Properties

Label 177.2.a.d
Level $177$
Weight $2$
Character orbit 177.a
Self dual yes
Analytic conductor $1.413$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 177 = 3 \cdot 59 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 177.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.41335211578\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.229.1
Defining polynomial: \(x^{3} - 4 x - 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{1} q^{2} - q^{3} + ( 1 + \beta_{2} ) q^{4} + ( -1 + \beta_{1} - \beta_{2} ) q^{5} -\beta_{1} q^{6} + ( 3 + \beta_{1} ) q^{7} + q^{8} + q^{9} +O(q^{10})\) \( q + \beta_{1} q^{2} - q^{3} + ( 1 + \beta_{2} ) q^{4} + ( -1 + \beta_{1} - \beta_{2} ) q^{5} -\beta_{1} q^{6} + ( 3 + \beta_{1} ) q^{7} + q^{8} + q^{9} + ( 2 - 2 \beta_{1} + \beta_{2} ) q^{10} + ( -1 - \beta_{1} - \beta_{2} ) q^{11} + ( -1 - \beta_{2} ) q^{12} + ( 1 - \beta_{1} - \beta_{2} ) q^{13} + ( 3 + 3 \beta_{1} + \beta_{2} ) q^{14} + ( 1 - \beta_{1} + \beta_{2} ) q^{15} + ( -2 + \beta_{1} - 2 \beta_{2} ) q^{16} + ( 2 - 2 \beta_{1} + 3 \beta_{2} ) q^{17} + \beta_{1} q^{18} + ( 2 - \beta_{2} ) q^{19} + ( -3 + \beta_{1} ) q^{20} + ( -3 - \beta_{1} ) q^{21} + ( -4 - 2 \beta_{1} - \beta_{2} ) q^{22} + ( -2 \beta_{1} - \beta_{2} ) q^{23} - q^{24} + ( -3 \beta_{1} + \beta_{2} ) q^{25} + ( -4 - \beta_{2} ) q^{26} - q^{27} + ( 4 + 2 \beta_{1} + 3 \beta_{2} ) q^{28} + ( -3 + \beta_{1} + 2 \beta_{2} ) q^{29} + ( -2 + 2 \beta_{1} - \beta_{2} ) q^{30} + ( 5 - \beta_{1} + 2 \beta_{2} ) q^{31} + ( -1 - 4 \beta_{1} + \beta_{2} ) q^{32} + ( 1 + \beta_{1} + \beta_{2} ) q^{33} + ( -3 + 5 \beta_{1} - 2 \beta_{2} ) q^{34} + ( -1 + \beta_{1} - 2 \beta_{2} ) q^{35} + ( 1 + \beta_{2} ) q^{36} + ( -2 - 2 \beta_{1} - \beta_{2} ) q^{37} + ( -1 + \beta_{1} ) q^{38} + ( -1 + \beta_{1} + \beta_{2} ) q^{39} + ( -1 + \beta_{1} - \beta_{2} ) q^{40} + ( -1 + 3 \beta_{1} - 2 \beta_{2} ) q^{41} + ( -3 - 3 \beta_{1} - \beta_{2} ) q^{42} + ( 1 + 5 \beta_{1} - 3 \beta_{2} ) q^{43} + ( -5 - 3 \beta_{1} ) q^{44} + ( -1 + \beta_{1} - \beta_{2} ) q^{45} + ( -7 - \beta_{1} - 2 \beta_{2} ) q^{46} + ( 5 - \beta_{1} + 4 \beta_{2} ) q^{47} + ( 2 - \beta_{1} + 2 \beta_{2} ) q^{48} + ( 5 + 6 \beta_{1} + \beta_{2} ) q^{49} + ( -8 + \beta_{1} - 3 \beta_{2} ) q^{50} + ( -2 + 2 \beta_{1} - 3 \beta_{2} ) q^{51} + ( -3 - 3 \beta_{1} + 2 \beta_{2} ) q^{52} + ( 1 - 5 \beta_{1} + \beta_{2} ) q^{53} -\beta_{1} q^{54} + ( 1 + \beta_{1} - \beta_{2} ) q^{55} + ( 3 + \beta_{1} ) q^{56} + ( -2 + \beta_{2} ) q^{57} + ( 5 - \beta_{1} + \beta_{2} ) q^{58} + q^{59} + ( 3 - \beta_{1} ) q^{60} + ( 1 + \beta_{1} + 4 \beta_{2} ) q^{61} + ( -1 + 7 \beta_{1} - \beta_{2} ) q^{62} + ( 3 + \beta_{1} ) q^{63} + ( -7 - 2 \beta_{1} ) q^{64} + ( -1 + 3 \beta_{1} - 3 \beta_{2} ) q^{65} + ( 4 + 2 \beta_{1} + \beta_{2} ) q^{66} + ( 5 + \beta_{1} + 5 \beta_{2} ) q^{67} + ( 9 - \beta_{1} - \beta_{2} ) q^{68} + ( 2 \beta_{1} + \beta_{2} ) q^{69} + ( 1 - 3 \beta_{1} + \beta_{2} ) q^{70} + ( 9 - 3 \beta_{1} + \beta_{2} ) q^{71} + q^{72} + ( 1 - 3 \beta_{1} - 4 \beta_{2} ) q^{73} + ( -7 - 3 \beta_{1} - 2 \beta_{2} ) q^{74} + ( 3 \beta_{1} - \beta_{2} ) q^{75} + ( -1 - \beta_{1} + 3 \beta_{2} ) q^{76} + ( -7 - 5 \beta_{1} - 4 \beta_{2} ) q^{77} + ( 4 + \beta_{2} ) q^{78} + ( 1 - 3 \beta_{1} + \beta_{2} ) q^{79} + ( 8 - 4 \beta_{1} + \beta_{2} ) q^{80} + q^{81} + ( 7 - 3 \beta_{1} + 3 \beta_{2} ) q^{82} + ( 1 - 5 \beta_{1} + 6 \beta_{2} ) q^{83} + ( -4 - 2 \beta_{1} - 3 \beta_{2} ) q^{84} + ( -12 + 6 \beta_{1} - \beta_{2} ) q^{85} + ( 12 - 2 \beta_{1} + 5 \beta_{2} ) q^{86} + ( 3 - \beta_{1} - 2 \beta_{2} ) q^{87} + ( -1 - \beta_{1} - \beta_{2} ) q^{88} + ( -9 + 3 \beta_{1} - 4 \beta_{2} ) q^{89} + ( 2 - 2 \beta_{1} + \beta_{2} ) q^{90} + ( -1 - 3 \beta_{1} - 4 \beta_{2} ) q^{91} + ( -5 - 5 \beta_{1} + \beta_{2} ) q^{92} + ( -5 + \beta_{1} - 2 \beta_{2} ) q^{93} + ( 1 + 9 \beta_{1} - \beta_{2} ) q^{94} + ( 2 \beta_{1} - 3 \beta_{2} ) q^{95} + ( 1 + 4 \beta_{1} - \beta_{2} ) q^{96} + ( 5 - 5 \beta_{1} + \beta_{2} ) q^{97} + ( 19 + 6 \beta_{1} + 6 \beta_{2} ) q^{98} + ( -1 - \beta_{1} - \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3q^{3} + 2q^{4} - 2q^{5} + 9q^{7} + 3q^{8} + 3q^{9} + O(q^{10}) \) \( 3q - 3q^{3} + 2q^{4} - 2q^{5} + 9q^{7} + 3q^{8} + 3q^{9} + 5q^{10} - 2q^{11} - 2q^{12} + 4q^{13} + 8q^{14} + 2q^{15} - 4q^{16} + 3q^{17} + 7q^{19} - 9q^{20} - 9q^{21} - 11q^{22} + q^{23} - 3q^{24} - q^{25} - 11q^{26} - 3q^{27} + 9q^{28} - 11q^{29} - 5q^{30} + 13q^{31} - 4q^{32} + 2q^{33} - 7q^{34} - q^{35} + 2q^{36} - 5q^{37} - 3q^{38} - 4q^{39} - 2q^{40} - q^{41} - 8q^{42} + 6q^{43} - 15q^{44} - 2q^{45} - 19q^{46} + 11q^{47} + 4q^{48} + 14q^{49} - 21q^{50} - 3q^{51} - 11q^{52} + 2q^{53} + 4q^{55} + 9q^{56} - 7q^{57} + 14q^{58} + 3q^{59} + 9q^{60} - q^{61} - 2q^{62} + 9q^{63} - 21q^{64} + 11q^{66} + 10q^{67} + 28q^{68} - q^{69} + 2q^{70} + 26q^{71} + 3q^{72} + 7q^{73} - 19q^{74} + q^{75} - 6q^{76} - 17q^{77} + 11q^{78} + 2q^{79} + 23q^{80} + 3q^{81} + 18q^{82} - 3q^{83} - 9q^{84} - 35q^{85} + 31q^{86} + 11q^{87} - 2q^{88} - 23q^{89} + 5q^{90} + q^{91} - 16q^{92} - 13q^{93} + 4q^{94} + 3q^{95} + 4q^{96} + 14q^{97} + 51q^{98} - 2q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - 4 x - 1\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.86081
−0.254102
2.11491
−1.86081 −1.00000 1.46260 −3.32340 1.86081 1.13919 1.00000 1.00000 6.18421
1.2 −0.254102 −1.00000 −1.93543 1.68133 0.254102 2.74590 1.00000 1.00000 −0.427229
1.3 2.11491 −1.00000 2.47283 −0.357926 −2.11491 5.11491 1.00000 1.00000 −0.756981
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(1\)
\(59\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 177.2.a.d 3
3.b odd 2 1 531.2.a.d 3
4.b odd 2 1 2832.2.a.t 3
5.b even 2 1 4425.2.a.w 3
7.b odd 2 1 8673.2.a.s 3
12.b even 2 1 8496.2.a.bl 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
177.2.a.d 3 1.a even 1 1 trivial
531.2.a.d 3 3.b odd 2 1
2832.2.a.t 3 4.b odd 2 1
4425.2.a.w 3 5.b even 2 1
8496.2.a.bl 3 12.b even 2 1
8673.2.a.s 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{3} - 4 T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(177))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 - 4 T + T^{3} \)
$3$ \( ( 1 + T )^{3} \)
$5$ \( -2 - 5 T + 2 T^{2} + T^{3} \)
$7$ \( -16 + 23 T - 9 T^{2} + T^{3} \)
$11$ \( 4 - 11 T + 2 T^{2} + T^{3} \)
$13$ \( 26 - 7 T - 4 T^{2} + T^{3} \)
$17$ \( 98 - 43 T - 3 T^{2} + T^{3} \)
$19$ \( -4 + 11 T - 7 T^{2} + T^{3} \)
$23$ \( 64 - 27 T - T^{2} + T^{3} \)
$29$ \( -74 + 9 T + 11 T^{2} + T^{3} \)
$31$ \( 28 + 37 T - 13 T^{2} + T^{3} \)
$37$ \( 14 - 19 T + 5 T^{2} + T^{3} \)
$41$ \( 74 - 39 T + T^{2} + T^{3} \)
$43$ \( 592 - 91 T - 6 T^{2} + T^{3} \)
$47$ \( 496 - 37 T - 11 T^{2} + T^{3} \)
$53$ \( -58 - 89 T - 2 T^{2} + T^{3} \)
$59$ \( ( -1 + T )^{3} \)
$61$ \( 98 - 101 T + T^{2} + T^{3} \)
$67$ \( 784 - 119 T - 10 T^{2} + T^{3} \)
$71$ \( -424 + 193 T - 26 T^{2} + T^{3} \)
$73$ \( 718 - 141 T - 7 T^{2} + T^{3} \)
$79$ \( -32 - 31 T - 2 T^{2} + T^{3} \)
$83$ \( -148 - 199 T + 3 T^{2} + T^{3} \)
$89$ \( -278 + 91 T + 23 T^{2} + T^{3} \)
$97$ \( 202 - 25 T - 14 T^{2} + T^{3} \)
show more
show less