −0.343031 0.939324i \(-0.611454\pi\)
−0.343031 + 0.939324i \(0.611454\pi\)
\(332\) 207.162i 0.623983i
\(333\) −3.35440 + 567.638i −0.0100733 + 1.70462i
\(334\) 59.2842 0.177498
\(335\) 220.872i 0.659318i
\(336\) 21.8407 21.7121i 0.0650022 0.0646192i
\(337\) −419.516 −1.24485 −0.622427 0.782678i \(-0.713853\pi\)
−0.622427 + 0.782678i \(0.713853\pi\)
\(338\) 32.1458i 0.0951059i
\(339\) −383.349 385.621i −1.13082 1.13753i
\(340\) −315.677 −0.928462
\(341\) 134.535i 0.394530i
\(342\) −43.7575 0.258581i −0.127946 0.000756083i
\(343\) 64.5521 0.188199
\(344\) 43.2378i 0.125691i
\(345\) 139.757 138.933i 0.405092 0.402705i
\(346\) 52.3909 0.151419
\(347\) 87.7142i 0.252779i 0.991981 + 0.126389i \(0.0403389\pi\)
−0.991981 + 0.126389i \(0.959661\pi\)
\(348\) −29.7454 29.9217i −0.0854752 0.0859818i
\(349\) 191.406 0.548441 0.274220 0.961667i \(-0.411580\pi\)
0.274220 + 0.961667i \(0.411580\pi\)
\(350\) 1.81734i 0.00519240i
\(351\) 57.9095 + 58.9453i 0.164984 + 0.167935i
\(352\) −55.2561 −0.156978
\(353\) 56.5655i 0.160242i −0.996785 0.0801212i \(-0.974469\pi\)
0.996785 0.0801212i \(-0.0255307\pi\)
\(354\) −3.29088 + 3.27149i −0.00929626 + 0.00924149i
\(355\) 645.006 1.81692
\(356\) 27.9164i 0.0784170i
\(357\) −17.9489 18.0553i −0.0502772 0.0505751i
\(358\) −70.5745 −0.197135
\(359\) 378.385i 1.05400i −0.849866 0.526999i \(-0.823317\pi\)
0.849866 0.526999i \(-0.176683\pi\)
\(360\) −0.529881 + 89.6675i −0.00147189 + 0.249076i
\(361\) 221.955 0.614835
\(362\) 42.0445i 0.116145i
\(363\) −185.995 + 184.899i −0.512383 + 0.509364i
\(364\) −8.01768 −0.0220266
\(365\) 473.660i 1.29770i
\(366\) 20.8274 + 20.9509i 0.0569055 + 0.0572428i
\(367\) 203.283 0.553905 0.276953 0.960884i \(-0.410675\pi\)
0.276953 + 0.960884i \(0.410675\pi\)
\(368\) 163.954i 0.445528i
\(369\) 229.128 + 1.35401i 0.620943 + 0.00366940i
\(370\) 78.9502 0.213379
\(371\) 26.1535i 0.0704946i
\(372\) −195.578 + 194.426i −0.525748 + 0.522650i
\(373\) 541.295 1.45119 0.725597 0.688120i \(-0.241564\pi\)
0.725597 + 0.688120i \(0.241564\pi\)
\(374\) 14.9667i 0.0400178i
\(375\) 149.356 + 150.241i 0.398283 + 0.400643i
\(376\) 7.42182 0.0197389
\(377\) 10.8705i 0.0288343i
\(378\) −2.56622 + 2.52112i −0.00678893 + 0.00666963i
\(379\) 30.9500 0.0816623 0.0408312 0.999166i \(-0.486999\pi\)
0.0408312 + 0.999166i \(0.486999\pi\)
\(380\) 594.251i 1.56382i
\(381\) 12.1630 12.0913i 0.0319238 0.0317357i
\(382\) 52.9094 0.138506
\(383\) 335.532i 0.876063i 0.898960 + 0.438031i \(0.144324\pi\)
−0.898960 + 0.438031i \(0.855676\pi\)
\(384\) 106.287 + 106.917i 0.276788 + 0.278429i
\(385\) 23.8331 0.0619042
\(386\) 46.6742i 0.120918i
\(387\) −1.43469 + 242.782i −0.00370722 + 0.627343i
\(388\) 422.286 1.08837
\(389\) 260.756i 0.670323i 0.942161 + 0.335161i \(0.108791\pi\)
−0.942161 + 0.335161i \(0.891209\pi\)
\(390\) 8.15057 8.10254i 0.0208989 0.0207758i
\(391\) −135.538 −0.346644
\(392\) 77.8361i 0.198562i
\(393\) −85.1239 85.6284i −0.216600 0.217884i
\(394\) 44.9514 0.114090
\(395\) 163.634i 0.414264i
\(396\) −206.492 1.22025i −0.521445 0.00308143i
\(397\) 14.8867 0.0374980 0.0187490 0.999824i \(-0.494032\pi\)
0.0187490 + 0.999824i \(0.494032\pi\)
\(398\) 8.18164i 0.0205569i
\(399\) 33.9885 33.7883i 0.0851842 0.0846823i
\(400\) −211.622 −0.529055
\(401\) 122.196i 0.304729i 0.988324 + 0.152364i \(0.0486887\pi\)
−0.988324 + 0.152364i \(0.951311\pi\)
\(402\) 15.1336 + 15.2233i 0.0376457 + 0.0378688i
\(403\) 71.0534 0.176311
\(404\) 685.756i 1.69742i
\(405\) −5.95060 + 503.468i −0.0146928 + 1.24313i
\(406\) −0.473254 −0.00116565
\(407\) 365.486i 0.898000i
\(408\) 43.7380 43.4803i 0.107201 0.106569i
\(409\) −51.7725 −0.126583 −0.0632916 0.997995i \(-0.520160\pi\)
−0.0632916 + 0.997995i \(0.520160\pi\)
\(410\) 31.8684i 0.0777278i
\(411\) 56.5992 + 56.9347i 0.137711 + 0.138527i
\(412\) −60.5994 −0.147086
\(413\) 5.08224i 0.0123057i
\(414\) −0.113174 + 19.1516i −0.000273368 + 0.0462599i
\(415\) −325.232 −0.783692
\(416\) 29.1830i 0.0701516i
\(417\) −424.277 + 421.778i −1.01745 + 1.01146i
\(418\) −28.1742 −0.0674024
\(419\) 259.597i 0.619564i 0.950808 + 0.309782i \(0.100256\pi\)
−0.950808 + 0.309782i \(0.899744\pi\)
\(420\) −34.4429 34.6471i −0.0820070 0.0824931i
\(421\) −572.956 −1.36094 −0.680471 0.732775i \(-0.738225\pi\)
−0.680471 + 0.732775i \(0.738225\pi\)
\(422\) 63.7034i 0.150956i
\(423\) 41.6738 + 0.246267i 0.0985196 + 0.000582192i
\(424\) 63.3554 0.149423
\(425\) 174.944i 0.411633i
\(426\) −44.4561 + 44.1942i −0.104357 + 0.103742i
\(427\) −32.3553 −0.0757735
\(428\) 777.726i 1.81712i
\(429\) 37.5093 + 37.7316i 0.0874342 + 0.0879524i
\(430\) 33.7675 0.0785290
\(431\) 67.2883i 0.156121i −0.996949 0.0780607i \(-0.975127\pi\)
0.996949 0.0780607i \(-0.0248728\pi\)
\(432\) 293.574 + 298.825i 0.679569 + 0.691725i
\(433\) −386.339 −0.892238 −0.446119 0.894974i \(-0.647194\pi\)
−0.446119 + 0.894974i \(0.647194\pi\)
\(434\) 3.09335i 0.00712753i
\(435\) −46.9752 + 46.6984i −0.107989 + 0.107353i
\(436\) −515.976 −1.18343
\(437\) 255.145i 0.583857i
\(438\) −32.4540 32.6463i −0.0740958 0.0745350i
\(439\) −386.344 −0.880054 −0.440027 0.897985i \(-0.645031\pi\)
−0.440027 + 0.897985i \(0.645031\pi\)
\(440\) 57.7344i 0.131215i
\(441\) −2.58272 + 437.052i −0.00585650 + 0.991048i
\(442\) −7.90452 −0.0178835
\(443\) 712.881i 1.60921i −0.593809 0.804606i \(-0.702377\pi\)
0.593809 0.804606i \(-0.297623\pi\)
\(444\) 531.321 528.190i 1.19667 1.18962i
\(445\) 43.8271 0.0984879
\(446\) 19.2418i 0.0431431i
\(447\) −372.551 374.759i −0.833447 0.838386i
\(448\) −39.7916 −0.0888206
\(449\) 667.401i 1.48642i −0.669060 0.743209i \(-0.733303\pi\)
0.669060 0.743209i \(-0.266697\pi\)
\(450\) 24.7197 + 0.146078i 0.0549326 + 0.000324619i
\(451\) 147.529 0.327115
\(452\) 717.646i 1.58771i
\(453\) −338.024 + 336.032i −0.746190 + 0.741793i
\(454\) −79.1283 −0.174291
\(455\) 12.5873i 0.0276643i
\(456\) 81.8502 + 82.3353i 0.179496 + 0.180560i
\(457\) −21.3230 −0.0466587 −0.0233294 0.999728i \(-0.507427\pi\)
−0.0233294 + 0.999728i \(0.507427\pi\)
\(458\) 42.9260i 0.0937250i
\(459\) 247.033 242.692i 0.538199 0.528741i
\(460\) −260.089 −0.565411
\(461\) 100.149i 0.217242i 0.994083 + 0.108621i \(0.0346435\pi\)
−0.994083 + 0.108621i \(0.965356\pi\)
\(462\) −1.64266 + 1.63299i −0.00355555 + 0.00353460i
\(463\) −647.449 −1.39838 −0.699189 0.714937i \(-0.746455\pi\)
−0.699189 + 0.714937i \(0.746455\pi\)
\(464\) 55.1084i 0.118768i
\(465\) 305.237 + 307.046i 0.656423 + 0.660313i
\(466\) −35.1336 −0.0753941
\(467\) 150.407i 0.322070i −0.986949 0.161035i \(-0.948517\pi\)
0.986949 0.161035i \(-0.0514832\pi\)
\(468\) 0.644463 109.057i 0.00137706 0.233028i
\(469\) −23.5099 −0.0501278
\(470\) 5.79622i 0.0123324i
\(471\) −610.964 + 607.365i −1.29716 + 1.28952i
\(472\) 12.3114 0.0260836
\(473\) 156.320i 0.330487i
\(474\) 11.2118 + 11.2783i 0.0236536 + 0.0237938i
\(475\) −329.326 −0.693317
\(476\) 33.6012i 0.0705907i
\(477\) 355.743 + 2.10223i 0.745792 + 0.00440718i
\(478\) −41.8889 −0.0876337
\(479\) 162.850i 0.339979i 0.985446 + 0.169989i \(0.0543734\pi\)
−0.985446 + 0.169989i \(0.945627\pi\)
\(480\) 126.110 125.367i 0.262729 0.261181i
\(481\) −193.028 −0.401306
\(482\) 77.8691i 0.161554i
\(483\) −14.7883 14.8759i −0.0306176 0.0307990i
\(484\) 346.139 0.715163
\(485\) 662.963i 1.36693i
\(486\) −34.0863 35.1086i −0.0701363 0.0722399i
\(487\) 372.472 0.764829 0.382414 0.923991i \(-0.375093\pi\)
0.382414 + 0.923991i \(0.375093\pi\)
\(488\) 78.3789i 0.160612i
\(489\) −163.695 + 162.731i −0.334756 + 0.332783i
\(490\) 60.7877 0.124057
\(491\) 446.687i 0.909750i 0.890555 + 0.454875i \(0.150316\pi\)
−0.890555 + 0.454875i \(0.849684\pi\)
\(492\) −213.205 214.469i −0.433343 0.435912i
\(493\) 45.5571 0.0924080
\(494\) 14.8800i 0.0301214i
\(495\) −1.91571 + 324.180i −0.00387012 + 0.654910i
\(496\) 360.207 0.726225
\(497\) 68.6555i 0.138140i
\(498\) 22.4162 22.2841i 0.0450124 0.0447472i
\(499\) 19.3772 0.0388321 0.0194160 0.999811i \(-0.493819\pi\)
0.0194160 + 0.999811i \(0.493819\pi\)
\(500\) 279.601i 0.559201i
\(501\) −622.671 626.361i −1.24286 1.25022i
\(502\) 5.95444 0.0118614
\(503\) 706.414i 1.40440i 0.711979 + 0.702200i \(0.247799\pi\)
−0.711979 + 0.702200i \(0.752201\pi\)
\(504\) 9.54435 + 0.0564014i 0.0189372 + 0.000111908i
\(505\) −1076.60 −2.13187
\(506\) 12.3312i 0.0243699i
\(507\) 339.633 337.632i 0.669888 0.665941i
\(508\) −22.6354 −0.0445579
\(509\) 193.892i 0.380927i −0.981694 0.190463i \(-0.939001\pi\)
0.981694 0.190463i \(-0.0609990\pi\)
\(510\) −33.9568 34.1581i −0.0665820 0.0669767i
\(511\) 50.4171 0.0986636
\(512\) 247.415i 0.483233i
\(513\) 456.859 + 465.031i 0.890564 + 0.906494i
\(514\) −50.0281 −0.0973309
\(515\) 95.1373i 0.184733i
\(516\) 227.249 225.910i 0.440405 0.437810i
\(517\) 26.8326 0.0519005
\(518\) 8.40359i 0.0162231i
\(519\) −550.269 553.530i −1.06025 1.06653i
\(520\) −30.4919 −0.0586384
\(521\) 153.395i 0.294424i 0.989105 + 0.147212i \(0.0470299\pi\)
−0.989105 + 0.147212i \(0.952970\pi\)
\(522\) 0.0380403 6.43725i 7.28741e−5 0.0123319i
\(523\) 701.181 1.34069 0.670345 0.742049i \(-0.266146\pi\)
0.670345 + 0.742049i \(0.266146\pi\)
\(524\) 159.355i 0.304114i
\(525\) −19.2009 + 19.0878i −0.0365732 + 0.0363577i
\(526\) −1.96191 −0.00372986
\(527\) 297.777i 0.565041i
\(528\) 190.154 + 191.281i 0.360141 + 0.362275i
\(529\) 417.329 0.788902
\(530\) 49.4787i 0.0933560i
\(531\) 69.1291 + 0.408512i 0.130187 + 0.000769325i
\(532\) −63.2530 −0.118897
\(533\) 77.9163i 0.146184i
\(534\) −3.02072 + 3.00292i −0.00565678 + 0.00562345i
\(535\) 1220.98 2.28221
\(536\) 56.9515i 0.106253i
\(537\) 741.254 + 745.648i 1.38036 + 1.38854i
\(538\) −62.3882 −0.115963
\(539\) 281.406i 0.522088i
\(540\) 474.042 465.712i 0.877855 0.862429i
\(541\) −787.414 −1.45548 −0.727739 0.685854i \(-0.759429\pi\)
−0.727739 + 0.685854i \(0.759429\pi\)
\(542\) 37.3559i 0.0689223i
\(543\) −444.216 + 441.599i −0.818078 + 0.813258i
\(544\) −122.303 −0.224821
\(545\) 810.051i 1.48633i
\(546\) −0.862448 0.867559i −0.00157957 0.00158894i
\(547\) 814.439 1.48892 0.744460 0.667667i \(-0.232707\pi\)
0.744460 + 0.667667i \(0.232707\pi\)
\(548\) 105.956i 0.193350i
\(549\) 2.60073 440.100i 0.00473721 0.801639i
\(550\) 15.9163 0.0289387
\(551\) 85.7597i 0.155644i
\(552\) 36.0361 35.8238i 0.0652829 0.0648982i
\(553\) −17.4175 −0.0314964
\(554\) 13.3731i 0.0241392i
\(555\) −829.226 834.141i −1.49410 1.50296i
\(556\) 789.585 1.42012
\(557\) 241.406i 0.433403i −0.976238 0.216702i \(-0.930470\pi\)
0.976238 0.216702i \(-0.0695299\pi\)
\(558\) −42.0760 0.248644i −0.0754050 0.000445599i
\(559\) −82.5593 −0.147691
\(560\) 63.8115i 0.113949i
\(561\) 158.129 157.197i 0.281869 0.280209i
\(562\) 45.3365 0.0806699
\(563\) 1026.75i 1.82371i 0.410514 + 0.911854i \(0.365349\pi\)
−0.410514 + 0.911854i \(0.634651\pi\)
\(564\) −38.7777 39.0075i −0.0687548 0.0691623i
\(565\) 1126.66 1.99409
\(566\) 38.8152i 0.0685780i
\(567\) 53.5900 + 0.633391i 0.0945149 + 0.00111709i
\(568\) 166.314 0.292807
\(569\) 388.817i 0.683334i −0.939821 0.341667i \(-0.889008\pi\)
0.939821 0.341667i \(-0.110992\pi\)
\(570\) 64.3014 63.9226i 0.112809 0.112145i
\(571\) −181.869 −0.318510 −0.159255 0.987238i \(-0.550909\pi\)
−0.159255 + 0.987238i \(0.550909\pi\)
\(572\) 70.2189i 0.122760i
\(573\) −555.715 559.009i −0.969834 0.975582i
\(574\) −3.39212 −0.00590962
\(575\) 144.138i 0.250674i
\(576\) 3.19846 541.250i 0.00555289 0.939670i
\(577\) −670.081 −1.16132 −0.580659 0.814147i \(-0.697205\pi\)
−0.580659 + 0.814147i \(0.697205\pi\)
\(578\) 25.0697i 0.0433731i
\(579\) 493.131 490.226i 0.851695 0.846677i
\(580\) 87.4214 0.150727
\(581\) 34.6182i 0.0595839i
\(582\) 45.4246 + 45.6938i 0.0780491 + 0.0785117i
\(583\) 229.053 0.392886
\(584\) 122.133i 0.209131i
\(585\) −171.213 1.01177i −0.292672 0.00172952i
\(586\) 9.96873 0.0170115
\(587\) 184.990i 0.315145i −0.987507 0.157572i \(-0.949633\pi\)
0.987507 0.157572i \(-0.0503668\pi\)
\(588\) 409.090 406.680i 0.695731 0.691632i
\(589\) 560.554 0.951705
\(590\) 9.61487i 0.0162964i
\(591\) −472.131 474.929i −0.798868 0.803603i
\(592\) −978.564 −1.65298
\(593\) 551.382i 0.929818i −0.885358 0.464909i \(-0.846087\pi\)
0.885358 0.464909i \(-0.153913\pi\)
\(594\) −22.0800 22.4749i −0.0371717 0.0378366i
\(595\) 52.7518 0.0886584
\(596\) 697.430i 1.17019i
\(597\) −86.4423 + 85.9330i −0.144794 + 0.143941i
\(598\) −6.51260 −0.0108906
\(599\) 1007.58i 1.68211i 0.540950 + 0.841055i \(0.318065\pi\)
−0.540950 + 0.841055i \(0.681935\pi\)
\(600\) −46.2392 46.5132i −0.0770653 0.0775220i
\(601\) −494.345 −0.822538 −0.411269 0.911514i \(-0.634914\pi\)
−0.411269 + 0.911514i \(0.634914\pi\)
\(602\) 3.59426i 0.00597054i
\(603\) 1.88974 319.785i 0.00313389 0.530323i
\(604\) 629.066 1.04150
\(605\) 543.417i 0.898209i
\(606\) 74.2028 73.7656i 0.122447 0.121725i
\(607\) −966.032 −1.59149 −0.795743 0.605635i \(-0.792919\pi\)
−0.795743 + 0.605635i \(0.792919\pi\)
\(608\) 230.231i 0.378669i
\(609\) 4.97065 + 5.00011i 0.00816199 + 0.00821037i
\(610\) −61.2116 −0.100347
\(611\) 14.1714i 0.0231938i
\(612\) −457.047 2.70087i −0.746808 0.00441319i
\(613\) 354.491 0.578289 0.289144 0.957285i \(-0.406629\pi\)
0.289144 + 0.957285i \(0.406629\pi\)
\(614\) 65.6975i 0.106999i
\(615\) −336.702 + 334.719i −0.547484 + 0.544258i
\(616\) 6.14534 0.00997620
\(617\) 474.368i 0.768830i −0.923160 0.384415i \(-0.874403\pi\)
0.923160 0.384415i \(-0.125597\pi\)
\(618\) −6.51857 6.55721i −0.0105479 0.0106104i
\(619\) 684.540 1.10588 0.552940 0.833221i \(-0.313506\pi\)
0.552940 + 0.833221i \(0.313506\pi\)
\(620\) 571.416i 0.921638i
\(621\) 203.533 199.956i 0.327750 0.321991i
\(622\) 106.798 0.171701
\(623\) 4.66503i 0.00748801i
\(624\) −101.024 + 100.428i −0.161897 + 0.160943i
\(625\) −779.951 −1.24792
\(626\) 66.4790i 0.106197i
\(627\) 295.918 + 297.672i 0.471958 + 0.474756i
\(628\) 1137.01 1.81053
\(629\) 808.960i 1.28611i
\(630\) 0.0440478 7.45386i 6.99172e−5 0.0118315i
\(631\) −162.171 −0.257006 −0.128503 0.991709i \(-0.541017\pi\)
−0.128503 + 0.991709i \(0.541017\pi\)
\(632\) 42.1930i 0.0667610i
\(633\) 673.052 669.086i 1.06327 1.05701i
\(634\) −111.435 −0.175764
\(635\) 35.5362i 0.0559625i
\(636\) −331.021 332.983i −0.520473 0.523557i
\(637\) −148.622 −0.233316
\(638\) 4.14476i 0.00649649i
\(639\) 933.859 + 5.51855i 1.46144 + 0.00863622i
\(640\) −312.376 −0.488087
\(641\) 893.542i 1.39398i −0.717080 0.696991i \(-0.754522\pi\)
0.717080 0.696991i \(-0.245478\pi\)
\(642\) −84.1545 + 83.6587i −0.131082 + 0.130309i
\(643\) 420.351 0.653734 0.326867 0.945070i \(-0.394007\pi\)
0.326867 + 0.945070i \(0.394007\pi\)
\(644\) 27.6843i 0.0429880i
\(645\) −354.665 356.767i −0.549868 0.553127i
\(646\) −62.3603 −0.0965330
\(647\) 618.128i 0.955375i −0.878530 0.477687i \(-0.841475\pi\)
0.878530 0.477687i \(-0.158525\pi\)
\(648\) −1.53436 + 129.819i −0.00236783 + 0.200338i
\(649\) 44.5103 0.0685829
\(650\) 8.40606i 0.0129324i
\(651\) 32.6824 32.4899i 0.0502034 0.0499076i
\(652\) 304.639 0.467238
\(653\) 54.2816i 0.0831265i −0.999136 0.0415632i \(-0.986766\pi\)
0.999136 0.0415632i \(-0.0132338\pi\)
\(654\) −55.5027 55.8317i −0.0848665 0.0853695i
\(655\) 250.178 0.381952
\(656\) 394.999i 0.602132i
\(657\) −4.05254 + 685.778i −0.00616825 + 1.04380i
\(658\) −0.616959 −0.000937628
\(659\) 53.8500i 0.0817147i 0.999165 + 0.0408573i \(0.0130089\pi\)
−0.999165 + 0.0408573i \(0.986991\pi\)
\(660\) 303.440 301.652i 0.459757 0.457048i
\(661\) 848.128 1.28310 0.641549 0.767082i \(-0.278292\pi\)
0.641549 + 0.767082i \(0.278292\pi\)
\(662\) 45.7290i 0.0690770i
\(663\) 83.0223 + 83.5144i 0.125222 + 0.125964i
\(664\) −83.8607 −0.126296
\(665\) 99.3034i 0.149328i
\(666\) 114.307 + 0.675483i 0.171631 + 0.00101424i
\(667\) 37.5349 0.0562742
\(668\) 1165.67i 1.74501i
\(669\) 203.298 202.100i 0.303883 0.302092i
\(670\) −44.4774 −0.0663842
\(671\) 283.368i 0.422307i
\(672\) −13.3442 13.4233i −0.0198575 0.0199752i
\(673\) −701.378 −1.04217 −0.521083 0.853506i \(-0.674472\pi\)
−0.521083 + 0.853506i \(0.674472\pi\)
\(674\) 84.4788i 0.125340i
\(675\) −258.091 262.707i −0.382357 0.389196i
\(676\) −632.061 −0.935002
\(677\) 153.683i 0.227006i 0.993538 + 0.113503i \(0.0362071\pi\)
−0.993538 + 0.113503i \(0.963793\pi\)
\(678\) −77.6535 + 77.1959i −0.114533 + 0.113858i
\(679\) −70.5668 −0.103928
\(680\) 127.788i 0.187924i
\(681\) 831.096 + 836.022i 1.22040 + 1.22764i
\(682\) −27.0916 −0.0397237
\(683\) 623.259i 0.912531i 0.889844 + 0.456266i \(0.150813\pi\)
−0.889844 + 0.456266i \(0.849187\pi\)
\(684\) 5.08430 860.374i 0.00743318 1.25786i
\(685\) −166.345 −0.242839
\(686\) 12.9990i 0.0189490i
\(687\) −453.531 + 450.859i −0.660161 + 0.656272i
\(688\) −418.537 −0.608339
\(689\) 120.972i 0.175577i
\(690\) −27.9773 28.1432i −0.0405469 0.0407872i
\(691\) 219.421 0.317542 0.158771 0.987315i \(-0.449247\pi\)
0.158771 + 0.987315i \(0.449247\pi\)
\(692\) 1030.13i 1.48862i
\(693\) 34.5063 + 0.203911i 0.0497926 + 0.000294244i
\(694\) 17.6632 0.0254513
\(695\) 1239.60i 1.78360i
\(696\) −12.1125 + 12.0411i −0.0174030 + 0.0173005i
\(697\) 326.538 0.468491
\(698\) 38.5438i 0.0552204i
\(699\) 369.014 + 371.201i 0.527917 + 0.531046i
\(700\) 35.7332 0.0510474
\(701\) 681.802i 0.972613i 0.873788 + 0.486307i \(0.161656\pi\)
−0.873788 + 0.486307i \(0.838344\pi\)
\(702\) 11.8700 11.6614i 0.0169088 0.0166116i
\(703\) −1522.84 −2.16620
\(704\) 348.496i 0.495022i
\(705\) −61.2394 + 60.8786i −0.0868644 + 0.0863526i
\(706\) −11.3907 −0.0161342
\(707\) 114.595i 0.162086i
\(708\) −64.3250 64.7063i −0.0908546 0.0913931i
\(709\) −1188.93 −1.67692 −0.838458 0.544966i \(-0.816542\pi\)
−0.838458 + 0.544966i \(0.816542\pi\)
\(710\) 129.886i 0.182939i
\(711\) 1.40002 236.915i 0.00196909 0.333214i
\(712\) 11.3008 0.0158719
\(713\) 245.341i 0.344096i
\(714\) −3.63584 + 3.61442i −0.00509222 + 0.00506221i
\(715\) −110.239 −0.154181
\(716\) 1387.66i 1.93807i
\(717\) 439.966 + 442.573i 0.613620 + 0.617257i
\(718\) −76.1964 −0.106123
\(719\) 789.054i 1.09743i 0.836009 + 0.548716i \(0.184883\pi\)
−0.836009 + 0.548716i \(0.815117\pi\)
\(720\) −867.971 5.12919i −1.20551 0.00712387i
\(721\) 10.1266 0.0140452
\(722\) 44.6957i 0.0619054i
\(723\) 822.718 817.871i 1.13792 1.13122i
\(724\) 826.692 1.14184
\(725\) 48.4477i 0.0668244i
\(726\) 37.2335 + 37.4542i 0.0512859 + 0.0515898i
\(727\) −486.812 −0.669617 −0.334808 0.942286i \(-0.608672\pi\)
−0.334808 + 0.942286i \(0.608672\pi\)
\(728\) 3.24561i 0.00445826i
\(729\) −12.9230 + 728.885i −0.0177271 + 0.999843i
\(730\) 95.3819 0.130660
\(731\) 345.997i 0.473320i
\(732\) −411.943 + 409.515i −0.562763 + 0.559447i
\(733\) 53.4071 0.0728609 0.0364305 0.999336i \(-0.488401\pi\)
0.0364305 + 0.999336i \(0.488401\pi\)
\(734\) 40.9356i 0.0557706i
\(735\) −638.462 642.246i −0.868656 0.873804i
\(736\) −100.766 −0.136911
\(737\) 205.900i 0.279376i
\(738\) 0.272660 46.1400i 0.000369458 0.0625204i
\(739\) −985.718 −1.33385 −0.666927 0.745123i \(-0.732391\pi\)
−0.666927 + 0.745123i \(0.732391\pi\)
\(740\) 1552.35i 2.09776i
\(741\) −157.213 + 156.287i −0.212163 + 0.210913i
\(742\) −5.26659 −0.00709783
\(743\) 227.475i 0.306157i −0.988214 0.153078i \(-0.951081\pi\)
0.988214 0.153078i \(-0.0489187\pi\)
\(744\) 78.7049 + 79.1714i 0.105786 + 0.106413i
\(745\) 1094.92 1.46969
\(746\) 109.002i 0.146115i
\(747\) −470.881 2.78262i −0.630362 0.00372506i
\(748\) −294.279 −0.393422
\(749\) 129.963i 0.173516i
\(750\) 30.2544 30.0762i 0.0403392 0.0401016i
\(751\) 828.891 1.10372 0.551858 0.833938i \(-0.313919\pi\)
0.551858 + 0.833938i \(0.313919\pi\)
\(752\) 71.8424i 0.0955351i
\(753\) −62.5404 62.9111i −0.0830550 0.0835472i
\(754\) 2.18902 0.00290321
\(755\) 987.596i 1.30807i
\(756\) −49.5711 50.4578i −0.0655702 0.0667431i
\(757\) 226.194 0.298804 0.149402 0.988777i \(-0.452265\pi\)
0.149402 + 0.988777i \(0.452265\pi\)
\(758\) 6.23248i 0.00822227i
\(759\) 130.284 129.516i 0.171652 0.170640i
\(760\) −240.557 −0.316522
\(761\) 900.642i 1.18350i 0.806122 + 0.591749i \(0.201562\pi\)
−0.806122 + 0.591749i \(0.798438\pi\)
\(762\) −2.43485 2.44928i −0.00319534 0.00321428i
\(763\) 86.2232 0.113005
\(764\) 1040.32i 1.36168i
\(765\) −4.24020 + 717.535i −0.00554275 + 0.937954i
\(766\) 67.5669 0.0882074
\(767\) 23.5077i 0.0306489i
\(768\) −490.280 + 487.391i −0.638385 + 0.634624i
\(769\) −4.80971 −0.00625450 −0.00312725 0.999995i \(-0.500995\pi\)
−0.00312725 + 0.999995i \(0.500995\pi\)
\(770\) 4.79933i 0.00623289i
\(771\) 525.452 + 528.567i 0.681521 + 0.685560i
\(772\) −917.723 −1.18876
\(773\) 380.638i 0.492417i −0.969217 0.246208i \(-0.920815\pi\)
0.969217 0.246208i \(-0.0791847\pi\)
\(774\) 48.8895 + 0.288908i 0.0631648 + 0.000373266i
\(775\) −316.671 −0.408607
\(776\) 170.944i 0.220289i
\(777\) −88.7873 + 88.2642i −0.114269 + 0.113596i
\(778\) 52.5090 0.0674922
\(779\) 614.697i 0.789084i
\(780\) 159.315 + 160.259i 0.204250 + 0.205460i
\(781\) 601.285 0.769892
\(782\) 27.2936i 0.0349023i
\(783\) −68.4116 + 67.2094i −0.0873712 + 0.0858358i
\(784\) −753.444 −0.961026
\(785\) 1785.04i 2.27393i