Properties

Label 177.3.b.a.119.14
Level $177$
Weight $3$
Character 177.119
Analytic conductor $4.823$
Analytic rank $0$
Dimension $38$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 177.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.82290067918\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 119.14
Character \(\chi\) \(=\) 177.119
Dual form 177.3.b.a.119.25

$q$-expansion

\(f(q)\) \(=\) \(q-1.50430i q^{2} +(2.93642 - 0.614364i) q^{3} +1.73708 q^{4} +1.04714i q^{5} +(-0.924188 - 4.41725i) q^{6} -6.70636 q^{7} -8.63029i q^{8} +(8.24511 - 3.60806i) q^{9} +O(q^{10})\) \(q-1.50430i q^{2} +(2.93642 - 0.614364i) q^{3} +1.73708 q^{4} +1.04714i q^{5} +(-0.924188 - 4.41725i) q^{6} -6.70636 q^{7} -8.63029i q^{8} +(8.24511 - 3.60806i) q^{9} +1.57522 q^{10} -13.0295i q^{11} +(5.10080 - 1.06720i) q^{12} +15.6086 q^{13} +10.0884i q^{14} +(0.643327 + 3.07485i) q^{15} -6.03421 q^{16} +23.4435i q^{17} +(-5.42761 - 12.4031i) q^{18} -3.66427 q^{19} +1.81897i q^{20} +(-19.6927 + 4.12015i) q^{21} -19.6003 q^{22} -7.48394i q^{23} +(-5.30214 - 25.3422i) q^{24} +23.9035 q^{25} -23.4801i q^{26} +(21.9944 - 15.6603i) q^{27} -11.6495 q^{28} +55.2663i q^{29} +(4.62550 - 0.967757i) q^{30} -48.1479 q^{31} -25.4439i q^{32} +(-8.00486 - 38.2601i) q^{33} +35.2660 q^{34} -7.02251i q^{35} +(14.3224 - 6.26750i) q^{36} -61.5262 q^{37} +5.51216i q^{38} +(45.8335 - 9.58939i) q^{39} +9.03715 q^{40} +23.5016i q^{41} +(6.19793 + 29.6237i) q^{42} -2.28122 q^{43} -22.6333i q^{44} +(3.77816 + 8.63381i) q^{45} -11.2581 q^{46} +89.1953i q^{47} +(-17.7190 + 3.70720i) q^{48} -4.02479 q^{49} -35.9580i q^{50} +(14.4028 + 68.8399i) q^{51} +27.1135 q^{52} +11.9800i q^{53} +(-23.5578 - 33.0862i) q^{54} +13.6438 q^{55} +57.8778i q^{56} +(-10.7598 + 2.25120i) q^{57} +83.1371 q^{58} -7.68115i q^{59} +(1.11751 + 5.34127i) q^{60} +69.8136 q^{61} +72.4288i q^{62} +(-55.2947 + 24.1969i) q^{63} -62.4121 q^{64} +16.3445i q^{65} +(-57.5546 + 12.0417i) q^{66} -41.2944 q^{67} +40.7233i q^{68} +(-4.59787 - 21.9760i) q^{69} -10.5640 q^{70} -73.6101i q^{71} +(-31.1386 - 71.1577i) q^{72} +78.0150 q^{73} +92.5538i q^{74} +(70.1907 - 14.6855i) q^{75} -6.36514 q^{76} +87.3805i q^{77} +(-14.4253 - 68.9473i) q^{78} +16.5574 q^{79} -6.31868i q^{80} +(54.9638 - 59.4978i) q^{81} +35.3534 q^{82} +17.9481i q^{83} +(-34.2078 + 7.15704i) q^{84} -24.5487 q^{85} +3.43163i q^{86} +(33.9537 + 162.285i) q^{87} -112.448 q^{88} +11.3114i q^{89} +(12.9878 - 5.68348i) q^{90} -104.677 q^{91} -13.0002i q^{92} +(-141.382 + 29.5803i) q^{93} +134.177 q^{94} -3.83701i q^{95} +(-15.6318 - 74.7140i) q^{96} +29.9370 q^{97} +6.05450i q^{98} +(-47.0113 - 107.430i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38q - 76q^{4} - 8q^{6} - 12q^{7} + 20q^{9} + O(q^{10}) \) \( 38q - 76q^{4} - 8q^{6} - 12q^{7} + 20q^{9} + 36q^{10} - 4q^{13} - 17q^{15} + 100q^{16} - 2q^{18} - 28q^{19} - 11q^{21} + 84q^{22} - 6q^{24} - 166q^{25} + 3q^{27} + 12q^{28} + 102q^{30} - 40q^{31} - 46q^{33} - 148q^{34} - 96q^{36} + 112q^{37} + 62q^{39} - 56q^{40} + 14q^{42} + 164q^{43} + 55q^{45} - 4q^{46} - 124q^{48} + 242q^{49} + 52q^{51} + 8q^{52} + 18q^{54} - 228q^{55} - 147q^{57} - 80q^{58} + 128q^{60} + 12q^{61} + 86q^{63} + 48q^{64} - 24q^{66} + 124q^{67} - 240q^{69} + 148q^{70} + 166q^{72} - 192q^{73} - 78q^{75} - 304q^{76} + 244q^{78} + 64q^{79} - 156q^{81} - 180q^{82} + 300q^{84} - 52q^{85} - 83q^{87} - 96q^{88} - 376q^{90} - 332q^{91} + 454q^{93} + 768q^{94} - 722q^{96} + 416q^{97} + 494q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/177\mathbb{Z}\right)^\times\).

\(n\) \(61\) \(119\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50430i 0.752150i −0.926589 0.376075i \(-0.877274\pi\)
0.926589 0.376075i \(-0.122726\pi\)
\(3\) 2.93642 0.614364i 0.978806 0.204788i
\(4\) 1.73708 0.434271
\(5\) 1.04714i 0.209429i 0.994502 + 0.104714i \(0.0333928\pi\)
−0.994502 + 0.104714i \(0.966607\pi\)
\(6\) −0.924188 4.41725i −0.154031 0.736209i
\(7\) −6.70636 −0.958051 −0.479025 0.877801i \(-0.659010\pi\)
−0.479025 + 0.877801i \(0.659010\pi\)
\(8\) 8.63029i 1.07879i
\(9\) 8.24511 3.60806i 0.916124 0.400896i
\(10\) 1.57522 0.157522
\(11\) 13.0295i 1.18450i −0.805754 0.592250i \(-0.798240\pi\)
0.805754 0.592250i \(-0.201760\pi\)
\(12\) 5.10080 1.06720i 0.425067 0.0889335i
\(13\) 15.6086 1.20066 0.600332 0.799751i \(-0.295035\pi\)
0.600332 + 0.799751i \(0.295035\pi\)
\(14\) 10.0884i 0.720598i
\(15\) 0.643327 + 3.07485i 0.0428885 + 0.204990i
\(16\) −6.03421 −0.377138
\(17\) 23.4435i 1.37903i 0.724272 + 0.689514i \(0.242176\pi\)
−0.724272 + 0.689514i \(0.757824\pi\)
\(18\) −5.42761 12.4031i −0.301534 0.689062i
\(19\) −3.66427 −0.192856 −0.0964281 0.995340i \(-0.530742\pi\)
−0.0964281 + 0.995340i \(0.530742\pi\)
\(20\) 1.81897i 0.0909487i
\(21\) −19.6927 + 4.12015i −0.937746 + 0.196197i
\(22\) −19.6003 −0.890922
\(23\) 7.48394i 0.325389i −0.986677 0.162694i \(-0.947982\pi\)
0.986677 0.162694i \(-0.0520184\pi\)
\(24\) −5.30214 25.3422i −0.220923 1.05592i
\(25\) 23.9035 0.956140
\(26\) 23.4801i 0.903080i
\(27\) 21.9944 15.6603i 0.814609 0.580011i
\(28\) −11.6495 −0.416053
\(29\) 55.2663i 1.90573i 0.303387 + 0.952867i \(0.401882\pi\)
−0.303387 + 0.952867i \(0.598118\pi\)
\(30\) 4.62550 0.967757i 0.154183 0.0322586i
\(31\) −48.1479 −1.55316 −0.776579 0.630020i \(-0.783047\pi\)
−0.776579 + 0.630020i \(0.783047\pi\)
\(32\) 25.4439i 0.795122i
\(33\) −8.00486 38.2601i −0.242572 1.15940i
\(34\) 35.2660 1.03724
\(35\) 7.02251i 0.200643i
\(36\) 14.3224 6.26750i 0.397846 0.174097i
\(37\) −61.5262 −1.66287 −0.831435 0.555622i \(-0.812480\pi\)
−0.831435 + 0.555622i \(0.812480\pi\)
\(38\) 5.51216i 0.145057i
\(39\) 45.8335 9.58939i 1.17522 0.245882i
\(40\) 9.03715 0.225929
\(41\) 23.5016i 0.573210i 0.958049 + 0.286605i \(0.0925267\pi\)
−0.958049 + 0.286605i \(0.907473\pi\)
\(42\) 6.19793 + 29.6237i 0.147570 + 0.705326i
\(43\) −2.28122 −0.0530516 −0.0265258 0.999648i \(-0.508444\pi\)
−0.0265258 + 0.999648i \(0.508444\pi\)
\(44\) 22.6333i 0.514394i
\(45\) 3.77816 + 8.63381i 0.0839590 + 0.191862i
\(46\) −11.2581 −0.244741
\(47\) 89.1953i 1.89777i 0.315617 + 0.948887i \(0.397789\pi\)
−0.315617 + 0.948887i \(0.602211\pi\)
\(48\) −17.7190 + 3.70720i −0.369145 + 0.0772334i
\(49\) −4.02479 −0.0821386
\(50\) 35.9580i 0.719160i
\(51\) 14.4028 + 68.8399i 0.282409 + 1.34980i
\(52\) 27.1135 0.521414
\(53\) 11.9800i 0.226038i 0.993593 + 0.113019i \(0.0360521\pi\)
−0.993593 + 0.113019i \(0.963948\pi\)
\(54\) −23.5578 33.0862i −0.436255 0.612708i
\(55\) 13.6438 0.248068
\(56\) 57.8778i 1.03353i
\(57\) −10.7598 + 2.25120i −0.188769 + 0.0394947i
\(58\) 83.1371 1.43340
\(59\) 7.68115i 0.130189i
\(60\) 1.11751 + 5.34127i 0.0186252 + 0.0890212i
\(61\) 69.8136 1.14449 0.572243 0.820084i \(-0.306073\pi\)
0.572243 + 0.820084i \(0.306073\pi\)
\(62\) 72.4288i 1.16821i
\(63\) −55.2947 + 24.1969i −0.877693 + 0.384079i
\(64\) −62.4121 −0.975189
\(65\) 16.3445i 0.251454i
\(66\) −57.5546 + 12.0417i −0.872040 + 0.182450i
\(67\) −41.2944 −0.616335 −0.308168 0.951332i \(-0.599716\pi\)
−0.308168 + 0.951332i \(0.599716\pi\)
\(68\) 40.7233i 0.598872i
\(69\) −4.59787 21.9760i −0.0666357 0.318492i
\(70\) −10.5640 −0.150914
\(71\) 73.6101i 1.03676i −0.855150 0.518381i \(-0.826535\pi\)
0.855150 0.518381i \(-0.173465\pi\)
\(72\) −31.1386 71.1577i −0.432481 0.988302i
\(73\) 78.0150 1.06870 0.534349 0.845264i \(-0.320557\pi\)
0.534349 + 0.845264i \(0.320557\pi\)
\(74\) 92.5538i 1.25073i
\(75\) 70.1907 14.6855i 0.935876 0.195806i
\(76\) −6.36514 −0.0837518
\(77\) 87.3805i 1.13481i
\(78\) −14.4253 68.9473i −0.184940 0.883940i
\(79\) 16.5574 0.209588 0.104794 0.994494i \(-0.466582\pi\)
0.104794 + 0.994494i \(0.466582\pi\)
\(80\) 6.31868i 0.0789835i
\(81\) 54.9638 59.4978i 0.678565 0.734540i
\(82\) 35.3534 0.431140
\(83\) 17.9481i 0.216242i 0.994138 + 0.108121i \(0.0344834\pi\)
−0.994138 + 0.108121i \(0.965517\pi\)
\(84\) −34.2078 + 7.15704i −0.407236 + 0.0852028i
\(85\) −24.5487 −0.288808
\(86\) 3.43163i 0.0399027i
\(87\) 33.9537 + 162.285i 0.390272 + 1.86535i
\(88\) −112.448 −1.27782
\(89\) 11.3114i 0.127095i 0.997979 + 0.0635473i \(0.0202414\pi\)
−0.997979 + 0.0635473i \(0.979759\pi\)
\(90\) 12.9878 5.68348i 0.144309 0.0631498i
\(91\) −104.677 −1.15030
\(92\) 13.0002i 0.141307i
\(93\) −141.382 + 29.5803i −1.52024 + 0.318068i
\(94\) 134.177 1.42741
\(95\) 3.83701i 0.0403896i
\(96\) −15.6318 74.7140i −0.162832 0.778270i
\(97\) 29.9370 0.308628 0.154314 0.988022i \(-0.450683\pi\)
0.154314 + 0.988022i \(0.450683\pi\)
\(98\) 6.05450i 0.0617806i
\(99\) −47.0113 107.430i −0.474861 1.08515i
\(100\) 41.5223 0.415223
\(101\) 168.802i 1.67131i −0.549255 0.835655i \(-0.685089\pi\)
0.549255 0.835655i \(-0.314911\pi\)
\(102\) 103.556 21.6662i 1.01525 0.212414i
\(103\) 93.0507 0.903404 0.451702 0.892169i \(-0.350817\pi\)
0.451702 + 0.892169i \(0.350817\pi\)
\(104\) 134.707i 1.29526i
\(105\) −4.31438 20.6210i −0.0410894 0.196391i
\(106\) 18.0215 0.170014
\(107\) 20.5910i 0.192439i 0.995360 + 0.0962194i \(0.0306751\pi\)
−0.995360 + 0.0962194i \(0.969325\pi\)
\(108\) 38.2062 27.2032i 0.353761 0.251882i
\(109\) −135.021 −1.23872 −0.619362 0.785106i \(-0.712609\pi\)
−0.619362 + 0.785106i \(0.712609\pi\)
\(110\) 20.5243i 0.186584i
\(111\) −180.667 + 37.7995i −1.62763 + 0.340536i
\(112\) 40.4676 0.361318
\(113\) 204.558i 1.81025i −0.425150 0.905123i \(-0.639779\pi\)
0.425150 0.905123i \(-0.360221\pi\)
\(114\) 3.38647 + 16.1860i 0.0297059 + 0.141983i
\(115\) 7.83675 0.0681457
\(116\) 96.0022i 0.827605i
\(117\) 128.695 56.3170i 1.09996 0.481342i
\(118\) −11.5547 −0.0979216
\(119\) 157.220i 1.32118i
\(120\) 26.5369 5.55210i 0.221140 0.0462675i
\(121\) −48.7680 −0.403042
\(122\) 105.021i 0.860825i
\(123\) 14.4385 + 69.0105i 0.117387 + 0.561061i
\(124\) −83.6368 −0.674491
\(125\) 51.2089i 0.409672i
\(126\) 36.3995 + 83.1797i 0.288885 + 0.660157i
\(127\) 56.4029 0.444118 0.222059 0.975033i \(-0.428722\pi\)
0.222059 + 0.975033i \(0.428722\pi\)
\(128\) 7.88914i 0.0616339i
\(129\) −6.69861 + 1.40150i −0.0519272 + 0.0108643i
\(130\) 24.5870 0.189131
\(131\) 132.495i 1.01141i 0.862706 + 0.505706i \(0.168768\pi\)
−0.862706 + 0.505706i \(0.831232\pi\)
\(132\) −13.9051 66.4610i −0.105342 0.503492i
\(133\) 24.5739 0.184766
\(134\) 62.1192i 0.463576i
\(135\) 16.3986 + 23.0313i 0.121471 + 0.170602i
\(136\) 202.324 1.48768
\(137\) 28.0963i 0.205082i −0.994729 0.102541i \(-0.967303\pi\)
0.994729 0.102541i \(-0.0326973\pi\)
\(138\) −33.0585 + 6.91657i −0.239554 + 0.0501200i
\(139\) −188.801 −1.35828 −0.679141 0.734008i \(-0.737647\pi\)
−0.679141 + 0.734008i \(0.737647\pi\)
\(140\) 12.1987i 0.0871335i
\(141\) 54.7984 + 261.915i 0.388641 + 1.85755i
\(142\) −110.732 −0.779800
\(143\) 203.373i 1.42219i
\(144\) −49.7527 + 21.7718i −0.345505 + 0.151193i
\(145\) −57.8717 −0.399115
\(146\) 117.358i 0.803821i
\(147\) −11.8185 + 2.47269i −0.0803978 + 0.0168210i
\(148\) −106.876 −0.722136
\(149\) 61.0699i 0.409865i −0.978776 0.204932i \(-0.934303\pi\)
0.978776 0.204932i \(-0.0656975\pi\)
\(150\) −22.0913 105.588i −0.147275 0.703919i
\(151\) 93.7581 0.620915 0.310457 0.950587i \(-0.399518\pi\)
0.310457 + 0.950587i \(0.399518\pi\)
\(152\) 31.6237i 0.208051i
\(153\) 84.5855 + 193.294i 0.552847 + 1.26336i
\(154\) 131.446 0.853548
\(155\) 50.4177i 0.325276i
\(156\) 79.6166 16.6576i 0.510363 0.106779i
\(157\) −17.5679 −0.111898 −0.0559488 0.998434i \(-0.517818\pi\)
−0.0559488 + 0.998434i \(0.517818\pi\)
\(158\) 24.9074i 0.157642i
\(159\) 7.36008 + 35.1783i 0.0462898 + 0.221247i
\(160\) 26.6434 0.166521
\(161\) 50.1900i 0.311739i
\(162\) −89.5025 82.6820i −0.552484 0.510383i
\(163\) 131.130 0.804481 0.402240 0.915534i \(-0.368232\pi\)
0.402240 + 0.915534i \(0.368232\pi\)
\(164\) 40.8242i 0.248928i
\(165\) 40.0638 8.38224i 0.242811 0.0508014i
\(166\) 26.9993 0.162646
\(167\) 117.311i 0.702461i −0.936289 0.351231i \(-0.885763\pi\)
0.936289 0.351231i \(-0.114237\pi\)
\(168\) 35.5581 + 169.953i 0.211655 + 1.01163i
\(169\) 74.6298 0.441596
\(170\) 36.9286i 0.217227i
\(171\) −30.2123 + 13.2209i −0.176680 + 0.0773153i
\(172\) −3.96266 −0.0230387
\(173\) 181.941i 1.05168i 0.850583 + 0.525840i \(0.176249\pi\)
−0.850583 + 0.525840i \(0.823751\pi\)
\(174\) 244.125 51.0765i 1.40302 0.293543i
\(175\) −160.305 −0.916030
\(176\) 78.6228i 0.446720i
\(177\) −4.71902 22.5551i −0.0266611 0.127430i
\(178\) 17.0158 0.0955942
\(179\) 300.060i 1.67632i −0.545428 0.838158i \(-0.683633\pi\)
0.545428 0.838158i \(-0.316367\pi\)
\(180\) 6.56297 + 14.9976i 0.0364610 + 0.0833203i
\(181\) −95.6689 −0.528557 −0.264279 0.964446i \(-0.585134\pi\)
−0.264279 + 0.964446i \(0.585134\pi\)
\(182\) 157.466i 0.865196i
\(183\) 205.002 42.8910i 1.12023 0.234377i
\(184\) −64.5886 −0.351025
\(185\) 64.4267i 0.348253i
\(186\) 44.4977 + 212.681i 0.239235 + 1.14345i
\(187\) 305.457 1.63346
\(188\) 154.940i 0.824147i
\(189\) −147.503 + 105.023i −0.780437 + 0.555680i
\(190\) −5.77202 −0.0303790
\(191\) 122.292i 0.640274i 0.947371 + 0.320137i \(0.103729\pi\)
−0.947371 + 0.320137i \(0.896271\pi\)
\(192\) −183.268 + 38.3438i −0.954521 + 0.199707i
\(193\) −59.5916 −0.308765 −0.154382 0.988011i \(-0.549339\pi\)
−0.154382 + 0.988011i \(0.549339\pi\)
\(194\) 45.0342i 0.232135i
\(195\) 10.0415 + 47.9942i 0.0514947 + 0.246124i
\(196\) −6.99140 −0.0356704
\(197\) 244.220i 1.23970i 0.784721 + 0.619849i \(0.212806\pi\)
−0.784721 + 0.619849i \(0.787194\pi\)
\(198\) −161.607 + 70.7190i −0.816195 + 0.357167i
\(199\) −321.030 −1.61321 −0.806607 0.591088i \(-0.798698\pi\)
−0.806607 + 0.591088i \(0.798698\pi\)
\(200\) 206.294i 1.03147i
\(201\) −121.258 + 25.3698i −0.603273 + 0.126218i
\(202\) −253.929 −1.25707
\(203\) 370.636i 1.82579i
\(204\) 25.0189 + 119.581i 0.122642 + 0.586179i
\(205\) −24.6095 −0.120047
\(206\) 139.976i 0.679495i
\(207\) −27.0025 61.7059i −0.130447 0.298096i
\(208\) −94.1858 −0.452817
\(209\) 47.7436i 0.228438i
\(210\) −31.0202 + 6.49012i −0.147715 + 0.0309053i
\(211\) 47.4139 0.224711 0.112355 0.993668i \(-0.464161\pi\)
0.112355 + 0.993668i \(0.464161\pi\)
\(212\) 20.8103i 0.0981616i
\(213\) −45.2234 216.150i −0.212316 1.01479i
\(214\) 30.9750 0.144743
\(215\) 2.38876i 0.0111105i
\(216\) −135.153 189.818i −0.625708 0.878789i
\(217\) 322.897 1.48800
\(218\) 203.112i 0.931705i
\(219\) 229.085 47.9296i 1.04605 0.218857i
\(220\) 23.7003 0.107729
\(221\) 365.921i 1.65575i
\(222\) 56.8618 + 271.777i 0.256134 + 1.22422i
\(223\) −70.5752 −0.316481 −0.158240 0.987401i \(-0.550582\pi\)
−0.158240 + 0.987401i \(0.550582\pi\)
\(224\) 170.636i 0.761767i
\(225\) 197.087 86.2453i 0.875942 0.383312i
\(226\) −307.716 −1.36158
\(227\) 29.9031i 0.131732i −0.997828 0.0658659i \(-0.979019\pi\)
0.997828 0.0658659i \(-0.0209809\pi\)
\(228\) −18.6907 + 3.91052i −0.0819768 + 0.0171514i
\(229\) −226.006 −0.986925 −0.493462 0.869767i \(-0.664269\pi\)
−0.493462 + 0.869767i \(0.664269\pi\)
\(230\) 11.7888i 0.0512558i
\(231\) 53.6835 + 256.586i 0.232396 + 1.11076i
\(232\) 476.964 2.05588
\(233\) 48.0830i 0.206365i 0.994662 + 0.103182i \(0.0329025\pi\)
−0.994662 + 0.103182i \(0.967097\pi\)
\(234\) −84.7176 193.596i −0.362041 0.827333i
\(235\) −93.4003 −0.397448
\(236\) 13.3428i 0.0565372i
\(237\) 48.6196 10.1723i 0.205146 0.0429211i
\(238\) −236.506 −0.993724
\(239\) 153.720i 0.643178i −0.946879 0.321589i \(-0.895783\pi\)
0.946879 0.321589i \(-0.104217\pi\)
\(240\) −3.88197 18.5543i −0.0161749 0.0773096i
\(241\) −170.638 −0.708044 −0.354022 0.935237i \(-0.615186\pi\)
−0.354022 + 0.935237i \(0.615186\pi\)
\(242\) 73.3617i 0.303148i
\(243\) 124.843 208.478i 0.513759 0.857935i
\(244\) 121.272 0.497017
\(245\) 4.21453i 0.0172022i
\(246\) 103.813 21.7199i 0.422002 0.0882923i
\(247\) −57.1943 −0.231556
\(248\) 415.530i 1.67552i
\(249\) 11.0267 + 52.7031i 0.0442838 + 0.211659i
\(250\) 77.0336 0.308134
\(251\) 265.903i 1.05937i −0.848193 0.529687i \(-0.822310\pi\)
0.848193 0.529687i \(-0.177690\pi\)
\(252\) −96.0514 + 42.0321i −0.381156 + 0.166794i
\(253\) −97.5120 −0.385423
\(254\) 84.8469i 0.334043i
\(255\) −72.0852 + 15.0818i −0.282687 + 0.0591444i
\(256\) −261.516 −1.02155
\(257\) 156.363i 0.608415i −0.952606 0.304207i \(-0.901608\pi\)
0.952606 0.304207i \(-0.0983916\pi\)
\(258\) 2.10827 + 10.0767i 0.00817160 + 0.0390570i
\(259\) 412.617 1.59311
\(260\) 28.3917i 0.109199i
\(261\) 199.404 + 455.677i 0.764001 + 1.74589i
\(262\) 199.312 0.760733
\(263\) 171.710i 0.652889i 0.945216 + 0.326445i \(0.105851\pi\)
−0.945216 + 0.326445i \(0.894149\pi\)
\(264\) −330.196 + 69.0843i −1.25074 + 0.261683i
\(265\) −12.5448 −0.0473388
\(266\) 36.9665i 0.138972i
\(267\) 6.94934 + 33.2151i 0.0260275 + 0.124401i
\(268\) −71.7319 −0.267656
\(269\) 181.352i 0.674173i −0.941474 0.337086i \(-0.890559\pi\)
0.941474 0.337086i \(-0.109441\pi\)
\(270\) 34.6460 24.6683i 0.128319 0.0913642i
\(271\) 150.686 0.556038 0.278019 0.960576i \(-0.410322\pi\)
0.278019 + 0.960576i \(0.410322\pi\)
\(272\) 141.463i 0.520084i
\(273\) −307.376 + 64.3099i −1.12592 + 0.235567i
\(274\) −42.2652 −0.154252
\(275\) 311.451i 1.13255i
\(276\) −7.98687 38.1741i −0.0289379 0.138312i
\(277\) 139.607 0.503998 0.251999 0.967728i \(-0.418912\pi\)
0.251999 + 0.967728i \(0.418912\pi\)
\(278\) 284.013i 1.02163i
\(279\) −396.985 + 173.721i −1.42288 + 0.622654i
\(280\) −60.6063 −0.216451
\(281\) 254.644i 0.906205i −0.891458 0.453103i \(-0.850317\pi\)
0.891458 0.453103i \(-0.149683\pi\)
\(282\) 393.998 82.4333i 1.39716 0.292317i
\(283\) 324.401 1.14629 0.573147 0.819452i \(-0.305722\pi\)
0.573147 + 0.819452i \(0.305722\pi\)
\(284\) 127.867i 0.450235i
\(285\) −2.35732 11.2671i −0.00827131 0.0395336i
\(286\) −305.934 −1.06970
\(287\) 157.610i 0.549164i
\(288\) −91.8032 209.788i −0.318761 0.728430i
\(289\) −260.597 −0.901718
\(290\) 87.0564i 0.300195i
\(291\) 87.9075 18.3922i 0.302088 0.0632034i
\(292\) 135.518 0.464104
\(293\) 418.822i 1.42943i 0.699418 + 0.714713i \(0.253443\pi\)
−0.699418 + 0.714713i \(0.746557\pi\)
\(294\) 3.71967 + 17.7785i 0.0126519 + 0.0604712i
\(295\) 8.04326 0.0272653
\(296\) 530.989i 1.79388i
\(297\) −204.046 286.577i −0.687023 0.964905i
\(298\) −91.8673 −0.308280
\(299\) 116.814i 0.390683i
\(300\) 121.927 25.5099i 0.406423 0.0850328i
\(301\) 15.2987 0.0508261
\(302\) 141.040i 0.467021i
\(303\) −103.706 495.674i −0.342264 1.63589i
\(304\) 22.1110 0.0727335
\(305\) 73.1048i 0.239688i
\(306\) 290.772 127.242i 0.950236 0.415823i
\(307\) 390.523 1.27206 0.636031 0.771663i \(-0.280575\pi\)
0.636031 + 0.771663i \(0.280575\pi\)
\(308\) 151.787i 0.492816i
\(309\) 273.236 57.1670i 0.884258 0.185007i
\(310\) −75.8433 −0.244656
\(311\) 526.795i 1.69387i −0.531693 0.846937i \(-0.678444\pi\)
0.531693 0.846937i \(-0.321556\pi\)
\(312\) −82.7593 395.557i −0.265254 1.26781i
\(313\) 376.903 1.20416 0.602081 0.798435i \(-0.294338\pi\)
0.602081 + 0.798435i \(0.294338\pi\)
\(314\) 26.4274i 0.0841637i
\(315\) −25.3377 57.9014i −0.0804370 0.183814i
\(316\) 28.7617 0.0910179
\(317\) 390.759i 1.23268i 0.787481 + 0.616339i \(0.211385\pi\)
−0.787481 + 0.616339i \(0.788615\pi\)
\(318\) 52.9187 11.0718i 0.166411 0.0348169i
\(319\) 720.093 2.25734
\(320\) 65.3544i 0.204232i
\(321\) 12.6504 + 60.4637i 0.0394092 + 0.188360i
\(322\) 75.5007 0.234474
\(323\) 85.9032i 0.265954i
\(324\) 95.4766 103.353i 0.294681 0.318989i
\(325\) 373.101 1.14800
\(326\) 197.259i 0.605090i
\(327\) −396.478 + 82.9520i −1.21247 + 0.253676i
\(328\) 202.826 0.618371
\(329\) 598.176i 1.81816i
\(330\) −12.6094 60.2679i −0.0382103 0.182630i
\(331\) −294.339 −0.889242 −0.444621 0.895719i \(-0.646662\pi\)
−0.444621 + 0.895719i \(0.646662\pi\)
\(332\) 31.1773i 0.0939077i
\(333\) −507.291 + 221.990i −1.52339 + 0.666638i
\(334\) −176.471 −0.528356
\(335\) 43.2412i 0.129078i
\(336\) 118.830 24.8618i 0.353660 0.0739935i
\(337\) 72.4236 0.214907 0.107453 0.994210i \(-0.465730\pi\)
0.107453 + 0.994210i \(0.465730\pi\)
\(338\) 112.266i 0.332146i
\(339\) −125.673 600.667i −0.370717 1.77188i
\(340\) −42.6431 −0.125421
\(341\) 627.343i 1.83972i
\(342\) 19.8882 + 45.4484i 0.0581527 + 0.132890i
\(343\) 355.603 1.03674
\(344\) 19.6876i 0.0572313i
\(345\) 23.0120 4.81462i 0.0667014 0.0139554i
\(346\) 273.693 0.791022
\(347\) 138.584i 0.399378i −0.979859 0.199689i \(-0.936007\pi\)
0.979859 0.199689i \(-0.0639931\pi\)
\(348\) 58.9803 + 281.903i 0.169484 + 0.810065i
\(349\) 220.208 0.630968 0.315484 0.948931i \(-0.397833\pi\)
0.315484 + 0.948931i \(0.397833\pi\)
\(350\) 241.147i 0.688992i
\(351\) 343.303 244.436i 0.978072 0.696398i
\(352\) −331.522 −0.941822
\(353\) 180.114i 0.510237i −0.966910 0.255119i \(-0.917885\pi\)
0.966910 0.255119i \(-0.0821145\pi\)
\(354\) −33.9296 + 7.09882i −0.0958462 + 0.0200532i
\(355\) 77.0803 0.217128
\(356\) 19.6489i 0.0551935i
\(357\) −96.5905 461.665i −0.270562 1.29318i
\(358\) −451.381 −1.26084
\(359\) 272.973i 0.760370i −0.924910 0.380185i \(-0.875860\pi\)
0.924910 0.380185i \(-0.124140\pi\)
\(360\) 74.5123 32.6066i 0.206979 0.0905739i
\(361\) −347.573 −0.962806
\(362\) 143.915i 0.397554i
\(363\) −143.203 + 29.9613i −0.394500 + 0.0825381i
\(364\) −181.833 −0.499541
\(365\) 81.6928i 0.223816i
\(366\) −64.5209 308.384i −0.176287 0.842580i
\(367\) −669.007 −1.82291 −0.911454 0.411403i \(-0.865039\pi\)
−0.911454 + 0.411403i \(0.865039\pi\)
\(368\) 45.1597i 0.122716i
\(369\) 84.7952 + 193.773i 0.229797 + 0.525131i
\(370\) −96.9171 −0.261938
\(371\) 80.3421i 0.216556i
\(372\) −245.593 + 51.3835i −0.660196 + 0.138128i
\(373\) −462.122 −1.23893 −0.619467 0.785023i \(-0.712651\pi\)
−0.619467 + 0.785023i \(0.712651\pi\)
\(374\) 459.499i 1.22861i
\(375\) 31.4610 + 150.371i 0.0838959 + 0.400989i
\(376\) 769.782 2.04729
\(377\) 862.632i 2.28815i
\(378\) 157.987 + 221.888i 0.417954 + 0.587005i
\(379\) −672.675 −1.77487 −0.887434 0.460936i \(-0.847514\pi\)
−0.887434 + 0.460936i \(0.847514\pi\)
\(380\) 6.66521i 0.0175400i
\(381\) 165.623 34.6520i 0.434705 0.0909500i
\(382\) 183.964 0.481582
\(383\) 357.495i 0.933408i 0.884414 + 0.466704i \(0.154559\pi\)
−0.884414 + 0.466704i \(0.845441\pi\)
\(384\) −4.84680 23.1658i −0.0126219 0.0603276i
\(385\) −91.4999 −0.237662
\(386\) 89.6435i 0.232237i
\(387\) −18.8089 + 8.23077i −0.0486018 + 0.0212681i
\(388\) 52.0030 0.134028
\(389\) 190.238i 0.489043i −0.969644 0.244522i \(-0.921369\pi\)
0.969644 0.244522i \(-0.0786309\pi\)
\(390\) 72.1977 15.1054i 0.185122 0.0387317i
\(391\) 175.450 0.448720
\(392\) 34.7351i 0.0886101i
\(393\) 81.4001 + 389.060i 0.207125 + 0.989976i
\(394\) 367.381 0.932438
\(395\) 17.3380i 0.0438937i
\(396\) −81.6625 186.614i −0.206218 0.471248i
\(397\) −349.958 −0.881507 −0.440753 0.897628i \(-0.645289\pi\)
−0.440753 + 0.897628i \(0.645289\pi\)
\(398\) 482.925i 1.21338i
\(399\) 72.1593 15.0973i 0.180850 0.0378379i
\(400\) −144.239 −0.360597
\(401\) 321.766i 0.802410i −0.915988 0.401205i \(-0.868592\pi\)
0.915988 0.401205i \(-0.131408\pi\)
\(402\) 38.1638 + 182.408i 0.0949349 + 0.453751i
\(403\) −751.523 −1.86482
\(404\) 293.223i 0.725801i
\(405\) 62.3027 + 57.5549i 0.153834 + 0.142111i
\(406\) −557.547 −1.37327
\(407\) 801.656i 1.96967i
\(408\) 594.108 124.301i 1.45615 0.304659i
\(409\) −115.657 −0.282780 −0.141390 0.989954i \(-0.545157\pi\)
−0.141390 + 0.989954i \(0.545157\pi\)
\(410\) 37.0201i 0.0902929i
\(411\) −17.2613 82.5024i −0.0419984 0.200736i
\(412\) 161.637 0.392322
\(413\) 51.5125i 0.124728i
\(414\) −92.8242 + 40.6199i −0.224213 + 0.0981156i
\(415\) −18.7942 −0.0452873
\(416\) 397.145i 0.954675i
\(417\) −554.399 + 115.993i −1.32949 + 0.278160i
\(418\) 71.8207 0.171820
\(419\) 182.313i 0.435115i 0.976047 + 0.217558i \(0.0698090\pi\)
−0.976047 + 0.217558i \(0.930191\pi\)
\(420\) −7.49444 35.8205i −0.0178439 0.0852868i
\(421\) 204.208 0.485055 0.242527 0.970145i \(-0.422024\pi\)
0.242527 + 0.970145i \(0.422024\pi\)
\(422\) 71.3247i 0.169016i
\(423\) 321.822 + 735.426i 0.760809 + 1.73860i
\(424\) 103.391 0.243846
\(425\) 560.381i 1.31854i
\(426\) −325.154 + 68.0296i −0.763273 + 0.159694i
\(427\) −468.195 −1.09648
\(428\) 35.7682i 0.0835706i
\(429\) −124.945 597.188i −0.291247 1.39205i
\(430\) −3.59341 −0.00835677
\(431\) 672.668i 1.56071i 0.625335 + 0.780357i \(0.284962\pi\)
−0.625335 + 0.780357i \(0.715038\pi\)
\(432\) −132.719 + 94.4975i −0.307220 + 0.218744i
\(433\) 714.659 1.65048 0.825241 0.564781i \(-0.191039\pi\)
0.825241 + 0.564781i \(0.191039\pi\)
\(434\) 485.733i 1.11920i
\(435\) −169.936 + 35.5543i −0.390657 + 0.0817341i
\(436\) −234.542 −0.537941
\(437\) 27.4232i 0.0627532i
\(438\) −72.1005 344.612i −0.164613 0.786785i
\(439\) 169.013 0.384994 0.192497 0.981298i \(-0.438341\pi\)
0.192497 + 0.981298i \(0.438341\pi\)
\(440\) 117.750i 0.267613i
\(441\) −33.1849 + 14.5217i −0.0752492 + 0.0329290i
\(442\) 550.455 1.24537
\(443\) 761.327i 1.71857i 0.511497 + 0.859285i \(0.329091\pi\)
−0.511497 + 0.859285i \(0.670909\pi\)
\(444\) −313.833 + 65.6609i −0.706831 + 0.147885i
\(445\) −11.8447 −0.0266173
\(446\) 106.166i 0.238041i
\(447\) −37.5191 179.327i −0.0839354 0.401178i
\(448\) 418.558 0.934281
\(449\) 653.549i 1.45557i 0.685807 + 0.727783i \(0.259449\pi\)
−0.685807 + 0.727783i \(0.740551\pi\)
\(450\) −129.739 296.478i −0.288308 0.658840i
\(451\) 306.214 0.678967
\(452\) 355.334i 0.786137i
\(453\) 275.313 57.6016i 0.607755 0.127156i
\(454\) −44.9832 −0.0990820
\(455\) 109.612i 0.240905i
\(456\) 19.4285 + 92.8605i 0.0426063 + 0.203641i
\(457\) 88.4462 0.193536 0.0967682 0.995307i \(-0.469149\pi\)
0.0967682 + 0.995307i \(0.469149\pi\)
\(458\) 339.980i 0.742315i
\(459\) 367.132 + 515.626i 0.799851 + 1.12337i
\(460\) 13.6131 0.0295937
\(461\) 559.306i 1.21325i 0.794990 + 0.606623i \(0.207476\pi\)
−0.794990 + 0.606623i \(0.792524\pi\)
\(462\) 385.982 80.7560i 0.835459 0.174797i
\(463\) 527.519 1.13935 0.569675 0.821870i \(-0.307069\pi\)
0.569675 + 0.821870i \(0.307069\pi\)
\(464\) 333.489i 0.718725i
\(465\) −30.9748 148.047i −0.0666126 0.318382i
\(466\) 72.3312 0.155217
\(467\) 479.699i 1.02719i −0.858032 0.513597i \(-0.828313\pi\)
0.858032 0.513597i \(-0.171687\pi\)
\(468\) 223.554 97.8272i 0.477679 0.209033i
\(469\) 276.935 0.590480
\(470\) 140.502i 0.298940i
\(471\) −51.5867 + 10.7931i −0.109526 + 0.0229153i
\(472\) −66.2905 −0.140446
\(473\) 29.7231i 0.0628396i
\(474\) −15.3022 73.1385i −0.0322831 0.154301i
\(475\) −87.5888 −0.184398
\(476\) 273.105i 0.573749i
\(477\) 43.2246 + 98.7764i 0.0906176 + 0.207079i
\(478\) −231.240 −0.483767
\(479\) 526.747i 1.09968i −0.835270 0.549841i \(-0.814688\pi\)
0.835270 0.549841i \(-0.185312\pi\)
\(480\) 78.2362 16.3688i 0.162992 0.0341016i
\(481\) −960.341 −1.99655
\(482\) 256.691i 0.532555i
\(483\) 30.8349 + 147.379i 0.0638404 + 0.305132i
\(484\) −84.7141 −0.175029
\(485\) 31.3483i 0.0646356i
\(486\) −313.614 187.802i −0.645295 0.386423i
\(487\) 19.2910 0.0396120 0.0198060 0.999804i \(-0.493695\pi\)
0.0198060 + 0.999804i \(0.493695\pi\)
\(488\) 602.512i 1.23466i
\(489\) 385.054 80.5618i 0.787431 0.164748i
\(490\) −6.33992 −0.0129386
\(491\) 453.229i 0.923074i −0.887121 0.461537i \(-0.847298\pi\)
0.887121 0.461537i \(-0.152702\pi\)
\(492\) 25.0810 + 119.877i 0.0509775 + 0.243653i
\(493\) −1295.63 −2.62806
\(494\) 86.0373i 0.174165i
\(495\) 112.494 49.2275i 0.227261 0.0994495i
\(496\) 290.534 0.585755
\(497\) 493.655i 0.993270i
\(498\) 79.2813 16.5874i 0.159199 0.0333081i
\(499\) 184.228 0.369194 0.184597 0.982814i \(-0.440902\pi\)
0.184597 + 0.982814i \(0.440902\pi\)
\(500\) 88.9542i 0.177908i
\(501\) −72.0717 344.474i −0.143856 0.687574i
\(502\) −399.997 −0.796807
\(503\) 877.043i 1.74362i 0.489840 + 0.871812i \(0.337055\pi\)
−0.489840 + 0.871812i \(0.662945\pi\)
\(504\) 208.827 + 477.209i 0.414339 + 0.946843i
\(505\) 176.760 0.350020
\(506\) 146.687i 0.289896i
\(507\) 219.144 45.8499i 0.432237 0.0904337i
\(508\) 97.9766 0.192867
\(509\) 664.179i 1.30487i −0.757844 0.652435i \(-0.773747\pi\)
0.757844 0.652435i \(-0.226253\pi\)
\(510\) 22.6876 + 108.438i 0.0444855 + 0.212623i
\(511\) −523.196 −1.02387
\(512\) 361.842i 0.706722i
\(513\) −80.5936 + 57.3835i −0.157102 + 0.111859i
\(514\) −235.216 −0.457619
\(515\) 97.4373i 0.189199i
\(516\) −11.6360 + 2.43452i −0.0225505 + 0.00471806i
\(517\) 1162.17 2.24791
\(518\) 620.699i 1.19826i
\(519\) 111.778 + 534.254i 0.215372 + 1.02939i
\(520\) 141.058 0.271265
\(521\) 5.86686i 0.0112608i −0.999984 0.00563039i \(-0.998208\pi\)
0.999984 0.00563039i \(-0.00179222\pi\)
\(522\) 685.475 299.964i 1.31317 0.574643i
\(523\) −454.910 −0.869809 −0.434904 0.900477i \(-0.643218\pi\)
−0.434904 + 0.900477i \(0.643218\pi\)
\(524\) 230.155i 0.439226i
\(525\) −470.724 + 98.4859i −0.896616 + 0.187592i
\(526\) 258.303 0.491070
\(527\) 1128.75i 2.14185i
\(528\) 48.3030 + 230.869i 0.0914830 + 0.437253i
\(529\) 472.991 0.894122
\(530\) 18.8711i 0.0356058i
\(531\) −27.7141 63.3319i −0.0521922 0.119269i
\(532\) 42.6869 0.0802385
\(533\) 366.828i 0.688233i
\(534\) 49.9654 10.4539i 0.0935682 0.0195766i
\(535\) −21.5617 −0.0403022
\(536\) 356.383i 0.664894i
\(537\) −184.346 881.103i −0.343289 1.64079i
\(538\) −272.808 −0.507079
\(539\) 52.4411i 0.0972933i
\(540\) 28.4857 + 40.0073i 0.0527512 + 0.0740876i
\(541\) 698.822 1.29172 0.645862 0.763454i \(-0.276498\pi\)
0.645862 + 0.763454i \(0.276498\pi\)
\(542\) 226.677i 0.418224i
\(543\) −280.924 + 58.7755i −0.517355 + 0.108242i
\(544\) 596.494 1.09650
\(545\) 141.386i 0.259424i
\(546\) 96.7413 + 462.385i 0.177182 + 0.846860i
\(547\) −697.807 −1.27570 −0.637849 0.770161i \(-0.720176\pi\)
−0.637849 + 0.770161i \(0.720176\pi\)
\(548\) 48.8055i 0.0890612i
\(549\) 575.621 251.892i 1.04849 0.458819i
\(550\) −468.515 −0.851846
\(551\) 202.511i 0.367533i
\(552\) −189.659 + 39.6809i −0.343585 + 0.0718857i
\(553\) −111.040 −0.200796
\(554\) 210.011i 0.379082i
\(555\) −39.5815 189.184i −0.0713180 0.340872i
\(556\) −327.963 −0.589862
\(557\) 292.583i 0.525283i −0.964893 0.262642i \(-0.915406\pi\)
0.964893 0.262642i \(-0.0845937\pi\)
\(558\) 261.328 + 597.184i 0.468329 + 1.07022i
\(559\) −35.6067 −0.0636971
\(560\) 42.3753i 0.0756702i
\(561\) 896.949 187.662i 1.59884 0.334513i
\(562\) −383.060 −0.681602
\(563\) 392.030i 0.696324i −0.937434 0.348162i \(-0.886806\pi\)
0.937434 0.348162i \(-0.113194\pi\)
\(564\) 95.1894 + 454.968i 0.168776 + 0.806681i
\(565\) 214.201 0.379117
\(566\) 487.997i 0.862185i
\(567\) −368.607 + 399.013i −0.650100 + 0.703727i
\(568\) −635.276 −1.11844
\(569\) 72.4547i 0.127337i 0.997971 + 0.0636685i \(0.0202800\pi\)
−0.997971 + 0.0636685i \(0.979720\pi\)
\(570\) −16.9491 + 3.54612i −0.0297352 + 0.00622127i
\(571\) −757.963 −1.32743 −0.663716 0.747985i \(-0.731022\pi\)
−0.663716 + 0.747985i \(0.731022\pi\)
\(572\) 353.276i 0.617615i
\(573\) 75.1321 + 359.102i 0.131121 + 0.626704i
\(574\) −237.093 −0.413054
\(575\) 178.892i 0.311117i
\(576\) −514.595 + 225.187i −0.893394 + 0.390949i
\(577\) 316.962 0.549327 0.274663 0.961540i \(-0.411434\pi\)
0.274663 + 0.961540i \(0.411434\pi\)
\(578\) 392.015i 0.678227i
\(579\) −174.986 + 36.6109i −0.302221 + 0.0632313i
\(580\) −100.528 −0.173324
\(581\) 120.366i 0.207171i
\(582\) −27.6674 132.239i −0.0475385 0.227215i
\(583\) 156.093 0.267742
\(584\) 673.292i 1.15290i
\(585\) 58.9719 + 134.762i 0.100807 + 0.230363i
\(586\) 630.033 1.07514
\(587\) 193.204i 0.329138i −0.986366 0.164569i \(-0.947377\pi\)
0.986366 0.164569i \(-0.0526234\pi\)
\(588\) −20.5297 + 4.29527i −0.0349144 + 0.00730488i
\(589\) 176.427 0.299536
\(590\) 12.0995i 0.0205076i
\(591\) 150.040 + 717.134i 0.253875 + 1.21342i
\(592\) 371.262 0.627132
\(593\) 496.895i 0.837934i −0.908001 0.418967i \(-0.862392\pi\)
0.908001 0.418967i \(-0.137608\pi\)
\(594\) −431.097 + 306.946i −0.725753 + 0.516744i
\(595\) 164.632 0.276693
\(596\) 106.083i 0.177992i
\(597\) −942.677 + 197.229i −1.57902 + 0.330367i
\(598\) −175.723 −0.293852
\(599\) 406.669i 0.678914i 0.940622 + 0.339457i \(0.110243\pi\)
−0.940622 + 0.339457i \(0.889757\pi\)
\(600\) −126.740 605.766i −0.211233 1.00961i
\(601\) −778.606 −1.29552 −0.647758 0.761846i \(-0.724293\pi\)
−0.647758 + 0.761846i \(0.724293\pi\)
\(602\) 23.0138i 0.0382288i
\(603\) −340.477 + 148.993i −0.564639 + 0.247086i
\(604\) 162.866 0.269645
\(605\) 51.0671i 0.0844084i
\(606\) −745.642 + 156.005i −1.23043 + 0.257434i
\(607\) 341.880 0.563229 0.281614 0.959528i \(-0.409130\pi\)
0.281614 + 0.959528i \(0.409130\pi\)
\(608\) 93.2333i 0.153344i
\(609\) −227.705 1088.34i −0.373900 1.78710i
\(610\) 109.972 0.180281
\(611\) 1392.22i 2.27859i
\(612\) 146.932 + 335.768i 0.240085 + 0.548640i
\(613\) −528.209 −0.861678 −0.430839 0.902429i \(-0.641782\pi\)
−0.430839 + 0.902429i \(0.641782\pi\)
\(614\) 587.464i 0.956782i
\(615\) −72.2639 + 15.1192i −0.117502 + 0.0245841i
\(616\) 754.119 1.22422
\(617\) 86.9691i 0.140955i 0.997513 + 0.0704774i \(0.0224523\pi\)
−0.997513 + 0.0704774i \(0.977548\pi\)
\(618\) −85.9963 411.028i −0.139153 0.665094i
\(619\) 1041.28 1.68220 0.841100 0.540880i \(-0.181909\pi\)
0.841100 + 0.540880i \(0.181909\pi\)
\(620\) 87.5797i 0.141258i
\(621\) −117.201 164.605i −0.188729 0.265064i
\(622\) −792.458 −1.27405
\(623\) 75.8584i 0.121763i
\(624\) −276.569 + 57.8644i −0.443220 + 0.0927315i
\(625\) 543.964 0.870343
\(626\) 566.975i 0.905710i
\(627\) 29.3320 + 140.195i 0.0467815 + 0.223597i
\(628\) −30.5169 −0.0485938
\(629\) 1442.39i 2.29314i
\(630\) −87.1011 + 38.1154i −0.138256 + 0.0605007i
\(631\) 1006.88 1.59569 0.797844 0.602863i \(-0.205974\pi\)
0.797844 + 0.602863i \(0.205974\pi\)
\(632\) 142.896i 0.226101i
\(633\) 139.227 29.1294i 0.219948 0.0460181i
\(634\) 587.819 0.927159
\(635\) 59.0619i 0.0930109i
\(636\) 12.7851 + 61.1076i 0.0201023 + 0.0960812i
\(637\) −62.8216 −0.0986210
\(638\) 1083.24i 1.69786i
\(639\) −265.590 606.923i −0.415633 0.949802i
\(640\) 8.26105 0.0129079
\(641\) 658.137i 1.02674i 0.858169 + 0.513368i \(0.171602\pi\)
−0.858169 + 0.513368i \(0.828398\pi\)
\(642\) 90.9555 19.0299i 0.141675 0.0296416i
\(643\) 374.939 0.583110 0.291555 0.956554i \(-0.405827\pi\)
0.291555 + 0.956554i \(0.405827\pi\)
\(644\) 87.1841i 0.135379i
\(645\) −1.46757 7.01440i −0.00227530 0.0108750i
\(646\) −129.224 −0.200037
\(647\) 434.057i 0.670877i −0.942062 0.335439i \(-0.891116\pi\)
0.942062 0.335439i \(-0.108884\pi\)
\(648\) −513.483 474.353i −0.792412 0.732027i
\(649\) −100.082 −0.154209
\(650\) 561.256i 0.863470i
\(651\) 948.160 198.376i 1.45647 0.304725i
\(652\) 227.784 0.349362
\(653\) 773.408i 1.18439i −0.805794 0.592196i \(-0.798261\pi\)
0.805794 0.592196i \(-0.201739\pi\)
\(654\) 124.785 + 596.421i 0.190802 + 0.911959i
\(655\) −138.741 −0.211818
\(656\) 141.814i 0.216179i
\(657\) 643.242 281.483i 0.979060 0.428437i
\(658\) −899.835 −1.36753
\(659\) 238.350i 0.361685i −0.983512 0.180843i \(-0.942118\pi\)
0.983512 0.180843i \(-0.0578824\pi\)
\(660\) 69.5941 14.5606i 0.105446 0.0220616i
\(661\) −1049.70 −1.58806 −0.794028 0.607882i \(-0.792019\pi\)
−0.794028 + 0.607882i \(0.792019\pi\)
\(662\) 442.774i 0.668843i
\(663\) 224.809 + 1074.50i 0.339078 + 1.62066i
\(664\) 154.897 0.233279
\(665\) 25.7324i 0.0386953i
\(666\) 333.940 + 763.117i 0.501411 + 1.14582i
\(667\) 413.610 0.620104
\(668\) 203.779i 0.305058i
\(669\) −207.238 + 43.3589i −0.309773 + 0.0648115i
\(670\) −65.0477 −0.0970861
\(671\) 909.637i 1.35564i
\(672\) 104.833 + 501.058i 0.156001 + 0.745623i
\(673\) 591.009 0.878171 0.439086 0.898445i \(-0.355302\pi\)
0.439086 + 0.898445i \(0.355302\pi\)
\(674\) 108.947i 0.161642i
\(675\) 525.744 374.336i 0.778880 0.554571i
\(676\) 129.638 0.191772
\(677\) 70.4446i 0.104054i 0.998646 + 0.0520270i \(0.0165682\pi\)
−0.998646 + 0.0520270i \(0.983432\pi\)
\(678\) −903.584 + 189.050i −1.33272 + 0.278835i
\(679\) −200.768 −0.295682
\(680\) 211.862i 0.311562i
\(681\) −18.3714 87.8080i −0.0269771 0.128940i
\(682\) 943.712 1.38374
\(683\) 796.448i 1.16610i −0.812435 0.583051i \(-0.801859\pi\)
0.812435 0.583051i \(-0.198141\pi\)
\(684\) −52.4813 + 22.9658i −0.0767270 + 0.0335758i
\(685\) 29.4208 0.0429501
\(686\) 534.934i 0.779787i
\(687\) −663.648 + 138.850i −0.966008 + 0.202111i
\(688\) 13.7653 0.0200078
\(689\) 186.992i 0.271396i
\(690\) −7.24263 34.6169i −0.0104966 0.0501695i
\(691\) 962.387 1.39275 0.696373 0.717680i \(-0.254796\pi\)
0.696373 + 0.717680i \(0.254796\pi\)
\(692\) 316.046i 0.456714i
\(693\) 315.274 + 720.462i 0.454941 + 1.03963i
\(694\) −208.472 −0.300392
\(695\) 197.702i 0.284463i
\(696\) 1400.57 293.030i 2.01231 0.421020i
\(697\) −550.959 −0.790472
\(698\) 331.259i 0.474582i
\(699\) 29.5405 + 141.192i 0.0422610 + 0.201991i
\(700\) −278.464 −0.397805
\(701\) 160.133i 0.228435i 0.993456 + 0.114217i \(0.0364360\pi\)
−0.993456 + 0.114217i \(0.963564\pi\)
\(702\) −367.705 516.431i −0.523796 0.735657i
\(703\) 225.449 0.320695
\(704\) 813.199i 1.15511i
\(705\) −274.262 + 57.3818i −0.389025 + 0.0813926i
\(706\) −270.945 −0.383775
\(707\) 1132.05i 1.60120i
\(708\) −8.19733 39.1800i −0.0115782 0.0553390i
\(709\) −131.019 −0.184794 −0.0923972 0.995722i \(-0.529453\pi\)
−0.0923972 + 0.995722i \(0.529453\pi\)
\(710\) 115.952i 0.163312i
\(711\) 136.518 59.7403i 0.192008 0.0840229i
\(712\) 97.6209 0.137108
\(713\) 360.336i 0.505380i
\(714\) −694.482 + 145.301i −0.972664 + 0.203503i
\(715\) 212.961 0.297847
\(716\) 521.230i 0.727975i
\(717\) −94.4399 451.385i −0.131715 0.629547i
\(718\) −410.633 −0.571912
\(719\) 842.287i 1.17147i 0.810503 + 0.585735i \(0.199194\pi\)
−0.810503 + 0.585735i \(0.800806\pi\)
\(720\) −22.7982 52.0982i −0.0316642 0.0723587i
\(721\) −624.031 −0.865507
\(722\) 522.854i 0.724175i
\(723\) −501.066 + 104.834i −0.693037 + 0.144999i
\(724\) −166.185 −0.229537
\(725\) 1321.06i 1.82215i
\(726\) 45.0708 + 215.421i 0.0620810 + 0.296723i
\(727\) −826.548 −1.13693 −0.568465 0.822708i \(-0.692462\pi\)
−0.568465 + 0.822708i \(0.692462\pi\)
\(728\) 903.394i 1.24093i
\(729\) 238.511 688.878i 0.327175 0.944964i
\(730\) 122.890 0.168343
\(731\) 53.4797i 0.0731596i
\(732\) 356.106 74.5052i 0.486483 0.101783i
\(733\) 1184.81 1.61638 0.808191 0.588920i \(-0.200447\pi\)
0.808191 + 0.588920i \(0.200447\pi\)
\(734\) 1006.39i 1.37110i
\(735\) −2.58926 12.3756i −0.00352280 0.0168376i
\(736\) −190.421 −0.258724
\(737\) 538.046i 0.730049i
\(738\) 291.493 127.557i 0.394977 0.172842i
\(739\) 180.722 0.244549 0.122275 0.992496i \(-0.460981\pi\)
0.122275 + 0.992496i \(0.460981\pi\)
\(740\) 111.915i 0.151236i
\(741\) −167.946 + 35.1381i −0.226648 + 0.0474199i
\(742\) −120.859 −0.162882
\(743\) 623.820i 0.839596i 0.907618 + 0.419798i \(0.137899\pi\)
−0.907618 + 0.419798i \(0.862101\pi\)
\(744\) 255.287 + 1220.17i 0.343128 + 1.64001i
\(745\) 63.9489 0.0858374
\(746\) 695.170i 0.931863i
\(747\) 64.7579 + 147.984i 0.0866906 + 0.198105i
\(748\) 530.604 0.709364
\(749\) 138.090i 0.184366i
\(750\) 226.203 47.3267i 0.301604 0.0631023i
\(751\) −619.258 −0.824578 −0.412289 0.911053i \(-0.635271\pi\)
−0.412289 + 0.911053i \(0.635271\pi\)
\(752\) 538.224i 0.715723i
\(753\) −163.361 780.802i −0.216947 1.03692i
\(754\) 1297.66 1.72103
\(755\) 98.1781i 0.130037i
\(756\) −256.224 + 182.434i −0.338921 + 0.241315i
\(757\) −452.664 −0.597971 −0.298986 0.954258i \(-0.596648\pi\)
−0.298986 + 0.954258i \(0.596648\pi\)
\(758\) 1011.90i 1.33497i
\(759\) −286.336 + 59.9079i −0.377254 + 0.0789301i
\(760\) −33.1145 −0.0435718
\(761\) 220.417i 0.289642i −0.989458 0.144821i \(-0.953739\pi\)
0.989458 0.144821i \(-0.0462606\pi\)
\(762\) −52.1269 249.146i −0.0684080 0.326963i
\(763\) 905.498 1.18676
\(764\) 212.432i 0.278052i
\(765\) −202.407 + 88.5731i −0.264584 + 0.115782i
\(766\) 537.780 0.702063
\(767\) 119.892i 0.156313i
\(768\) −767.921 + 160.666i −0.999897 + 0.209201i
\(769\) 582.680 0.757712 0.378856 0.925456i \(-0.376318\pi\)
0.378856 + 0.925456i \(0.376318\pi\)
\(770\) 137.643i 0.178757i
\(771\) −96.0636 459.146i −0.124596 0.595520i
\(772\) −103.515 −0.134087
\(773\) 152.912i 0.197816i 0.995097 + 0.0989080i \(0.0315350\pi\)
−0.995097 + 0.0989080i \(0.968465\pi\)
\(774\) 12.3815 + 28.2942i 0.0159968 + 0.0365558i
\(775\) −1150.90 −1.48504
\(776\) 258.365i 0.332944i
\(777\) 1211.62 253.497i 1.55935 0.326251i
\(778\) −286.175 −0.367834
\(779\) 86.1162i 0.110547i
\(780\) 17.4429 + 83.3700i 0.0223626 + 0.106885i
\(781\) −959.103 −1.22804
\(782\) 263.929i 0.337505i
\(783\) 865.486 + 1215.55i 1.10535 + 1.55243i
\(784\) 24.2865 0.0309776
\(785\) 18.3961i 0.0234345i