Defining parameters
Level: | \( N \) | \(=\) | \( 177 = 3 \cdot 59 \) |
Weight: | \( k \) | \(=\) | \( 12 \) |
Character orbit: | \([\chi]\) | \(=\) | 177.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(177))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 222 | 108 | 114 |
Cusp forms | 218 | 108 | 110 |
Eisenstein series | 4 | 0 | 4 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(59\) | Fricke | Dim. |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(27\) |
\(+\) | \(-\) | \(-\) | \(26\) |
\(-\) | \(+\) | \(-\) | \(27\) |
\(-\) | \(-\) | \(+\) | \(28\) |
Plus space | \(+\) | \(55\) | |
Minus space | \(-\) | \(53\) |
Trace form
Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(177))\) into newform subspaces
Label | Dim. | \(A\) | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | 3 | 59 | |||||||
177.12.a.a | \(26\) | \(135.997\) | None | \(-78\) | \(-6318\) | \(3808\) | \(-98819\) | \(+\) | \(-\) | |||
177.12.a.b | \(27\) | \(135.997\) | None | \(-128\) | \(6561\) | \(-17188\) | \(-126579\) | \(-\) | \(+\) | |||
177.12.a.c | \(27\) | \(135.997\) | None | \(-46\) | \(-6561\) | \(-2442\) | \(170093\) | \(+\) | \(+\) | |||
177.12.a.d | \(28\) | \(135.997\) | None | \(96\) | \(6804\) | \(26562\) | \(142333\) | \(-\) | \(-\) |
Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(177))\) into lower level spaces
\( S_{12}^{\mathrm{old}}(\Gamma_0(177)) \cong \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 2}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(59))\)\(^{\oplus 2}\)